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ABSTRACT

FITTING OF COUPLED POPULATION DATA THROUGH ESTIMATION OF
PARAMETERS USING THE LEAST SQUARES METHOD

by

Jessica Harter

The University of Wisconsin-Milwaukee, 2020
Under the Supervision of Professor Daniel Gervini

The population of two types of bacteria found in the Gulf Coast of Florida, V.chagasii and V.

harveyi, can be described by the Lotka-Voltera competition model. Using data gathered in

experiments conducted by Bury and Pickett (2015), we take a different approach to find parameter

estimates using numerical methods in R. In particular, we find a numerical solution to the coupled

set of ODEs and minimize the sum of squared errors in order to obtain the optimal parameter

estimates that will fit the data best. In order to get a sense of accuracy of these parameter

estimates, we use bootstrap estimation to compute the component wise standard deviations and

construct confidence intervals for the estimates.
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1 Introduction

The paper by Bury and Pickett (2015) studies the populations of two bacteria, V. harveyi and

V.chagasii, at various temperatures. Their paper aimed to determine the interaction between these

two populations by conducting an experiment in which they observed the population of each bac-

teria every hour, for six hours total. They conducted the same experiment at the temperatures

10◦C, 15◦C, 20◦C, 25◦C, 30◦C, and 36◦C, but disregarded data collected at 30◦C and 36◦C due

to either extreme outliers, in which case parameter estimators could not be computed using their

methods, or due to flawed execution of the experiment. In this paper we discuss the model used to

describe the populations of these bacteria, how to estimate the parameters of themodel and compare

our parameter estimates to those found by Bury and Pickett (2015).
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2 Lotka-Volterra Competition Model

For a given temperature, we denote the populations of V. harveyi and V.chagasii asH(t) and C(t),

respectively, at a given time t. The interaction between these two populations is best modeled using

the Lotka-Volterra Competition model, as follows

dC
dt

= rcC
(

1 −
(

�cc
Kc
C +

�cℎ
Kc
H
))

dH
dt

= rℎC
(

1 −
(

�ℎℎ
Kℎ

H +
�ℎc
Kℎ

C
))

where the practical interpretation of each parameter is given in Table 2.1.

Parameter Description

rc Growth rate of V.chagasii

rℎ Growth rate of V.harveyi

�cℎ Impact of V.harveyi cells on V.chagasii cells

�ℎc Impact of V.chagasii cells on V.harveyi cells

�cc Competition between V.chagasii cells with other V.chagasii cells

�ℎℎ Competition between V.harveyi cells with other V.harveyi cells

Kc Carrying capacity of V.chagasii population

Kℎ Carrying capacity of V.harveyi population

Table 2.1: A description of each parameter in the Lotka-Volterra CompetitionModel. The competitive ability
coefficients, �cℎ, �ℎc ,�cc , and �ℎℎ, describe the interaction between the bacteria.

We rewrite the model by adopting the notation in chapter 13 of Jones, Maillardet, and Robinson

(2014). We define y(t) = (C(t),H(t)), which satisfies the vector differential equation

dy(t)
dt

= f (t, y)
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2.1 Redefining Parameters, and Least Squares Method

Bury and Pickett (2015) determined that due to the environment in which this bacteria is found,

it is highly unlikely for the bacteria to encounter limiting nutrients and thus, it is meaningless to

assign a value to the carrying capacities Kc and Kℎ. This leads us to redefining the parameters of

the Lotka-Volterra model by letting

�cc ∶=
�cc
Kc

and �cℎ ∶=
�cℎ
Kc

�ℎℎ ∶=
�ℎℎ
Kc

and �ℎc ∶=
�ℎc
Kc

so that our model f (t, y) reduces to

dC
dt

= rcC
(

1 − (�ccC + �cℎH)
)

dH
dt

= rℎC
(

1 − (�ℎℎKℎH + �ℎcC)
)

