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Abstract

Optimal trading under the american perpetual put option for
Geometric Brownian Motion and Mean-Reverting Processes

by

Ines Larissa Siebigteroth

The University of Wisconsin–Milwaukee, 2017
Under the Supervision of Professor Chao Zhu

This thesis is focused on the perpetual American put option under the geometric Brownian

motion and mean-reverting models. Two approaches, which have been applied before to the

call option of a mean-reverting process, will be studied in details for the two models. The

first approach amounts to solving the associated quasi-variational inequality for the optimal

stopping problem. A verification theorem is proved to demonstrate that the solution to the

quasi-variational inequality agrees with the value function. The second approach is based

on detailed analyses of an auxiliary two-point stopping problem, which leads to an explicit

expression for the value function. Both approaches identify an optimal execution rule for

the two models.
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Chapter 1

Introduction

In different fields of life we want to find the optimal time to perform an action to gain a

desired result. In the context of financial markets this is the time when the highest possible

asset can be gained from selling a stock. Finding such an optimal point in time is a long

discussed problem of theoretical and applied mathematics.

The behaviour of a stock is described using a mathematical process. The optimal stopping

time depends on the behaviour of our stock and on the used trading rule.

In this thesis we want to verify two approaches to determine the optimal time for execut-

ing a perpetual put option. To do this we will describe in the first chapter the mathematical

background. The perpetual put option and stochastic processes in general will be defined.

This also includes a description of the different stochastic processes that will be used in

this thesis to describe the behaviour of a traded stock. Furthermore, we briefly explain the

ideas behind the different approaches that will be applied. The approaches to determine

an optimal stopping time have previously been applied to the call option of a stock. The

defined goal of this thesis is to show that these approaches can be applied to other trading

rules.

The two approaches will be applied to stochastic processes in chapters 3 and 4. The

trading rule that will be used is the perpetual put option. In both chapters a candidate

solution with each approach will first be determined. After that we will try to verify that

the calculated candidates are a valid solution.

The results will be summarized in the last chapter. We will also include a brief preview

of how the results can be improved or which other stochastic processes can be analyzed by

applying the approaches.
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Chapter 2

Mathematical Background

In this chapter we want to clarify the different mathematical concepts to determine solutions

for our given problem. We first explain the trading of stocks under the American perpetual

put option. After that we briefly refer to the definition of stochastic processes and stochastic

differential equations (SDEs) as a basis for the introduction of optimal stopping problems.

We will close this chapter by presenting the two approaches we will use.

2.1 American Put Option

The American put option describes the situation of trading a stock. The buyer of a put

option purchases the right to sell a stock for a defined value K. In order to gain a high asset

the owner of the put option goes for a decreasing price x per stock because in this case he

can gain a higher amount of money. If the price increases he is allowed not to make use of

the put option. The profit for the asset of a put option is

hpxq “ pK ´ xq` “

$

’

’

&

’

’

%

K ´ x for x ă K

0 for x ě K .

(2.1)

Real-life put options expire after a defined time. The perpetual put option instead does not

expire. It can be held until it is executed at some future time.

2.2 Stochastic Processes

Stochastic Processes are used in different contexts to define mathematical models for pro-

cesses or applications with random behaviour. For example, some important fields of ap-
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plication are biology and financial markets. The different types of stochastic processes and

important examples will be described before we give a short introduction to stochastic dif-

ferential equations.

2.2.1 General Information and Important Types

Stochastic Processes can be classified into discrete-time and time-continuous (t-continuous)

processes. Discrete-time processes are all processes which have a countable set of indices. In

contrast t-continuous processes have uncountably many indices. In the case of stock trading

we will use t-continuous processes, which are based on the process of Brownian motion. The

Brownian motion Wt (also called Wiener Process) has three important properties:

1. The increments of disjoint time intervals are independent, which means that Wt2´Wt1

and Wt3 ´Wt4 are independent if rt1, t2s and rt3, t4s are disjoint.

2. For all 0 ď s ă t, the increment Wt ´Ws is normally distributed with mean 0 and

variance t´ s.

3. W p0q “ 0 and the sample paths tÑ Wt is continuous for almost all ω P Ω.

The Wiener Process is also part of SDEs which we will talk about in the following section.

2.2.2 Stochastic Differential Equation

Applications of differential equations assume that the described process does not include any

randomness, which is also called ”noise”. stochastic differential equations instead not only

consist of usual differential equations, but also include a term for the possible noise. We can

compare normal differential equations and SDEs by examining the defined formulas

dXt

dt
“ bpt,Xtq for differential equations, (2.2)

dXt

dt
“ bpt,Xtq ` σpt,XtqWt for SDEs. (2.3)

3



The term Wt describes the noise or randomness in our process and is the derivative of a

Brownian Motion. SDEs are solved by using Itô’s formula so that (2.3) can be rewritten and

solved as

dXt “ bpt,Xtqdt` σpt,XtqdWt (2.4)

Xt “ X0 `

ż t

0

bps,Xsqds`

ż t

0

σps,XsqdWs. (2.5)

Just as for normal differential equations it is possible that a solution Xt does not exist or

that several solutions exist instead of only one. In the case of solving SDEs an existence and

uniqueness theorem exists which will briefly summarize the definition found in [3]:

Theorem 2.1. If for T ą 0 the measurable functions bp¨, ¨q : r0, T s ˆ Rn Ñ Rn and

σp¨, ¨q : r0, T s ˆRn Ñ Rnˆm satisfy

|bpt, xq| ` |σpt, xq| ď Cp1` |x|q (2.6)

and

|bpt, xq ´ bpt, yq| ` |σpt, xq ´ σpt, yq| ď D|x´ y| (2.7)

for some constants C, D and x, y PRn, t P r0, T s

and if there a random variable Z exists that is independent of the σ-Algebra generated by

Wsp¨q and for that

Er|Z|2s ă 8 (2.8)

holds, then a unique solution Xt for SDE (2.4) exists and Xt has the property

Er
şT

0
|Xt|

2dts ă 8 for any T ě 0.

