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Abstract

Improving the Subgrid-Scale Representation of Hydrometeors

and Microphysical Feedback Effects Using a Multivariate

PDF

by

Brian M. Griffin

The University of Wisconsin – Milwaukee, 2016
Under the Supervision of Professor Vincent E. Larson

The subgrid-scale representation of hydrometeor fields is important for calculating

microphysical process rates. In order to represent subgrid-scale variability, the Cloud

Layers Unified By Binormals (CLUBB) parameterization uses a multivariate Probability

Density Function (PDF). In addition to vertical velocity, temperature, and moisture fields,

the PDF includes hydrometeor fields. Previously, each hydrometeor field was assumed to

follow a multivariate single lognormal distribution. Now, in order to better represent the

distribution of hydrometeors, two new multivariate PDFs are formulated and introduced in

part one of this two-part project.

The new PDFs represent hydrometeors using either a delta-lognormal or a

delta-double-lognormal shape. The two new PDF distributions, plus the previous single

lognormal shape, are compared to histograms of data taken from Large-Eddy Simulations

(LES) of a precipitating cumulus case, a drizzling stratocumulus case, and a deep

convective case. Finally, the warm microphysical process rates produced by the different

hydrometeor PDFs are compared to the same process rates produced by the LES.

Microphysics processes have feedback effects on moisture and heat content. Not only do

these processes influence mean values, but also variability and fluxes of moisture and heat

content. For example, evaporation of rain below cloud base may produce cold pools. This

evaporative cooling may increase the variability in temperature in the below-cloud layer.
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Likewise, rain production in the moistest part of cloud tends to decrease variability in

cloud water. These effects are usually not included in most coarse-resolution weather and

climate models, or else are crudely parameterized.

In part two of this two-part project, the microphysical effects on moisture and heat

content are parameterized using the PDF method. This approach is based on predictive,

horizontally-averaged equations for the variances, covariances, and fluxes of moisture and

heat content. These higher-order moment equations contain microphysical source terms.

Using a simple warm-rain microphysics scheme, the microphysics terms can be calculated

by integrating analytically over the multivariate PDF.

A LES of a precipitating cumulus case indicates that microphysical terms are dominant

in some budgets. The analytic integrals for the microphysics terms are implemented in the

CLUBB model. Interactive single-column simulations agree qualitatively with the LES.
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Chapter 1

A New Subgrid-Scale Representation of Hydrometeor

Fields Using a Multivariate PDF

1.1 Introduction

The atmospheric portion of the hydrological cycle depends on the formation and dissipation

of precipitation. In a numerical model, precipitation processes are represented by the micro-

physics process rates. These process rates are highly dependent on the values of hydrometeor

fields at any place and time. Hydrometeors (such as rain water mixing ratio) can vary sig-

nificantly on spatial scales smaller than the size of a numerical model grid box (Boutle et al.

2014; Lebsock et al. 2013). This means that a good representation of subgrid-scale variability

is important for the parameterization of microphysical process rates.

Subgrid-scale variability (but not spatial organization) can be accounted for through use

of a Probability Density Function (PDF). PDFs have been used in atmospheric modeling

to account for subgrid variability in moisture and temperature (e.g., Mellor 1977; Sommeria

and Deardorff 1977; Tompkins 2002; Naumann et al. 2013) in order to calculate such fields

as cloud fraction and mean (liquid) cloud mixing ratio, and have been extended to vertical

velocity in order to calculate fields such as liquid water flux (Lewellen and Yoh 1993; Lappen

and Randall 2001; Larson et al. 2002; Bogenschutz et al. 2010; Firl and Randall 2015). PDFs

have been used in microphysics to account for subgrid variability in cloud water (Zhang et al.

2002; Morrison and Gettelman 2008) and in warm hydrometeor fields (Larson and Griffin

2006, 2013; Cheng and Xu 2009; Kogan and Mechem 2014, 2015) in order to calculate warm

microphysics process rates. They also have been used to represent cloud ice (Kärcher and

Burkhardt 2008).
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Regarding the PDF’s functional form, generality is highly desired. For instance, we

would like the PDF to be capable of representing interactions among species, such as accre-

tion (collection) of cloud droplets by rain drops. In addition, the PDF should be able to

represent a variety of cloud types, such as cumulus and stratocumulus. Generality in the

PDF’s functional form is important because it facilitates the formulation of unified cloud

parameterizations (e.g., Lappen and Randall 2001; Neggers et al. 2009; Sušelj et al. 2013;

Bogenschutz and Krueger 2013; Guo et al. 2015; Cheng and Xu 2015; Thayer-Calder et al.

2015).

Cloud Layers Unified By Binormals (CLUBB) is a single-column model that uses a multi-

variate PDF to account for the subgrid-scale variability of model fields (Golaz et al. 2002a,b;

Larson and Golaz 2005). The original PDF used by CLUBB consisted of only vertical ve-

locity, w, total water mixing ratio (vapor + liquid cloud), rt, and liquid water potential

temperature, θl. The PDF is a weighted mixture, or sum, of two multivariate normal func-

tions. Each one of these multivariate normal functions is known as a PDF component.

Although a normal distribution is unskewed, the two-component shape makes it possible to

include skewness in model fields.

Larson and Griffin (2013) extended CLUBB’s PDF to account for subgrid variability

in rain water mixing ratio, rr, and rain drop concentration (per unit mass), Nr. Each of

these hydrometeor species was assumed to follow a single lognormal (SL) distribution on the

subgrid domain. This treatment worked well for calculating microphysics process rates in a

drizzling stratocumulus case (Griffin and Larson 2013). Subsequently, CLUBB’s PDF was

extended to other hydrometeor species involving ice, snow, and graupel.

However, the single lognormal treatment of hydrometeors is less successful when it is

applied to a partly cloudy, precipitating case. The problem is that the single lognormal

assumes that a hydrometeor is found (that is, has a value greater than 0) at every point on

the subgrid domain. This is not realistic in a partly cloudy regime, such as precipitating

shallow cumulus, which has non-zero precipitation over only a small fraction of the domain.
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Consider an example in which rain covers 10% of the grid level. Then the in-precipitation

mean of rr is ten times greater than the grid-mean value. This can cause problems when

microphysics process rates are calculated using the SL. The accretion rate of rr is proportional

to the value of rr inside cloud. In this example, the SL, which distributes the lognormal

around the grid mean, would underpredict accretion rate because it causes rr to be too

small in cloud. Likewise, evaporation rate is proportional to the value of rr outside cloud.

The SL would overpredict evaporation rate because it spreads rr throughout the domain,

including the clear portion.

The solution to this problem is to account for the non-precipitating region of the subgrid

domain. This is done by representing the non-precipitating region of the domain with a

delta function at a value of the hydrometeor of 0. The in-precipitation portion of the subgrid

domain can still be handled by using a single lognormal distribution to represent subgrid

variability in the hydrometeor species. The resulting distribution is called a delta-lognormal

(DL). In the above example with 10% rain fraction, the (in-precipitation) lognormal from

the DL PDF would be distributed around the in-precipitation mean, as desired, rather than

around the grid mean, which is a factor of 10 smaller.

Further improvements in accuracy can be achieved with relatively minor modifications

to the PDF. As previously mentioned, CLUBB’s PDF contains two components. Each of

these components can be easily subdivided into an in-precipitation sub-component and an

outside-precipitation sub-component. The result is a delta-lognormal representation of the

hydrometeor field in each PDF component. Both delta functions are at 0 and represent the

region outside of precipitation, but the in-precipitation hydrometeor values are distributed

as two lognormals that may have different means and/or variances. When the two lognor-

mals differ in some way, the resulting distribution is called a delta-double-lognormal (DDL).

Figure 1.1 illustrates the SL, DL, and DDL hydrometeor PDF shapes.

The main purpose of this paper is to present the formulation of an updated multivariate

PDF that extends CLUBB’s traditional PDF to include the DL and DDL hydrometeor PDF

3



DL DDLSL

Figure 1.1: A schematic of the single lognormal (SL), delta-lognormal (DL), and delta-double-lognormal
(DDL) hydrometeor PDF shapes. The SL PDF shape is precipitating over the entire subgrid domain,
whereas the DL and DDL shapes are not. In all three plots of the PDFs (where each PDF is a function of
a hydrometeor species, such as rr), the weighted PDF from each PDF component is shown (black dashes
and black dots). The sum of the two are the SL (solid magenta), the DL (solid green), and the DDL (solid
blue). The SL does not contain a delta at 0, and the mean and variance of each PDF component are the
same. Each component of the DL has a delta at 0 (upward pointing black arrows on the y-axis). The sum of
the two component deltas forms the DL’s delta at 0 (upward pointing green arrow). The mean and variance
of each DL PDF component are the same within precipitation. Each component of the DDL also has a
delta at 0 (upward pointing black arrows). The sum of the two component deltas forms the DDL’s delta at
0 (upward pointing blue arrow). The mean and/or variance differ between DDL PDF components within
precipitation.
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shapes. Additionally, a new method is derived to divide the grid-box mean and variance of

a hydrometeor species into PDF component means and standard deviations. A secondary

purpose of this paper is to present a preliminary comparison of the new PDF shapes with

PDFs output by large-eddy simulations (LESs). The SL, DL, and DDL hydrometeor PDF

shapes are compared to histograms of hydrometeor data taken from precipitating LES. Ad-

ditionally, microphysics process rates are calculated using each of the idealized PDF shapes

and compared to microphysics process rates taken from the LES.

The remainder of the paper is organized as follows. Section 1.2 gives a detailed description

of the new PDF. Section 1.3 discusses the PDF parameters and includes the derivation of

a new method to divide the grid-box mean and variance into PDF component means and

standard deviations for a hydrometeor species. Section 1.4 describes the LES setup and

the test cases, as well as the driving of CLUBB’s PDF for the tests. Section 1.5 presents a

comparison of hydrometeors between the LES and the SL, DL, and DDL PDF shapes. The

comparison includes plots of PDFs, Kolmogorov-Smirnov and Cramer-von Mises scores, and

microphysics process rates. Section 1.6 contains all conclusions.

1.2 Description of the multivariate PDF

We now describe how the multivariate PDF used by CLUBB is modified to improve the

representation of hydrometeors. Perhaps the most important modification is the introduction

of precipitation fraction, fp, to the PDF. Precipitation fraction is defined as the fraction of

the subgrid domain that contains any kind of precipitation (where any hydrometeor species

has a positive value). In order to account for any precipitation-less region in the subgrid

domain, the PDF is modified to add a delta function at a value of 0 for all hydrometeor

species. Each PDF component contains its own precipitation fraction. Expressed generally

for a PDF of n components, the overall precipitation fraction is related to the component

5



precipitation fractions by

fp =
n∑

i=1

ξ(i)fp(i), (1.1)

where fp(i) denotes precipitation fraction in the ith PDF component, and where 0 ≤ fp(i) ≤ 1

for all fp(i). Additionally
n∑

i=1

ξ(i) = 1, (1.2)

where ξ(i) is the relative weight, or mixture fraction, of the ith PDF component, and where

0 < ξ(i) < 1 for all ξ(i). A PDF with more than one component requires that each PDF

component have a mixture fraction.

Before writing the form of the multi-component PDF, we digress to discuss a special

case, the cloud droplet concentration (per unit mass), Nc. In Larson and Griffin (2013),

Nc was introduced to the PDF and was assumed to follow a single lognormal distribution.

This assumption for Nc means that when any cloud is found at a grid level, Nc > 0 at

every point on the subgrid domain. This is unphysical in a partly cloudy situation, for cloud

droplets would be found at points where cloud water is not found. Additionally, the single

lognormal treatment of Nc can cause problems with the microphysics. The grid-level mean

of Nc, denoted Nc (for the remainder of this paper, an overbar denotes a grid-level mean

and a prime denotes a turbulent value), is handed to the PDF by the model, and this mean

value includes clear air in a partly cloudy situation. This results in a value of Nc that is

much smaller than the in-cloud values of Nc. Since the single lognormal in Nc is distributed

around Nc, Nc is much too small in cloud for cases with small cloud fraction, leading to an

excessive autoconversion (raindrop formation) rate.

In order to distribute Nc where (and only where) cloud water mixing ratio, rc, is found on

the subgrid domain, it cannot use the same method as the other hydrometeors. Hydrometeors

such as rr can be found outside cloud where rc is not found, or alternatively hydrometeors

might be absent inside cloud where rc is found. Instead the PDF is modified so that a new

variable, Ncn, replaces Nc in the PDF. The variable Ncn is a mathematical construct that can
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be viewed as an extended cloud droplet concentration or even as a simplified, conservative

cloud condensation nuclei concentration. It is distributed as a single lognormal over the

subgrid domain. At points where cloud water is found, Nc is set equal to Ncn. Otherwise,

Nc is set to 0 at points where no cloud water is found (see Eq. (1.4) below). The value of

Ncn is approximately the in-cloud mean of Nc, and in special cases, is exactly the in-cloud

mean of Nc. Please see Appendix D for a more detailed explanation.

The PDF includes all the hydrometeor species found in the chosen microphysics scheme

with the exception of rc, which is calculated from other variables in the PDF through a

saturation adjustment, and Nc, which is described above. In addition to rr and Nr, a

microphysics scheme may include hydrometeor species such as ice mixing ratio, ri, ice crystal

concentration (per unit mass), Ni, snow mixing ratio, rs, snowflake concentration (per unit

mass), Ns, graupel mixing ratio, rg, and graupel concentration (per unit mass), Ng. The

vector containing all the hydrometeor species included in the PDF will be denoted ~h. The

full PDF can be written as P
(

w, rt, θl, Ncn, ~h
)

.

In order to calculate quantities that depend on saturation, such as rc and cloud frac-

tion, a PDF transformation is required. The PDF transformation is a change of coordi-

nates. The multivariate PDF undergoes translation, stretching, and rotation of the axes

(Larson et al. 2005; Mellor 1977). Within each PDF component, a separate PDF trans-

formation takes place. The ith component PDF, P(i)

(

w, rt, θl, Ncn, ~h
)

, is transformed to

P(i)

(

w, χ, η,Ncn, ~h
)

, where χ is an “extended” liquid water mixing ratio that, when the

air is supersaturated, has a positive value and furthermore is equal to rc. When the air is

subsaturated, χ has a negative value. The variable η is orthogonal to χ. The variables rc

and Nc can now be written as

rc = χH (χ) and (1.3)

Nc = NcnH (χ) , (1.4)
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where H (x) is the Heaviside step function.

The general form of a PDF with n components and D variables (whether D includes all

the variables in the PDF or any subset of those variables in a multivariate marginal PDF)

can be written as

P (x1, x2, . . . , xD) =
n∑

i=1

ξ(i)P(i) (x1, x2, . . . , xD) . (1.5)

Of the D variables listed, the first J variables are normally distributed in each PDF com-

ponent (i.e. w, rt, and θl, or w, χ and η), the next K variables are lognormally distributed

(i.e. Ncn), and the last Ω variables are the hydrometeor species, such that D = J +K + Ω.

The ith component of the PDF, P(i) (x1, x2, . . . , xD), accounts for both the precipitating and

precipitation-less regions, and is given by

P(i) (x1, x2, . . . , xD) = fp(i)P(J,K+Ω)(i) (x1, x2, . . . , xD)

+
(
1− fp(i)

)
P(J,K)(i) (x1, x2, . . . , xJ+K)

(
D∏

ǫ=J+K+1

δ (xǫ)

)

.
(1.6)

The subscripts in the ith component, P(J,K)(i) or P(J,K+Ω)(i), denote the number of normal

variates, J , and the number of lognormal variates, K or K + Ω, used in Eq. (1.7).

Each original PDF component is split into precipitating and precipitation-less sub-

components. The component means, variances, and correlations for variables x1 . . . xJ+K

do not differ between the precipitating and precipitation-less parts of Eq. (1.6). This greatly

simplifies the procedure for parameterizing the component means and variances, given the

grid-level means and variances. Additionally, keeping the component means and variances

the same between the in-precipitation and outside-precipitation parts of Eq. (1.6) allows the

PDF to be reduced back to prior versions. For instance, the multivariate PDF in Eqs. (1.5)

and (1.6) reduces to the version given in Larson and Griffin (2013) when all fp(i) = 1 and

various PDF parameters are chosen appropriately. Furthermore, when microphysics is not

used in a simulation, hydrometeors are not found in the PDF. In this scenario, the PDF

reduces to the original version found in Golaz et al. (2002a).
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The PDF does not contain a fraction for each hydrometeor species or type, but rather

one precipitation fraction. Each PDF component is split into two sub-components (in-

precipitation and outside-precipitation). Including a fraction for each hydrometeor type

(rain, snow, etc.) would cause the number of sub-components to grow exponentially with the

number of fractions. Using nf hydrometeor fractions increases the number of sub-components

to 2nf in each PDF component. This would make setting the PDF parameters associated

with each sub-component increasingly difficult.

The multivariate PDF can be adjusted to account for a situation when a variable has a

constant value in a PDF (sub-)component. In that situation, the variable can be reduced

to a delta function at the (sub-)component mean value. A good example of this would be

setting Ncn to a constant value in order to use a constant in-cloud value of cloud droplet

concentration. This is also especially useful when dealing with more than one hydrometeor.

If one hydrometeor species is found at a grid level, but another hydrometeor species is not

found at that level, the hydrometeor that is not found can reduce to a delta function at 0 in

the precipitating sub-component of Eq. (1.6).

The general form of the m-variate hybrid normal/lognormal distribution in the ith PDF

component, P(j,k)(i) (x1, x2, . . . , xm), which is found in each sub-component of Eq. (1.6), con-

sists of j normal variates and k lognormal variates, where m = j + k. The first j variables

are normally distributed and the remaining k variables are lognormally distributed. The

multivariate normal/lognormal PDF is given by (Fletcher and Zupanski 2006)

P(j,k)(i) (x1, x2, . . . , xm) =
1

(2π)
m
2
∣
∣Σ(i)

∣
∣
1
2

(
m∏

τ=j+1

1

xτ

)

× exp

{

−1

2

(
~x− ~µ(i)

)T
Σ−1

(i)

(
~x− ~µ(i)

)
}

.

(1.7)
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Both ~x and ~µ(i) are m× 1 vectors and are given by

~x =



















x1

...

xj

ln xj+1

...

ln xm



















and ~µ(i) =



















µx1(i)

...

µxj(i)

µ̃xj+1(i)

...

µ̃xm(i)



















, (1.8)

where µx(i) is the ith component mean of x and where µ̃x(i), which is relevant for the lognormal

variates, is the ith component mean of ln x. This represents the mean of x in normal space.

The covariance matrix is denoted Σ(i) and its determinant is denoted
∣
∣Σ(i)

∣
∣. It has dimension

m×m and is given by

Σ(i) =















σ2
x1(i)

. . . ρx1,xj(i)σx1(i)σxj(i) . . . ρ̃x1,xm(i)σx1(i)σ̃xm(i)

...
. . .

...
...

ρx1,xj(i)σx1(i)σxj(i) . . . σ2
xj(i)

. . . ρ̃xj ,xm(i)σxj(i)σ̃xm(i)

...
...

. . .
...

ρ̃x1,xm(i)σx1(i)σ̃xm(i) . . . ρ̃xj ,xm(i)σxj(i)σ̃xm(i) . . . σ̃2
xm(i)















. (1.9)

The ith PDF component standard deviation of x is denoted σx(i). For lognormal variates, the

ith PDF component standard deviation of ln x is denoted σ̃x(i). This represents the standard

deviation of x in normal space. The correlation of x and y in the ith PDF component, when

both x and y are normal variates, is written as ρx,y(i). The ith PDF component correlation

of either x and ln y (one normal variate and one lognormal variate) or ln x and ln y (two

lognormal variates) is written as ρ̃x,y(i). This represents the correlation of x and y in normal

space. The advantage of a single multivariate PDF, as opposed to a collection of individual

marginal PDFs, is that the multivariate PDF accounts for correlations among the variables

in the PDF. This is advantageous when calculating such quantities as rain water accretion
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rate and rain water evaporation rate.

When variables are integrated out of the full multivariate PDF, the result is a multivariate

marginal PDF consisting of fewer variables. When all variables but one are integrated

out of the PDF, the result is a univariate marginal or individual marginal PDF. For any

hydrometeor species, h, found in the full multivariate PDF in Eq. (1.5), the univariate

marginal distribution is

P (h) =
n∑

i=1

ξ(i)
(
fp(i)PL(i) (h) +

(
1− fp(i)

)
δ (h)

)
, (1.10)

where PL(i) (h) is a lognormal distribution in the ith PDF component, which is given by

PL(i) (h) =
1

(2π)
1
2 σ̃h(i) h

exp

{

−
(
lnh− µ̃h(i)

)2

2 σ̃2
h(i)

}

. (1.11)

The in-precipitation mean of h in the ith PDF component is µh(i). This is the mean of

the ith lognormal of h. However, µ̃h(i), as in Eq. (1.11), is the normal-space component mean

of h. It is the in-precipitation mean of lnh in the ith PDF component and is given by

µ̃h(i) = ln



µh(i)

(

1 +
σ2
h(i)

µ2
h(i)

)− 1
2



 , (1.12)

where σh(i) is the in-precipitation standard deviation of h in the ith PDF component. The

quantity σh(i) is the standard deviation of the ith lognormal of h. The normal-space com-

ponent standard deviation of h is σ̃h(i), as found in Eq. (1.11). It is the in-precipitation

standard deviation of lnh in the ith PDF component and is given by

σ̃h(i) =

√
√
√
√ln

(

1 +
σ2
h(i)

µ2
h(i)

)

. (1.13)

The variables that are distributed marginally as binormals use similar notation. For

example, µw(i) is the mean of w in the ith PDF component, or the mean of the ith normal.
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Likewise, σw(i) is the standard deviation of w in the ith PDF component, or the standard

deviation of the ith normal.

1.3 PDF parameters

This paper will use the phrase “PDF parameters” to refer to the PDF component means,

standard deviations, and correlations involving variables in the PDF, as well as the mixture

fractions and the PDF component precipitation fractions. The PDF parameters are calcu-

lated from various grid-mean input variables. In this paper, the component means, standard

deviations, and correlations involving w, rt, and θl, and the mixture fractions, ξ(1) and ξ(2),

are calculated according to the Analytic Double Gaussian 2 (ADG2) PDF, as described in

Section (e) of the Appendix of Larson et al. (2002). ADG2 requires the following quantities

as input: the overall (grid-box) mean, variance, and third-order central moment of w (w,

w′ 2, and w′ 3, respectively), the overall mean and variance of rt (rt and r′ 2t , respectively),

and the overall mean and variance of θl (θl and θ′ 2l , respectively). ADG2 preserves the val-

ues of these input variables, meaning that the PDF parameters can be used to successfully

reconstruct the values of the input variables. Additionally, ADG2 requires and preserves

the overall covariance of w and rt (w′r′t), the overall covariance of w and θl (w′θ′l), and the

overall covariance of rt and θl (r′tθ
′
l). All of the aforementioned quantities are prognosed or

diagnosed in CLUBB and are not the subject of this paper.

The individual marginal distribution for Ncn is specified to be a single lognormal over

the entire subgrid domain. This requires that both PDF component means equal the overall

(grid-box) mean (µNcn(1) = µNcn(2) = Ncn). Likewise, this requires that both PDF component

standard deviations equal the overall standard deviation (σNcn(1) = σNcn(2) = N ′ 2
cn

1/2
).

When no hydrometeor species are found at a grid level (~h = 0), fp = fp(1) = fp(2) = 0.

Otherwise, if any hydrometeor species in ~h is found at a grid level (has a value greater than

0), fp|tol ≤ fp ≤ 1, where fp|tol is the minimum value allowed for precipitation fraction when
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hydrometeors are present. We now describe how CLUBB parameterizes fp(1) and fp(2), given

fp. First, we note that

fp = ξ(1)fp(1) + ξ(2)fp(2). (1.14)

A tunable parameter, υ∗ (where the ∗ subscript denotes a tunable or adjustable parameter),

is introduced and is defined as the ratio of ξ(1)fp(1) to fp, where 0 ≤ υ∗ ≤ 1. The precipitation

fraction of PDF component 1 is solved by

fp(1) = min

(
υ∗fp
ξ(1)

, 1

)

. (1.15)

The PDF component 2 precipitation fraction can now be solved by

fp(2) = min

(
fp − ξ(1)fp(1)

ξ(2)
, 1

)

. (1.16)

When fp(1) calculated by Eq. (1.15) is small enough to force fp(2) calculated by Eq. (1.16) to

be limited at 1, the value of fp(1) is recalculated (with fp(2) = 1) and is increased enough to

satisfy Eq. (1.14).