This simplified model depends on six unknown parameters, � = (rc, �cc, �cℎ, rℎ, �ℎℎ, �ℎc), which we

estimate from the data collected by Bury and Pickett (2015). Note that if we didn’t redefine the

parameters, as shown above, � would have eight components as opposed to six. Due to the small

size of the data set, having to estimate more parameters than necessary could lead to issues, such

as overfitting. This gives us more motivation, beyond the biological reasoning provided by Bury

and Pickett (2015), to redefine the parameters as we did above. It is important to mention that we

aim to estimate all six parameters simultaneously, whereas Bury and Pickett (2015) estimated the

parameters in two phases. In their first phase, they estimated the growth rates using data from a

separate experiment. In their second phase, they used the data that we also used in this paper to

obtain estimates for the � parameters. Estimation of these six parameters provides insight into how

these two populations of bacteria interact.

For different values of �, we obtain different functions y(t), so to be more specific in the notation,

3



we write the system of differential equations in vector form as

dy�(t)
dt

= f (t, y�,�)

where y�(t) is the solution to the differential equation for a given �. Because the Lotka-Voltera

model has no closed form solution, it is necessary to numerically solve for y�(t) for a given �. This

can be done using the ODE solver in the deSolve package in R.

Using the data points (t0, y0)… (t6, y6) from Bury and Pickett, we can find an optimal � by mini-

mizing the sum of squared errors,

L(�) =
6
∑

i=0
‖yi − y�(ti)‖2,

where ‖ ⋅ ‖ is the two dimensional Euclidean norm. We call the minimizer of this function �̂.

Since there is no closed form solution for �̂ = (r̂c , �̂cc, �̂cℎ, r̂ℎ, �̂ℎℎ, �̂ℎc), we must find the solution

numerically using the optim function in R.
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3 Implementation

To find the minimizer, �̂, we need to implement four functions in R. See Appendix A for the R

code.

We first need to initialize a few values. The initial populations for a given temperature need to be

pulled from the data set. There also needs to be an initial guess of the parameter �, as explained

below. Finally, we need to initialize a time grid which the ode solver uses. This time grid needs to

go from 0 to 6, incremented by 0.1 or smaller.

The first function, which is called f.model, that needs to be implemented is f (t, y�,�), which

returns both components of the differential equation.

The second function, which is called sde, solves the differential equation using the ode solver in

R, using the Classical Runge-Kutta 4th Order Integration method. It takes � and the first function

as inputs. This function returns the solution to the system, y�(t), which is an array with the number

of rows being equal to the grid size, and three columns - the time, C(t), andH(t).

The third function, which is called LS, computes the sum of squared errors. This function calls the

second function to compute y�(t). However, the data points ti might not be in the time grid that

was initialized, leading us to have more y�(t) values than data points y(ti). Thus, we only keep the

values y�(ti) for i = 0, 1,… , 6.

The fourth function, which is called minimizer, finds the minimizer �̂ by calling the R function

optim, which uses the Nelder-Mead method to do the minimization. One input of this function is

an initial parameter guess. A "good" initial guess was found looking at the plots of several y�(t),

as well as using the previous results from Bury and Pickett. Depending on the initial guess of the

parameter, we get a different value out of the least squares function. If the initial parameter guess

is too far off, a minimum can not be found. By trying various reasonable initial parameters, one

5



can run the R code until the model visually looks like a good fit to the data, or by comparing the

different least square error values.

3.1 Normalizing the Data

An important note to make about the data set is the magnitude of each population. In an effort to be

able to conceptualize the size of each population at given time steps, we normalize the populations

by either 10−7 or 10−8, depending on the temperature. If we manipulate the data in such a way, we

need to ensure that the value for each parameter we find in R is the actual value of the parameter and

if it is not, we need to account for this and use the parameters from R to find the actual parameters.