The inequality (2.6) guarantees that our solution is non-exploding almost surely. The

Lipschitz condition (2.7) gives us the uniqueness of our solution.

The processes of geometric Brownian motion and the mean-reverting process, which we

will use are defined by SDEs. For each of these SDEs an unique solution exists.

4



2.3 Optimal Stopping Problem

The optimal stopping problem describes the situation of maximizing the expected discount

reward. For a reward function hpXtq and an underlying stochastic process Xt is the optimal

stopping problem in an infinite time horizon defined as

V pxq “ sup
τě0

Exre
´ρτhpXτ qs, (2.9)

where ρ ą 0 is the discount factor and τ ě 0 is the stopping time. The goal is to find an

optimal stopping rule τ˚ such that

V pxq “ sup
τě0

Exre
´ρτhpXτ qs “ Exre

´ρτ˚hpXτ˚qs. (2.10)

By applying such an optimal stopping rule we can define stopping and continuation regions.

In case of stock trading a stock will not be sold as long as the value of Xt is in a continuation

region. If the value leaves this region the stock will be traded because it reaches a stopping

region.

We will apply two approaches to solve the optimal stopping problem for the American

perpetual put option. The two approaches are briefly explained in the following subsections.

2.3.1 Approach 1: Solving QVI

The first approach we use is based on [5], solving the quasi-variational inequality (QVI)

mintpρ´ LqV pxq, V pxq ´ hpxqu “ 0 (2.11)

where L is the infinitesimal generator for the process X. For example, when X is a geometric

Brownian motion or X is a mean-reverting process

Lfpxq “

$

’

’

&

’

’

%

θpµ´ xqf 1pxq ` 1
2
σ2f2pxq for the MRP

µxf 1pxq ` 1
2
σ2x2f2pxq for the GBM

f P C2. (2.12)

5



stopping region continuation region

(ρ− L)V (x) ≥ 0

V (x)− (K − x)+ = 0

(ρ− L)V (x) = 0

V (x)− (K − x)+ ≥ 0

x∗

Figure 2.1: Numberline of stopping and continuation region

We apply this approach to the perpetual put option such that by the QVI (2.11) V should

satisfy

pρ´ LqV pxq ě 0 , V pxq ě hpxq @x (2.13)
$

’

’

&

’

’

%

V pxq “ hpxq for x ă x˚

pρ´ LqV pxq “ 0 for x ą x˚ .

(2.14)

This approach for the American perpetual put Option is applied to the process of GBM and

the MRP. For each of these process types we first determine that a candidate solution vpxq

exists. Afterwards we verify that vpxq is a solution by proving
$

’

’

&

’

’

%

V pxq ´ hpxq ě 0 for x ą x˚

pρ´ LqV pxq ě 0 for x ă x˚ .

(2.15)

If vpxq satisifies (2.14) and (2.15) it is implied that V pxq “ vpxq is a solution to the QVI.

The regions where the equalities and inequalities hold are shown at a numberline in Fig. 2.1.

2.3.2 Approach 2: Solving 2-Point Stopping Problem

The second approach we use is based on [2] in which V pxq and the optimal stopping time

for a mean-reverting process under the American call option are determined by solving a

2-Point stopping problem. For this approach the equation

pρ´ LqV pxq “ 0 (2.16)

6



with L from (2.12) has two fundamental solutions φ1 and φ2. It is well-known that φ1 is

increasing, φ2 is decreasing and both are convex. φ1 and φ2 will be used to define

Ψpxq “
φ1

φ2

pxq. (2.17)

It is evident that Ψ is strictly increasing and thus Ψ´1 exists, so

Hpyq “
h

φ2

pΨ´1
pyqq (2.18)

can be defined. Evaluating the expected discounted reward we get according to [2]

Exre
´ρpτa^τbhpXτa^τbqs “ hpaqExre

´ρτa1τaăτbs ` hpbqExre
´ρτb1τaąτbs

“ hpaq
φ1pxqφ2pbq ´ φ1pbqφ2pxq

φ1paqφ2pbq ´ φ1pbqφ2paq
` hpbq

φ1paqφ2pxq ´ φ1pxqφ2paq

φ1paqφ2pbq ´ φ1pbqφ2paq

“ φ2pxqr
hpaq

φ2paq

Ψpbq ´Ψpxq

Ψpbq ´Ψpaq
`

hpbq

φ2pbq

Ψpxq ´Ψpaq

Ψpbq ´Ψpaq
s

“ φ2pΨ
´1
pyqqrHpyaq

yb ´ y

yb ´ ya
`Hpybq

y ´ ya
yb ´ ya

s, (2.19)

where y “ Ψpxq, ya “ Ψpaq and yb “ Ψpbq.