1.3.1 Hydrometeor PDF parameters

A mean-and-variance-preserving method is used to calculate the in-precipitation means of

the hydrometeor field in the two PDF components, µh(1) and µh(2), and the in-precipitation

standard deviations of the hydrometeor field in the two PDF components, σh(1) and σh(2). The

fields that need to be provided as inputs are the overall (grid-box) mean of the hydrometeor,

h, the overall variance of the hydrometeor, h′ 2, the mixture fraction in each PDF component,

ξ(1) and ξ(2), the overall precipitation fraction, fp, and the precipitation fraction in each PDF

component, fp(1) and fp(2). Given these inputs, the in-precipitation mean of the hydrometeor,

h|ip, can be calculated by

h|ip =
h

fp
, (1.17)
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and the in-precipitation variance of the hydrometeor, h|′ 2ip , can be calculated by

h|′ 2ip =
h′ 2 + h

2 − fph|ip
2

fp
. (1.18)

The grid-level mean value of any function that is written in terms of variables involved

in the PDF can be found be integrating over the product of that function and the PDF. For

example,

h =

∞∫

0

hP (h) dh and h′ 2 =

∞∫

0

(
h− h

)2
P (h) dh. (1.19)

After integrating, the equation for h expressed in terms of PDF parameters is

h = ξ(1)fp(1)µh(1) + ξ(2)fp(2)µh(2). (1.20)

Likewise, the equation for h′ 2 expressed in terms of PDF parameters is

h′ 2 = ξ(1)fp(1)
(
µ2
h(1) + σ2

h(1)

)
+ ξ(2)fp(2)

(
µ2
h(2) + σ2

h(2)

)
− h

2
. (1.21)

When the hydrometeor is not found at a grid level, h = h′ 2 = 0 and the component means

and standard deviations of the hydrometeor also have a value of 0. When the hydrometeor

is found at a grid level, h > 0. Precipitation may be found in only PDF component 1, only

PDF component 2, or in both PDF components. When precipitation is found in only PDF

component 1, µh(2) = σh(2) = 0 and µh(1) and σh(1) can easily be solved by Eq. (1.20) and

Eq. (1.21). Likewise, when precipitation is found in only PDF component 2, µh(1) = σh(1) = 0

and µh(2) and σh(2) can easily be solved by the same equation set.

When there is precipitation found in both PDF components, further information is re-

quired to solve for the two component means and the two component standard deviations.
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The variable R is introduced such that

R ≡
σ2
h(2)

µ2
h(2)

. (1.22)

In order to allow the ratio of σ2
h(1) to µ2

h(1) to vary, the parameter ζ∗ is introduced, such that

R (1 + ζ∗) =
σ2
h(1)

µ2
h(1)

, (1.23)

where ζ∗ > −1. When ζ∗ > 0, then σ2
h(1)/µ

2
h(1) increases at the expense of σ2

h(2)/µ
2
h(2),

which decreases in this variance-preserving equation set. When ζ∗ = 0, then σ2
h(1)/µ

2
h(1) =

σ2
h(2)/µ

2
h(2). When −1 < ζ∗ < 0, then σ2

h(2)/µ
2
h(2) increases at the expense of σ2

h(1)/µ
2
h(1),

which decreases. Combining Eq. (1.21), Eq. (1.22), and Eq. (1.23), the equation for h′ 2 can

be rewritten as

h′ 2 = ξ(1)fp(1) (1 +R (1 + ζ∗))µ
2
h(1) + ξ(2)fp(2) (1 +R)µ2

h(2) − h
2
. (1.24)

Both the variance of each PDF component and the spread between the means of each

PDF component contribute to the in-precipitation variance of the hydrometeor (h|′ 2ip ). At one

extreme, the standard deviation of each component could be set to 0 and the in-precipitation

variance could be accounted for by spreading the PDF component (in-precipitation) means

far apart. The value of R in this scenario would be its minimum possible value, which is 0.

At the other extreme, the means of each component could be set equal to each other and

the in-precipitation variance could be accounted for entirely by the PDF component (in-

precipitation) standard deviations. The value of R in this scenario would be its maximum

possible value, which is Rmax.

In order to calculate the value of Rmax, set µh(1) = µh(2) = h|ip and R = Rmax. Eq. (1.24)
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becomes

h′ 2 + h
2
= h|ip

2 (
ξ(1)fp(1) (1 +Rmax (1 + ζ∗)) + ξ(2)fp(2) (1 +Rmax)

)
. (1.25)

When Eq. (1.18) is substituted into Eq. (1.25), Rmax is solved for and the equation is

Rmax =

(
fp

ξ(1)fp(1) (1 + ζ∗) + ξ(2)fp(2)

)
h|′ 2ip
h|ip

2 . (1.26)

In the scenario that ζ∗ = 0 the equation for Rmax reduces to the ratio of h|′ 2ip to h|ip
2
.

In order to calculate the value of R, a parameter is used to prescribe the ratio of R to its

maximum value, Rmax. The prescribed parameter is denoted o∗, where

R = o∗Rmax, (1.27)

and where 0 ≤ o∗ ≤ 1. Both R and Rmax are known functions of the inputs and tunable

parameters. When o∗ = 0, the standard deviation of each PDF component is 0, and µh(1) is

spread far from µh(2). When o∗ = 1, then µh(1) = µh(2), and the standard deviations of the

PDF components account for all of the in-precipitation variance. At intermediate values of

o∗, the means of each PDF component are somewhat spread apart and each PDF component

has some width. The new equation for hydrometeor variance becomes

h′ 2 = ξ(1)fp(1) (1 + o∗Rmax (1 + ζ∗))µ
2
h(1) + ξ(2)fp(2) (1 + o∗Rmax)µ

2
h(2) − h

2
. (1.28)

The two remaining unknowns, µh(1) and µh(2), can be solved by a set of two equations,

Eq. (1.20) for h and Eq. (1.28) for h′ 2. All other quantities in the equation set are known

quantities. To find the solution, Eq. (1.20) is rewritten to isolate µh(2) such that

µh(2) =
h− ξ(1)fp(1)µh(1)

ξ(2)fp(2)
. (1.29)
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The above equation is substituted into Eq. (1.28). The resulting equation is rewritten in the

form

Qaµ
2
h(1) +Qbµh(1) +Qc = 0, (1.30)

so the solution to the quadratic equation for µh(1) is

µh(1) =
−Qb ±

√

Q2
b − 4QaQc

2Qa

, (1.31)

where:

Qa = ξ(1)fp(1) (1 + o∗Rmax (1 + ζ∗)) +
ξ2(1)f

2
p(1)

ξ(2)fp(2)
(1 + o∗Rmax) ,

Qb = −2
ξ(1)fp(1)
ξ(2)fp(2)

(1 + o∗Rmax)h, and

Qc = −
(

h′ 2 +

(

1− 1 + o∗Rmax

ξ(2)fp(2)

)

h
2
)

.

(1.32)

The value of Qa is always positive and the value of Qb is always negative. The value of Qc

can be positive, negative, or zero. Since
(
1− (1 + o∗Rmax) /

(
ξ(2)fp(2)

))
h

2
is always negative

and h′ 2 is always positive, the sign of Qc depends on which term is greater in magnitude.

When h′ 2 is greater, the sign of Qc is negative. This means that −4QaQc is positive,

which in turn means that
√

Q2
b − 4QaQc is greater in magnitude than−Qb. If the subtraction

option of the ± were to be chosen, the value of µh(1) would be negative in this scenario. At

first glance, it might appear natural to always choose the addition option. However, this

set of equations was derived with the condition that µh(1) equals µh(2) when o∗ = 1. When

ζ∗ ≥ 0, this happens when the addition option is chosen, but not when the subtraction option

is chosen. However, when ζ∗ < 0, this happens when the subtraction option is chosen, but
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not when the addition option is chosen. So, the equation for µh(1) becomes

µh(1) =







−Qb +
√

Q2
b − 4QaQc

2Qa

, when ζ∗ ≥ 0; and

−Qb −
√

Q2
b − 4QaQc

2Qa

, when ζ∗ < 0.

(1.33)

The value of µh(2) can now be found using Eq. (1.29). After µh(1) and µh(2) have been solved,

σh(1) and σh(2) can be solved by plugging Eq. (1.27) back into Eq. (1.23) and Eq. (1.22),

respectively.

As the value of h|′ 2ip/h|ip
2
increases and as the value of o∗ decreases (narrowing the

in-precipitation standard deviations and increasing the spread between the in-precipitation

means), one of the component means may become negative. This happens because there

is a limit to the amount of in-precipitation variance that can be represented by this kind

of distribution. In order to prevent out-of-bounds values of µh(1) or µh(2), a lower limit

is declared, called µh|min, where µh|min is a small, positive value that is typically set to

be two orders of magnitude smaller than h|ip. The value of µh(1) or µh(2) will be limited

from becoming any smaller (or negative) at this value. From there, the value of the other

hydrometeor in-precipitation component mean is easy to calculate. Then, both values will be

entered into the calculation of hydrometeor variance in Eq. (1.24), which will be rewritten to

solve for R. Then, both the hydrometeor mean and hydrometeor variance will be preserved

with a valid distribution.

When the value of ζ∗ ≥ 0, the value of µh(1) tends to be larger than the value of µh(2).

Likewise when the value of ζ∗ < 0, the value of µh(2) tends to be larger than the value of

µh(1). Since most cloud water and cloud fraction tends to be found in PDF component 1,

it is appropriate and advantageous to have the larger in-precipitation component mean of

the hydrometeor also found in PDF component 1. The recommended value of ζ∗ is a value

greater than or equal to 0.
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This method of closing the hydrometeor PDF parameter equation set produces a DDL

hydrometeor PDF shape when 0 < o∗ < 1 or when ζ∗ 6= 0. The DL hydrometeor PDF

shape is produced simply by setting o∗ = 1 and ζ∗ = 0. These settings force µh(1) = µh(2)

and σh(1) = σh(2), which result in a single lognormal within the precipitating portion of the

subgrid domain. Furthermore, if, in addition to setting o∗ = 1 and ζ∗ = 0, one simply

sets fp(1) = fp(2) = 1, then precipitation is found everywhere within the subgrid domain,

producing the SL hydrometeor PDF shape. Hence it is very easy to change between DDL,

DL, and SL hydrometeor PDF shapes. Additionally, it should be noted that there is only

one o∗ and only one ζ∗ applied to all the hydrometeor species in ~h.

In limited testing, the value of the tunable parameter ζ∗ did not affect the results much

for CLUBB’s DDL PDF shape. The value of ζ∗ has been left at 0, effectively eliminating a

tunable or adjustable parameter from the scheme. When ζ∗ = 0, the DDL shape approaches

the DL shape as o∗ approaches 1. As o∗ approaches 0, the DDL shape approaches a double-

delta in precipitation (in addition to the delta at 0). Additionally, when 0 < o∗ < 1, the

in-precipitation skewness of the hydrometeor field is influenced by υ∗. As υ∗ approaches 0,

the in-precipitation distribution becomes more highly (positively) skewed. In Gaussian space

(see Section 1.5), the in-precipitation distribution is positively skewed. As υ∗ approaches

1, the in-precipitation distribution is less (positively) skewed. In Gaussian space, the in-

precipitation distribution is negatively skewed. For the results presented in this paper for

the DDL hydrometeor PDF shape, the remaining two tunable parameters have been set to

the values o∗ = 0.5 and υ∗ = 0.55.

1.4 Model setup and testing

There is insufficient data from observations to calculate all the fields that need to be in-

put into CLUBB’s PDF. However, this data can be supplied easily and plentifully by a

LES. In this paper, LES output of precipitating cases is simulated by the System for At-
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mospheric Modeling (SAM) (Khairoutdinov and Randall 2003). SAM uses an anelastic

equation set that predicts liquid water static energy, total water mixing ratio, vertical veloc-

ity, and both the south-north and west-east components of horizontal velocity. Additionally,

it predicts hydrometeor fields as directed by the chosen microphysics scheme. A predictive

1.5-order subgrid-scale turbulent kinetic energy closure is used to compute the subgrid-scale

fluxes (Deardorff 1980). SAM uses a fixed, Cartesian spatial grid and a third-order Adams-

Bashforth time-stepping scheme to advance the predictive equations of motion. It uses

periodic boundary conditions and a rigid lid at the top of the domain. The second-order

MPDATA (multidimensional positive definite advection transport algorithm) scheme is used

to advect the predictive variables (Smolarkiewicz and Grabowski 1990).

In order to assess the generality of the different hydrometeor PDF shapes for different

cloud regimes, SAM was used to run three idealized test cases — a precipitating shallow

cumulus case, a drizzling stratocumulus case, and a deep convective case. The use of cases

from differing cloud regimes help avoid overfitting the parameterizations of PDF shape. The

setup for the precipitating shallow cumulus test case was based on the Rain in Cumulus over

the Ocean (RICO) LES intercomparison (van Zanten et al. 2011). The horizontal resolution

was 100 m, and 256 grid boxes were used in each horizontal direction. The vertical resolution

was a constant 40 m and 100 grid boxes were used in the vertical. The model top was located

at 4000 m in altitude. The model time step was 1 s and the duration of the simulation was

72 hours. A vertical profile of level-averaged statistics was output every minute and a three-

dimensional snapshot of hydrometeor fields was output every hour.

The RICO simulation was run with SAM’s implementation of the Khairoutdinov and

Kogan (2000, hereafter KK) warm microphysics scheme. KK microphysics predicts both

rr and Nr. SAM’s implementation of KK microphysics uses a saturation adjustment to

diagnose rc, and cloud droplet concentration is set to a constant value (which is 70 cm−3 for

RICO).

The setup for the drizzling stratocumulus test case was taken from the LES intercom-
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parison based on research flight two (RF02) of the second Dynamics and Chemistry of

Marine Stratocumulus (DYCOMS-II) field experiment (Ackerman et al. 2009). The hori-

zontal resolution was 50 m and 128 grid boxes were used in each horizontal direction. An

unevenly-spaced vertical grid was used containing 96 grid boxes and covering a domain of

depth 1459.3 m. The model time step was 0.5 s and the duration of the simulation was six

hours. A vertical profile of level-averaged statistics was output every minute and a three-

dimensional snapshot of hydrometeor fields was output every 30 minutes. The DYCOMS-II

RF02 simulation was also run with SAM’s implementation of KK microphysics and used a

constant cloud droplet concentration of 55 cm−3.

The setup for the deep convective test case was taken from the LES intercomparison based

on the Large-Scale Biosphere-Atmosphere (LBA) experiment (Grabowski et al. 2006). The

horizontal resolution was 1000 m, and 128 grid boxes were used in each horizontal direction.

An unevenly-spaced vertical grid was used, containing 128 grid boxes and covering a domain

of depth 27500 m. The model time step was 6 s and the duration of the simulation was six

hours. A vertical profile of level-averaged statistics was output every minute and a three-

dimensional snapshot of hydrometeor fields was output every 15 minutes for the final 3.5

hours of the simulation.

The LBA case requires a microphysics scheme that can account for ice-phase hydrometeor

species. The LBA simulation was run with Morrison et al. (2005) microphysics, which

predicts the mixing ratio and number concentration (per unit mass) of rain, cloud ice, snow,

and graupel. SAM’s implementation of Morrison microphysics diagnoses rc using a saturation

adjustment right before the microphysics is called and then allows microphysics to update

the value of rc, which in turn is used to update the value rt. Cloud droplet concentration

was set to a constant value of 100 cm−3.

CLUBB’s hydrometeor PDF shapes will be compared to histograms of hydrometeors

produced by SAM LES data. Our goal is to isolate errors in the PDF shape itself. In order

to eliminate sources of error outside of the PDF shape and provide an “apples-to-apples”
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comparison of CLUBB’s PDF shapes to SAM data, we drive CLUBB’s PDF using SAM LES

fields, rather than perform interactive CLUBB simulations. The following fields are taken

from SAM’s statistical profiles and are used as inputs to CLUBB’s PDF: rt, θl, w′ 2, r′ 2t , θ′ 2l ,

w′r′t, w
′θ′l, r

′
tθ

′
l, w

′ 3, fp, rr, r′ 2r , Nr, and N ′ 2
r . For the LBA case, we add ri, r′ 2i , Ni, N ′ 2

i ,

rs, r′ 2s , Ns, N ′ 2
s , rg, r′ 2g , Ng, and N ′ 2

g . Another input to CLUBB’s PDF is w. The value of

w from large-scale forcing is set according to case specifications in both SAM and CLUBB.

CLUBB’s PDF is generated at every SAM vertical level and at every output time of SAM

level-averaged statistical profiles.

Additionally, covariances that involve at least one hydrometeor are added to the above

list and are used to calculate the PDF component correlations of the same two variables.

These covariances are r′tr
′
r, θ

′
lr

′
r, r

′
tN

′
r, θ

′
lN

′
r, and r′rN

′
r. Please see Appendix B for more details

on the calculation of PDF component correlations. The values of the component correlations

do not affect the individual marginal PDFs of the hydrometeors. They are included for the

calculation of microphysics process rates (see Section 1.5.2).

Owing to differences between the KK and Morrison microphysics schemes in SAM, fp

used by CLUBB’s PDF is computed slightly differently depending on which microphysics

scheme is used by SAM. The differences are due to the number of hydrometeor species

involved in the microphysics, the thresholding found internally in the microphysics codes,

and the variables that are output to statistics by SAM. KK microphysics contains only rain,

and SAM’s implementation of KK microphysics clips any value of rr (and with it Nr) below

a threshold value in clear air. Therefore, it is simple to set fp to the fraction of the domain

occupied by non-zero values of rr and Nr. Morrison microphysics predicts rain, ice, snow,

and graupel. For each of these species, SAM outputs a fraction. To provide an apples-to-

apples comparison with CLUBB, fp is approximated as the greatest of these four fractions

at any particular grid level.

Although fp is provided by the LES for this study, it can be diagnosed based on the

cloud fraction using a method such as that of Morrison and Gettelman (2008). If the cloud
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fraction, in turn, is diagnosed based on the omnipresent prediction of means, variances, and

other moments — as in higher-order moment parameterizations such as CLUBB — then

the onset of partial cloudiness is well defined and indeterminacy about the time of cloud

initiation is avoided. In contrast, parameterizations that diagnose cloud fraction based on,

e.g., cloud water mixing ratio, lack crucial information in cloudless grid boxes, as discussed

in Tompkins (2002). The well-defined onset of CLUBB’s cloud fraction is inherited by the

precipitation fraction.

1.5 Results

We first evaluate the shape of the idealized PDFs directly against LES. Histograms of SAM

LES data are generated from the three-dimensional snapshots of hydrometeor fields. One

histogram is generated at every vertical level for each hydrometeor field. A histogram of a

SAM hydrometeor field is compared to the CLUBB marginal PDF of that hydrometeor field

at the same vertical level and output time. The comparison is done with each of the SL,

DL, and DDL PDF shapes.

Figure 1.2 compares marginal PDFs involving rr and Nr for the RICO case at an altitude

of 380 m and a time of 4200 min. For the plot of the PDF of rr in Fig. 1.2a, the delta

function at rr = 0 has been omitted. The SAM data is divided into 100 bins, equally-

sized in rr, that range from the largest value of rr to the smallest positive value of rr.

(In what follows, all histograms use 100 equal-size bins, arranged from smallest to largest

value.) The SL hydrometeor PDF shape significantly overpredicts the PDF at small values

of rr and significantly underpredicts it at large values of rr. These errors are an expected

consequence of the single lognormal’s attempt to fit the precipitation-less area. The DL and

DDL PDF shapes provide a much closer match qualitatively to the SAM data. A quantitative

assessment of the quality of the fit will follow in Section 1.5.1.

Each of the CLUBB hydrometeor PDF shapes has a lognormal distribution within precip-
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Figure 1.2: PDFs of rain in the RICO precipitating shallow cumulus case at an altitude of 380 m and a
time of 4200 min. The SAM LES results are in red, the DDL results are blue solid lines, the DL results are
green dashed lines, and the SL results are magenta dashed-dotted lines. (a) The marginal distribution of rr
with the delta at rr = 0 omitted. (b) The marginal distribution of ln rr using the “in-precipitation PDF.”
This is the in-precipitation marginal PDF in Gaussian space. (c) The marginal distribution of Nr with the
delta at Nr = 0 omitted. (d) The marginal distribution of lnNr using the “in-precipitation PDF.” Again,
this is the in-precipitation marginal PDF in Gaussian space. The DDL provides a better fit to SAM LES
than the DL, which in turn provides a better fit than the SL.
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itation in each PDF component. Taking the natural logarithm of every point of a lognormal

distribution produces a normal distribution, and so the plot of the PDF of ln rr in Fig. 1.2b

is a normal distribution in each PDF component for each of the DDL, DL, and SL PDF

shapes. The plot of the PDF of ln rr (hereafter referred to as the PDF of rr in Gaussian

space) complements the aforementioned plot of the PDF of rr (Fig. 1.2a). The plot of the

PDF of rr is log-scaled on the y-axis, accentuating the small values of P (rr) that are found

at large values of rr. The plot of the PDF of ln rr accentuates the PDF at small values of rr.

The plot of the PDF of ln rr is a plot of only the in-precipitation portion of the distri-

bution, omitting all zero-values. The in-precipitation portion of the PDF is divided by fp,

which allows the area under the curve to integrate to 1. The PDF shown in Fig. 1.2b is the

Gaussianized form of Eq. (1.34).

Figure 1.2b shows that the SL hydrometeor PDF shape significantly misses the mark, for

its peak is located too far to the left of the bulk of the SAM LES data. This shift of the

peak to excessively small values is to be expected of a continuous PDF shape that tries to

include a delta function at zero. The DL PDF shape is far too peaked in comparison to the

SAM LES data, which is spread out broadly in Gaussian space. The DDL PDF shape is able

to achieve a spread-out shape because it has two different means within precipitation. This

allows it to better fit the more platykurtic shape of the SAM LES data in Gaussian space.

The plot of the PDF of RICO Nr is found in Fig. 1.2c and the Gaussian-space plot of Nr

is found in Fig. 1.2d. Similar to rr, the SL shape overpredicts the PDF at small values of

Nr and underpredicts it at large values of Nr. In Gaussian space, it is easy to see that SL’s

peak is located too far to the left. The DDL shape provides a better fit than the DL shape

to SAM LES data in Fig. 1.2c. Again, the DL shape is too peaked in Fig. 1.2d, whereas the

bimodal DDL is able to spread out, which provides a better match to SAM LES data.

Figure 1.3 contains scatterplots that show the bivariate PDF of rr and Nr for both SAM

LES and CLUBB’s PDF in RICO at the same altitude and time as Fig. 1.2. The CLUBB

PDF scatterpoints were generated by sampling the DDL PDF using an unweighted Monte
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Figure 1.3: Joint PDF of rr and Nr in the RICO precipitating shallow cumulus case at an altitude of
380 m and a time of 4200 min. SAM LES results are the red scatterpoints. CLUBB PDF scatterpoints were
generated by sampling the DDL PDF using an unweighted Monte Carlo scheme. The SAM LES domain is
256× 256 grid points, so to provide for the best comparison of LES points to CLUBB PDF sample points,
65536 CLUBB PDF sample points were used. The light blue scatterpoints are from PDF component 1 and
the dark blue scatterpoints are from PDF component 2. Every 10th point was plotted from both SAM LES
and CLUBB’s PDF. The joint nature of the PDF allows rr and Nr to correlate the same way in CLUBB as
they do in SAM.
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Carlo sampling scheme. This demonstrates the advantages of the multivariate nature of

CLUBB’s PDF. The hydrometeor fields are correlated the same way in CLUBB’s PDF as

they are in SAM LES.

Figure 1.4 compares marginal PDFs involving rr and Nr for the DYCOMS-II RF02 case

at an altitude of 400 m and a time of 330 min. All three hydrometeor PDF shapes provide a

decent match to the SAM LES data. In Fig. 1.4a and Fig. 1.4c, the SL and DL PDF shapes

dip a little below the SAM LES line in the middle of the data range for rr andNr, respectively.