Let � be the constant we are normalizing the data by, so that the populations we use in R are now

C̃ = �C and H̃ = �H . Then for the first component of f (t, y�,�), we have

d
dt
C = rcC

(

1 − (�ccC + �cℎH)
)

d
dt
C� = rcC�

(

1 − (�ccC + �cℎH)
)

d
dt
C̃ = rcC̃

(

1 − (�ccC + �cℎH)
)

Letting �̃cc =
�cc
�
and �̃cℎ =

�cℎ
�
, we get

d
dt
C̃ = rcC̃

(

1 − (�̃ccC̃ + �̃cℎH̃)
)

Thus, the parameters that are computed numerically, �̃cc and �̃cℎ, are the true value of each param-

eter, scaled by 1∕�. This means that the true values of the parameters are

�cc = ��̃cc

�cℎ = ��̃cℎ

6



Similarly, for the second component of f (t, y�,�), we have

d
dt
H̃ = rℎH̃

(

1 − (�̃ℎℎH̃ + �̃ℎcC̃)
)

where �̃ℎℎ =
�ℎℎ
�
and �̃ℎc =

�ℎc
�
. Thus, the true values of the parameters are

�ℎℎ = ��̃ℎℎ

�ℎc = ��̃ℎc

Note that the parameters rc and rℎ remain unchanged, so the values for these two parameters ob-

tained in R are the true values.

3.2 Bootstrap Estimation of Standard Deviations

Upon obtaining point estimators �̂ of the parameters for a given temperature, it is important to get a

sense of accuracy of these parameters. The easiest way to do this is by parametric bootstrap, which

allows us to obtain estimates of the standard deviations of �̂ and construct confidence intervals for

�.

In general, bootstrapping is used to draw inferences about populations. The bootstrapping procedure

treats the single sample originally obtained as only one of the many random samples that the study

could have obtained. The process takes the sample obtained, then re-samples it multiple times

to create many simulated samples. It ends with our simulated data sets having many different

combinations of the values that exist in the single, original data set and uses the distribution of the

sample statistics across the simulated samples as the sampling distribution. This method is outlined

in chapter 9 of [3].

The idea of bootstrapping for our purpose is to re-sample a single data set to create many simulated

data sets. For each simulated data set, we find the optimal parameter �̂ from which we can draw

7



inferences about the parameter, such as the standard deviation.

Suppose the data follows the model

yi = y�(ti) + "i, i = 1,… , n

where "i = ("ic , "iℎ) is random error of the V.Chagassi and V.Harveyi, respectively. We can assume

"ic ∼ N(0, �2
c ) and "iℎ ∼ N(0, �2

ℎ) are independent. We estimate the variances �2
c and �

2
ℎ from the

residuals of the least-squares fits already obtained. Let

"̂i = yi − y�̂(ti), for i = 1,… , n

Then �̂2
c is the sample variance of the "̂ics and �̂2

ℎ is the sample variance of the "̂iℎs.

Now we can generate bootstrap samples of the data and of �̂ in the following way:

1. Calculate the error terms "̂ic and "̂iℎ and their corresponding standard deviations.

2. Create bootstrap pseudo-data as y∗i = y�(ti) + "∗i and compute the respective parameter esti-

mator �̂
∗
. This is done by creating a function, which is called boot, that takes the parameter

and the number of pseudo-data points to generate, B, as inputs. This function repeats the

following B times (note, we take B = 300):

(a) Generate n random error terms "∗ic and "
∗
iℎ that are normally distributed with mean zero

and using their corresponding standard deviations computed in step 1.

(b) Compute y∗i for each population using the respective error terms found in step (a). Col-

umn combine these two vectors, creating a 7x2 matrix.

(c) Use the minimizer function to find �̂
∗
, using the bootstrap pseudo-data generated in

part (b) and �̂ as the initial parameter guess.

(d) Continue this process, adding each new �̂
∗
to a matrix every iteration.

8



Because the data set we use when performing computations in R is scaled by �, it is necessary

to scale the components of �̂
∗
that correspond to a competitive ability by � and to not scale the

components of �̂
∗
that correspond to a growth rate.