Furthermore, we know by [2] that V pxq “ supa,b:aďxďbExre
´ρpτa^τbhpXτa^τbqs, so we define

W pyq “ sup
ya,yb:yaďyďyb

rHpyaq
yb ´ y

yb ´ ya
`Hpybq

y ´ ya
yb ´ ya

s. (2.20)

Then it follows that

V pxq “ φ2pxqW pyq “ φ2pxqW pΨpxqq. (2.21)

The idea behind W pyq is to find the least concave majorant for Hpyq so that V pxq is defined

either by φ2pxqHpΨpxqq at the regions where Hpyq is concave or by φ2pxqW pΨpxqq where

Hpyq is not concave at the complete region pa, bq. When we apply the definitions given in this

approach to the GBM and the MRP under the perpetual put option we have to determine

the functions Ψpyq, Hpyq and W pyq, where W pyq is determined based on the behaviour of

Hpyq. Determining W pyq includes the proof that W pyq is the least concave majorant for

Hpyq. Only in this case does V pxq “ φ2pxqW pΨpxqq hold.

7



Chapter 3

Geometric Brownian Motion

The process of geometric Brownian motion is defined by the SDE

dXt “ µXtdt` σXtdWt, X0 “ x ą 0, (3.1)

where µ and σ are constants and Wt is a Wiener process. Applying Ito’s formula to lnpXtq

we get

Xt “ xepµ´
1
2
σ2qt`σWt . (3.2)

We assume throughout the chapter that under some risk neutral probability measure

P, e´ρtXt is a martingale. In other words, we assume that the appreciation rate of the

underlying risky asset under the measure P is µ “ ρ.

The values of a geometric Brownian motion are always greater than 0 and the expectation

value is EpXtq “ xeµt. In case of our optimal stopping problem under the perpetual put

option we can use this information to determine a boundary condition for our value function

in the following way:

V pxq “ sup
τě0

Ere´ρτ pK ´Xτ q
`
s ě pK ´ xq` , (3.3)

e´ρτ pK ´Xτ q
`
ď 1pK ´ 0q` “ K. (3.4)

In consideration of (2.15) we know that 0 ď V pxq ď K are our boundary conditions for

V pxq. These conditions guarantee that V pxq does not explode.

8



3.1 Approach 1

Applying the first approach to the process of geometric Brownian motion as defined in (3.2),

vpxq will be calculated in the following way. We first solve

pρ´ Lqvpxq “ ρv ´ ρxv1 ´
1

2
σ2x2v2 “ 0. (3.5)

Recall that we are considering the risk neutral pricing of the American perpetual put option

we consequently assume µ “ ρ. Furthermore, we guess that vpxq has the form vpxq “ xp.

Applying this to equation (3.5) we solve the equation

1

2
σ2p2 ` pρ´

1

2
σ2
qp´ ρ “ 0, (3.6)

and we get the results

p1 “ ´
2ρ

σ2
, p2 “ 1. (3.7)

So our general solution is vpxq “ A1x
p1 `A2x

p2 “ A1x
´

2ρ

σ2 `A2x. For xÑ 8 we know that

V pxq should be bounded but limxÑ8 x “ 8. According to this we conclude that A2 “ 0 and

so

vpxq “

$

’

’

&

’

’

%

A1x
´

2ρ

σ2 for x ą x˚

pK ´ xq` for x ă x˚ .

(3.8)

Checking the two possible cases for pK ´ xq`

pK ´ xq` “

$

’

’

&

’

’

%

0 for x ě K

pK ´ xq for x ă K

under the condition that vpx˚q ą 0 we can conclude that x˚ ă K. So we can rewrite (3.8)

for x ă x˚ as

vpxq “ pK ´ xq .

9



Determination of constants We next use smooth pasting to determine the constants

A1 and x˚. By using the continuity in x˚ of our function and its first derivative we get the

following equations:

A1x˚
´

2ρ

σ2 “ pK ´ x˚q, x “ x˚ (3.9)

v1pxq “ A1p´
2ρ

σ2
qx˚

´
2ρ

σ2
´1
“ ´1 (3.10)

A1 “
K ´ x˚

x˚
´

2ρ

σ2

(3.11)

(3.11) in (3.10)

K ´ x˚

x˚
´

2ρ

σ2

p´
2ρ

σ2
qx˚

´
2ρ

σ2
´1
“ ´1

K

x˚
p´

2ρ

σ2
q `

2ρ

σ2
“ ´1

x˚ “
K2ρ

2ρ` σ2
ă K . (3.12)

If we plug this back into (3.11) we get

A1 “
K ´ x˚

x˚
´

2ρ

σ2

“ σ2
p2ρq

2ρ

σ2 p
K

σ2 ` 2ρ
q

σ2`2ρ

σ2

(3.13)

Combining our calculated values for A1 and x˚ with the information that x˚ ă K, we rewrite

(3.8) as

vpxq “

$

’

’

&

’

’

%

σ2p2ρq
2ρ

σ2 p K
σ2`2ρ

q
σ2`2ρ

σ2 x´
2ρ

σ2 for x ą x˚

pK ´ xq for x ă x˚ .

(3.14)

So we have found a candidate solution for our QVI.

Check of Inequalities Next we verify that the function vpxq given in (3.14) also satisfies

(2.15). Consequently v P C1p0,8q X C2pp0,8qztx˚uq is a solution to the quasi-variational

inequality.