The DDL PDF shape stays closer to the SAM LES line in this region. Additionally, the SL

PDF shape overestimates the SAM LES line close to the y-axis. In Fig. 1.4b and Fig. 1.4d,

the Gaussian-space plots show that the two components of the DDL shape superimpose

more than they did for the RICO case, owing to the reduced in-precipitation variance in the

drizzling stratocumulus case.

In order to assess how well the PDF shapes are able to capture ice PDFs as well as liquid

PDFs, we turn to the LBA case. In LBA, liquid and ice appear at different altitudes and

times. Figure 1.5 compares marginal PDFs involving rr and Nr for the LBA case at an

altitude of 2424 m and a time of 330 min. Compared to SAM’s PDF, the DDL hydrometeor

PDF shape is too bimodal, but it still provides the best visual match of the three hydrometeor

PDF shapes to SAM data. The fit will be quantified in Section 1.5.1.

To indicate whether the three PDF shapes work for ice-phase hydrometeors, we compare

marginal PDFs involving ri and Ni for the LBA case at an altitude of 10500 m and a time

of 360 min (Figure 1.6). Similar to the rr and Nr plots for RICO and LBA, Fig. 1.6a and

Fig. 1.6c show that the SL PDF shape overpredicts the PDF at small values of ri and Ni and

underpredicts it at large values of ri and Ni. The DL shape provides a better fit than the

SL, and the DDL has a slightly better fit than the DL. The Gaussian-space plots in Fig. 1.6b

and Fig. 1.6d show that the SAM LES distribution of ln ri and lnNi is again platykurtic.

The SL PDF shape has a peak that is shifted to the left. The DDL hydrometeor PDF shape

is able to spread out the most to cover the platykurtic shape of the LES in Gaussian space.
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Figure 1.4: PDFs of rain in the DYCOMS-II RF02 drizzling stratocumulus case at an altitude of 400 m
and a time of 330 min. The SAM LES results are in red, the DDL results are blue solid lines, the DL results
are green dashed lines, and the SL results are magenta dashed-dotted lines. (a) The marginal distribution of
rr with the delta at rr = 0 omitted. (b) The marginal distribution of ln rr using the “in-precipitation PDF.”
This is the in-precipitation marginal PDF in Gaussian space. (c) The marginal distribution of Nr with the
delta at Nr = 0 omitted. (d) The marginal distribution of lnNr using the “in-precipitation PDF”, which is
the in-precipitation marginal PDF in Gaussian space. Owing to relatively low within-precipitating variance,
the three hydrometeor PDF shapes are all a close match to SAM LES.
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Figure 1.5: PDFs of rain in the LBA deep convective case at an altitude of 2424 m and a time of 330 min.
The SAM LES results are in red, the DDL results are blue solid lines, the DL results are green dashed
lines, and the SL results are magenta dashed-dotted lines. (a) The marginal distribution of rr with the
delta at rr = 0 omitted. (b) The marginal distribution of ln rr using the “in-precipitation PDF.” This is
the in-precipitation marginal PDF in Gaussian space. (c) The marginal distribution of Nr with the delta
at Nr = 0 omitted. (d) The marginal distribution of lnNr using the “in-precipitation PDF”, which is the
in-precipitation marginal PDF in Gaussian space. Again, the DDL provides the best fit to SAM LES.
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Figure 1.6: PDFs of ice in the LBA deep convective case at an altitude of 10500 m and a time of 360 min.
The SAM LES results are in red, the DDL results are blue solid lines, the DL results are green dashed
lines, and the SL results are magenta dashed-dotted lines. (a) The marginal distribution of ri with the
delta at ri = 0 omitted. (b) The marginal distribution of ln ri using the “in-precipitation PDF.” This is
the in-precipitation marginal PDF in Gaussian space. (c) The marginal distribution of Ni with the delta at
Ni = 0 omitted. (d) The marginal distribution of lnNi using the “in-precipitation PDF.” Again, this is the
in-precipitation marginal PDF in Gaussian space. The method works for frozen hydrometeor species as well,
as the DDL provides a better fit to SAM LES than the DL, which in turn provides a better fit than the SL.
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Why does the DDL PDF shape match LES output better than the DL shape in the

aforementioned figures? The PDFs (in Gaussian space) for the LES of RICO and LBA show

a broad, flat distribution of hydrometeor values from the LES. The DL shape is too peaked

in comparison to the LES data. The DDL PDF is able to spread out the component means

and thereby represent the platykurtic shape more accurately. However, even the DDL PDF

fails to capture the far left-hand tail of the LES PDF. In the RICO, DYCOMS-II RF02, and

LBA cases, between about 5% and 20% of the LES PDF is found to the left of the DDL

PDF (see Figures 1.2b, 1.4b, 1.5b, and 1.6b). However, these values of hydrometeor mixing

ratios are small. They are roughly a factor of 20 or more smaller than the median value.

By combining these factors, we see that the percentage contribution of hydrometeor mixing

ratios that are omitted on the left-hand tail is only about 1%.

Why does SAM LES data have a platykurtic shape in Gaussian space in these cases? One

possible cause is the partly cloudy (and partly rainy) nature of these cases. In these partly

rainy cases, a relatively high percentage of the precipitation occurs in “edge regions” near the

non-precipitating region. These regions usually correspond to the edge of cloud or outside of

cloud. Evaporation (or less accretion) occurs in these regions, increasing the area occupied

by smaller amounts of rain. Yet, there is also an area of more intense precipitation near the

center of the precipitating region, which produces larger amounts of rain. Collectively, the

areas of small and large rain amount produce the large spread in the hydrometeor spectrum.

The DYCOMS-II RF02 PDFs from the LES tend not to share the platykurtic shape seen

in the other cases. The RF02 case is overcast, so there are not as many “edge” regions of

precipitation as found in partly rainy cases. There is much less in-precipitation variance

in the RF02 case. The simpler PDF shape is easier to fit by all the PDF shapes (SL, DL,

and DDL). To further illuminate the physics underlying the PDF shapes produced by LES,

further study would be needed.
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1.5.1 Quality of fit: general scores

While a lot can be learned by looking at plots of the hydrometeor PDFs, they are anecdotal

and cannot tell us how well the idealized PDF shapes work generally. To obtain an overall

quantification of the quality of the fit, we calculate the Kolmogorov-Smirnov (K-S) and the

Cramer-von Mises (C-vM) scores.

Both the K-S and C-vM tests compare the cumulative distribution function (CDF) of the

idealized distribution to the CDF of the empirical data (in this case, SAM LES data). Both

tests require that the CDFs be continuous. Therefore, the scores are calculated using only

the in-precipitation portion of the hydrometeor PDF in Eq. (1.10). The DDL, DL, and SAM

LES data all have the same precipitation fraction. The in-precipitation portion of the PDF

is normalized by dividing by precipitation fraction so that it integrates to 1. The equation

for the in-precipitation portion of the marginal PDF, P (h)|ip, is

P (h)|ip = ξ(1)
fp(1)
fp

PL(1) (h) + ξ(2)
fp(2)
fp

PL(2) (h) , (1.34)

where PL(i) is given by Eq. (1.11).

The K-S score is the greatest difference between the empirical in-precipitation CDF,

Ce (h)|ip, and the idealized in-precipitation CDF, C (h)|ip, at any point in h > 0. In order

to run the tests, the SAM LES data from the requested level and time was sorted in the

order of increasing value. This was done only for points where the requested hydrometeor

was found. The K-S score is given by (Stephens 1970)

KS = max
h

∣
∣
∣Ce (h)|ip − C (h)|ip

∣
∣
∣ = max

(
KS+, KS−) , where

KS+ = max
1≤κ≤np

(
κ

np

− C (hκ)|ip
)

and KS− = max
1≤κ≤np

(

C (hκ)|ip −
κ− 1

np

)

.
(1.35)

The number of data points in SAM LES where the hydrometeor is found is denoted np, and

hκ is the value of the hydrometeor at SAM LES ordered data point κ.
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Unlike the K-S test, which only considers the greatest difference between the CDFs, the

C-vM test is based on an integral that includes the differences between the CDFs over the

entire distribution. The integral is (Anderson 1962)

ω2 =

∫ (

Ce (h)|ip − C (h)|ip
)2

d C (h)|ip . (1.36)

The C-vM score is calculated by (Anderson 1962; Stephens 1970)

CVM = ω2np =
1

12np

+

np∑

κ=1

(
2κ− 1

2np

− C (hκ)|ip
)2

. (1.37)

The K-S and C-vM test scores are produced at every LES vertical level and three-

dimensional statistical output time for every hydrometeor species. This results in a large

number of scores. We desire that each hydrometeor species have a single K-S score and

a single C-vM score in order to more easily compare the DDL, DL, and SL hydrometeor

shapes. We calculate this score by averaging the individual level scores over multiple levels

and multiple output times. For K-S this is simple, and the result is 〈KS〉 (where angle brack-

ets denote an average over multiple levels and times). The C-vM test score in Eq. (1.37) is

dependent on the number of precipitating grid points. This number changes between vertical

levels and output times, so the C-vM scores cannot simply be averaged. Rather, they are

normalized first by dividing CVM by np to produce ω2 at every level and time. Those results

are averaged to calculate 〈ω2〉.

After inspecting profiles of SAM LES results for mean mixing ratios in height and time,

regions were identified in height and time where the mean mixing ratio of a species was

always at least 5.0× 10−6 kg kg−1. Averaging of the scores was restricted to these regions in

order to eliminate from consideration levels that do not contain the hydrometeor or contain

only small amounts of the hydrometeor with a small number of samples. RICO test scores

for rr and Nr were averaged from the surface through 2780 m and from 4200 min through

4320 min. DYCOMS-II RF02 test scores for rr and Nr were averaged from 277 m through
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808 m and from 300 min to 360 min.

The LBA case contains both liquid and frozen-phase hydrometeor species that evolve

as the cloud system transitions from shallow to deep convection. The various hydrometeor

species develop and maximize at different altitudes and times, so different periods and al-

titude ranges are chosen for averaging test scores for each species. LBA test scores for rr

and Nr were averaged from the surface through 6000 m and from 285 min through 360 min.

The test scores for rg and Ng were averaged from 4132 m through 9750 m and from 315 min

through 360 min. The test scores for rs and Ns were averaged from 5026 m through 9000 m

and from 345 min through 360 min. Finally, the test scores for ri and Ni were averaged from

10250 m through 11750 m at 360 min. For the LBA case, the value of fp used by CLUBB’s

PDF was based on the greatest value of SAM output variables for rain fraction, ice fraction,

snow fraction, and graupel fraction. Each of these statistics is the fraction of the SAM do-

main occupied by values of the relevant mixing ratio of at least 1.0× 10−6 kg kg−1. In order

to keep the comparison of the PDF shapes to SAM data consistent, values lower than this

threshold were omitted from the calculations of the individual level-and-time scores for K-S

and C-vM.

The results of 〈KS〉 are listed in Table 1.1 for every hydrometeor species in every case. The

DDL PDF shape has the lowest average score for every case and hydrometeor species except

for one. The DL PDF shape edges out the DDL in the DYCOMS-II RF02 Nr comparison.

The SL PDF shape has the highest average score for every case and hydrometeor species,

except for the LBA rr comparison, where it has the second-lowest score and the DL has the

highest score. The results of 〈ω2〉 are listed in Table 1.2. The DDL PDF shape has the lowest

average score for every case and hydrometeor species, the DL shape has the second-lowest

average score, and the SL shape has the highest average score.

We note the important caveat that, as compared to DL, DDL has more adjustable pa-

rameters. A parameterization with more free parameters would be expected to provide a

better fit to a training data set. Therefore, although DDL matches the LES output more
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Average Kolmogorov-Smirnov Statistic
Case-Species 〈KS〉 DDL 〈KS〉 DL 〈KS〉 SL
RICO rr 0.223 0.373 0.496
RICO Nr 0.182 0.263 0.634
RF02 rr 0.131 0.133 0.148
RF02 Nr 0.152 0.150 0.170
LBA rr 0.152 0.240 0.201
LBA Nr 0.142 0.187 0.295
LBA rg 0.197 0.307 0.429
LBA Ng 0.165 0.222 0.566
LBA rs 0.177 0.267 0.432
LBA Ns 0.173 0.238 0.492
LBA ri 0.212 0.282 0.614
LBA Ni 0.122 0.210 0.647

Table 1.1: Kolmogorov-Smirnov statistic averaged over multiple grid levels and statistical output timesteps
comparing each of DDL, DL, and SL hydrometeor PDF shapes to SAM LES results. The best (lowest)
average score for each case and hydrometeor species is listed in bold. The DDL has the lowest average score
most often, and the DL has the second-lowest average score most often.

Average Normalized Cramer-von Mises Statistic
Case-Species 〈ω2〉 DDL 〈ω2〉 DL 〈ω2〉 SL
RICO rr 0.0187 0.0508 0.1255
RICO Nr 0.0100 0.0238 0.1872
RF02 rr 0.0041 0.0049 0.0094
RF02 Nr 0.0064 0.0070 0.0136
LBA rr 0.0078 0.0231 0.0282
LBA Nr 0.0081 0.0145 0.0537
LBA rg 0.0159 0.0351 0.1092
LBA Ng 0.0129 0.0194 0.1576
LBA rs 0.0107 0.0240 0.1072
LBA Ns 0.0089 0.0174 0.1261
LBA ri 0.0126 0.0246 0.1968
LBA Ni 0.0046 0.0134 0.2046

Table 1.2: Normalized Cramer-von Mises statistic averaged over multiple grid levels and statistical output
timesteps comparing each of DDL, DL, and SL hydrometeor PDF shapes to SAM LES results. The best
(lowest) average score for each case and hydrometeor species is listed in bold. The DDL has the lowest
average score every time, and the DL has the second-lowest average score every time.
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closely than does DL, we cannot be certain, based on the analysis presented here, that DDL

will outperform DL on a different validation dataset. For a deeper analysis, one could use a

model selection method that penalizes parameterizations with more parameters. We leave

such an analysis for future work.

1.5.2 Microphysical process rates

A primary reason to improve the accuracy of hydrometeor PDFs is to improve the accuracy

of the calculation of microphysical process rates. In this section, we compare the accuracy

of calculations of microphysical process rates based on the SL, DL, and DDL PDF shapes.

In the simulations of RICO and DYCOMS-II RF02, both SAM LES and CLUBB use

KK microphysics. The process rates output are the mean evaporation rate of rr, the mean

accretion rate of rr, and the mean autoconversion rate of rr. Also recorded is rain drop mean

volume radius, which is important for sedimentation velocity of rain. In order to account for

subgrid variability in the microphysics, the KKmicrophysics process rate equations have been

upscaled (to grid-box scale) using analytic integration over the PDF (Larson and Griffin 2013;

Griffin and Larson 2013). The updates to the multivariate PDF (see Section 1.2) require

updates to the upscaled process rate equations. The updated forms of these equations are

listed in Appendix C.

Figure 1.7 shows profiles of RICO mean microphysics process rates. The mean evapora-

tion rate profile in Fig. 1.7a shows that all three shapes over-evaporate at higher altitudes,

but that SL and DL over-evaporate more than DDL. It should be noted that the reason

for the over-evaporation at higher altitudes in the RICO case is the marginal PDF of χ

produced by ADG2. While it provides a good match between CLUBB and SAM LES in the

fields of cloud fraction and rc, the value of σχ(1) is far too large. When χ and rr (or Nr) are

distributed jointly, this results in too many large values of rr (or Nr) being placed in air that

is far too dry. RICO mean evaporation rate could benefit from an improved ADG2 in order

to produce a better marginal distribution of χ, but that is beyond the scope of this paper.
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Figure 1.7: Profiles of mean microphysics process rates in the RICO precipitating shallow cumulus case
time-averaged over the last two hours of the simulation (minutes 4200 through 4320). The SAM LES results
are red solid lines, the DDL results are blue solid lines, the DL results are green dashed lines, and the SL
results are magenta dashed-dotted lines. (a) The mean evaporation rate of rr. (b) The mean accretion
rate of rr. (c) The overall mean microphysics tendency for rr. (d) The mean volume radius of rain drops.
Overall, the DDL provides a better fit to SAM LES than the DL, which in turn provides a better fit than
the SL.
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Figure 1.8: Profiles of mean microphysics process rates in the DYCOMS-II RF02 drizzling stratocumulus
case time-averaged over the last hour of the simulation (minutes 300 through 360). The SAM LES results
are red solid lines, the DDL results are blue solid lines, the DL results are green dashed lines, and the SL
results are magenta dashed-dotted lines. (a) The mean evaporation rate of rr. (b) The mean accretion rate
of rr. (c) The overall mean microphysics tendency for rr. (d) The mean volume radius of rain drops. All
hydrometeor PDF shapes provide a good fit to SAM LES.

Figure 1.7b shows that both the DL and DDL PDF shapes match the LES mean accretion

rate profile much better than does the SL shape. The mean autoconversion rate depends on

χ and Ncn but not hydrometeor variables, and so the autoconversion rate is the same for all

three PDF shapes (not shown). The overall mean microphysics rate — i.e., the sum of the

evaporation, accretion, and autoconversion rates — is fit best by the DDL shape and worst

by the SL shape. Both DDL and DL are a much better match to the SAM profile of rain

drop mean volume radius than SL (Fig. 1.7d).

Figure 1.8 shows that all three hydrometeor PDF shapes provide a good match to SAM
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LES for DYCOMS-II RF02. In Fig. 1.8d, the SL PDF shape deviates more strongly from

SAM LES than does DL or DDL near the bottom of the profile of rain drop mean volume

radius.

In the simulation of LBA, Morrison microphysics was used in both the SAM LES and

CLUBB. In order to account for subgrid variability in the microphysics, sample points from

the PDF are produced at every grid level using the Subgrid Importance Latin Hypercube

Sampler (SILHS) (Raut and Larson 2016; Larson and Schanen 2013; Larson et al. 2005). For

the LBA case, 128 sample points were drawn. Morrison microphysics is then called using

each set of sample points, and the results are averaged to calculate the mean microphysics

process rates.

Figure 1.9 shows the same mean microphysics process rates as in previous figures, but

here for LBA. The profile of mean evaporation rate in Fig. 1.9a shows that DDL is the

best match to SAM LES. The profile of mean accretion rate in Fig. 1.9b shows that DDL

is the best match to SAM, followed by DL and then SL. The overall (autoconversion +

accretion + evaporation) warm microphysics process rate profile is best matched by the

DDL hydrometeor PDF shape, followed by the DL shape, which in turn is followed by the

SL shape (Fig. 1.9c).

1.6 Conclusion

The multivariate PDF used by CLUBB has been updated to improve the subgrid representa-

tion of hydrometeor species. The most important update is the introduction of precipitation

fraction to the PDF. The precipitating fraction contains any non-zero values of any hydrom-

eteor species included in the microphysics scheme. The remainder of the subgrid domain

is precipitation-less and is represented by a delta function where every hydrometeor species

has a value of zero. When a hydrometeor is found at a grid level, its representation in the

precipitating portion of the subgrid domain is a lognormal or double lognormal distribution.
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Figure 1.9: Profiles of mean warm microphysics process rates in the LBA deep convective case time-
averaged over the last hour of the simulation (minutes 300 through 360). The SAM LES results are red
solid lines, the DDL results are blue solid lines, the DL results are green dashed lines, and the SL results are
magenta dashed-dotted lines. (a) The mean evaporation rate of rr. (b) The mean accretion rate of rr. (c)
The overall mean microphysics tendency for rr. Again, the DDL provides a better fit to SAM LES than the
DL, which in turn provides a better fit than the SL.
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The introduction of precipitation fraction increases accretion and decreases evaporation in

cumulus cases, allowing more precipitation to reach the ground.

Additionally, a new method has been developed to calculate the in-precipitation mean and

standard deviation of a hydrometeor species in each component of CLUBB’s two-component

PDF. This method preserves the grid-box mean and variance of the hydrometeor species. By

simply changing the values of tunable parameters, CLUBB’s marginal PDF for a hydrometeor

can be changed from a delta-double-lognormal (DDL) to a delta-lognormal (DL) or to a

single-lognormal (SL) shape.

In order to compare the effectiveness of the three hydrometeor PDF shapes, three sim-

ulations – a precipitating shallow cumulus case (RICO), a drizzling stratocumulus case

(DYCOMS-II RF02), and a deep convective case (LBA) – were run using SAM LES. Sta-

tistical output values from the LES for the grid-level mean and turbulent fields were used

to drive the PDF for each hydrometeor PDF shape. The idealized PDF shapes were com-

pared to the SAM LES results. The DDL PDF shape produced the lowest average K-S and

average normalized C-vM scores when compared to SAM LES results, followed by the DL

PDF shape. Both produced lower scores than the original SL PDF shape. However, for

DYCOMS-II RF02, all three PDF shapes were in almost equal agreement with SAM LES

results.

The DL and DDL PDFs possess three important properties: 1) they are multivariate,

and hence can represent interactions among multiple hydrometeor species; 2) they admit

a precipitation-less region, which is necessary to permit realistic process rates in cumulus

cloud layers; and 3) they have realistic tails, as evidenced by the comparisons with LES

shown here. Because of these three properties, the DL and DDL PDFs may be general

enough and accurate enough to adequately represent hydrometeor variability over a range of

important cloud types, including shallow cumulus, deep cumulus, and stratocumulus clouds.

This generality, in turn, may help enable parameterization of these clouds types in a more

unified way. Indeed, an early version of the DDL PDF has already been used to represent
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hydrometeor subgrid variability in some interactive simulations with a unified cloud param-

eterization. Namely, the DDL PDF was used in the interactive single-column simulations

of these cloud types by Storer et al. (2015) and in the global simulations by Thayer-Calder

et al. (2015). Further testing would be required, however, to better understand the limits

of the DL and DDL PDFs. Better understanding is particularly desirable in, for instance,

mixed-phase and glaciated clouds. This has been left for future work.
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Chapter 2

Parameterizing Microphysical Effects on Variances and

Covariances of Moisture and Heat Content Using a

Multivariate PDF

2.1 Introduction

The structure, development, and dissipation of precipitating cumulus clouds are influenced

by interactions between microphysical, thermodynamic, and turbulent processes. For exam-

ple, consider the diurnal cycle of precipitation over land in the tropics. Over tropical land

masses, there is a gradual transition from shallow convection in the morning to deep convec-

tion several hours later (e.g., Grabowski et al. 2006). Early clouds remain shallow because

they entrain dry environmental air (Derbyshire et al. 2004). Successive clouds moisten the

environment. The transition to deep convection is aided by a positive feedback involving

rain, evaporative cooling, the formation of cold pools, and the triggering of fresh convection

and rain. Namely, when precipitation initiates, rain falls and evaporates below cloud base,

generating cold pools in the boundary layer. The cold pools, in turn, can lift boundary

layer air upwards and thereby trigger new convection (e.g., Kuang and Bretherton 2006;

Khairoutdinov and Randall 2006; Mapes and Neale 2011; Böing et al. 2012; Gentine et al.

2016). There may also occur a negative feedback between thermodynamic variability in

clouds and precipitation. Namely, updrafts and turbulent mixing may generate variabil-

ity in cloud water mixing ratio. Then rain forms preferentially in the moistest part of the

cloud, reducing peak cloud water contents, and thereby diminishing variability in cloud water

(Khairoutdinov and Randall 2002). Although these effects may be most pronounced in deep
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cumuli, which precipitate strongly, they are also present in precipitating shallow cumulus.

Relatedly, some shallow cumulus layers produce cold pools (e.g., Zuidema et al. 2012) and/or

exhibit mesoscale organization (e.g., Rauber et al. 2007; Xue et al. 2008).