From the bootstrap sample �̂
∗
1,… , �̂

∗
B that has been scaled properly, we compute the component-

wise sample standard deviations. These are the jtℎ component of estimated standard deviations of

�̂ = (r̂c, �̂cc, �̂cℎ, r̂ℎ, �̂ℎℎ, �̂ℎc), denoted by �j�̂. Thus, for each component j of �̂, a 95% confidence

interval is given by

(�̂j − z0.025�j�̂, �̂j + z0.025�j�̂)

9



4 Results

For different initial parameter guesses, the minimizer �̂ and its corresponding least squares value

are different. For each temperature, after finding a "good" initial guess, that is, one that could find

a minimum, we used different initial parameter guesses close to this initial guess until we got a

small error (compared to other guesses). See Appendix B for the initial parameters used at each

temperature.

In both plots of Figure 4.1, notice the outlier at t = 5 hours. The least squares is minimized when

the fitted values are that of Figure 4.1, however, the shape of the curve does not describe typical

population growth very well.

Figure 4.1: Plot of V.chagassi (left) and V.harveyi (right) at 10◦ C

The plots in Figures 4.2 through 4.4 do not have extreme outliers like Figure 4.1 did, so the shape

of these curves when the least squares is minimum is what we would expect for population growth.
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Figure 4.2: Plot of V.chagassi (left) and V.harveyi (right) at 15◦ C

Figure 4.3: Plot of V.chagassi (left) and V.harveyi (right) at 20◦ C

While Bury and Pickett (2015) were unable to estimate all the parameters at 30◦ C due to the

outliers in the data, we were able to fit the data, as shown in Figure 4.5, and get estimates for all the

parameters, as shown in Table 4.4. In the V.harveyi plot of Figure 4.5, there is concern of overfitting

the data to the model, however, this was difficult to avoid given the small sample size. At 36◦ C,

the experiment was not executed correctly, so we do not have proper data at this temperature.

11



Figure 4.4: Plot of V.chagassi (left) and V.harveyi (right) at 25◦ C

Figure 4.5: Plot of V.chagassi (left) and V.harveyi (right) at 30◦ C
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10◦C 15◦C 20◦C 25◦C 30◦C

r̂c 0.4036 0.0544 0.3450 0.2830 0.1032

�̂cc -1.0095 × 10−7 −1.5579 × 10−7 −3.4267 × 10−9 4.1309 × 10−9 1.3354 × 10−8

�̂cℎ 1.0815 × 10−7 4.3322 × 10−8 −1.5157 × 10−10 −7.8962 × 10−9 −3.4459 × 10−9

r̂ℎ 0.0969 0.6687 0.3303 0.7491 0.5669

�̂ℎℎ 5.9978 × 10−8 8.3226 × 10−8 −5.0235 × 10−9 6.8160 × 10−10 3.6458 × 10−9

�̂ℎc −9.6182 × 10−8 −5.4683 × 10−8 3.5836 × 10−9 8.0646 × 10−11 −2.5652 × 10−8

Table 4.1: The minimizer �̂ for each temperature. These were found using the R code in the Appendix.

The estimated parameters that we found for each of these temperatures are shown in Table 4.4. An

important note to make is that the values in Table 4.4 are rounded to the fourth decimal place. If

one were to solve the ODE with these rounded parameter values, the solution would vary slightly

from that obtained with the non-rounded parameters. The previous results obtained by Bury and

Pickett are shown in Table 4.2. Because these parameters are rounded to the first or second decimal

place, we were unable to reproduce anything close to the solution they obtained.

10◦C 15◦C 20◦C 25◦C 30◦C

r̂c 0.04 0.3 0.25 0.47 0.5

�̂cc 2.3 × 10−7 4.1 × 10−10 5.1 × 10−15 4.8 × 10−9 *

�̂cℎ 3.5 × 10−7 −8.0 × 10−8 −1.8 × 10−9 −2.5 × 10−8 *

r̂ℎ -0.02 0.05 0.2 0.34 0.37

�̂ℎℎ −2.2 × 10−8 1.8 × 10−8 4.7 × 10−10 2.3 × 10−9 *

�̂ℎc 5.2 × 10−13 2.1 × 10−8 1.0 × 10−16 1.9 × 10−17 *

Table 4.2: The parameter estimates found by Bury and Pickett.