First, we verify vpxq ě pK ´ xq for x ą x˚:

10



To this end, consider the function

fpxq “ vpxq ´ pK ´ xq

“ σ2
p2ρq

2ρ

σ2 p
K

σ2 ` 2ρ
q

σ2`2ρ

σ2

x´
2ρ

σ2 ´ pK ´ xq

f 1pxq “ ´p2ρq
2ρ`σ2

σ2 p
K

σ2 ` 2ρ
q

σ2`2ρ

σ2

x´
2ρ

σ2
´1
` 1

ě ´p2ρq
2ρ`σ2

σ2 p
K

σ2 ` 2ρ
q

σ2`2ρ

σ2

x˚
´
p2ρ`σ2q

σ2 ` 1

“ ´p2ρq
2ρ`σ2

σ2 p
K

σ2 ` 2ρ
q

σ2`2ρ

σ2 K2ρ

2ρ` σ2

´
p2ρ`σ2q

σ2

` 1

“ 0 .

Since fpx˚q “ 0, we have fpxq ě 0 for all x ě x˚. Consequently, vpxq ě pK ´ xq for all

x ě x˚, which we wanted to show.

Secondly, we verify pρ´ Lqvpxq ě 0 for x ă x˚:

For that we use

vpxq “ pK ´ xq, v1pxq “ ´1, v2pxq “ 0

for all x ă x˚ to determine

pρ´ Lqvpxq “ρvpxq ´ ρxv1pxq ´
1

2
σ2x2v2pxq

“ρpK ´ xq ` ρx “ ρK ě 0 .

So we have shown that (3.14) is a solution for the QVI.

3.2 Verification Theorem

The next step is to verify that our calculated vpxq is a value function V pxq and that τ˚ “

inftt ě 0 : Xt ď x˚u is an optimal stopping rule, so that vpxq “ V pxq “ Ere´ρτ˚pK ´X`
τ˚s.

11



First, we show that vpxq ě Ere´ρτhpXτ qs, @τ (stopping times):

Since vpxq is smooth we can apply Itô’s formula

e´ρpt^τqvpXt^τ q “ vpxq `

ż t^τ

0

e´ρspL´ ρqvpXsqds`

ż t^τ

0

e´ρsv1pXsqσXsdWs

using the inequalities

vpxq ě hpxq, pρ´ Lqvpxq ě 0 and so pL´ ρqvpxq ď 0

we can determine

Ere´ρpt^τqvpXt^τ qs “ vpxq ` Er

ż t^τ

0

e´ρspL´ ρqvpXsqdss

ď vpxq ` Er

ż t^τ

0

e´ρs0dss ď vpxq

and

vpxq ě Ere´ρpt^τqvpXt^τ qs ě Ere´ρpt^τqhpXt^τ qs .

The above inequality is true for any stopping time τ . Note also hpxq “ pK´xq` ě 0. Hence

we can apply Fatou’s Lemma to obtain

Ere´ρpτqhpXτ qs ď lim
tÑ8

inf Ere´ρpt^τqhpXt^τ qs ď vpxq (3.15)

which is what we wanted to show. Now taking sup over all stopping times τ ě 0 yields

vpxq ě supτě0Ere
´ρpτqhpXτ qs.

Next we have to show that vpxq “ V pxq for our stopping rule τ˚. For this we use the

information that in our stopping region vpxq “ hpxq, so that

vpxq “ Ere´ρpτ˚qhpXτ˚qs ď sup
τě0

Ere´ρpτqhpXτ qs “ V pxq . (3.16)

The inequalities (3.15) and (3.16) together reveal that vpxq “ V pxq.

So we have proven that our candidate solution vpxq is really the value function V pxq we

wanted to determine and that τ˚ is an optimal stopping rule.

12



3.3 Approach 2

Applying the second approach to the process of geometric Brownian motion as defined in

(3.2) V pxq will be calculated. First we solve the equation (3.5) just as in chapter (3.1) which

gives us

φ1pxq “ x , φ2pxq “ x´
2ρ

σ2 .

Using the second approach now we get

Ψpxq “
φ1

φ2

pxq “ x
σ2`2r

σ2 , (3.17)

Ψ´1
pyq “ y

σ2

σ2`2ρ , (3.18)

hpxq “ pK ´ xq` . (3.19)

Referring to (2.18) and the definition of hpxq we can determine an interval p0, y0q in which

Hpyq ą 0, for y R p0, y0q is Hpyq “ 0. Solving the equation Hpyq “ 0 gives us

y0 “ K
σ2`2ρ

σ2 (3.20)

and in consequence

Hpyq “

$

’

’

&

’

’

%

pK ´ y
σ2

σ2`2ρ qy
2ρ

σ2`2ρ for y P p0, K
σ2`2ρ

σ2 q

0 for y ě K
σ2`2ρ

σ2 .

Analysis of H(y) We assume that an extremum for Hpyq on the interval p0, y0q exists.

So solving

H 1
pyq “ ´

σ2

σ2 ` 2ρ
`

2ρ

σ2 ` 2ρ
pK ´ y

σ2

σ2`2ρ qy
´ σ2

σ2`2ρ “ 0 (3.21)
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we get

y˚ “
2ρK

σ2 ` 2ρ

2ρ`σ2

σ2

(3.22)

as a possible extremum.

Next, we claim that Hpyq is concave for y P p0, y0q, which will be shown in two steps.