Some effects of microphysics influence the spatial arrangement of cloud parcels. For

instance, precipitation may lead to an increase in cloud diameter or to the development of

mesoscale cloud organization (e.g., Kuang and Bretherton 2006; Khairoutdinov and Randall

2006; Schlemmer and Hohenegger 2014). Such effects of microphysics on cloud structure

will not be discussed here. Instead, the focus will be on the effects of microphysics on

the variances and covariances of cloud-related fields. Microphysics affects more than just

horizontal averages; it also affects variability. For instance, rain production in the moistest

parts of a cloud tends to diminish variability in cloud water. Also, evaporative cooling of

rain in cold downdrafts below cloud base may increase the variability in temperature in

the subcloud layer. Even though the effects of microphysics on cloud structure may be

difficult to quantify, the effects of microphysics on variances and covariances are simpler

to define and calculate. Those effects appear as well-defined covariance terms on the right-

hand side of spatially-filtered equations for the scalar variances and turbulent fluxes. These

filtered moment equations can be derived rigorously from the governing equations, and the

microphysical terms emerge naturally from the derivation. However, most coarse-resolution

climate or weather models either treat such effects crudely or else ignore them entirely.

The microphysical terms in the predictive variance and covariance equations can be

parameterized by integrating microphysical formulas over the Probability Density Function

(PDF) representing subgrid variability. A primary purpose of this paper is to perform

those integrals analytically and to implement the resulting formulas in a particular PDF

parameterization, the Cloud Layers Unified By Binormals (CLUBB) model. The integrals

can be performed analytically because the microphysical formulas that are integrated are

simple power laws (Khairoutdinov and Kogan 2000), and because it is assumed that the

variables involved are distributed according to a multivariate PDF based on normal and
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lognormal functions (see Chapter 1). The implementation of the integrals may serve as

a benchmark calculation that is based on idealized (Khairoutdinov-Kogan) microphysics.

The benchmark calculation can be used to assess the accuracy and convergence of more

general integration methods, as in Larson and Schanen (2013). Alternatively, the integrals

may serve directly as a parameterization. Full evaluation of the use of the integrals as a

parameterization is deferred to future work, but for illustrative purposes, a single-column

CLUBB simulation of one shallow convective case, Rain in Cumulus over the Ocean (RICO)

(van Zanten et al. 2011), is presented. In addition, budgets from a large-eddy simulation

(LES) of RICO are also presented. The LES indicates which variances and covariances are

most influenced by microphysical processes.

The remainder of the paper is organized as follows. Section 2.2 overviews the origin of

the microphysical terms from the predictive equations, summarizes the microphysics scheme

involved in the development of this parameterization, and summarizes the multivariate PDF

used by CLUBB. Section 2.3 describes the test case simulation, the LES used for comparison,

and the setup of the CLUBB model. Section 2.4 compares the budget terms for relevant

variances and covariances between the LES and CLUBB. Section 2.5 contains concluding

remarks.

2.2 Mathematical and physical overview

CLUBB is a single-column model (SCM) that predicts variances and covariances involving

vertical velocity, moisture, and temperature fields using spatially-filtered moment equations

(Golaz et al. 2002a; Larson and Golaz 2005; Larson and Griffin 2013; Griffin and Larson

2013). CLUBB uses a multivariate Probability Density Function (PDF) to represent sub-

grid variability in vertical velocity, moisture, temperature, and hydrometeor fields. The

subgrid PDF is used to close the higher-order moment terms found in the predictive mo-

ment equations and also to provide information on cloud water and cloud fraction.
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CLUBB’s PDF and corresponding predictive equation set are based on vertical velocity,

w, total water mixing ratio, rt, and liquid water potential temperature, θl. Total water

mixing ratio is defined such that rt = rv + rc, where rv is water vapor mixing ratio and rc

is (liquid) cloud water mixing ratio. Liquid water potential temperature is defined by the

equation

θl = Tl

(
p

p0

)− Rd
Cpd

, (2.1)

where p is pressure, p0 is a reference pressure of 1.0× 105 Pa, Rd is the gas constant for dry

air, and Cpd is the specific heat of dry air at a constant pressure. Liquid water temperature,

Tl, is defined as

Tl = T − Lv

Cpd

rc, (2.2)

where T is temperature and Lv is the latent heat of vaporization. In subsaturated air, rt

reduces to rv and θl reduces to potential temperature, θ.

The CLUBB model uses rt and θl because those variables are conserved with regard to

adiabatic processes and phase changes between water vapor and liquid cloud water. However,

rt and θl are not conserved with respect to transfers between precipitation and water vapor

or cloud water. As a result, the time-tendency equations for each of rt and θl include a

microphysics tendency term. Omitting all other terms, such as advection, these equations

can be written as

∂rt
∂t

= . . .+
∂rt
∂t

∣
∣
∣
∣
mc

, and (2.3)

∂θl
∂t

= . . .+
∂θl
∂t

∣
∣
∣
∣
mc

; (2.4)

where t is time, and where
∂rt
∂t

∣
∣
∣
∣
mc

and
∂θl
∂t

∣
∣
∣
∣
mc

are the microphysics tendency terms for rt

and θl, respectively. They are the source or sink of rt and θl due to microphysics process

rates.

The time-tendency equations are split into mean and turbulent components. For the
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remainder of this paper, an overbar will denote a mean value, while the prime symbol (′) will

donate a deviation from the mean value (turbulent value). The Reynolds-averaged predictive

equations for grid-box mean fields rt and θl include the terms

∂ rt
∂t

= . . .+
∂rt
∂t

∣
∣
∣
∣
mc

, and (2.5)

∂θl
∂t

= . . .+
∂θl
∂t

∣
∣
∣
∣
mc

. (2.6)

The omitted terms in the predictive equations for rt and θl are listed in Golaz et al. (2002a),

with the only change being that the CLUBB equation set is now written in anelastic form.

In order to obtain the fields necessary to generate the PDF, CLUBB also contains pre-

dictive equations for the subgrid variances and covariances involving w, rt, and θl. The fields

that contain a microphysics term are w′r′t, w
′θ′l, r

′2
t , θ

′2
l , and r′tθ

′
l. The Reynolds-averaged

predictive equations for these subgrid variances and covariances include the terms:

∂w′r′t
∂t

= . . .+ w′ ∂rt
∂t

∣
∣
∣
∣

′

mc

, (2.7)

∂w′θ′l
∂t

= . . .+ w′ ∂θl
∂t

∣
∣
∣
∣

′

mc

, (2.8)

∂r
′2
t

∂t
= . . .+ 2 r′t

∂rt
∂t

∣
∣
∣
∣

′

mc

, (2.9)

∂θ
′2
l

∂t
= . . .+ 2 θ′l

∂θl
∂t

∣
∣
∣
∣

′

mc

, and (2.10)

∂r′tθ
′
l

∂t
= . . .+ r′t

∂θl
∂t

∣
∣
∣
∣

′

mc

+ θ′l
∂rt
∂t

∣
∣
∣
∣

′

mc

. (2.11)

The full forms, including all omitted terms, of the predictive equations for w′r′t, w
′θ′l, r

′2
t ,

θ
′2
l , and r′tθ

′
l are given by Eq. (2.26), Eq. (2.27), Eq. (2.28), Eq. (2.29), and Eq. (2.30),

respectively, in Section 2.4.

If rt and θl were extended to include precipitation, the extended variables would be

conserved with respect to transfers between hydrometeors and water vapor or cloud wa-
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ter (microphysics process rates). However, this extension would cause the microphysical

effects to appear in sedimentation terms. The sedimentation terms contain vertical deriva-

tives, whereas the process rates do not. Some turbulent components of the sedimentation

term contain a vertical derivative within a horizontal average. To illustrate, consider a

hydrometeor-inclusive total water mixing ratio, denoted rT , such that rT = rv+rc+rr, where

rr is rain water mixing ratio. For simplicity, rr will be the only hydrometeor considered in

the microphysics. The microphysics term on the right-hand side of the Reynolds-averaged

r
′2
T predictive equation would have the form

2 r′T

(

− 1

ρs

∂ρs Vrr rr
∂z

)′

= − 2

ρs
r′T

∂ρs Vrr r
′
r

∂z
− 2

ρs
r′T

∂ρs V
′
rr rr

∂z
− 2

ρs
r′T

∂ρs V
′
rr r

′
r

∂z
,

where Vrr is the sedimentation velocity of rr, ρs is the dry, base-state air density, and z is

height. Every predictive moisture or temperature (co)variance equation would contain terms

analogous to the above sedimentation terms. Since these terms contain vertical derivatives

(∂/∂z) embedded within integrals over the horizontal, they are difficult to treat analytically

and cannot be described solely by a multivariate subgrid PDF at a single vertical grid level.

For this reason, CLUBB’s calculations of the microphysics terms use rt and θl defined in

terms of cloud water, not precipitation.

2.2.1 KK microphysics

The source terms for the model predictive equations require microphysical process rates from

a microphysics scheme. The scheme used here is the warm microphysics scheme described in

Khairoutdinov and Kogan (2000, hereafter KK). KK is a two-moment scheme that predicts rr

and rain drop concentration (per unit mass), Nr. It was developed by using the least squares

method to find a “best-fit” curve through microphysical rate data that was generated by

simulating a drizzling stratocumulus case using an explicit (or “bin”) microphysics scheme.

The KK scheme was chosen because of its simplicity. It expresses microphysical rates
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as power laws of two or three variables, which means that the product of a microphysical

rate and the corresponding PDF is always integrable. More recently, the coefficients and

exponents in the KK scheme have been tailored to cumulus clouds (Kogan 2013). The

Kogan scheme is covered by the analytic integrals presented in this paper because they are

generalized for arbitrary coefficients and exponents. However, this paper uses the original

KK coefficients and exponents because the KK scheme has been widely used for a variety of

cloud types and is adequate for the idealized purposes of this paper.

The KK warm microphysics scheme produces rr through the processes of autoconversion

(collision) and accretion (collection). These processes produce rain water, deplete cloud

water, and leave water vapor unchanged. As a result, these processes increase the value of

θl, as shown by Eq. (2.1) and Eq. (2.2), and decrease the value of rt. Evaporation reduces rr

as rain falls through subsaturated air. Condensational growth does not apply to rain water

in CLUBB. Instead, all supersaturation is automatically applied to cloud water. When rain

water evaporates, cloud water remains unchanged, and rt increases due to the increase in

water vapor. Meanwhile, evaporative cooling decreases θl due to the decrease in temperature.

The relationship of all three KK microphysics tendencies to the rt microphysics tendency

can be written as

∂rt
∂t

∣
∣
∣
∣
mc

= − ∂rr
∂t

∣
∣
∣
∣
auto

− ∂rr
∂t

∣
∣
∣
∣
accr

− ∂rr
∂t

∣
∣
∣
∣
evap

, (2.12)

where
∂rr
∂t

∣
∣
∣
∣
auto

is the rate of change of rr due to the process of autoconversion,
∂rr
∂t

∣
∣
∣
∣
accr

is

the rate of change of rr due to the process of accretion, and
∂rr
∂t

∣
∣
∣
∣
evap

is the rate of change of

rr due to the process of evaporation. Note that when evaporation occurs,
∂rr
∂t

∣
∣
∣
∣
evap

< 0. The

relationship of all three tendencies to θl microphysics tendency can be written as

∂θl
∂t

∣
∣
∣
∣
mc

=
Lv

Cpd

(
p

p0

)− Rd
Cpd

(

∂rr
∂t

∣
∣
∣
∣
auto

+
∂rr
∂t

∣
∣
∣
∣
accr

+
∂rr
∂t

∣
∣
∣
∣
evap

)

. (2.13)

The decrease in temperature from the evaporation of a unit of rain water is the same as the
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decrease in temperature from the evaporation of the same amount of cloud water.

The Reynolds-averaged microphysics term in the predictive equation for w′r′t, as found

in Eq. (2.7), is rewritten as

w′ ∂rt
∂t

∣
∣
∣
∣

′

mc

= − w′ ∂rr
∂t

∣
∣
∣
∣

′

auto

− w′ ∂rr
∂t

∣
∣
∣
∣

′

accr

− w′ ∂rr
∂t

∣
∣
∣
∣

′

evap

. (2.14)

Likewise, the Reynolds-averaged microphysics term in the predictive equation for w′θ′l, as

found in Eq. (2.8), is rewritten as

w′ ∂θl
∂t

∣
∣
∣
∣

′

mc

=
Lv

Cpd

(
p

p0

)− Rd
Cpd

(

w′ ∂rr
∂t

∣
∣
∣
∣

′

auto

+ w′ ∂rr
∂t

∣
∣
∣
∣

′

accr

+ w′ ∂rr
∂t

∣
∣
∣
∣

′

evap

)

. (2.15)

Any variability of p within the grid box is ignored for simplicity. Additionally, the −Rd/Cpd

exponent would greatly limit the effects of variability of p on the solution. As a result, p

is used in the equation. In the predictive equation for r
′2
t , Eq. (2.9), the microphysics term

becomes

r′t
∂rt
∂t

∣
∣
∣
∣

′

mc

= − r′t
∂rr
∂t

∣
∣
∣
∣

′

auto

− r′t
∂rr
∂t

∣
∣
∣
∣

′

accr

− r′t
∂rr
∂t

∣
∣
∣
∣

′

evap

. (2.16)

In the predictive equation for θ
′2
l , Eq. (2.10), the microphysics term becomes

θ′l
∂θl
∂t

∣
∣
∣
∣

′

mc

=
Lv

Cpd

(
p

p0

)− Rd
Cpd

(

θ′l
∂rr
∂t

∣
∣
∣
∣

′

auto

+ θ′l
∂rr
∂t

∣
∣
∣
∣

′

accr

+ θ′l
∂rr
∂t

∣
∣
∣
∣

′

evap

)

. (2.17)

The Reynolds-averaged microphysics terms in the predictive equation for r′tθ
′
l, as found in

Eq. (2.11), are rewritten as

θ′l
∂rt
∂t

∣
∣
∣
∣

′

mc

= − θ′l
∂rr
∂t

∣
∣
∣
∣

′
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− θ′l
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∣
∣
∣
∣

′
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− θ′l
∂rr
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∣
∣
∣
∣

′

evap

, and (2.18)

r′t
∂θl
∂t

∣
∣
∣
∣

′

mc
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Lv

Cpd

(
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(
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)

. (2.19)
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The above equation set contains nine individual microphysical covariance terms, each in-

volving one of w, rt, or θl with one of autoconversion, accretion, or evaporation rate. These

terms can be parameterized through use of the PDF method.

2.2.2 PDF method

The multivariate PDF used by CLUBB consists of w, rt, θl, all hydrometeor species used

by the selected microphysics scheme (in the case of KK microphysics, rr and Nr), and an

extended cloud droplet concentration, Ncn, which is equal to cloud droplet concentration,

Nc, within cloud, but has a positive value outside of cloud (see Section 1.2). CLUBB’s

PDF is a weighted mixture, or sum, of two multivariate normal/lognormal functions. Each

multivariate function is known as a PDF component.

When variables are integrated out of the multivariate PDF, a marginal PDF consisting

of fewer variables remains. When all variables but one are integrated out of the PDF, the

result is a univariate marginal or individual marginal. The individual marginal for each of

w, rt, and θl is a two-component normal (also known as a binormal) distribution. The two-

component shape allows skewness to be included in model fields. The individual marginal

for Ncn is assumed to be a (single) lognormal distribution.

The individual marginal for each of rr and Nr is delta-lognormal within each PDF com-

ponent (see Section 1.2). Each PDF component can contain precipitating and precipitation-

less regions. The fraction of each PDF component that contains any hydrometeor species

(other than cloud liquid water) is known as the component’s precipitation fraction. The

precipitation-less region is represented by a delta at 0 for all hydrometeor species. Within

precipitation, a lognormal distribution is used to represent a hydrometeor species. The log-

normal distributions can differ between the two components, so that when the components

are summed to form the overall distribution, a delta double lognormal (DDL) distribution

results.

The PDF method for parameterizing the nine microphysics covariance terms requires
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analytic integration over the multivariate PDF. As listed in Section 1.2, the general form

of a multivariate PDF of n components and D variables, where D can be all the variables

involved in the PDF or any subset of those, is given by

P (x1, x2, . . . , xD) =
n∑

i=1

ξ(i)P(i) (x1, x2, . . . , xD) , (2.20)

where ξ(i) is the mixture fraction, or relative weight of the ith PDF component. The sum of

the mixture fractions is equal to 1.

TheD variables listed are categorized, and the first J variables are normally distributed in

each PDF component (w, rt, and θl), the next K variables are lognormally distributed (Ncn),

and the last Ω variables are the hydrometeor species that are distributed delta-lognormally

in each PDF component (rr and/or Nr). The equation for the ith PDF component is

P(i) (x1, x2, . . . , xD) = fp(i)P(J,K+Ω)(i) (x1, x2, . . . , xD)

+
(
1− fp(i)

)
P(J,K)(i) (x1, x2, . . . , xJ+K)

(
D∏

ǫ=J+K+1

δ (xǫ)

)

,
(2.21)

where fp(i) is the precipitation fraction in the ith PDF component. The subscripts in the ith

component, P(J,K)(i) or P(J,K+Ω)(i), denote the number of normal variates, J , and the number

of lognormal variates, K or K + Ω, used in Eq. (2.22).

Both the precipitating and precipitation-less portions (sub-components) of Eq. (2.21)

contain a hybrid normal/lognormal distribution of m variables, where the first j variables

are normally distributed and the remaining k variables are lognormally distributed. The

general form of this multivariate normal/lognormal PDF is given by (Fletcher and Zupanski

2006)

P(j,k)(i) (x1, x2, . . . , xm) =
1

(2π)
m
2

∣
∣Σ(i)

∣
∣
1
2

(
m∏

τ=j+1

1

xτ

)

× exp

{

−1

2

(
~x− ~µ(i)

)T
Σ−1

(i)

(
~x− ~µ(i)

)
}

,

(2.22)
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where ~x is a m× 1 vector of the variables (in normal-space) in the PDF and ~µ(i) is a m× 1

vector of the (normal-space) PDF sub-component means. The transpose of the vector is

denoted T. The m×m (normal-space) covariance matrix is denoted Σ(i) and its determinant

is denoted
∣
∣Σ(i)

∣
∣ (Fletcher and Zupanski 2006).

Using a two-component PDF requires a method to divide one overall (grid-box) mean

value of a variable into two PDF component mean values of that variable. Likewise, one over-

all variance needs to be split into two PDF component standard deviations. The multivariate

PDF also requires information on the correlations between variables.

The PDF component means, standard deviations, and correlations involving w, rt, and

θl, as well as the mixture fractions, are calculated according to the Analytic Double Gaus-

sian 1 (ADG1) PDF presented in Section (d) of the Appendix of Larson et al. (2002). The

overall (grid-box) precipitation fraction is set to the maximum cloud fraction found at or

above that grid level (Morrison and Gettelman 2008). The calculation of the component pre-

cipitation fractions fp(i) from the overall precipitation fraction are outlined in Section 1.3.

Also described there is the calculation of the PDF component means and standard devia-

tions involving Ncn, rr, and Nr. Interactive CLUBB runs prescribe a constant ratio of the

in-precipitation variance to the square of the in-precipitation mean for rr and Nr. Addition-

ally, all remaining correlations between variables are prescribed constants.

The covariance of PDF variables x1 and x2 can be calculated by

x′
1x

′
2 =

∫ ∫

(x1 − x1) (x2 − x2)P (x1, x2) dx2 dx1. (2.23)

The covariance of a PDF variable and a microphysics function (written in terms of PDF

variables) can be calculated in the same manner. For example, the covariance of θl and KK

evaporation rate found in Eq. (2.17) and Eq. (2.18) can be rewritten as

θ′l
∂rr
∂t

∣
∣
∣
∣

′

evap

=

(

θl − θl

)(

∂rr
∂t

∣
∣
∣
∣
evap

− ∂rr
∂t

∣
∣
∣
∣
evap

)

, (2.24)
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where mean evaporation rate,
∂rr
∂t

∣
∣
∣
∣
evap

, is also calculated by integrating over the PDF (see

Appendix C). The KK evaporation rate can be written as a function of θl, rt, rr, and Nr,

so here it will be referred to as EV (θl, rt, rr, Nr). The covariance of θl and KK evaporation

rate is calculated by

θ′l
∂rr
∂t

∣
∣
∣
∣

′

evap

=

∫ ∫ ∫ ∫ (

θl − θl

)(

EV (θl, rt, rr, Nr)− EV (θl, rt, rr, Nr)
)

× P (θl, rt, rr, Nr) dNr drr drt dθl.

(2.25)

The remaining eight covariances involving microphysical functions are calculated in the same

manner. Further and more detailed description of this method can be found in Appendix E.

2.3 Test case and model setups

To perform an initial test of the parameterization, we choose the Rain in Cumulus over the

Ocean (RICO) model intercomparison case of a precipitating shallow cumulus layer (van

Zanten et al. 2011). The intercomparison model configuration is based on a field study

conducted off the coast of Antigua and Barbuda (Rauber et al. 2007). RICO uses prescribed

radiative and large-scale forcings for temperature and moisture, as well as prescribed large-

scale subsidence. These quantities vary with altitude but are constant over time. The surface

fluxes are calculated using bulk aerodynamic equations. The simulation was run for a period

of 72 hours.

RICO was chosen as a test case for two main reasons. First, ice microphysics is not neces-

sary for a shallow trade-wind cumulus case; hence, a warm microphysics scheme is sufficient.

Secondly, RICO is a partly cloudy case that precipitates over a small portion of the hori-

zontal domain and contains significant variance of rr within the precipitating region. These

factors lead to significant microphysical effects on the subgrid variances and covariances. In

contrast, the effects of microphysics on the same subgrid variances and covariances are neg-
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ligible (not shown) in the drizzling stratocumulus case based on research flight two (RF02)

of the second Dynamics and Chemistry of Marine Stratocumulus (DYCOMS-II) field study

(Ackerman et al. 2009; Wyant et al. 2007). DYCOMS-II RF02 is entirely overcast and the

in-precipitation variance of rr is much smaller than found in RICO.

In order to provide a benchmark for comparison, a large-eddy simulation (LES) of RICO

was run using the System for Atmospheric Modeling (SAM) (Khairoutdinov and Randall

2003). SAM uses an anelastic equation set that predicts all three components of velocity,

total water mixing ratio, liquid water static energy, and hydrometeor fields (based on the

selected microphysics scheme). A third-order Adams-Bashforth time-stepping scheme is used

to advance the predictive equations of motion. The predictive fields are advected by the

second-order MPDATA (multidimensional positive definite advection transport algorithm)

scheme (Smolarkiewicz and Grabowski 1990). The subgrid-scale fluxes are computed by a

1.5-order subgrid-scale turbulence kinetic energy closure.

The SAM LES of RICO was run using KK microphysics. SAM’s implementation of KK

microphysics predicts both rr and Nr. Cloud water mixing ratio, rc, is calculated using a

simple saturation adjustment scheme. Cloud droplet concentration, Nc, is set to a constant

value of 70 cm−3 within cloud. SAM uses a fixed, Cartesian grid. For the RICO case, a

256×256 horizontal grid is used with a grid spacing of 100 m in each direction. The vertical

grid contains 100 levels with 40 m grid spacing, spanning a domain of depth 4000 m. The

model time step is 1 s, and horizontally averaged statistical profiles are sampled and output

every 60 s. SAM uses periodic boundary conditions at the lateral boundaries and a rigid lid

at the top of the domain.

The single-column CLUBB simulation of RICO was run using the analytically upscaled

version of KK microphysics, including the microphysical effects on the predictive variances

and covariances as described in Section 2.2. In addition to rt, θl, w′r′t, w
′θ′l, r

′2
t , θ

′2
l , and r′tθ

′
l,

CLUBB also predicts the variance and third-order central moment of vertical velocity (w′2

and w′3, respectively), the mean and variance of the horizontal west-east wind component (u
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and u′2, respectively), the mean and variance of the horizontal south-north wind component

(v and v′2, respectively), and the mean of each hydrometeor field involved in the microphysics

(rr and Nr for KK microphysics). The anelastic approximation is used in all predictive

equations. CLUBB calculates rc by using a simple saturation adjustment and integration

over the subgrid PDF. Just as in SAM LES, cloud droplet concentration is set to a constant

value in cloud for the RICO case. CLUBB uses a vertically stretched grid containing 37

levels covering a domain of depth 4904 m. The model time step is 180 s, and statistical

profiles are sampled and output at every model time step.

In the following analysis, profiles of the SAM LES and CLUBB SCM budget terms for

the w′r′t, w
′θ′l, r

′2
t , θ

′2
l , and r′tθ

′
l fields are time-averaged over the last two hours of the RICO

simulation (minutes 4200 through 4320). The RICO fields are in an approximately steady

state during this time period.