When comparing the parameter estimates we found to the ones previously obtained by Bury and

Pickett (2015), notice that the sign of the parameter estimates sometimes differ. The sign of each

parameter indicates the type of relationship between the bacteria, and thus, our differing parameter

estimates have us drawing different conclusions regarding the interaction between the bacteria.
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It is important to discuss why our parameter estimates differ from those obtained by Bury and

Pickett (2015). Asmentioned before, they found their parameter estimates in two phases. Once they

obtained growth rate estimates in the first phase, these estimates remained fixed when they moved

on to obtain estimates of the competitive ability coefficients in the second phase. A consequence

of this is that it is more difficult to obtain a closer fit to the data since only four parameters were

allowed to move freely. Conversely, we allowed all six parameters to vary, which is why we were

able to obtain a closer fit to the data.

Using section 3.2, we compute the standard deviation and a 95% confidence interval of each pa-

rameter estimate, at each temperature. These results are listed in Table 4.3 and help us determine

which parameters can be considered different from zero.

From Table 4.3, we conclude that the parameters rc and rℎ are significantly different, unlike the

four � parameters, which are rarely different from zero.

14



Std Dev Confidence Interval Std Dev Confidence Interval

For 10◦ C: For 15◦ C:

r̂c 0.3381 (-0.2591, 1.0664) 0.0212 (0.0127, 0.0961)

�̂cc 1.9630 × 10−7 (−4.8570, 2.8380) × 10−7 8.6712 × 10−8 (−3.2574, 0.1416) × 10−7

�̂cℎ 3.2127 × 10−7 (−5.2154, 7.3784) × 10−7 1.2498 × 10−7 (−2.0164, 2.8829) × 10−7

r̂ℎ 3.7247 × 10−8 (−6.3318, 8.2690) × 10−8 1.5538 × 10−7 (−2.3768, 3.7141) × 10−7

�̂ℎℎ 1.3110 × 10−7 (−1.9697, 3.1693) × 10−7 6.7863 × 10−7 (−1.2468, 1.4133) × 10−6

�̂ℎc 2.5663 × 10−7 (−5.9918, 4.0681) × 10−7 4.5283 × 10−7 (−9.4222, 8.3285) × 10−7

For 20◦ C: For 25◦ C:

r̂c 0.1224 (0.1049, 0.5850) 0.0619 (0.1616, 0.4043)

�̂cc 1.2307 × 10−8 (−2.7549, 2.0696) × 10−8 5.4482 × 10−9 (−6.5474, 14.8092) × 10−9

�̂cℎ 1.2468 × 10−8 (−2.4589, 2.4286) × 10−8 7.9110 × 10−9 (−2.3401, 0.7609) × 10−8

r̂ℎ 1.1067 × 10−9 (1.1333, 5.4717) × 10−9 1.3051 × 10−9 (4.9332, 10.0492) × 10−9

�̂ℎℎ 1.2842 × 10−8 (−3.0193, 2.0146) × 10−8 1.4460 × 10−9 (−2.1525, 3.5157) × 10−9

�̂ℎc 1.1342 × 10−8 (−1.8647, 2.5814) × 10−8 1.3262 × 10−9 (−2.5188, 2.6801) × 10−9

For 30◦ C:

r̂c 0.0586 (-0.0117, 0.2182)

�̂cc 2.2043 × 10−8 (−2.9849, 5.6558) × 10−8

�̂cℎ 3.0394 × 10−9 (−9.4031, 2.5114) × 10−9

r̂ℎ 1.7050 × 10−9 (2.3277, 9.0112) × 10−9

�̂ℎℎ 1.2143 × 10−9 (1.2658, 6.0258) × 10−9

�̂ℎc 1.278 × 10−8 (−5.0715,−0.0589) × 10−8

Table 4.3: For each temperature and component of the estimated parameter, �̂j , a standard deviation and
confidence interval is computed. All values are rounded to the fourth decimal.
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Appendices