First, we check the behaviour of H2pyq for y P p0, y0q:

H 1
pyq “ ´

σ2

σ2 ` 2ρ
`

2ρ

σ2 ` 2ρ
pK ´ y

σ2

σ2`2ρ qy
´ σ2

σ2`2ρ , (3.23)

H2
pyq “ ´

2ρσ2

σ2 ` 2ρ

1

y
Ky

´ σ2

σ2`2ρ . (3.24)

Because the constants and y are positive we conclude

H2
pyq ă 0 for y P p0, y0q

thus Hpyq is concave on the interval p0, y0q. For y ą y0 we can neither testify that Hpyq is

concave nor that the function is convex, because Hpyq is constant on this interval.

Based on the information that Hpyq is concave and Hpyq ą 0 on the interval p0, y0q we

conclude that y˚ is the maximum of Hpyq. Combined with the concavity property we know

that

Hpyq “

$

’

’

&

’

’

%

increases for y P p0, y˚q

decreases for y ą y˚ .

(3.25)

Definition of W(y) Similarly to (2.20) we determine W pyq based on our Hpyq.

Proposition 3.1. The function W pyq defined by

W pyq “

$

’

’

&

’

’

%

Hpy˚q for y ě y˚

Hpyq for y P p0, y˚q

(3.26)

is the least concave majorant of Hpyq.

Proof. This claim is proven first for y P p0, y˚q. Therefore, the solution W pyq “ Hpyq on

14



Figure 3.1: Hpyq and W pyq for a GBM with µ “ 0.10, σ “ 0.56, ρ “ 0.10, K “ 0.3

this interval is obvious by the argument that Hpyq is increasing and concave on p0, y˚q. So

the tangent at every y P p0, y˚q will be the least concave majorant at this point.

For the region y ą y˚ we proof by contradiction. We suppose Dϕ concave such that

1. ϕpyq ě Hpyq @y P p0,8q

2. Dy0 ą y˚ such that W py0q ą ϕpy0q ě Hpy0q.

Since ϕ is concave, we can find a dominating line, passing through py0, ϕpy0qq i.e. Dm P pRq

such that

Hpyq ď ϕpyq ď ϕpy0q `mpy ´ y0q @y P r0,8q. (3.27)

Note that Hpy˚q “ W py0q ą ϕpy0q. Considering the case where m ě 0 and plugging y “ y˚

into (4.33) we get

ϕpy0q ă Hpy˚q ď ϕpy˚q ď ϕpy0q `mpy˚ ´ y0q ď ϕpy0q

which is a contradiction.
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For m ă 0 and if we plug in y “ y˚, we get

ϕpy0q ă Hpy˚q ď ϕpy˚q ď ϕpy0q `mpy˚ ´ y0q.

When y0 Ñ 8 on the RHS ϕpy0q `mpy˚ ´ y0q Ñ ´8 but on the LHS Hpy0q Ñ 0 which is

also a contradiction. So we have proven that no smaller concave majorant ϕ of Hpyq exists.

Consequently, W pyq is the least concave majorant of Hpyq. An example for Hpyq and W pyq

is shown in Fig. 3.1.

After we have shown that (3.26) is the least concave majorant we then get the value

function

V pxq “ φ2pxqW pΨpxqq “

$

’

’

&

’

’

%

σ2p2ρq
2ρ

σ2 p K
σ2`2ρ

q
σ2`2ρ

σ2 x´
2ρ

σ2 for x ą x˚

pK ´ xq for x ă x˚

(3.28)

which is identical to our solution (3.14) we obtained using the first approach.
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Chapter 4

Mean-reverting Process

The mean-reverting process is defined by the SDE

dXt “ θpµ´Xtqdt` σdWt, X0 “ x P R (4.1)

where θ ą 0, µ and σ ą 0 are constants and Wt is a Wiener process. Applying Itô’s formula

to the SDE (4.1) we get

Xt “ xe´θt ` µp1´ e´θtq ` σe´θt
ż t

0

eθsdWs . (4.2)

The MRP oscillates around its long-term mean value µ. Also observe that the values of Xt

can be negative. Because we want to solve the optimal stopping problem for this process

type under the perpetual put option we can determine a boundary condition for our value

function in the following way:

V pxq “ sup
τě0

Ere´ρτ pK ´Xτ q
`
s “ Ere´ρτ˚pK ´Xτ˚q

`
s . (4.3)

So we obviously have the lower bound V pxq ě pK ´ xq`, @x P R.

The upper bound is more difficult to compute: We have

ErXts “ xe´θt ` µp1´ e´θtq (4.4)

and

V arpXtq “ V arre´θt
ż t

0

σeθsdWss

“ e´2θtEr|

ż t

0

σeθsdWs|
2
s

“ e´2θtEr

ż t

0

pσeθsq2dss “
σ2

2θ
p1´ e´2θtq . (4.5)
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Then

ErX2
t s “ pµ` px´ µqe

´2θt
q
2
`
σ2

2θ
p1´ e´2θtq

“ pµp1´ e´θtq ` xe´θtq2 `
σ2

2θ
p1´ e´2θtq

ď pµp1´ e´θtq ` xe´θtq2 `
σ2

2θ
. (4.6)

This in combination with the Cauchy-Schwarz Inequality gives

Er|Xt|s ď pEr|Xt|
2
sq

1
2 ď rpµp1´ e´θtq ` xe´θtq2 `

σ2

2θ
s
1
2

ď rp|µ| ` |x|e´θtq2 `
σ2

2θ
s
1
2 ď e´θt|x| ` |µ| `

σ
?

2θ

ď |µ| `
σ
?

2θ
` |x| . (4.7)

So we know that ErpK ´Xtq
`s ď |µ| ` σ?