2.4 Results

In order to assess which physical processes are most important, the LES budget terms for

turbulent fields are analyzed. Additionally, the LES budgets and CLUBB’s budgets are

compared in order to assess the accuracy of CLUBB’s PDF shape and its closures.

Unlike the LES, the CLUBB budget terms for turbulent fields are taken directly from

the predictive equation set. The anelastic predictive equations for the turbulent fluxes w′r′t

and w′θ′l are given by

∂w′r′t
∂t

=− 1

ρs

∂ρs ww′r′t
∂z

− 1

ρs

∂ρs w′2r′t
∂z

︸ ︷︷ ︸
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−w′2 ∂ rt
∂z

− w′r′t
∂ w

∂z
︸ ︷︷ ︸
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− 1

ρs
r′t
∂p′

∂z
︸ ︷︷ ︸

pressure

+
g

θvs
r′tθ

′
v

︸ ︷︷ ︸

buoyancy

+εw rt
︸ ︷︷ ︸

diffusion

+w′ ∂rt
∂t

∣
∣
∣
∣

′

mc
︸ ︷︷ ︸

microphysics

, and

(2.26)
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∂w′θ′l
∂t

=− 1

ρs

∂ρs ww′θ′l
∂z

− 1

ρs

∂ρsw′2θ′l
∂z

︸ ︷︷ ︸

advection
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∂ w

∂z
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− 1

ρs
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∂p′
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pressure

+
g
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θ′lθ

′
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︸ ︷︷ ︸

buoyancy

+εw θl
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diffusion

+w′ ∂θl
∂t

∣
∣
∣
∣

′

mc
︸ ︷︷ ︸

microphysics

,

(2.27)

where g is gravity and θv is virtual potential temperature. The dry, anelastic base-state

values of air density, ρs, and θv, denoted θvs, vary only with altitude. The higher-order

turbulent advection terms, w′2r′t and w′2θ′l, are closed using the PDF (Larson and Golaz

2005). The pressure terms are parameterized following André et al. (1978) (see also Golaz

et al. (2002a)). The slow (return-to-isotropy) term is approximated by Newtonian dampling.

The buoyancy terms are closed by linearizing and then integrating over the PDF (Larson

et al. 2002). The terms denoted εw rt and εw θl are background numerical vertical diffusion

terms (Golaz et al. 2002a).

As in CLUBB, the SAM LES budgets for the horizontally averaged turbulent fluxes

contain advective transport terms and turbulent (gradient) production terms, which both

ultimately arise from the 3D advection of w, rt, and θl. The turbulent production terms gen-

erate variability when the vertical derivative of the mean field is non-zero. SAM also records

the effects of pressure, buoyancy, and microphysics on the turbulent fluxes. SAM’s budget

term for diffusion of w′r′t and w′θ′l records the effects of diffusion associated with the subgrid

TKE scheme. In Fig. 2.1 and Fig. 2.2, following Khairoutdinov and Randall (2002), the SAM

LES budget terms for buoyancy and pressure are combined because they are both large com-

pared to other terms, yet are in close equilibrium because of the quasi-hydrostatic balance

of perturbation buoyancy and perturbation pressure gradient. The CLUBB buoyancy and

pressure terms have been combined in an analogous manner.

The SAM LES turbulent flux budgets show that the largest terms are pressure+buoyancy,

which usually acts as a net sink of turbulent flux, and turbulent production, which acts as a

source of turbulent flux (see Fig. 2.1(a) and Fig. 2.2(a)). Another major term in the budget

is the (turbulent) advection term. It has a mass-weighted vertical integral of zero. That is,
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Figure 2.1: Profiles of w′r′t budget terms for the RICO precipitating shallow cumulus case, time-averaged
over the last two hours of the simulation (minutes 4200 through 4320), for (a) SAM LES and (b) CLUBB
SCM. The profiles of overall time tendency are orange dashed-dotted lines, the advection terms are green
solid lines, and the production terms are purple dashed lines. The sum of the buoyancy and pressure terms
are the red dashed lines. The diffusion terms are gray dashed lines, the microphysics (precipitation) terms
are blue solid lines, and the residuals are brown dashed-dotted lines. SAM LES shows that the microphysics
term is modest, but not negligible. The CLUBB microphysics term has the same sign and approximate
magnitude as the SAM LES microphysics term.
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Figure 2.2: Profiles of w′θ′
l
budget terms for the RICO precipitating shallow cumulus case, time-averaged

over the last two hours of the simulation (minutes 4200 through 4320), for (a) SAM LES and (b) CLUBB
SCM. The profiles of overall time tendency are orange dashed-dotted lines, the advection terms are green
solid lines, and the production terms are purple dashed lines. The sum of the buoyancy and pressure terms
are the red dashed lines. The diffusion terms are gray dashed lines, the microphysics (precipitation) terms
are blue solid lines, and the residuals are brown dashed-dotted lines. SAM LES shows that the microphysics
term is more significant for w′θ′

l
than it was for w′r′

t
. The CLUBB microphysics term has the same sign and

approximate magnitude at peak as the SAM LES microphysics term.
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averaged in the vertical, it is neither a net source nor a net sink. Instead, it takes the excess

variability at some altitudes and transports it to regions with a deficit of variability. The

microphysics term is a sink of turbulent flux in the cloudy layer, a layer which spans the

altitude range from 500 m to 3000 m. The microphysics term is more significant for w′θ′l

than for w′r′t, but even for w′r′t, it is non-negligible.

CLUBB’s turbulent flux budgets usually agree qualitatively with those from LES

(Fig. 2.1(b) and Fig. 2.2(b)). The microphysics terms in both the w′r′t and w′θ′l budgets

have the same signs and close to the same peak magnitudes as their counterparts in the

LES. In CLUBB, the range of altitudes where the microphysics budget terms have significant

values is shifted lower than in SAM LES. This occurs because rr peaks at a lower altitude in

CLUBB than in SAM LES. CLUBB’s advection terms have approximately the correct shape,

although they are usually too small in magnitude. In CLUBB, the buoyancy+pressure and

turbulent production terms are dominant, as in SAM LES, but in CLUBB’s RICO simulation

their magnitudes are larger than in SAM LES.

The CLUBB anelastic predictive equations for the scalar variances r
′2
t and θ

′2
l , and the

covariance r′tθ
′
l, are given by

∂r
′2
t

∂t
= − 1

ρs

∂ρs w r
′2
t

∂z
− 1

ρs

∂ρs w′r
′2
t
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advection
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∂ rt
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︸ ︷︷ ︸
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Figure 2.3: Profiles of r
′2

t
budget terms for the RICO precipitating shallow cumulus case, time-averaged

over the last two hours of the simulation (minutes 4200 through 4320), for (a) SAM LES and (b) CLUBB
SCM. The profiles of overall time tendency are orange dashed-dotted lines, the advection terms are green
solid lines, and the production terms are purple dashed lines. The sum of the dissipation and diffusion
terms are gray dashed lines. The microphysics (precipitation) terms are blue solid lines, and the residuals
are brown dashed-dotted lines. SAM LES shows that the microphysics term is significant. The CLUBB
microphysics term is also significant, and has the same sign and approximate magnitude as the SAM LES
microphysics term.

As in the predictive equations for the fluxes, the higher-order turbulent advection terms,

w′r
′2
t , w

′θ
′2
l , and w′r′tθ

′
l, are closed using the PDF (Larson and Golaz 2005). The terms

denoted εrt rt , εθl θl , and εrt θl each contain a dissipation term (parameterized in CLUBB

as Newtonian damping) that reduces the magnitude of the turbulent field, as well as a

background numerical vertical diffusion term (Golaz et al. 2002a; André et al. 1978).

The SAM LES budgets for the horizontally averaged turbulent (co)variances contain

advective transport terms and turbulent (gradient) production terms, as well as microphysics

terms. In Fig. 2.3, Fig. 2.4, and Fig. 2.5, the diffusion and dissipation terms are combined

for both SAM and CLUBB. Both SAM and CLUBB contain vertical diffusion, with SAM’s

associated with TKE. However, SAM’s subgrid TKE is also used to diffuse fields horizontally.

Horizontal diffusion smooths out a model field across the grid level, reducing the variances

and covariances of model fields. In CLUBB, this effect is parameterized by the dissipation

(Newtonian damping) term.
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Figure 2.4: Profiles of θ
′2

l
budget terms for the RICO precipitating shallow cumulus case, time-averaged

over the last two hours of the simulation (minutes 4200 through 4320), for (a) SAM LES and (b) CLUBB
SCM. The profiles of overall time tendency are orange dashed-dotted lines, the advection terms are green
solid lines, and the production terms are purple dashed lines. The sum of the dissipation and diffusion terms
are gray dashed lines. The microphysics (precipitation) terms are blue solid lines, and the residuals are
brown dashed-dotted lines. SAM LES shows that the microphysics term is a dominant term in the budget.
The CLUBB microphysics term is also a dominant term, balancing the production term.
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Figure 2.5: Profiles of r′tθ
′

l
budget terms for the RICO precipitating shallow cumulus case, time-averaged

over the last two hours of the simulation (minutes 4200 through 4320), for (a) SAM LES and (b) CLUBB
SCM. The profiles of overall time tendency are orange dashed-dotted lines, the advection terms are green
solid lines, and the production terms are purple dashed lines. The sum of the dissipation and diffusion terms
are gray dashed lines. The microphysics (precipitation) terms are blue solid lines, and the residuals are
brown dashed-dotted lines. Again, SAM LES shows that the microphysics term is dominant. The CLUBB
microphysics term is also dominant, and balances the production term in the budget.
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The SAM LES budgets for r
′2
t , θ

′2
l , and r′tθ

′
l show that microphysics is a dominant term

in the upper half of the cloud layer. At those levels, microphysics is balanced by turbulent

production and turbulent advection (at higher altitudes) (Figs. 2.3(a), 2.4(a), and 2.5(a)).

Near cloud base, the budget is predominantly a balance of advection and production. The

dissipation/diffusion terms are smaller, but not negligible.

The time-averaged CLUBB SCM budgets found in Fig. 2.3(b), Fig. 2.4(b), and Fig. 2.5(b)

show that the CLUBB scalar (co)variance budgets are qualitatively similar to the LES bud-

gets. The microphysics term in the r
′2
t budget has the correct sign and approximate peak

magnitude, and the shape of the profile of the advection and production terms qualitatively

resemble the LES. CLUBB’s dissipation term is too large, but the microphysics terms in

the θ
′2
l and r′tθ

′
l budgets are dominant terms in the cloudy layer, just as in the LES. The

production terms largely balance the microphysics terms. The advection terms are too small

in magnitude relative to the other terms, but have approximately the right shape.

The figures show that the microphysics terms are sink terms in the cloudy layer, reducing

the variances and the magnitudes of the covariances, for all five of these turbulent fields.

Physically, this happens because cumulus clouds arise in the regions of the horizontal domain

that are moister than average. Additionally, cloudy regions are usually associated with

updrafts (where vertical velocity is greater than average) in a cumulus regime. Within cloud,

the moistest regions contain the greatest amount of cloud (liquid) water. The microphysics

processes of autoconversion and accretion occur only in cloud and at greater rates in regions

with a greater amount of cloud water. When autoconversion and accretion occur, rain water

is produced at the expense of cloud water. The local value of rc decreases, which decreases

rt and increases θl preferentially in the moistest portions of domain. As a result, scalar

variances r
′2
t and θ

′2
l are reduced, and the (negative) covariance r′tθ

′
l is reduced in magnitude.

Similarly, since moister regions of cloud are associated with stronger updrafts, the covariance

w′r′t is reduced by microphysics and the (negative) covariance w′θ′l is reduced in magnitude

by microphysics.
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In the region below cloud, a different microphysical process occurs: rain falls into clear

air below cloud and evaporates. Evaporation increases water vapor at the expense of rain

water and also cools the air. Hence, where evaporation occurs, rt is increased and θl is

decreased. If rain preferentially falls through regions of air that have already been cooled

by evaporation, then cool air is further cooled. In a partly rainy case such as RICO, rain

cools the rainshafts but not other portions of the domain, increasing variability in θl. In the

SAM LES of RICO, the increase of subcloud θ′2l by microphysics is significant, as shown in

Fig. 2.4(a).

Unfortunately, in the present simulation, CLUBB severely underestimates the positive,

subcloud microphysical source of θ
′2
l found in SAM LES. The underestimate is not caused

by inaccuracy in the form of the integral, but rather by inaccurate inputs to the integral.

The CLUBB results below cloud may be improved by a better method to divide the grid-box

means and variances of rt and θl into the PDF component means and standard deviations of

rt and θl. The development of this method is beyond the scope of this paper. It should be

noted that changing the way the PDF component means, standard deviations, correlations,

and/or relevant fractions are calculated does not change the general form of the integral

equations. A change would only be required if the distribution type, i.e. normal/lognormal,

were abandoned.

2.5 Conclusion

Microphysical sources of (co)variances of total water and liquid water potential temperature

are significant. A LES of the RICO shallow cumulus case shows that, in this cloud case,

microphysical sources are major terms in the budgets of variances and turbulent fluxes. In

particular, microphysical processes have three main effects. First, precipitation formation

and growth is the major sink of r
′2
t , θ

′2
l , and the magnitude of r′tθ

′
l in the upper half of the cloud

layer (see Figs. 2.3, 2.4, and 2.5). In particular, microphysical damping is greater than tur-
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bulent dissipation. The damping of scalar variances occurs because rain formation depletes

cloud water preferentially in the moistest part of the cloud. This depletion preferentially re-

duces the largest values of (liquid) cloud water, thereby reducing the horizontally-averaged

variance. Second, microphysics also damps the turbulent flux of scalars, w′r′t and w′θ′l (see

Figs. 2.1 and 2.2). The mechanism is the same: precipitation reduces cloud water in the

moistest part of the cloud, which also contains stronger updrafts. Although the effects of

microphysics on fluxes are smaller than those on variances, microphysics is still a major term

in the w′θ′l budget and ought not to be ignored. Third, evaporation of rain below cloud acts

as a source of θ
′2
l . The positive sign arises because evaporation of rain cools the cooler part

of the subcloud layer. This evaporation-induced generation of θ
′2
l is a key aspect of cold pool

formation. It leads to buoyant generation of w′θ′l below cloud base, which in turn leads to

new convection.

This paper demonstrates that all these microphysical sources and sinks can be calculated

analytically, given a sufficiently simple warm-rain microphysics scheme and a sufficiently

simple multivariate PDF. These analytic expressions have been implemented in the predictive

equations for variances and covariances involving rt and θl in the CLUBB parameterization.

When applied in an interactive, single-column simulation of the RICO case by CLUBB, the

microphysical terms agree qualitatively with LES in sign and in relative magnitude, except

for the underestimate of the microphysical source of θ
′2
l below cloud.

In the future, if the parameterized subcloud source of θ
′2
l can be increased, then analytic

integration of microphysical sources of scalar (co)variances may provide a useful step for

the parameterization of cold pools and cloud organization. It does not parameterize cold

pools and cloud organization directly, because it does not account for spatial arrangement

of cloud parcels. Furthermore, it does not even parameterize all effects of cold pools and

cloud organization. However, it does parameterize effects that are directly related to scalar

variability, and it parameterizes these effects in a mathematically rigorous way. Namely, it

defines the microphysical sources with precise, mathematical expressions, and it provides
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explicit formulas for the case of idealized, warm-rain microphysics.

In addition, analytic integration assists in the development of more general integration

methods, such as Monte Carlo integration (Larson and Schanen 2013). For instance, ana-

lytic integration allows a researcher to rapidly explore behaviors in idealized settings while

avoiding the contamination of sampling noise or other integration errors. More importantly,

analytic integration provides an alternative solution that can be used to test whether a

Monte Carlo integration code converges to the correct solution (Larson and Schanen 2013).

In past experience, we have found such testing to be crucial. Bugs are surprisingly easy to

introduce, and without comparison against an independent solution, results produced by a

Monte Carlo integrator will be subject to lingering doubts. On the other hand, once a Monte

Carlo integrator has been tested against an analytic solution, it can be used more confidently

with a comprehensive microphysics scheme that includes ice in order to simulate a variety

of shallow and deep cloud cases. In fact, this has already been done in Storer et al. (2015).

In this way, analytic integration of the microphysical effects on scalar variances and fluxes is

an enabling technology: it enables the verification of general subgrid integration methods.
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Appendix A: Saturation and the PDF

A.1 Expressing cloud water mixing ratio in terms of

the PDF

The CLUBB model predicts both mean values and subgrid moments (variances and covari-

ances) of relevant model fields, including total water mixing ratio, rt, and liquid water poten-

tial temperature, θl. The CLUBB model uses an assumed joint PDF to account for subgrid

variability in the relevant model fields. The PDF method requires that the model produce

information on the aforementioned variances and covariances. In turn, one of the uses of the

PDF is to provide information on subgrid saturation, including the amount of cloud water

and cloud fraction. In other words, the PDF reveals the subgrid character, including how

much of the air in the subgrid domain is saturated and how much is unsaturated.

The CLUBB model uses a simple saturation adjustment when determining cloudiness.

The saturated portion of the subgrid domain is considered to be cloudy, while the unsaturated

portion of the subgrid domain is considered to be clear air. In detail, the CLUBB model

considers any amount of rt in excess of the saturation mixing ratio with respect to liquid

water, rsw (T, p), to be cloud water. Cloud water mixing ratio, rc, is given by the equation:

rc = (rt − rsw (T, p))H (rt − rsw (T, p)) ; (A1)

where T is temperature, p is pressure, and H (x) is the Heaviside step function on the form

H (x) =







0 where x < 0

1 where x > 0.

This saturation adjustment is a good approximation to nature because cloud droplets form
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in saturated air or evaporate in subsaturated air very quickly.

Many quantities are found by integrating (over the domain of PDF) the product of a

function and the functional form of the PDF. Some of these quantities include mean cloud

water mixing ratio, cloud fraction, and microphysical process rates. In order to integrate over

the PDF when a variable that is not part of the PDF is found in the integrand, that variable

must be expressed in terms of variables that are part of the PDF. This is the case when the

integral involves cloud water mixing ratio. Cloud water mixing ratio must be expressed in

terms of variables that are part of the joint PDF. From Eq. (A1), cloud water mixing ratio

is dependent on rt and rsw (T, p). Since the temperature variable found in CLUBB’s PDF

and predictive equation set is θl, the appropriate variables to use to express rc are rt and θl.

As an example of integrating over rc, the mean of r α
c is found by evaluating the integral:

r α
c =

∞∫

−∞

∞∫

−∞

r α
c P (rt, θl) dθl drt

=
n∑

i=1

ξ(i)

∞∫

−∞

∞∫

−∞

r α
c PNN(i) (rt, θl) dθl drt;

(A2)

where P (rt, θl) is the overall PDF of rt and θl, ξ(i) is the mixture fraction (relative weight)

of the ith PDF component, n is the number of PDF components (for CLUBB, n = 2), and

PNN(i) (rt, θl) is the ith component PDF of rt and θl, which is a bivariate normal distribution.

In order to evaluate the above integral, rc must be written in terms of rt and θl.

The first step in deriving an expression for rc in terms of rt and θl is to evaluate rsw (T, p)

through a Taylor expansion around T = Tl in a manner similar to Sommeria and Deardorff

(1977), Lewellen and Yoh (1993), and Larson et al. (2001, 2005). Liquid water temperature,

Tl, is defined as

Tl = T − Lv

Cpd

rc; (A3)

where Lv is the latent heat of vaporization and Cpd is the specific heat of dry air at a constant
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pressure. Tl is related to θl according to

θl = Tl

(
p

p0

)− Rd
Cpd

; (A4)

where p0 is a reference pressure of 1.0 x 105 Pa. and Rd is the gas constant for dry air. Since

CLUBB considers pressure to be constant (in the horizontal) at any given vertical level,

rsw (T, p) varies only according to temperature, and the Taylor expansion is written as

rsw (T, p) = rsw (Tl, p) +
∂rsw
∂T

∣
∣
∣
∣
Tl,p

(T − Tl) +
1

2

∂2rsw
∂T 2

∣
∣
∣
∣
Tl,p

(T − Tl)
2 + . . . (A5)

Substituting Eq. (A3) into Eq. (A5) and truncating the Taylor series after the first-order

term, the equation becomes

rsw (T, p) = rsw (Tl, p) +
∂rsw
∂T

∣
∣
∣
∣
Tl,p

(
Lv

Cpd

rc

)

. (A6)

The value of
∂rsw
∂T

is derived through use of
desw
dT

, which is given by the Clausius-

Clapeyron equation, and where esw (T ) is the saturation vapor pressure with respect to

liquid water. The rate of change of rsw (T, p) with respect to temperature is

∂rsw
∂T

=
∂rsw
∂esw

desw
dT

=
Rd

Rv

Lvrsw (T, p)

Rd T 2

(

1 +
Rv

Rd

rsw (T, p)

)

; (A7)

where Rv is the gas constant for water vapor. Since
Rv

Rd

rsw (T, p) << 1, the equation is

approximated as

∂rsw
∂T

∣
∣
∣
∣
Tl,p

≈ Rd

Rv

Lvrsw (Tl, p)

Rd T 2
l

. (A8)
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Substituting Eq. (A8) and Eq. (A1) into Eq. (A6) results in the equation

rsw (T, p) = rsw (Tl, p) +
Rd

Rv

Lvrsw (Tl, p)

Rd T 2
l

Lv

Cpd

(rt − rsw (T, p))H (rt − rsw (T, p))

= rsw (Tl, p) + Λ (Tl) rsw (Tl, p) (rt − rsw (T, p))H (rt − rsw (T, p)) ;

(A9)

where

Λ (Tl) =
Rd

Rv

(
Lv

RdTl

)(
Lv

CpdTl

)

. (A10)

The next step in deriving an appropriate equation for rc in terms of rt and θl is to subtract

rsw (T, p) from rt. The new equation becomes

rt − rsw (T, p)

= rt − rsw (Tl, p)− Λ (Tl) rsw (Tl, p) (rt − rsw (T, p))H (rt − rsw (T, p)) ,

(A11)

which can be rewritten as

rt − rsw (T, p) =
rt − rsw (Tl, p)

1 + Λ (Tl) rsw (Tl, p)H (rt − rsw (T, p))
. (A12)

In a scenario where there is cloud water, rt > rsw (T, p), and Eq. (A12) can be written as

rt − rsw (T, p) =
rt − rsw (Tl, p)

1 + Λ (Tl) rsw (Tl, p)
. (A13)

For simplicity, the form of the equation found in Eq. (A13) will be used to represent rt −

rsw (T, p) whether the air is saturated or subsaturated. In the scenario whether the air

is subsaturated, Eq. (A13) is a close approximation to Eq. (A12). Eq. (A13) is used in

conjunction with Eq. (A1) and substituted into the integral in Eq. (A2) to form

r α
c =

n∑

i=1

ξ(i)

∞∫

−∞

∞∫

−∞

(
rt − rsw (Tl, p)

1 + Λ (Tl) rsw (Tl, p)
H

(
rt − rsw (Tl, p)

1 + Λ (Tl) rsw (Tl, p)

))α

× PNN(i) (rt, θl) dθl drt.

(A14)
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The representation of rc in Eq. (A14) still does not properly represent rc in terms of rt

and θl. In order to do, a multivariate Taylor Series expansion around the mean of rt in the

ith PDF component, µrt(i), and around the mean of Tl in the ith PDF component, µTl(i), is

utilized for Eq. (A13). This is written as

rt − rsw (T, p) =
µrt(i) − rsw

(
µTl(i), p

)

1 + Λ
(
µTl(i)

)
rsw
(
µTl(i), p

)

+
∂

∂rt

(
rt − rsw (Tl, p)

1 + Λ (Tl) rsw (Tl, p)

)∣
∣
∣
∣
µTl(i)

,µrt(i)

(

rt − µrt(i)

)

+
∂

∂Tl

(
rt − rsw (Tl, p)

1 + Λ (Tl) rsw (Tl, p)

)∣
∣
∣
∣
µTl(i)

,µrt(i)

(

Tl − µTl(i)

)

+ higher order terms . . .