Appendix A: R Code

# Read in data

vcdata <- as.matrix(read.table("vcdata.txt"))

vhdata <- as.matrix(read.table("vhdata.txt"))

vc.x <- as.matrix(as.integer(vcdata[2:8,1]))

vh.x <- as.matrix(as.integer(vhdata[2:8,1]))

beta <- 10^-7 # value which data is scaled by

vc.y <- matrix(as.double(c(vcdata[2:8,2:7]))*beta,nrow=7,ncol=6)

# entries are scaled by beta

vh.y <- matrix(as.double(c(vhdata[2:8,2:7]))*beta,nrow=7,ncol=6)

# entries are scaled by beta

# Define initial population at j deg celcius

temperature <- c(10,15,20,25,30)

j <- 1 # Indicates column of data in vc.y and vh.y you are working with,

# i.e. j=1 : 10 deg, j=2 : 15 deg, etc.

pop0 <- c(C=vc.y[1,j], H=vh.y[1,j])

data.c <- vc.y[,j]

data.h <- vh.y[,j]

y.data <- cbind(data.c,data.h) # matrix of data at jth temperature
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# Initial parameter (theta) guess

# This is the initial guess at temperature 10 deg C

# Change these values at each temperature

rc <- 1

dcc <- 0.4*(10^(-9))

dch <- 0.4*(10^(-9))

rh <- 0.2

dhh <- 0.5*(10^(-9))

dhc <- 0.45*(10^(-9))

param0 <- c(rc,dcc,dch,rh,dhh,dhc)

t <- seq(0,6,by=.1) # time grid

l <- length(t)

# Lotka Voltera Model function

f.model <- function(time,pop,param){

dC <- param[1]*pop[1]*(1-(param[2]*pop[1] + param[3]*pop[2]))

dH <- param[4]*pop[2]*(1-(param[5]*pop[2] + param[6]*pop[1]))

return(list(c(dC,dH)))

}

# Solve differential equation function

sde <- function(param,time,f,pop){

sol <- ode(y = pop,times = time, func = f, parms = param, method = "rk4")

return(sol) # returns a matrix length(time) by 3

}
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# Use this function to help find initial parameters

# This solves the ODE for a given theta guess

guess <- function(param,time,f,pop){

y.theta.all <- c()

y.theta <- c()

call.sde <- sde(param,time,f,pop)

y.theta.all <- call.sde[,2:3] # only keep C and H data, disregard t column

# only keep y.theta(t.i) values for each data point t.i

for(i in 1:length(time)){

if(time[i]%%1 == 0){

y.theta <- rbind(y.theta,y.theta.all[i,]) #should be a 7 by 3 matrix

}

}

return(y.theta)

}

# Least squares function

LS <- function(param,time,f,pop,y.values){

# y.values will usually be the y values of the data, except when bootstrap

# call sde function to compute y.theta(t) after initializing

y.theta.all <- c()

y.theta <- c()

call.sde <- sde(param,time,f,pop)

y.theta.all <- call.sde[,2:3] # only keep C and H data, disregard t column

19



# only keep y.theta(t.i) values for each data point t.i

for(i in 1:length(time)){

if(time[i]%%1 == 0){

y.theta <- rbind(y.theta,y.theta.all[i,]) #should be a 7 by 3 matrix

}

}

error <- sum((y.values - y.theta)^2)

return(error)

}

# Find theta.hat by minimizing least squares function LS

minimizer <- function(param,time,f.min,pop,f,y.values){

result <- optim(par = param, fn = f.min, gr = NULL, time = time,

pop = pop, f = f, y.values = y.values, method = c("Nelder-Mead"))

return(result)

}

# Store output from minimizer function (theta.hat is "parameter")

result <- minimizer(param0,t,LS,pop0,f.model,y.data)

y.fitted <- guess(result$par,t,f.model,pop0) # 7 by 2 matrix,

# with first column population C, second population H

parameter <- result$par

# Plots that help when trying to find good param0

plot(vc.x,guess(param0,t,f.model,pop0)[,1],xlab = "Time (hours)",

ylab = paste("Population (cells/mL) ", beta^-1), main = "V.chagasii")
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plot(vh.x,guess(param0,t,f.model,pop0)[,2],xlab = "Time (hours)",

ylab = paste("Population (cells/mL) ", beta^-1), main = "V.harveyi")