2θ
` |x|. Based on this we know that

pK ´ xq` ď V pxq ď |µ| `
σ
?

2θ
` |x| (4.8)

are our boundary conditions for V pxq. These conditions guarantee that V pxq does not

explode.

4.1 Approach 1

Applying the first approach to the mean-reverting process as defined in (4.2) our V pxq will

be calculated based on

pρ´ Lqvpxq “ ρv ´ θpµ´ xqv1 `
1

2
σ2x2v2 “ 0 . (4.9)

In view of [5], a general solution to (4.9) is given by A1φ1pxq`A2φ2pxq, where φ1 and φ2 are

given by

φ1pxq “

ż 8

0

pt
ρ
θ
´1e

´t2

2 e´κpµ´xqtqdt , (4.10)

φ2pxq “

ż 8

0

pt
ρ
θ
´1e

´t2

2 eκpµ´xqtqdt , (4.11)
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and

κ “

?
θ

σ
, ρ ą 0, θ ą 0, σ ą 0 . (4.12)

It is well-known that φ1 is strictly increasing, φ2 is strictly decreasing, both are positive and

convex. Therefore, a candidate solution to the QVI can be written as:

vpxq “

$

’

’

&

’

’

%

pK ´ xq` for x ă x˚

A1φ1pxq ` A2φ2pxq for x ą x˚ .

Behaviour of φ1 and φ2 Because V pxq should be bounded for xÑ 8 we have to examine

the behaviour of φ1 and φ2. In the case of φ1 when x ą 0 we compute

φ1pxq “

ż 8

0

pt
ρ
θ
´1e

´t2

2 e´κpµ´xqtqdt

ě

ż 8

1

pt
ρ
θ
´1e

´t2

2
´κµteκxtqdt

ě

ż 8

1

pt
ρ
θ
´1e

´t2

2
´κµteκxqdt

“ eκx
ż 8

1

pt
ρ
θ
´1e

´t2

2
´κµt

qdt ą 0 . (4.13)

Then we observe the behaviour of φ1 in relation to x by using the minorant (4.13)

lim
xÑ8

φ1pxq

x
ě lim

xÑ8

eκx

x
“ `8 . (4.14)

For the analysis of φ2 we compute

φ12pxq “ ´κ

ż 8

0

pt
ρ
θ e

´t2

2 eκpµ´xqtqdt ă 0 , (4.15)

so that

φ2pxq ă φ2p1q if x ě 1 (4.16)

then

lim
xÑ8

φ2pxq

x
“ 0 . (4.17)
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Similar analysis reveals that limxÑ´8
φ2pxq
x
“ ´8 and that φ2pxq is bounded when x ą K

for K ą ´8. Regarding this we know that φ2 is decreasing and bounded whereas φ1 is

increasing and unbounded for x Ñ 8. With respect to this we conclude that A1 “ 0,

otherwise vpxq isn’t bounded. Based on that

vpxq “

$

’

’

&

’

’

%

pK ´ xq` for x ă x˚

A2φ2pxq for x ą x˚ .

(4.18)

Now we have to find A2 and x˚ by using the continuity of the function and its first

derivative at the point x˚ like in Chapter(3.1). So,

A2φ2px˚q “ K ´ x˚ (4.19)

A2φ
1
2px˚q “ ´1

A2 “
´1

φ12px˚q
ą 0 (4.20)

(4.20) in (4.19)

φ2px˚q

φ12px˚q
“ x˚ ´K φ2px˚q ´ px˚ ´Kqφ

1
2px˚q “ 0 . (4.21)

Because of the complexity of solving the equation (4.21) we will only show that a vpxq with

constants x˚ and A2 exists.

Existence of v(x) Now we show that (4.21) has a solution. To do this we consider the

function

Gpxq “φ2pxq ´ px´Kqφ
1
2pxq . (4.22)

That (4.21) has a solution is equivalent to Gpx˚q “ 0. Gpxq is continuous and furthermore

on r´8, Ks is GpKq “ φ2pKq ą 0 and limxÑ´8Gpxq “ ´8. Based on the continuity of

Gpxq and the behaviour of the function at the boundaries of the interval we know by the

intermediate value theorem that at least one x˚ ă K exists such that Gpx˚q “ 0. From this

we obtain that (4.21) has a solution x˚ and consequently (4.20) determines the value of A2.
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So we have shown that a solution of the QVI exists and the solution has the following form

vpxq “

$

’

’

&

’

’

%

pK ´ xq` for x ă x˚

´1
φ12px˚q

φ2pxq for x ą x˚ .

(4.23)

Check of Inequalities Next we verify that the function vpxq given in (4.23) also satisfies

the inequalities (2.15). Consequently, v P C1p0,8q X C2pp0,8qztx˚uq is a solution to the

quasi-variational inequality.

First, let’s verify V pxq ě pK ´ xq for x ą x˚:

To this end, consider the function

fpxq “ vpxq ´ pK ´ xq

“ A2φ2pxq ´ pK ´ xq ,

f 1pxq “ A2φ
1
2pxq ` 1 ,

using (4.20) we get:

f 1pxq “
´1

φ12px˚q
φ12pxq ` 1 ą

´1

φ12px˚q
φ12px˚q ` 1 “ ´1` 1 “ 0 .