(A15)

The Taylor Series in Eq. (A15) is truncated after the first-order terms. The equation can

finally be written in terms of θl through the use of Eq. (A4). The equation is now linear in

terms of rt and θl, and can be written more simply as

rt − rsw (T, p) =
µrt(i) − rsw

(
µTl(i), p

)

1 + Λ
(
µTl(i)

)
rsw
(
µTl(i), p

)

+ crt(i)
(
rt − µrt(i)

)
− cθl(i)

(
θl − µθl(i)

)
;

(A16)

where the constant coefficient with respect to rt is written as

crt(i) =
1

1 + Λ
(
µTl(i)

)
rsw
(
µTl(i), p

) ; (A17)

and since
(

2 Lv

µTl(i)Cpd

) ∣
∣µrt(i) − rsw

(
µTl(i), p

)∣
∣

1 + Λ
(
µTl(i)

)
µrt(i)

<< 1,

the constant coefficient with respect to the θl is written as

cθl(i) =

(
1 + Λ

(
µTl(i)

)
µrt(i)

)
Λ
(
µTl(i)

)
rsw
(
µTl(i), p

)

(
1 + Λ

(
µTl(i)

)
rsw
(
µTl(i), p

))2

Cpd

Lv

(
p

p0

)Rd/Cpd

, (A18)
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as found in Larson et al. (2005). Eq. (A16) is used in conjunction with Eq. (A1) and is

substituted into Eq. (A2), which replaces the integral found in Eq. (A14). The new equation

is

r α
c =

n∑

i=1

ξ(i)

∞∫

−∞

∞∫

−∞

(

µrt(i) − rsw
(
µTl(i), p

)

1 + Λ
(
µTl(i)

)
rsw
(
µTl(i), p

)

+ crt(i)
(
rt − µrt(i)

)
− cθl(i)

(
θl − µθl(i)

)

)α

×
(

H

(

µrt(i) − rsw
(
µTl(i), p

)

1 + Λ
(
µTl(i)

)
rsw
(
µTl(i), p

)

+ crt(i)
(
rt − µrt(i)

)
− cθl(i)

(
θl − µθl(i)

)

))α

× PNN(i) (rt, θl) dθl drt.

(A19)

Cloud water mixing ratio is now represented in terms of rt and θl, and Eq. (A19) is now

based entirely on variables found in the PDF.

A.2 PDF Transformation

It is advantageous to solve integrals involving rc by using a change of coordinates. The

multi-variate PDF for the ith component, which was originally written in terms of rt and

θl, undergoes translation, stretching, and rotation of the axes. The multiple integral in

Eq. (A19) is transformed linearly from rt and θl coordinates to new coordinates χ and η

(Mellor 1977).

The linear transformation is accomplished by setting the linear forms of rt and θl in

Eq. (A19) equivalent to a combination of linear forms of χ and η, such that

crt(i)
(
rt − µrt(i)

)
=

(η − η0) + (χ− χ0)

2
, and (A20)
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cθl(i)
(
θl − µθl(i)

)
=

(η − η0)− (χ− χ0)

2
. (A21)

Adding Eq. (A20) and Eq. (A21) results in

η − η0 = crt(i)
(
rt − µrt(i)

)
+ cθl(i)

(
θl − µθl(i)

)
,

while subtracting Eq. (A21) from Eq. (A20) produces

χ− χ0 = crt(i)
(
rt − µrt(i)

)
− cθl(i)

(
θl − µθl(i)

)
.

A substitution can be made into Eq. (A19) by setting

χ0 =
µrt(i) − rsw

(
µTl(i), p

)

1 + Λ
(
µTl(i)

)
rsw
(
µTl(i), p

) ,

and defining extended liquid water mixing ratio, χ, which has units of kg kg−1, as

χ ≡ µrt(i) − rsw
(
µTl(i), p

)

1 + Λ
(
µTl(i)

)
rsw
(
µTl(i), p

)

+ crt(i)
(
rt − µrt(i)

)
− cθl(i)

(
θl − µθl(i)

)
.

(A22)

Extended liquid water mixing ratio is a variable that is approximately equal to rc when

χ > 0, but is allowed to be negative by a factor. The ith component mean value of χ can

be found be integrating the product of Eq. (A22) and P(i) (rt, θl) over rt and θl, resulting in

µχ(i) = χ0 =
µrt(i) − rsw

(
µTl(i), p

)

1 + Λ
(
µTl(i)

)
rsw
(
µTl(i), p

) . (A23)

The variable η is orthogonal to χ. The ith component mean value of η can be found in

the same manner as the ith component mean value of χ, and simply has the value µη(i) = η0 .

As it turns out, this value is trivial, since it does not factor in any of the model equations.
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The value is simply set to

µη(i) = 0.

The linear transformations listed in Eq. (A20) and Eq. (A21) can now be restated in

terms of PDF parameters, such that

crt(i)
(
rt − µrt(i)

)
=

(
η − µη(i)

)
+
(
χ− µχ(i)

)

2
, and (A24)

cθl(i)
(
θl − µθl(i)

)
=

(
η − µη(i)

)
−
(
χ− µχ(i)

)

2
. (A25)

The relationships in Eq. (A24) and Eq. (A25) allow the calculation of more PDF parameters

by integrating over the product of a function and the PDF. The ith component variance of

χ is denoted σ2
χ(i), where

σ2
χ(i) = c2rt(i)σ

2
rt(i) − 2ρrt,θl(i)crt(i)σrt(i)cθl(i)σθl(i) + c2θl(i)σ

2
θl(i)

, (A26)

and the ith component variance of η is denoted σ2
η(i), where

σ2
η(i) = c2rt(i)σ

2
rt(i) + 2ρrt,θl(i)crt(i)σrt(i)cθl(i)σθl(i) + c2θl(i)σ

2
θl(i)

. (A27)

The correlations between χ, η, and other variables are found in the same manner. The ith

component correlation between χ and η is denoted ρχ,η(i), and is given by the equation

ρχ,η(i) =
c2rt(i)σ

2
rt(i)

− c2θl(i)σ
2
θl(i)

σχ(i)ση(i)

=
c2rt(i)σ

2
rt(i)

− c2θl(i)σ
2
θl(i)

√
(

c2rt(i)σ
2
rt(i)

+ c2θl(i)σ
2
θl(i)

)2

− 4ρ2rt,θl(i)c
2
rt(i)

σ2
rt(i)

c2θl(i)σ
2
θl(i)

.
(A28)

The ith component correlation between χ and a PDF-variable x is denoted ρχ,x(i) and given
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by the equation

ρχ,x(i) =
ρrt,x(i)crt(i)σrt(i) − ρθl,x(i)cθl(i)σθl(i)

σχ(i)

=
ρrt,x(i)crt(i)σrt(i) − ρθl,x(i)cθl(i)σθl(i)

√

c2rt(i)σ
2
rt(i)

− 2ρrt,θl(i)crt(i)σrt(i)cθl(i)σθl(i) + c2θl(i)σ
2
θl(i)

.
(A29)

Likewise, the ith component correlation between η and PDF-variable x is denoted ρη,x(i) and

is given by the equation

ρη,x(i) =
ρrt,x(i)crt(i)σrt(i) + ρθl,x(i)cθl(i)σθl(i)

ση(i)

=
ρrt,x(i)crt(i)σrt(i) + ρθl,x(i)cθl(i)σθl(i)

√

c2rt(i)σ
2
rt(i)

+ 2ρrt,θl(i)crt(i)σrt(i)cθl(i)σθl(i) + c2θl(i)σ
2
θl(i)

.
(A30)

The equations for the correlation between χ or η and x, given by Eq. (A29) and Eq. (A30)

respectively, are the same whether the individual marginal of x is distributed normally or

lognormally. Additionally, in the scenarios where x is distributed lognormally, the correlation

between χ and ln x, denoted ρ̃χ,x(i), and the correlation between η and ln x, denoted ρ̃η,x(i),

can be found by using the above equations and replacing ρrt,x(i) and ρθl,x(i) with ρ̃rt,x(i) and

ρ̃θl,x(i), respectively.

The multivariate PDF can now be rewritten to use χ and η instead of rt and θl by

substituting Eq. (A23) through Eq. (A30) into the multivariate PDF involving rt and θl.

The result for a PDF of m variables is

P(i) (rt, θl, . . . , xm) = 2crt(i)cθl(i)P(i) (χ, η, . . . , xm) . (A31)

Besides the transformation for rt and θl to χ and η, all other variables in the PDF remain

the same. The individual marginal for χ and η is a normal distribution for the ith PDF

component.

The change of coordinates from rt and θl to χ and η requires re-evaluation of the limits
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of integration and the integrand. The limits of integration were −∞ to ∞ for both rt and θl,

and they remain that way for both χ and η. Due to the change of variables, the integrand

needs to be multiplied by the absolute value of the Jacobian, |J (χ, η, . . . , xm)|, which is

given by

|J (χ, η, . . . , xm)| =
1

2crt(i)cθl(i)
. (A32)

The new form of Eq. (A19) is found by substitution using χ as found in Eq. (A22), and

by transforming the PDF and variables of integration according to Eq. (A31) and Eq. (A32).

This results in the equation

r α
c =

n∑

i=1

ξ(i)

∞∫

−∞

∞∫

−∞

χα (H (χ))α PNN(i) (χ, η) dη dχ. (A33)

Integrating over η reduces the PDF and the integral to univariate form, while the Heaviside

step function has the effect of changing the lower limit of integration for χ, such that

r α
c =

n∑

i=1

ξ(i)

∞∫

0

χαPN(i) (χ) dχ; (A34)

where PN(i) (χ) is the ith component PDF of χ, which is a normal distribution. The integral

is evaluated, resulting in the equation for r α
c :

r α
c =

n∑

i=1

ξ(i)
1√
2π

σα
χ(i) exp

{

−1

4

µ2
χ(i)

σ2
χ(i)

}

Γ (α + 1)D−(α+1)

(

−µχ(i)

σχ(i)

)

; (A35)

where Γ (x) is the gamma function and Dν (x) is the parabolic cylinder function of order ν.

When α = 1, the equation for mean cloud water mixing ratio, rc, is produced:

rc =
n∑

i=1

ξ(i)

(

1√
2π

σχ(i) exp

{

−1

2

µ2
χ(i)

σ2
χ(i)

}

+
1

2
µχ(i)erfc

(

− µχ(i)√
2 σχ(i)

))

; (A36)

where erfc (x) is the complimentary error function, which is given by erfc (x) = 1 − erf (x),
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where erf (x) is the error function.

A.3 Expressing supersaturation in terms of the PDF

Another variable that can be handled in a manner similar to rc is saturation ratio. Some

microphysical process equations, such as an equation for evaporation rate, involve supersat-

uration, S. Evaporation occurs where the air is subsaturated on the subgrid domain. In

order to integrate over an equation involving supersaturation, it must be expressed in terms

of variables that are part of the joint PDF, just like integrals involving cloud water mixing

ratio. Supersaturation needs to be written as a function of rt and θl. Supersaturation is

defined as a function of e and esw (T ) such that

S ≡ e

esw (T )
− 1. (A37)

Where the value of S is positive, the air is supersaturated, and where the value of S is

negative, the air is subsaturated. Water vapor mixing ratio, rv, can be written in terms of

e by

rv =
Rd

Rv

(
e

p− e

)

. (A38)

The equivalent equation for rsw (T, p) is

rsw (T, p) =
Rd

Rv

(
esw (T )

p− esw (T )

)

. (A39)

This can be rewritten in terms of water vapor mixing ratio, rv, and saturation mixing

ratio with respect to liquid, such that

S =

(
Rd

Rv

Rd

Rv
+ rv

)(

rv − rsw (T, p)

rsw (T, p)

)

. (A40)
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Since rv << Rd/Rv, S can be approximated as

S =
rv − rsw (T, p)

rsw (T, p)
. (A41)

Evaporation only occurs when S < 0, and the air is subsaturated. In this scenario rv = rt,

T = Tl, and θ = θl. The equation for S can be rewritten as

S =
rt − rsw (Tl, p)

rsw (Tl, p)
. (A42)

Multiplying both the numerator and the denominator by a factor results in the equation

S =

(
1 + Λ (Tl) rsw (Tl, p)

rsw (Tl, p)

)(
rt − rsw (Tl, p)

1 + Λ (Tl) rsw (Tl, p)

)

. (A43)

The equation for S in now terms of (rt − rsw (Tl, p)) / (1 + Λ (Tl) rsw (Tl, p)). This is used

to rewrite S in terms of χ within an integral. For example, the mean value of Sα (H (−S))α

is calculated by

Sα (H (−S))α =

∞∫

−∞

∞∫

−∞

Sα (H (−S))α P (rt, θl) drt dθl. (A44)

Supersaturation is approximated as

S ≈
(

1 + Λ
(
Tl

)
rsw
(
Tl, p

)

rsw
(
Tl, p

)

)(

rt − rsw (Tl, p)

1 + Λ (Tl) rsw (Tl, p)

)

. (A45)
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Substituting Eq. (A45) into the integral results in

Sα (H (−S))α

=

(

1 + Λ
(
Tl

)
rsw
(
Tl, p

)

rsw
(
Tl, p

)

)α

×
∞∫

−∞

∞∫

−∞

(

rt − rsw (Tl, p)

1 + Λ (Tl) rsw (Tl, p)

)α

×
(

H

(

−
(

1 + Λ
(
Tl

)
rsw
(
Tl, p

)

rsw
(
Tl, p

)

)(

rt − rsw (Tl, p)

1 + Λ (Tl) rsw (Tl, p)

)))α

× P (rt, θl) drt dθl.

(A46)

The integral in Eq. (A46) is very similar to the integral found in Eq. (A14). Ultimately,

the PDF is split into components and the PDF transformation changes coordinates from rt

and θl to χ and η. The relationship between S and χ within each PDF component is given

by

S =

(

1 + Λ
(
Tl

)
rsw
(
Tl, p

)

rsw
(
Tl, p

)

)

χ. (A47)

The resulting integral, after η is integrated out of the PDF, is reduced to

Sα (H (−S))α =

(

1 + Λ
(
Tl

)
rsw
(
Tl, p

)

rsw
(
Tl, p

)

)α n∑

i=1

ξ(i)

∞∫

−∞

χα (H (−χ))α PN(i) (χ) dχ, (A48)

and the solution is

Sα (H (−S))α =

(

1 + Λ
(
Tl

)
rsw
(
Tl, p

)

rsw
(
Tl, p

)

)α

×
n∑

i=1

ξ(i)
1√
2π

(
−σχ(i)

)α
exp

{

−1

4

µ2
χ(i)

σ2
χ(i)

}

Γ (α + 1)D−(α+1)

(
µχ(i)

σχ(i)

)

,

(A49)

where (−1)α must not be a complex number.
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Appendix B: Back-Solving PDF Component

Correlations

In Section 1.5, mean microphysics process rates were calculated either by using the analytical

integration of a local microphysics scheme or by using SILHS to sample the PDF in order to

drive a local microphysics scheme. Both methods require information on the PDF compo-

nent correlations. These correlations can be back-solved when given the overall (grid-box)

covariance of the necessary variables.

B.1 PDF component correlation of a binormal variate

and a hydrometeor

The PDF component correlation of a binormal variate (using rt as an example) and a hy-

drometeor can be back-solved when their covariance, r′th
′, is provided. Their covariance can

be written in terms of PDF parameters by integrating over the PDF, such that

r′th
′ =

∞∫

−∞

∞∫

0

(rt − rt)
(
h− h

)
P (rt, h) dh drt, (B1)

where P (rt, h) is the bivariate marginal PDF of rt and h. This equation can be rewritten as

r′th
′ =

n∑

i=1

ξ(i)

∞∫

−∞

∞∫

0

(rt − rt)
(
h− h

) (
fp(i)PNL(i) (rt, h)

+
(
1− fp(i)

)
PN(i) (rt) δ (h)

)
dh drt,

(B2)

where PNL(i) (rt, h) is the ith component bivariate PDF involving one normal variate and

one lognormal variate, and where PN(i) (rt) is a normal distribution in the ith component.
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This equation is integrated and reduced, resulting in

r′th
′ =

n∑

i=1

ξ(i)fp(i)
(
µrt(i) − rt + ρ̃rt,h(i)σrt(i)σ̃h(i)

)
µh(i), (B3)

where µrt(i) and σrt(i) are the mean and standard deviation, respectively, of rt in the ith PDF

component.

The variable that needs to be solved for is ρ̃rt,h(i), which is the in-precipitation correlation

of rt and lnh in the ith PDF component. This is the normal-space correlation that is required

for use in the microphysics. It is related to the ith component in-precipitation correlation of

rt and h, ρrt,h(i), by

ρrt,h(i) = ρ̃rt,h(i)σ̃h(i)

µh(i)

σh(i)

. (B4)

The covariance r′th
′ given by Eq. (B3) can be written in terms of CLUBB’s two-component

PDF (n = 2) as

r′th
′ = ξ(1)fp(1)

(
µrt(1) − rt + ρ̃rt,h(1)σrt(1)σ̃h(1)

)
µh(1)

+ ξ(2)fp(2)
(
µrt(2) − rt + ρ̃rt,h(2)σrt(2)σ̃h(2)

)
µh(2).

(B5)

The overall covariance is provided, so the component correlation can be back-solved by

setting ρ̃rt,h(1) = ρ̃rt,h(2) (= ρ̃rt,h). The result is

ρ̃rt,h =
r′th

′ − ξ(1)fp(1)
(
µrt(1) − rt

)
µh(1) − ξ(2)fp(2)

(
µrt(2) − rt

)
µh(2)

ξ(1)fp(1)σrt(1)σ̃h(1)µh(1) + ξ(2)fp(2)σrt(2)σ̃h(2)µh(2)

, (B6)

where −1 ≤ ρ̃rt,h ≤ 1.

The equation for r′th
′ given in Eq. (B5) is for a fully-varying PDF in both components

(σrt(i) > 0 and σh(i) > 0). A variable may have a constant value in a PDF sub-component.

When this happens, the PDF of the constant variable is a delta function at the ith sub-

component mean. When σrt(i) > 0 and σh(i) = 0, rt varies in ith component but h is

constant within precipitation. The PDF PNL(i) (rt, h) becomes PN(i) (rt) δ
(
h− µh(i)

)
. There
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also may be situations where σrt(i) = 0 but σh(i) > 0, or even where σrt(i) = 0 and σh(i) = 0.

When σrt(1)σh(1) > 0 but σrt(2)σh(2) = 0, the equation for r′th
′ is written as

r′th
′ = ξ(1)fp(1)

(
µrt(1) − rt + ρ̃rt,h(1)σrt(1)σ̃h(1)

)
µh(1) + ξ(2)fp(2)

(
µrt(2) − rt

)
µh(2). (B7)

The above equation can be rewritten to solve for ρ̃rt,h(1), such that

ρ̃rt,h(1) =
r′th

′ − ξ(1)fp(1)
(
µrt(1) − rt

)
µh(1) − ξ(2)fp(2)

(
µrt(2) − rt

)
µh(2)

ξ(1)fp(1)σrt(1)σ̃h(1)µh(1)

, (B8)

while ρ̃rt,h(2) is undefined and irrelevant to the microphysics. When σrt(1)σh(1) = 0 but

σrt(2)σh(2) > 0, the equation for r′th
′ is analogous to Eq. (B7). An equation analogous to

Eq. (B8) solves for ρ̃rt,h(2), while ρ̃rt,h(1) is undefined. In a scenario where σrt(1)σh(1) = 0 and

σrt(2)σh(2) = 0, the equation for r′th
′ is

r′th
′ = ξ(1)fp(1)

(
µrt(1) − rt

)
µh(1) + ξ(2)fp(2)

(
µrt(2) − rt

)
µh(2). (B9)

When this is the case, both ρ̃rt,h(1) and ρ̃rt,h(2) are undefined.

This method of back-solving for the component correlations was used to calculate the

PDF component correlations of rt and rr, rt and Nr, θl and rr, and θl and Nr. These were

the only correlations of this type that were necessary to produce the microphysics process

rates used in the comparison.

B.2 PDF component correlation of two hydrometeors

The PDF component correlation of two hydrometeors, hx and hy, can be back-solved when

their covariance, h′
xh

′
y, is provided. Their covariance can be written in terms of PDF param-
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eters by integrating over the PDF, such that

h′
xh

′
y =

∞∫

0

∞∫

0

(
hx − hx

) (
hy − hy

)
P (hx, hy) dhy dhx, (B10)

where P (hx, hy) is the bivariate marginal PDF of hx and hy. This equation can be rewritten

as

h′
xh

′
y =

n∑

i=1

ξ(i)

∞∫

0

∞∫

0

(
hx − hx

) (
hx − hy

) (
fp(i)PLL(i) (hx, hy)

+
(
1− fp(i)

)
δ (hx) δ (hy)

)
dhy dhx,

(B11)

where PLL(i) (hx, hy) is the ith component bivariate PDF involving two lognormal variates.

This equation is integrated and reduced, resulting in

h′
xh

′
y = −hx hy +

n∑

i=1

ξ(i)fp(i)
(
µhx(i)µhy(i) + ρhx,hy(i)σhx(i)σhy(i)

)
, (B12)

where ρhx,hy(i) is the in-precipitation correlation of hx and hy in the ith PDF component.

When the PDF is fully-varying in both components (σhx(i) > 0 and σhy(i) > 0), the covariance

h′
xh

′
y given by Eq. (B12) can be written in terms of CLUBB’s two-component PDF as

h′
xh

′
y = ξ(1)fp(1)

(
µhx(1)µhy(1) + ρhx,hy(1)σhx(1)σhy(1)

)

+ ξ(2)fp(2)
(
µhx(2)µhy(2) + ρhx,hy(2)σhx(2)σhy(2)

)
− hx hy.

(B13)

The overall covariance is provided, so the component correlation is solved by setting

ρhx,hy(1) = ρhx,hy(2)

(
= ρhx,hy

)
. The result is

ρhx,hy
=

h′
xh

′
y + hx hy − ξ(1)fp(1)µhx(1)µhy(1) − ξ(2)fp(2)µhx(2)µhy(2)

ξ(1)fp(1)σhx(1)σhy(1) + ξ(2)fp(2)σhx(2)σhy(2)

. (B14)
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When σhx(1)σhy(1) > 0 but σhx(2)σhy(2) = 0, the equation for h′
xh

′
y is written as

h′
xh

′
y = ξ(1)fp(1)

(
µhx(1)µhy(1) + ρhx,hy(1)σhx(1)σhy(1)

)
+ ξ(2)fp(2)µhx(2)µhy(2) − hx hy. (B15)

The above equation can be rewritten to solve for ρhx,hy(1), such that

ρhx,hy(1) =
h′
xh

′
y + hx hy − ξ(1)fp(1)µhx(1)µhy(1) − ξ(2)fp(2)µhx(2)µhy(2)

ξ(1)fp(1)σhx(1)σhy(1)

, (B16)

while ρhx,hy(2) is undefined and irrelevant to the microphysics. When σhx(1)σhy(1) = 0 but

σhx(2)σhy(2) > 0, the equation for h′
xh

′
y is analogous to Eq. (B15). An equation analogous to

Eq. (B16) solves for ρhx,hy(2), while ρhx,hy(1) is undefined. In a scenario where σhx(1)σhy(1) = 0

and σhx(2)σhy(2) = 0, the equation for h′
xh

′
y is

h′
xh

′
y = ξ(1)fp(1)µhx(1)µhy(1) + ξ(2)fp(2)µhx(2)µhy(2) − hx hy. (B17)

When this is the case, both ρhx,hy(1) and ρhx,hy(2) are undefined.

The variable that needs to be solved for is ρ̃hx,hy(i), which is the in-precipitation correlation

of lnhx and lnhy in the ith PDF component. This is the normal-space correlation that is

required for use in the microphysics, and it is given by

ρ̃hx,hy(i) =

ln

(

1 + ρhx,hy(i)

σhx(i)σhy(i)

µhx(i)µhy(i)

)

σ̃hx(i)σ̃hy(i)

, (B18)

where −1 ≤ ρ̃hx,hy(i) ≤ 1.