# Plots of data, fitted values, and line connecting fitted values

par(mfrow=c(1,2))

plot(vh.x,y.data[,1],xlab = "Time (hours)",

ylab = paste("Population (cells/mL) ", beta^-1))

points(vh.x,y.fitted[,1],col = "blue", pch = "x")

lines(t,sde(result$par,t,f.model,pop0)[,2])

legend(x=0,y=12,legend=c("Data Point", "Fitted Value"),

box.lty=2, col=c("black", "blue"), pch = c("o","x"))

plot(vh.x,y.data[,2],xlab = "Time (hours)",

ylab = paste("Population (cells/mL) ", beta^-1))

points(vh.x,y.fitted[,2],col = "red", pch = "x")

lines(t,sde(result$par,t,f.model,pop0)[,3])

legend(x=0,y=10,legend=c("Data Point", "Fitted Value"),

box.lty=2,col=c("black", "red"), pch = c("o","x"))

print(result)

print(cbind(par = c("rc","dcc","dch","rh","dhh","dhc"),

value = c(result$par[1],beta*result$par[2:3],result$par[4],

beta*result$par[5:6])))

# Bootsrap Estimation of SD

ec <- y.data[,1] - y.fitted[,1] #error terms for c(t)
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sd.c <- sd(ec)

eh <- y.data[,2] - y.fitted[,2] #error terms for h(t)

sd.h <- sd(eh)

boot <- function(par,B){

param_star <- c()

for(k in 1:B){

ec_star <- rnorm(7,mean = 0, sd = sd.c)

eh_star <- rnorm(7,mean = 0, sd = sd.h)

y_star.c <- y.data[,1] + ec_star

y_star.h <- y.data[,2] + eh_star

y_star <- cbind(y_star.c, y_star.h) # 7 by 2 matrix

param_star <- rbind(param_star,

(minimizer(par,t,LS,pop0,f.model,y_star))$par)

}

return(param_star)

}

theta.star <- boot(parameter,300)

st.dev <- c() # each column is the standard deviation of the

# ith component of theta_star

for(i in 1:6){

if(i == (1|3)){

st.dev <- cbind(st.dev, sd(theta.star[,i])) # do not scale growth rate

}
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else{

st.dev <- cbind(st.dev, sd(beta*theta.star[,i]))

# competition coefficients of "theta.star" are scaled

}

}

# 95% CI

# Scale competitive ability components of "parameter", but not growth rate

ci <- c()

for(i in 1:6){

if(i == (1|3)){

ci.upper <- parameter[i] + qnorm(0.025,lower.tail = FALSE)*st.dev[i]

ci.lower <- parameter[i] - qnorm(0.025,lower.tail = FALSE)*st.dev[i]

ci <- rbind(ci,cbind(ci.lower,ci.upper))

}

else{

ci.upper <- beta*parameter[i]+qnorm(0.025,lower.tail = FALSE)*st.dev[i]

ci.lower <- beta*parameter[i]-qnorm(0.025,lower.tail = FALSE)*st.dev[i]

ci <- rbind(ci,cbind(ci.lower,ci.upper))

}

}
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Appendix B: Initial Parameters

10◦C 15◦C 20◦C 25◦C 30◦C

rc 1 0.05 0.8 1 0.5

�cc 0.4 × 10−9 0.35 × 10−4 0.4 × 10−4 0.4 × 10−4 0.4 × 10−4

�cℎ 0.4 × 10−9 0.35 × 10−5 0.4 × 10−5 0.4 × 10−5 0.4 × 10−4

rℎ 0.2 0.05 0.9 0.2 0.4

�ℎℎ 0.4 × 10−9 0.25 × 10−4 0.5 × 10−6 0.5 × 10−7 0.5 × 10−4

�ℎc 0.4 × 10−9 0.25 × 10−4 0.45 × 10−6 0.45 × 10−6 0.45 × 10−4

Table 4.4: Initial parameter guesses that lead to the least squares being minimized, for each temperature.
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