This inequality holds, because with respect to φ22 ą 0 we know that φ2 is convex but φ2pxq

is also bounded for limxÑ8. Therefore φ2 and similar to that φ12 decrease for limxÑ8. Con-

sequently, is φ12px˚q ą φ12pxq and therefore
φ12pxq

φ12px˚q
ă 1.

Furthermore, since fpx˚q “ 0, we have fpxq ě 0 for all x ě x˚. Consequently is vpxq ě

pK ´ xq for all x ě x˚, which we wanted to show.

Secondly, we verify pρ´ Lqvpxq ě 0 for x ă x˚:

Therefore we will use the condition that at the point x˚ our vpxq from the region x ą x˚

and our vpxq for x ă x˚ are equal. We use

vpxq “ pK ´ xq , v1pxq “ ´1 , v2pxq “ 0
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for all x ă x˚ to determine

pρ´ Lqvpxq “ρv ´ θpµ´ xqv1 `
1

2
σ2x2v2

“ρpK ´ xq ` θpµ´ xq “ ρK ` θµ´ xpθ ` ρq

ěρK ` θµ´ x˚pθ ` ρq “ pρ´ Lqvpx˚q `
1

2
σ2v2px˚q

“
1

2
σ2v2px˚q ě 0 .

So we have shown that (4.23) is a solution for the QVI.

4.2 Verification Theorem

The next step is to verify that our calculated vpxq is a value function V pxq and that τ˚ “

inftt ě 0 : Xt ď x˚u is an optimal stopping rule, so that vpxq “ V pxq “ Ere´ρτ˚pK ´X`
τ˚s.

First, we show that vpxq ě Ere´ρτhpXτ qs, @τ (stopping times):

Since vpxq is smooth we can apply Itô’s formula

e´ρpt^τqvpXt^τ q “ vpxq `

ż t^τ

0

e´ρspL´ ρqvpXsqds`

ż t^τ

0

e´ρsv1pXsqσXsdWs

using the inequalities

vpxq ě hpxq, pρ´ Lqvpxq ě 0 and so pL´ ρqvpxq ď 0

we can determine

Ere´ρpt^τqvpXt^τ qs “ vpxq ` Er

ż t^τ

0

e´ρspL´ ρqvpXsqdss

ď vpxq ` Er

ż t^τ

0

e´ρs0dss ď vpxq

and

vpxq ě Ere´ρpt^τqvpXt^τ qs ě Ere´ρpt^τqhpXt^τ qs

The above inequality is true for any stopping time τ . Note also hpxq “ pK´xq` ě 0. Hence
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we can apply Fatou’s Lemma to obtain

Ere´ρpτqhpXτ qs ď lim
tÑ8

inf Ere´ρpt^τqhpXt^τ qs ď vpxq (4.24)

which is what we wanted to show. Now taking sup over all stopping times τ ě 0 yields

vpxq ě supτě0Ere
´ρpτqhpXτ qs.

Next we have to show that vpxq “ V pxq for our stopping rule τ˚. For this we use the

information that in our stopping region vpxq “ hpxq, so that

vpxq “ Ere´ρpτ˚qhpXτ˚qs ď sup
τě0

Ere´ρpτqhpXτ qs “ V pxq . (4.25)

The inequalities (4.24) and (4.25) together reveal that vpxq “ V pxq.

So we have proven that our candidate solution vpxq is really the value function V pxq we

wanted to determine and that τ˚ is an optimal stopping rule.

4.3 Approach 2

Applying the second Approach to the mean-reverting process as defined in (4.2) V pxq will

be calculated. First we solve the equation (4.9) just as in chapter (4.1) which gives us

φ1pxq “

ż 8

0

pt
ρ
θ
´1e

´t2

2 e´κpµ´xqtqdt ,

φ2pxq “

ż 8

0

pt
ρ
θ
´1e

´t2

2 eκpµ´xqtqdt .

Using the second approach now we get

Ψpxq “
φ1

φ2

pxq “

ş8

0
pt

ρ
θ
´1e

´t2

2 e´κpµ´xqtqdt
ş8

0
pt

ρ
θ
´1e

´t2

2 eκpµ´xqtqdt
. (4.26)

According to [2] Ψ is strictly increasing and Ψpxq ą 0, @x P pRq. In view of (2.18) and the

definition of hpxq we define

Hpyq “
h

φ2

pφ´12 pyqq “
pK ´Ψ´1pyqq`

φpΨ´1pyqq
for y ą 0 .
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From [2] and the behaviour of φ2 we know that

Hp0q “ lim
xÑ´8

hpxq`

φ2pxq
“ lim

xÑ´8

K ´ x

φ2pxq
“ 0 .

So Hpyq can be written as

Hpyq “

$

’

’

&

’

’

%

h
φ2
pΨ´1pyqq for y ą 0

0 for y “ 0

(4.27)

and is continuous on r0,8q.

Analysis of H(y) Hpyq is concave for y P p0,ΨpKqq, which will be shown by the behaviour

of H2pyq. For that we determine the derivatives of Hpyq, using the notation Ψ´1pyq “ x, so

that

H 1
pyq “

h1φ2 ´ φ
1
2h

φ11φ2 ´ φ1φ12
“
´φ2pxq ´ pK ´ xqφ12pxq

φ11pxqφ2pxq ´ φ1pxqφ12pxq
, (4.28)

H2
pyq “

φ2
2rpφ

1
1φ2 ´ φ1φ

1
2qh

2φ2 ` φ
2
1φ2pφ

1
2h´ h

1φ2qs

pφ11φ2 ´ φ1φ12q
3

pxq (4.29)

“
φ3
2pxqrφ

2
1pxqp´φ2pxq ´ pK ´ xq`φ12pxqq ` φ

2
2pxqp´φ1pxq ´ pK ´ xq`φ11pxqqs

pφ11pxqφ2pxq ´ φ1pxqφ12pxqq
3

(4.30)

From the behaviour of φ1 and φ2 and their derivatives we conclude

H2
pyq ă 0 for y P p0,ΨpKqq .