This method of back-solving for the component correlations was used to calculate the

PDF component correlation of rr and Nr. This was the only correlation of this type that

was necessary to produce the microphysics process rates used in the comparison.
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Appendix C: Modified Analytically Upscaled

Microphysics Equations

The analytically upscaled (to grid-box size) form of the Khairoutdinov and Kogan (2000,

hereafter KK) microphysics equations were first derived in Larson and Griffin (2013). KK

is a warm scheme that predicts rr and Nr. It contains equations for the warm process

rates of accretion, autoconversion, and evaporation, as well rain drop mean volume radius,

that are written as power laws of two-or-three variables. The modifications to the PDF in

Section 1.2 require modifications to the analytically upscaled microphysics equations. The

upscaled microphysics calculates the grid-box mean values of microphysics process rates by

integrating over the product of the microphysics function and the PDF.

C.1 Accretion rate

The KK accretion rate of rr is of the form

∂rr
∂t

∣
∣
∣
∣
accr

= Caccr r
α
c r

β
r , (C1)

where Caccr = 67, α = 1.15, and β = 1.15. Upscaling is accomplished by integrating over

Eq. (C1), and in the process, using Eq. (1.3) as a substitution. This produces the following

equation for mean accretion rate

∂rr
∂t

∣
∣
∣
∣
accr

= Caccr

n∑

i=1

ξ(i)ACCR(i)

= Caccr

n∑

i=1

ξ(i)

∞∫

−∞

∞∫

0

χα (H (χ))α rβrP(i) (χ, rr) drr dχ,

(C2)

where P(i) (χ, rr) is the bivariate marginal PDF of χ and rr in the ith PDF component.
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Since α > 0, ACCR(i) can be rewritten

ACCR(i) =

∞∫

0

∞∫

0

χαrβr
(
fp(i)PNL(i) (χ, rr) +

(
1− fp(i)

)
PN(i) (χ) δ (rr)

)
drr dχ, (C3)

where PNL(i) (χ, rr) is the ith component bivariate PDF involving one normal variate and one

lognormal variate, and where PN(i) (χ) is a normal distribution in the ith PDF component.

This equation is integrated, solving for ACCR(i),

ACCR(i) = fp(i)
1√
2π

σα
χ(i) exp

{

µ̃rr(i)β +
1

2
σ̃2
rr(i)β

2 − 1

4
ς2
}

Γ (α + 1)D−(α+1) (−ς) , (C4)

where Dν (x) is the parabolic cylinder function of order ν, and where ς is given by

ς =
µχ(i)

σχ(i)

+ ρ̃χ,rr(i)σ̃rr(i)β.

The in-precipitation mean of ln rr in the ith PDF component is µ̃rr(i), and it is given by

µ̃rr(i) = ln



µrr(i)

(

1 +
σ2
rr(i)

µ2
rr(i)

)− 1
2



 , (C5)

where µrr(i) and σrr(i) are the in-precipitation mean and in-precipitation standard deviation,

respectively, of rr in the ith PDF component. The in-precipitation standard deviation of

ln rr in the ith PDF component is σ̃rr(i), and it is given by

σ̃rr(i) =

√
√
√
√ln

(

1 +
σ2
rr(i)

µ2
rr(i)

)

. (C6)

The in-precipitation correlation of χ and ln rr in the ith PDF component is ρ̃χ,rr(i), and it is

given by

ρ̃χ,rr(i) =
ρχ,rr(i)
σ̃rr(i)

σrr(i)

µrr(i)

, (C7)
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where ρχ,rr(i) is the in-precipitation correlation of χ and rr in the ith PDF component.

The evaluated integral for ACCR(i) given in Eq. (C4) is for a fully-varying PDF in the ith

component (σχ(i) > 0 and σrr(i) > 0). There are times when a variable may have a constant

value in a PDF sub-component. When this happens, the PDF of the constant variable is a

delta function at the ith PDF sub-component mean. When σχ(i) > 0 and σrr(i) = 0, χ varies

in ith component but rr is constant within precipitation. The PDF PNL(i) (χ, rr) becomes

PN(i) (χ) δ
(
rr − µrr(i)

)
. The integral is solved and the equation for ACCR(i) becomes

ACCR(i) = fp(i)
1√
2π

σα
χ(i)µ

β
rr(i)

exp

{

−1

4

µ2
χ(i)

σ2
χ(i)

}

Γ (α + 1)D−(α+1)

(

−µχ(i)

σχ(i)

)

. (C8)

For the remaining forms of ACCR(i), σχ(i) = 0. When µχ(i) ≥ 0, the air is entirely

saturated and accretion occurs. In this scenario, when σrr(i) > 0,

ACCR(i) = fp(i)µ
α
χ(i) exp

{

µ̃rr(i)β +
1

2
σ̃2
rr(i)β

2

}

, (C9)

and when σrr(i) = 0,

ACCR(i) = fp(i)µ
α
χ(i)µ

β
rr(i)

. (C10)

Otherwise, when σχ(i) = 0 and µχ(i) < 0, the air is entirely subsaturated, accretion does not

occur, and ACCR(i) = 0.

C.2 Autoconversion rate

The KK autoconversion rate of rr is of the form

∂rr
∂t

∣
∣
∣
∣
auto

= Cauto r
α
c N

β
c , (C11)

where constant Cauto = 1350 (10−6ρd)
β
, and where ρd is the density of dry air. Additionally,

α = 2.47 and β = −1.79. In the manner similar to accretion rate, upscaling is accom-
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plished by integrating over Eq. (C11), and in the process, using Eq. (1.3) and Eq. (1.4) as

substitutions. This produces the following equation for mean autoconversion rate

∂rr
∂t

∣
∣
∣
∣
auto

= Cauto

n∑

i=1

ξ(i)AUTO(i)

= Cauto

n∑

i=1

ξ(i)

∞∫

−∞

∞∫

0

χαNβ
cn (H (χ))α+β P(i) (χ,Ncn) dNcn dχ.

(C12)

Since α + β > 0, AUTO(i) can be rewritten

AUTO(i) =

∞∫

0

∞∫

0

χαNβ
cn PNL(i) (χ,Ncn) dNcn dχ. (C13)

This equation is integrated, solving for AUTO(i) in the scenario of a fully-varying PDF

(σχ(i) > 0 and σNcn(i) > 0),

AUTO(i) =
1√
2π

σα
χ(i) exp

{

µ̃Ncn(i)β +
1

2
σ̃2
Ncn(i)β

2 − 1

4
ς2
}

Γ (α + 1)D−(α+1) (−ς) , (C14)

where ς is given by

ς =
µχ(i)

σχ(i)

+ ρ̃χ,Ncn(i)σ̃Ncn(i)β.

The values of µ̃Ncn(i), σ̃Ncn(i), and ρ̃χ,Ncn(i) are calculated analogously to the same variables

for rr in Eq. (C5), Eq. (C6), and Eq. (C7), respectively.

There are many case specifications that require a constant cloud droplet concentration

within cloud, Nc 0. The RICO, DYCOMS-II RF02, and LBA cases described in Section 1.4

all use a constant cloud droplet concentration within cloud. In CLUBB’s PDF, this is easily

accomplished by setting N ′ 2
cn = 0, which causes σNcn(1) = 0 and σNcn(2) = 0. Additionally,

µNcn(1) = µNcn(2) = Ncn = Nc 0 (where Nc 0 has units of kg−1) in this scenario.

When σχ(i) > 0 and σNcn(i) = 0, χ varies in ith component but Ncn is constant. The
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integral is solved and the equation for AUTO(i) becomes

AUTO(i) =
1√
2π

σα
χ(i)µ

β
Ncn(i)

exp

{

−1

4

µ2
χ(i)

σ2
χ(i)

}

Γ (α + 1)D−(α+1)

(

−µχ(i)

σχ(i)

)

. (C15)

For the remaining forms of AUTO(i), σχ(i) = 0. When µχ(i) ≥ 0, the air is entirely

saturated and autoconversion occurs. In this scenario, when σNcn(i) > 0,

AUTO(i) = µα
χ(i) exp

{

µ̃Ncn(i)β +
1

2
σ̃2
Ncn(i)β

2

}

, (C16)

and when σNcn(i) = 0,

AUTO(i) = µα
χ(i)µ

β
Ncn(i)

. (C17)

Otherwise, when σχ(i) = 0 and µχ(i) < 0, the air is entirely subsaturated, autoconversion

does not occur, and AUTO(i) = 0.

The mean KK autoconversion rate ofNr is found by dividing the mean KK autoconversion

rate of rr by a constant. The constant is (4πρl/3) r
3
0, where r0 is the assumed initial size of

rain drops and is set to its recommended value of 25× 10−6 m.

C.3 Evaporation rate

The KK equation set contains an equation for condensation or evaporation of rr. CLUBB

treats all liquid water in excess of saturation as cloud water and does not allow rain water

to increase by condensational growth. The KK equation for evaporation of rr is of the form

∂rr
∂t

∣
∣
∣
∣
evap

= 3 cevap∗G (T, p)

(
4

3
πρl

)γ

(S H (−S))α rβrN
γ
r , (C18)

where α = 1, β = 1/3, and γ = 1 − β = 2/3, and where T is temperature, p is pressure,

ρl is the density of liquid water, and the function G (T, p) is the coefficient in the drop

radius growth equation (Rogers and Yau 1989, Eq. 7.17). The constant cevap∗ is the ratio
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of raindrop mean geometric radius to raindrop mean volume radius, and is set by KK to a

value of 0.86. Supersaturation, S, is positive when the air is saturated and negative when

the air is subsaturated, and S + 1 is the ratio of water vapor pressure to saturation vapor

pressure with respect to liquid water.

Upscaling is accomplished by integrating over Eq. (C18). This requires a substitution

that relates S to χ (see Eq. (A47)). Additionally, G (T, p) is approximated as G
(
Tl, p

)
,

where Tl is liquid water temperature and is given by

Tl = θl

(
p

p0

) Rd
Cpd

, (C19)

and where Rd is the gas constant for dry air, Cpd is the specific heat of dry air at constant

pressure, and p0 is a reference pressure of 1 × 105 Pa. This is a good approximation be-

cause T = Tl when the air is subsaturated and G (T, p) is slowly-varying with regards to

temperature. The resulting G
(
Tl, p

)
is a constant and can be pulled outside the integral.

This produces the following equation for mean evaporation rate

∂rr
∂t

∣
∣
∣
∣
evap

= Cevap

n∑

i=1

ξ(i)EVAP(i)

= Cevap

n∑

i=1

ξ(i)

∞∫

−∞

∞∫

0

∞∫

0

χα (H (−χ))α rβrN
γ
r P(i) (χ, rr, Nr) dNr drr dχ,

(C20)

where P(i) (χ, rr, Nr) is the trivariate marginal PDF of χ, rr, Nr in the ith PDF component.

The constant Cevap is given by

Cevap = 3 cevap∗G
(
Tl, p

)
(
4

3
πρl

)γ
(

1 + Λ
(
Tl

)
rsw
(
Tl, p

)

rsw
(
Tl, p

)

)α

, (C21)

where rsw
(
Tl, p

)
is the saturation mixing ratio with respect to liquid water. Additionally,

Λ
(
Tl

)
=

Rd

Rv

(
Lv

RdTl

)(
Lv

CpdTl

)

, (C22)
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where Rv is the gas constant for water vapor and Lv is the latent heat of vaporization.

Since α > 0, EVAP(i) can be rewritten

EVAP(i) =

0∫

−∞

∞∫

0

∞∫

0

χαrβrN
γ
r

(
fp(i)PNLL(i) (χ, rr, Nr)

+
(
1− fp(i)

)
PN(i) (χ) δ (rr) δ (Nr)

)
dNr drr dχ,

(C23)

where PNLL(i) (χ, rr, Nr) is the ith component trivariate PDF involving one normal variate

and two lognormal variates. When the PDF is fully-varying in the ith PDF component

(σχ(i) > 0, σrr(i) > 0, and σNr(i) > 0), the integrated equation for EVAP(i) is

EVAP(i) = fp(i)
1√
2π

(
−σχ(i)

)α
exp

{
µ̃rr(i)β + µ̃Nr(i)γ

}

× exp

{
1

2

(
1− ρ̃ 2

χ,rr(i)

)
σ̃2
rr(i)β

2 +
1

2

(
1− ρ̃ 2

χ,Nr(i)

)
σ̃2
Nr(i)γ

2

+
(
ρ̃rr,Nr(i) − ρ̃χ,rr(i)ρ̃χ,Nr(i)

)
σ̃rr(i)βσ̃Nr(i)γ

}

× exp

{

1

4
ς2 − µχ(i)

σχ(i)

ς +
1

2

µ2
χ(i)

σ2
χ(i)

}

Γ (α + 1)D−(α+1) (ς) ,

(C24)

where

ς =
µχ(i)

σχ(i)

+ ρ̃χ,rr(i)σ̃rr(i)β + ρ̃χ,Nr(i)σ̃Nr(i)γ.

The values of µ̃Nr(i), σ̃Nr(i), and ρ̃χ,Nr(i) are calculated analogously to the same variables

for rr in Eq. (C5), Eq. (C6), and Eq. (C7), respectively. Additionally, the in-precipitation

correlation of ln rr and lnNr in the ith PDF component is ρ̃rr,Nr(i), and it is given by

ρ̃rr,Nr(i) =

ln

(

1 + ρrr,Nr(i)

σrr(i)σNr(i)

µrr(i)µNr(i)

)

σ̃rr(i)σ̃Nr(i)

, (C25)

where ρrr,Nr(i) is the correlation of rr and Nr in the ith PDF component.

Just as with accretion and autoconversion, when one of the variables is constant in the
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ith PDF sub-component, the equation simplifies. In the scenario when σχ(i) > 0, σrr(i) = 0,

and σNr(i) > 0,

EVAP(i) = fp(i)
1√
2π

(
−σχ(i)

)α
µβ
rr(i)

× exp

{

µ̃Nr(i)γ +
1

2
σ̃2
Nr(i)γ

2 − 1

4
ς2
}

Γ (α + 1)D−(α+1) (ς) ,

(C26)

where

ς =
µχ(i)

σχ(i)

+ ρ̃χ,Nr(i)σ̃Nr(i)γ;

when σχ(i) > 0, σrr(i) > 0, and σNr(i) = 0,

EVAP(i) = fp(i)
1√
2π

(
−σχ(i)

)α
µγ
Nr(i)

× exp

{

µ̃rr(i)β +
1

2
σ̃2
rr(i)β

2 − 1

4
ς2
}

Γ (α + 1)D−(α+1) (ς) ,

(C27)

where

ς =
µχ(i)

σχ(i)

+ ρ̃χ,rr(i)σ̃rr(i)β;

and when σχ(i) > 0, σrr(i) = 0, and σNr(i) = 0,

EVAP(i) = fp(i)
1√
2π

(
−σχ(i)

)α
µβ
rr(i)

µγ
Nr(i)

× exp

{

−1

4

µ2
χ(i)

σ2
χ(i)

}

Γ (α + 1)D−(α+1)

(
µχ(i)

σχ(i)

)

.

(C28)

For the remaining forms of EVAP(i), σχ(i) = 0. When µχ(i) ≤ 0, the air is entirely

subsaturated and evaporation occurs. In this scenario, when σrr(i) > 0 and σNr(i) > 0,

EVAP(i) = fp(i)µ
α
χ(i) exp

{

µ̃rr(i)β + µ̃Nr(i)γ +
1

2
σ̃2
rr(i)β

2

+
1

2
σ̃2
Nr(i)γ

2 + ρ̃rr,Nr(i)σ̃rr(i)βσ̃Nr(i)γ

}

;

(C29)
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when σrr(i) = 0 and σNr(i) > 0,

EVAP(i) = fp(i)µ
α
χ(i)µ

β
rr(i)

exp

{

µ̃Nr(i)γ +
1

2
σ̃2
Nr(i)γ

2

}

; (C30)

when σrr(i) > 0 and σNr(i) = 0,

EVAP(i) = fp(i)µ
α
χ(i)µ

γ
Nr(i)

exp

{

µ̃rr(i)β +
1

2
σ̃2
rr(i)β

2

}

; (C31)

and when σrr(i) = 0 and σNr(i) = 0,

EVAP(i) = fp(i)µ
α
χ(i)µ

β
rr(i)

µγ
Nr(i)

. (C32)

Otherwise, when σχ(i) = 0 and µχ(i) > 0, the air is entirely saturated, evaporation does not

occur, and EVAP(i) = 0.

The KK evaporation rate of Nr is related to the evaporation rate of rr by

∆Nr|evap
Nr

=

(
∆rr|evap

rr

)ν∗

, (C33)

where ∆Nr|evap is the change in Nr due to evaporation, ∆rr|evap is the change in rr due to

evaporation, and ν∗ is a tunable parameter in KK that is set to its recommended value of 1.

CLUBB does not handle microphysics process rates in a sequential manner, but rather in a

parallel manner. However, the microphysics process rates are explicit terms in the predictive

equation set, so the change in a hydrometeor due to a microphysics process is related to the

rate of change by

∆rr|evap =
∂rr
∂t

∣
∣
∣
∣
evap

∆t and ∆Nr|evap =
∂Nr

∂t

∣
∣
∣
∣
evap

∆t, (C34)

where ∆t is the duration of one model timestep. Substituting Eq. (C34) into Eq. (C33) and
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solving for the rate of change of Nr due to evaporation results in

∂Nr

∂t

∣
∣
∣
∣
evap

= (∆t)ν∗−1 Nr

r ν∗
r

(

∂rr
∂t

∣
∣
∣
∣
evap

)ν∗

. (C35)

The mean Nr evaporation rate is calculated in the same way as the mean rr evaporation rate

with α replaced by αν∗, β replaced by (β − 1) ν∗, and γ replaced by γν∗ + 1. Additionally,

the constant Cevap is taken to the ν∗ power and the result is multiplied by (∆t)ν∗−1. When

ν∗ is set to its recommended value of 1, the mean Nr evaporation rate is more simply solved

the same way as the mean rr evaporation rate with β replaced by β − 1 and γ replaced by

γ + 1.

C.4 Mean volume radius of rain drops

The KK mean volume radius of rain drops (in meters), Rvr, is of the form

Rvr = Cmvrr r
α
r N

β
r , (C36)

where Cmvrr = (4πρl/3)
β, α = 1/3, and β = −α = −1/3. Upscaling is accomplished by

integrating over Eq. (C36), producing the following equation for mean volume radius

Rvr = Cmvrr

n∑

i=1

ξ(i)MVRR(i)

= Cmvrr

n∑

i=1

ξ(i)

∞∫

0

∞∫

0

rαrN
β
r P(i) (rr, Nr) dNr drr,

(C37)

where P(i) (rr, Nr) is the bivariate marginal PDF of rr and Nr in the ith PDF component.

Additionally, MVRR(i) can be rewritten

MVRR(i) =

∞∫

0

∞∫

0

rαrN
β
r

(
fp(i)PLL(i) (rr, Nr) +

(
1− fp(i)

)
δ (rr) δ (Nr)

)
dNr drr, (C38)
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where PLL(i) (rr, Nr) is the ith component bivariate PDF involving two lognormal variates.

When the PDF is fully-varying in the ith PDF component (σrr(i) > 0 and σNr(i) > 0), the

integrated equation for MVRR(i) is

MVRR(i) =fp(i) exp

{

µ̃rr(i)α + µ̃Nr(i)β +
1

2
σ̃2
rr(i)α

2

+
1

2
σ̃2
Nr(i)β

2 + ρ̃rr,Nr(i)σ̃rr(i)ασ̃Nr(i)β

}

.

(C39)

In the scenario when σrr(i) = 0 and σNr(i) > 0,

MVRR(i) = fp(i)µ
α
rr(i) exp

{

µ̃Nr(i)β +
1

2
σ̃2
Nr(i)β

2

}

, (C40)

when σrr(i) > 0 and σNr(i) = 0,

MVRR(i) = fp(i)µ
β
Nr(i)

exp

{

µ̃rr(i)α +
1

2
σ̃2
rr(i)α

2

}

, (C41)

and when σrr(i) = 0 and σNr(i) = 0,

MVRR(i) = fp(i)µ
α
rr(i)µ

β
Nr(i)

. (C42)

The upscaled mean volume radius is used to calculate mean sedimentation velocity of rr

and Nr. The mean sedimentation velocity of rr is Vrr = min
(
−0.012

(
106 Rvr

)
+ 0.2, 0

)
, and

the mean sedimentation velocity of Nr is VNr
= min

(
−0.007

(
106 Rvr

)
+ 0.1, 0

)
.
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Appendix D: The Relationship Between Nc and Ncn

The relationship between Nc and Ncn is given in Eq. (1.4) and described in Section 1.2. The

overall (grid-box) mean value of cloud droplet concentration, Nc, is calculated by integrating

over the product of Eq. (1.4) and the PDF of χ and Ncn, such that

Nc =

∞∫

−∞

∞∫

0

NcnH (χ)
n∑

i=1

ξ(i)P(i) (χ,Ncn) dNcn dχ, (D1)

where P(i) (χ,Ncn) is the bivariate marginal PDF of χ and Ncn in the ith PDF component.

This equation can be rewritten as

Nc =
n∑

i=1

ξ(i)

∞∫

0

∞∫

0

NcnPNL(i) (χ,Ncn) dNcn dχ

=
n∑

i=1

ξ(i) NC(i),

(D2)

where PNL(i) (χ,Ncn) is the ith component bivariate PDF involving one normal variate and

one lognormal variate. This equation is integrated and reduced, resulting in

NC(i) =
1

2
µNcn(i) erfc

(

− 1√
2

(
µχ(i)

σχ(i)

+ ρ̃χ,Ncn(i)σ̃Ncn(i)

))

, (D3)

where erfc (x) is the complimentary error function, and where µχ(i) and σχ(i) are the mean

and standard deviation, respectively, of χ in the ith PDF component. Additionally, σ̃Ncn(i)

is the standard deviation of lnNcn in the ith PDF component and ρ̃χ,Ncn(i) is the correlation

of χ and lnNcn in the ith PDF component.

The evaluated integral for NC(i) given in Eq. (D3) is for a fully-varying PDF in the ith

component (σχ(i) > 0 and σNcn(i) > 0). There are times when a variable may have a constant

value in a PDF component. When this happens, the PDF of the constant variable is a delta

100



function at the ith PDF component mean. When σχ(i) > 0 and σNcn(i) = 0, χ varies in ith

component but Ncn is constant. The PDF PNL(i) (χ, rr) becomes PN(i) (χ) δ
(
Ncn − µNcn(i)

)
.

The integral is solved and the equation for NC(i) becomes

NC(i) = µNcn(i)
1

2
erfc

(

− µχ(i)√
2 σχ(i)

)

. (D4)

Likewise, when σχ(i) = 0 and σNcn(i) > 0, χ varies in ith component but Ncn is constant, and

when both σχ(i) = 0 and σNcn(i) = 0, both χ and Ncn are constant in the ith PDF component.

In either scenario, the equation becomes

NC(i) =







µNcn(i), when µχ(i) > 0; and

0, when µχ(i) ≤ 0.
(D5)

It is important to be able to back-solve Ncn from Nc because numerical models and

microphysics schemes usually either predict Nc, predict the mean in-cloud value of cloud

droplet concentration, Nc|ic, or specify the in-cloud value of cloud droplet concentration. The

value of Ncn needs to be calculated from this information for use in the PDF. The relationship

between grid-box mean Nc and the mean in-cloud value of cloud droplet concentration is

Nc|ic = Nc/fc, where fc is cloud fraction. CLUBB calculates cloud fraction by integrating

over the PDF of χ, such that

fc =

∞∫

−∞

H (χ)
n∑

i=1

ξ(i)P(i) (χ) dχ =
n∑

i=1

ξ(i)fc(i), (D6)

where fc(i) is the cloud fraction in the ith PDF component, which is calculated by

fc(i) =







1

2
erfc

(

− µχ(i)√
2 σχ(i)

)

, when σχ(i) > 0;

1, when σχ(i) = 0 and µχ(i) > 0; and

0, when σχ(i) = 0 and µχ(i) ≤ 0.