Thus Hpyq is concave on the interval p0,ΨpKqq.

For y ą ΨpKq we can neither testify that Hpyq is concave nor that the function is convex,

because Hpyq is constant on this interval.

Based on the information that Hpyq is concave and Hpyq ą 0 on the interval p0, y0q we

assume that at y˚ is the maximum of Hpyq. So solving H 1pyq “ 0 we get the equation

´φ2px˚q ´ pK ´ x˚qφ
1
2px˚q “ 0; this is the same equation as (4.21). So we conclude that
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y˚ “ Ψpx˚q exists. Combined with the concavity property we know that

Hpyq “

$

’

’

&

’

’

%

increases for y P p0, y˚q

decreases for y ą y˚ .

(4.31)

Definition of W(y) Similarly to (2.20) we determine W pyq based on our Hpyq.

Proposition 4.1. The function W pyq defined by

W pyq “

$

’

’

&

’

’

%

Hpy˚q for y ě y˚

Hpyq for y P p0, y˚q

(4.32)

is the least concave majorant of Hpyq.

Proof. This claim is proven first for y P p0, y˚q. Therefore, the solution W pyq “ Hpyq on

this interval is obvious by the argument that Hpyq is increasing and concave on p0, y˚q. So

the tangent at every y P p0, y˚q will be the least concave majorant at this point.

For the region y ą y˚ we proof by contradiction.

We suppose Dϕ concave such that

1. ϕpyq ě Hpyq @y P p0,8q

2. Dy0 ą y˚ such that W py0q ą ϕpy0q ě Hpy0q

Since ϕ is concave, we can find a dominating line, passing through py0, ϕpy0qq i.e. Dm P pRq

such that

Hpyq ď ϕpyq ď ϕpy0q `mpy ´ y0q @y P r0,8q . (4.33)

Note that Hpy˚q “ W py0q ą ϕpy0q. Considering the case where m ě 0 and plugging y “ y˚

into (4.33), we get

ϕpy0q ă Hpy˚q ď ϕpy˚q ď ϕpy0q `mpy˚ ´ y0q ď ϕpy0q
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which is a contradiction.

For m ă 0 and if we plug in y “ y˚, we get

ϕpy0q ă Hpy˚q ď ϕpy˚q ď ϕpy0q `mpy˚ ´ y0q .

When y0 Ñ 8 on the RHS ϕpy0q `mpy˚ ´ y0q Ñ ´8 but on the LHS Hpy0q Ñ 0 which is

also a contradiction. So we have proven that no smaller concave majorant ϕ of Hpyq exists.

Consequently, W pyq is the least concave majorant of Hpyq.

After we have shown that (4.32) is the least concave majorant we compute

φ2pΨ
´1
py˚qq ` pK ´Ψ´1

py˚qqφ
1
2pΨ

´1
py˚qq “ 0

´1

φ2pΨ´1py˚qq
“
K ´Ψ´1py˚q

φ2pΨ´1py˚qq
“ Hpy˚q

so that we get then the value function

V pxq “ φ2pxqW pΨpxqq “

$

’

’

&

’

’

%

pK ´ xq` for x ă x˚

´1
ψ1px˚q

φ2pxq for x ą x˚

(4.34)

which is identical to our candidate solution (4.23).
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Chapter 5

Conclusion

Referring to the results of chapter 3 and chapter 4 we have shown that both approaches solve

the optimal stopping problem for the GBM and the MRP under the perpetual put option.

For the approach of solving the QVI we were able to verify that our determined solution

vpxq is our desired value function V pxq for each process.

Additionally, we were able verify that τ˚ “ inftt ě 0 : Xt ď x˚u is the optimal stopping

rule. Based on this we identified the optimal stopping time and the optimal stopping region.

Furthermore, we found out that it does not matter if we solve the QVI or the 2-point stopping

problem for each of the processes. For both the GBM and the MRP there were no differences

between the solutions of the two approaches.

We also gained from our results other potential research ideas and points of interest.

One point of interest is to find a more convenient formula to determine the optimal stopping

time for the mean-reverting process. We were only able to show that a stopping time exists,

but it was not possible to calculate this stopping time without support of computer-based

simulations.

A second point of interest is to apply the two approaches to other stochastic processes.

Traded stocks can not only be described by the GBM and MRP. It would be interesting to

determine the optimal stopping times for other processes that describe a traded stock.

Furthermore, the one-point stopping problem, which we discussed in this thesis, could

be changed to a multiple stopping problem. Both approaches were used to determine the

multiple stopping times for a MRP under the call option. In case of the perpetual put option

we would have to verify if the approaches also hold.

Another idea is to develop approaches for finding the value function of expected dis-
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counted reward that is not exponential. For example, in the case of hyperbolic discount

(Er 1
1`τ

hpXτ qs) could it be possible that the given two approaches would no longer be appli-

cable.

Those are four possible routes of further research based on the verification that the two

approaches can be applied to the geometric Brownian motion and the mean-reverting process

under the American perpetual put option.
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