(D7)

101



The value of Ncn from can be back-solved Nc. As described in Section 1.3, µNcn(i) = Ncn

and σNcn(i) =

√

N ′2
cn. Additionally, ρ̃χ,Ncn(i) is related to ρχ,Ncn(i) in the manner described by

Eq. (B4). These substitutions are made into Eq. (D3), Eq. (D4), and Eq. (D5). However,

further simplification is necessary to solve for Ncn. The value of N ′2
cn /Ncn

2
is set to a

prescribed constant value, denoted CNcn∗. Additionally, the correlation ρχ,Ncn(i) is also set

to a prescribed value, ρχ,Ncn∗. The value of Ncn can now be solved by

Ncn =
Nc

n∑

i=1

ξ(i) FCTR(i)

, (D8)

where FCTR(i) is the factor given by

FCTR(i) =







1

2
erfc

(

− 1√
2

(
µχ(i)

σχ(i)

+ ρχ,Ncn∗
√
CNcn∗

))

,

when σχ(i) > 0 and CNcn∗ > 0;

1

2
erfc

(

− µχ(i)√
2 σχ(i)

)

, when σχ(i) > 0 and CNcn∗ = 0;

1, when σχ(i) = 0 and µχ(i) > 0; and

0, when σχ(i) = 0 and µχ(i) ≤ 0.

(D9)

When the last scenario is found in all components, the denominator of Eq. (D8) is 0. However,

cloud fraction is 0, meaning Nc is also 0, leaving Ncn undefined. For numerical purposes,

Ncn can be set to a reasonable value in this scenario.

The relationship between Ncn and Nc|ic is found by comparing Eq. (D8) and Eq. (D9)

with Eq. (D6) and Eq. (D7). Three scenarios emerge in the comparison. When Ncn is

constant (used for prescribing a constant value of in-cloud Nc, as was done for the RICO,

DYCOMS-II RF02, and LBA cases in this paper), Ncn = Nc|ic. When Ncn varies, but the

correlation of χ and Ncn is 0 (or undefined when χ is constant), it still holds that Ncn = Nc|ic.

However, when Ncn varies and the correlation of χ and Ncn is a value other than 0, Ncn differs

102



from Nc|ic.

In a situation where CLUBB is using SILHS with a microphysics scheme that predicts

Nc, a model time step works as follows. The time step begins with the most recent value

of Nc. The value of Ncn is calculated for use in the PDF. Then, the PDF parameters are

calculated, including those involving Ncn. SILHS uses the PDF parameters to generate

sample points of all variables involved in the PDF, including χ and Ncn. The value of Nc at

these sample points is calculated according to Eq. (1.4). The sample points of Nc are then

fed to the microphysics scheme, which requires Nc as input. The microphysics tendency of

Nc is output from SILHS, and is used to advance the predictive equation for Nc for the next

model time step.
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Appendix E: Covariances Involving Microphysics

Process Rates

The nine microphysical covariances involving each of w, rt, and θl with each of KK auto-

conversion rate, accretion rate, and evaporation rate are calculated by integrating over the

PDF. The KK microphysics process rates are calculated, in part, based on variables that

involve saturation, such as rc. In order to calculate quantities that involve saturation, a

PDF transformation, which is a change of coordinates, is required. The multivariate PDF

undergoes stretching, translation, and rotation of the axes (Larson et al. 2005; Mellor 1977).

An independent PDF transformation takes place in each PDF component. Ultimately, rt

and θl are replaced in the PDF by χ and η, where χ is an “extended” liquid water mixing

ratio that has a positive value when air is supersaturated. In this scenario, χ is also equal

to rc. When air is subsaturated, χ has a negative value. The variable η is orthogonal to χ.

The transformations that relate rt and θl to χ and η are given by Eq. (A24) and Eq. (A25).

E.1 Covariances involving autoconversion rate

The general form of the KK equation for autoconversion rate is the product of a coefficient

and rαc N
β
c (where for KK, α = 2.47 and β = −1.79). The integral equation for the covariance

of w and autoconversion rate involves the PDF-variables w, rt, θl, and Ncn. The equation is

w′ ∂rr
∂t

∣
∣
∣
∣

′

auto

=

∞∫

−∞

∞∫

−∞

∞∫

−∞

∞∫

0

(

w − w

)(

∂rr
∂t

∣
∣
∣
∣
auto

− ∂rr
∂t

∣
∣
∣
∣
auto

)

× P (w, rt, θl, Ncn) dNcn dθl drt dw.

(E1)

The PDF is transformed (in each component) from rt and θl coordinates to χ and η coor-

dinates. Additionally, rc = χH (χ) and Nc = NcnH (χ), where H (χ) is the Heaviside step
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function (see Section 1.2). The equation becomes

w′ ∂rr
∂t

∣
∣
∣
∣

′

auto

=
n∑

i=1

ξ(i)

∞∫

−∞

∞∫

−∞

∞∫

−∞

∞∫

0

(

w − w

)(

Cauto χ
αNβ

cn (H (χ))α+β − ∂rr
∂t

∣
∣
∣
∣
auto

)

× P(i) (w, χ, η,Ncn) dNcn dη dχ dw,

(E2)

where the coefficient Cauto = 1350 (10−6ρd)
β
, and where ρd is the density of dry air. The

variable η can be integrated out of the PDF. The equation for the covariance of w and

autoconversion rate is

w′ ∂rr
∂t

∣
∣
∣
∣

′

auto

= Cauto

n∑

i=1

ξ(i)

∞∫

−∞

∞∫

−∞

∞∫

0

(

w − w

)(

χαNβ
cn (H (χ))α+β − 1

Cauto

∂rr
∂t

∣
∣
∣
∣
auto

)

× PNNL(i) (w, χ,Ncn) dNcn dχ dw,

(E3)

where PNNL(i) (w, χ,Ncn) is the ith component trivariate PDF involving two normal variates

and one lognormal variate.

The integral equation for the covariance of rt and autoconversion rate involves the PDF-

variables rt, θl, and Ncn. The equation is

r′t
∂rr
∂t

∣
∣
∣
∣

′

auto

=

∞∫

−∞

∞∫

−∞

∞∫

0

(

rt − rt

)(

∂rr
∂t

∣
∣
∣
∣
auto

− ∂rr
∂t

∣
∣
∣
∣
auto

)

P (rt, θl, Ncn) dNcn dθl drt. (E4)

During the PDF transformation, Eq. (A24) is used to substitute for rt. The equation becomes

r′t
∂rr
∂t

∣
∣
∣
∣

′

auto

=
n∑

i=1

ξ(i)

∞∫

−∞

∞∫

−∞

∞∫

0

(

µrt(i) − rt +

(
η − µη(i)

)
+
(
χ− µχ(i)

)

2crt(i)

)

×
(

Cauto χ
αNβ

cn (H (χ))α+β − ∂rr
∂t

∣
∣
∣
∣
auto

)

× P(i) (η, χ,Ncn) dNcn dχ dη,

(E5)
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where µrt(i) is the mean of rt in the ith PDF component. The mean of χ in the ith PDF

component, µχ(i), is given by Eq. (A23). The mean of η in the ith PDF component, µη(i),

ultimately does not factor into the solution to the integral equations. Its value is irrelevant

and can be set to an arbitrary value, such as 0, for simplicity. However, it should be

noted that the PDF component standard deviations of η and PDF component correlations

involving η still factor into the solution. The PDF transformation coefficient crt(i) is given

by Eq. (A17). After splitting and simplifying, Eq. (E5) becomes

r′t
∂rr
∂t

∣
∣
∣
∣

′

auto

= Cauto

n∑

i=1

ξ(i)

×




1

2crt(i)

∞∫

−∞

∞∫

−∞

∞∫

0

(

η − µη(i)

)(

χαNβ
cn (H (χ))α+β − 1

Cauto

∂rr
∂t

∣
∣
∣
∣
auto

)

× PNNL(i) (η, χ,Ncn) dNcn dχ dη

+
1

2crt(i)

∞∫

0

∞∫

0

χα+1Nβ
cnPNL(i) (χ,Ncn) dNcn dχ

+

(

µrt(i) − rt −
µχ(i)

2crt(i)

) ∞∫

0

∞∫

0

χαNβ
cnPNL(i) (χ,Ncn) dNcn dχ



 ,

(E6)

where PNL(i) (χ,Ncn) is the ith component bivariate PDF involving one normal variate and

one lognormal variate.

The integral equation for the covariance of θl and autoconversion rate involves the PDF-

variables rt, θl, and Ncn. The equation is

θ′l
∂rr
∂t

∣
∣
∣
∣

′

auto

=

∞∫

−∞

∞∫

−∞

∞∫

0

(

θl − θl

)(

∂rr
∂t

∣
∣
∣
∣
auto

− ∂rr
∂t

∣
∣
∣
∣
auto

)

P (rt, θl, Ncn) dNcn dθl drt. (E7)
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During the PDF transformation, Eq. (A25) is used to substitute for θl. The equation becomes

θ′l
∂rr
∂t

∣
∣
∣
∣

′

auto

=
n∑

i=1

ξ(i)

∞∫

−∞

∞∫

−∞

∞∫

0

(

µθl(i) − θl +

(
η − µη(i)

)
−
(
χ− µχ(i)

)

2cθl(i)

)

×
(

Cauto χ
αNβ

cn (H (χ))α+β − ∂rr
∂t

∣
∣
∣
∣
auto

)

× P(i) (η, χ,Ncn) dNcn dχ dη,

(E8)

where µθl(i) is the mean of θl in the ith PDF component. The PDF transformation coefficient

cθl(i) is given by Eq. (A18). After splitting and simplifying, Eq. (E8) becomes

θ′l
∂rr
∂t

∣
∣
∣
∣

′

auto

= Cauto

n∑

i=1

ξ(i)

×




1

2cθl(i)

∞∫

−∞

∞∫

−∞

∞∫

0

(

η − µη(i)

)(

χαNβ
cn (H (χ))α+β − 1

Cauto

∂rr
∂t

∣
∣
∣
∣
auto

)

× PNNL(i) (η, χ,Ncn) dNcn dχ dη

− 1

2cθl(i)

∞∫

0

∞∫

0

χα+1Nβ
cnPNL(i) (χ,Ncn) dNcn dχ

+

(

µθl(i) − θl +
µχ(i)

2cθl(i)

) ∞∫

0

∞∫

0

χαNβ
cnPNL(i) (χ,Ncn) dNcn dχ



 .

(E9)

E.2 Covariances involving accretion rate

The general form of the KK equation for accretion rate is the product of a coefficient and

rαc r
β
r (where for KK, α = 1.15 and β = 1.15). The integral equation for the covariance of w
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and accretion rate involves the PDF-variables w, rt, θl, and rr. The equation is

w′ ∂rr
∂t

∣
∣
∣
∣

′

accr

=

∞∫

−∞

∞∫

−∞

∞∫

−∞

∞∫

0

(

w − w

)(

∂rr
∂t

∣
∣
∣
∣
accr

− ∂rr
∂t

∣
∣
∣
∣
accr

)

× P (w, rt, θl, rr) drr dθl drt dw.

(E10)

The PDF is transformed and the substitution rc = χH (χ) is made. The equation becomes

w′ ∂rr
∂t

∣
∣
∣
∣

′

accr

=
n∑

i=1

ξ(i)

∞∫

−∞

∞∫

−∞

∞∫

−∞

∞∫

0

(

w − w

)(

Caccr χ
α (H (χ))α rβr − ∂rr

∂t

∣
∣
∣
∣
accr

)

× P(i) (w, χ, η, rr) drr dη dχ dw,

(E11)

where the coefficient Caccr = 67. The variable η is integrated out of the PDF, and the

equation for the covariance of w and accretion rate is

w′ ∂rr
∂t

∣
∣
∣
∣

′

accr

= Caccr

n∑

i=1

ξ(i)

×



fp(i)

∞∫

−∞

∞∫

−∞

∞∫

0

(

w − w

)(

χα (H (χ))α rβr − 1

Caccr

∂rr
∂t

∣
∣
∣
∣
accr

)

× PNNL(i) (w, χ, rr) drr dχ dw

−
(
1− fp(i)

) (
µw(i) − w

) 1

Caccr

∂rr
∂t

∣
∣
∣
∣
accr



,

(E12)

where µw(i) is the mean of w in the ith PDF component.

The integral equation for the covariance of rt and accretion rate involves the PDF-

variables rt, θl, and rr. The equation is

r′t
∂rr
∂t

∣
∣
∣
∣

′

accr

=

∞∫

−∞

∞∫

−∞

∞∫

0

(

rt − rt

)(

∂rr
∂t

∣
∣
∣
∣
accr

− ∂rr
∂t

∣
∣
∣
∣
accr

)

P (rt, θl, rr) drr dθl drt. (E13)

The PDF is transformed (in each component) from rt and θl coordinates to χ and η coordi-
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nates. The equation becomes

r′t
∂rr
∂t

∣
∣
∣
∣

′

accr

=
n∑

i=1

ξ(i)

∞∫

−∞

∞∫

−∞

∞∫

0

(

µrt(i) − rt +

(
η − µη(i)

)
+
(
χ− µχ(i)

)

2crt(i)

)

×
(

Caccr χ
α (H (χ))α rβr − ∂rr

∂t

∣
∣
∣
∣
accr

)

× P(i) (η, χ, rr) drr dχ dη.

(E14)

The equation for the covariance of rt and accretion rate can ultimately be written as

r′t
∂rr
∂t

∣
∣
∣
∣

′

accr

= Caccr

n∑

i=1

ξ(i)fp(i)

×




1

2crt(i)

∞∫

−∞

∞∫

−∞

∞∫

0

(

η − µη(i)

)(

χα (H (χ))α rβr − 1

Caccr

∂rr
∂t

∣
∣
∣
∣
accr

)

× PNNL(i) (η, χ, rr) drr dχ dη

+
1

2crt(i)

∞∫

0

∞∫

0

χα+1rβrPNL(i) (χ, rr) drr dχ

+

(

µrt(i) − rt −
µχ(i)

2crt(i)

) ∞∫

0

∞∫

0

χαrβrPNL(i) (χ, rr) drr dχ



 .

(E15)

The integral equation for the covariance of θl and accretion rate involves the PDF-

variables rt, θl, and rr. The equation is

θ′l
∂rr
∂t

∣
∣
∣
∣

′

accr

=

∞∫

−∞

∞∫

−∞

∞∫

0

(

θl − θl

)(

∂rr
∂t

∣
∣
∣
∣
accr

− ∂rr
∂t

∣
∣
∣
∣
accr

)

P (rt, θl, rr) drr dθl drt. (E16)

A PDF transformation takes place in each component, changing coordinates from rt and θl
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to χ and η. The equation becomes

θ′l
∂rr
∂t

∣
∣
∣
∣

′

accr

=
n∑

i=1

ξ(i)

∞∫

−∞

∞∫

−∞

∞∫

0

(

µθl(i) − θl +

(
η − µη(i)

)
−
(
χ− µχ(i)

)

2cθl(i)

)

×
(

Caccr χ
α (H (χ))α rβr − ∂rr

∂t

∣
∣
∣
∣
accr

)

× P(i) (η, χ, rr) drr dχ dη.

(E17)

The equation for the covariance of θl and accretion rate can ultimately be written as

θ′l
∂rr
∂t

∣
∣
∣
∣

′

accr

= Caccr

n∑

i=1

ξ(i)fp(i)

×




1

2cθl(i)

∞∫

−∞

∞∫

−∞

∞∫

0

(

η − µη(i)

)(

χα (H (χ))α rβr − 1

Caccr

∂rr
∂t

∣
∣
∣
∣
accr

)

× PNNL(i) (η, χ, rr) drr dχ dη

− 1

2cθl(i)

∞∫

0

∞∫

0

χα+1rβrPNL(i) (χ, rr) drr dχ

+

(

µθl(i) − θl +
µχ(i)

2cθl(i)

) ∞∫

0

∞∫

0

χαrβrPNL(i) (χ, rr) drr dχ



 .

(E18)

E.3 Covariances involving evaporation rate

The general form of the KK equation for evaporation rate is the product of a coefficient and

Sα (H (−S))α rβrN
γ
r (where for KK, α = 1, β = 1/3, and γ = 2/3). Supersaturation, S,

is the ratio of water vapor pressure over saturation vapor pressure (with respect to liquid

water), minus 1, so that S is positive when air is supersaturated and negative when air is

subsaturated. The Heaviside step function has been added to allow for only evaporation

of rain, not condensational growth. The integral equation for the covariance of w and
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evaporation rate involves the PDF-variables w, rt, θl, rr, and Nr. The equation is

w′ ∂rr
∂t

∣
∣
∣
∣

′

evap

=

∞∫

−∞

∞∫

−∞

∞∫

−∞

∞∫

0

∞∫

0

(

w − w

)(

∂rr
∂t

∣
∣
∣
∣
evap

− ∂rr
∂t

∣
∣
∣
∣
evap

)

× P (w, rt, θl, rr, Nr) dNr drr dθl drt dw.

(E19)

The PDF is transformed and a substitution is made that relates S to χ, as given by Eq. (A47).

The equation becomes

w′ ∂rr
∂t

∣
∣
∣
∣

′

evap

=
n∑

i=1

ξ(i)

∞∫

−∞

∞∫

−∞

∞∫

−∞

∞∫

0

∞∫

0

(

w − w

)(

Cevap χ
α (H (−χ))α rβrN

γ
r − ∂rr

∂t

∣
∣
∣
∣
evap

)

× P(i) (w, χ, η, rr, Nr) dNr drr dη dχ dw.

(E20)

The coefficient Cevap is given by Eq. (C21). The variable η is integrated out of the PDF, and

the integral equation for the covariance of w and evaporation rate is

w′ ∂rr
∂t

∣
∣
∣
∣

′

evap

= Cevap

n∑

i=1

ξ(i)

×



fp(i)

∞∫

−∞

∞∫

−∞

∞∫

0

∞∫

0

(

w − w

)(

χα (H (−χ))α rβrN
γ
r − 1

Cevap

∂rr
∂t

∣
∣
∣
∣
evap

)

× PNNLL(i) (w, χ, rr, Nr) dNr drr dχ dw

−
(
1− fp(i)

) (
µw(i) − w

) 1

Cevap

∂rr
∂t

∣
∣
∣
∣
evap



,

(E21)

where PNNLL(i) (w, χ, rr, Nr) is the ith component quadrivariate PDF involving two normal

variates and two lognormal variates.

The integral equation for the covariance of rt and evaporation rate involves the PDF-
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variables rt, θl, rr, and Nr. The equation is

r′t
∂rr
∂t

∣
∣
∣
∣

′

evap

=

∞∫

−∞

∞∫

−∞

∞∫

0

∞∫

0

(

rt − rt

)(

∂rr
∂t

∣
∣
∣
∣
evap

− ∂rr
∂t

∣
∣
∣
∣
evap

)

× P (rt, θl, rr, Nr) dNr drr dθl drt.

(E22)

The PDF is transformed, and Eq. (A24) is used to substitute for rt. The equation becomes

r′t
∂rr
∂t

∣
∣
∣
∣

′

evap

=
n∑

i=1

ξ(i)

∞∫

−∞

∞∫

−∞

∞∫

0

∞∫

0

(

µrt(i) − rt +

(
η − µη(i)

)
+
(
χ− µχ(i)

)

2crt(i)

)

×
(

Cevap χ
α (H (−χ))α rβrN

γ
r − ∂rr

∂t

∣
∣
∣
∣
evap

)

× P(i) (η, χ, rr, Nr) dNr drr dχ dη.

(E23)

The covariance equation for rt and evaporation rate is split and simplified, resulting in

r′t
∂rr
∂t

∣
∣
∣
∣

′

evap

= Cevap

n∑

i=1

ξ(i)fp(i)

×




1

2crt(i)

∞∫

−∞

∞∫

−∞

∞∫

0

∞∫

0

(

η − µη(i)

)(

χα (H (−χ))α rβrN
γ
r − 1

Cevap

∂rr
∂t

∣
∣
∣
∣
evap

)

× PNNLL(i) (η, χ, rr, Nr) dNr drr dχ dη

+
1

2crt(i)

0∫

−∞

∞∫

0

∞∫

0

χα+1rβrN
γ
r PNLL(i) (χ, rr, Nr) dNr drr dχ

+

(

µrt(i) − rt −
µχ(i)

2crt(i)

) 0∫

−∞

∞∫

0

∞∫

0

χαrβrN
γ
r PNLL(i) (χ, rr, Nr) dNr drr dχ



 ,

(E24)

where PNLL(i) (χ, rr, Nr) is the ith component trivariate PDF involving one normal variate

and two lognormal variates.

The integral equation for the covariance of θl and evaporation rate involves the PDF-
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variables rt, θl, rr, and Nr. The equation is

θ′l
∂rr
∂t

∣
∣
∣
∣

′

evap

=

∞∫

−∞

∞∫

−∞

∞∫

0

∞∫

0

(

θl − θl

)(

∂rr
∂t

∣
∣
∣
∣
evap

− ∂rr
∂t

∣
∣
∣
∣
evap

)

× P (rt, θl, rr, Nr) dNr drr dθl drt.

(E25)

The PDF is transformed, and Eq. (A25) is used to substitute for θl. The equation becomes

θ′l
∂rr
∂t

∣
∣
∣
∣

′

evap

=
n∑

i=1

ξ(i)

∞∫

−∞

∞∫

−∞

∞∫

0

∞∫

0

(

µθl(i) − θl +

(
η − µη(i)

)
−
(
χ− µχ(i)

)

2cθl(i)

)

×
(

Cevap χ
α (H (−χ))α rβrN

γ
r − ∂rr

∂t

∣
∣
∣
∣
evap

)

× P(i) (η, χ, rr, Nr) dNr drr dχ dη.

(E26)

The covariance equation for θl and evaporation rate is split and simplified, resulting in

θ′l
∂rr
∂t

∣
∣
∣
∣

′

evap

= Cevap

n∑

i=1

ξ(i)fp(i)

×




1

2cθl(i)

∞∫

−∞

∞∫

−∞

∞∫

0

∞∫

0

(

η − µη(i)

)(

χα (H (−χ))α rβrN
γ
r − 1

Cevap

∂rr
∂t

∣
∣
∣
∣
evap

)

× PNNLL(i) (η, χ, rr, Nr) dNr drr dχ dη

− 1

2cθl(i)

0∫

−∞

∞∫

0

∞∫

0

χα+1rβrN
γ
r PNLL(i) (χ, rr, Nr) dNr drr dχ

+

(

µθl(i) − θl +
µχ(i)

2cθl(i)

) 0∫

−∞

∞∫

0

∞∫

0

χαrβrN
γ
r PNLL(i) (χ, rr, Nr) dNr drr dχ



 .

(E27)

The set of covariance equations involving microphysics process rates still contain integrals

of four general forms. The solutions to these integrals, including all special cases, are listed

in Appendix J, and the functional forms of the PDFs are listed in Appendix F.
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Appendix F: Functional Forms of PDFs

F.1 Functional Form of a Quadrivariate PDF

There is one type of quadrivariate PDF used in the equation set. It is quadrivariate normal-

normal-lognormal-lognormal distribution, meaning that the individual marginal of x1 is a

normal distribution, the individual marginal of x2 is a normal distribution, the individual

marginal of x3 is a lognormal distribution, and the individual marginal of x4 is a lognormal

distribution. The functional form of this type of PDF is given by:

PNNLL(i) (x1, x2, x3, x4) =
exp

{
−1

2
λNNLL

}

(2π)2 σx1(i)σx2(i)σ̃x3(i)σ̃x4(i)CQ1x3x4

; (F1)

where:

λNNLL =
1

C 2
Q1

[

CQ2

(
x1 − µx1(i)

)2
+ CQ3

(
x2 − µx2(i)

)2
+ CQ4

(
ln x3 − µ̃x3(i)

)2

+ CQ5

(
ln x4 − µ̃x4(i)

)2
+ CQ6

(
x1 − µx1(i)

) (
x2 − µx2(i)

)

+ CQ7

(
x1 − µx1(i)

) (
ln x3 − µ̃x3(i)

)
+ CQ8

(
x1 − µx1(i)

) (
ln x4 − µ̃x4(i)

)

+ CQ9

(
x2 − µx2(i)

) (
ln x3 − µ̃x3(i)

)
+ CQ10

(
x2 − µx2(i)

) (
ln x4 − µ̃x4(i)

)

+ CQ11

(
ln x3 − µ̃x3(i)

) (
ln x4 − µ̃x4(i)

) ]

;

and where:

CQ1 =
[

1−
(
ρ 2
x1,x2(i)

+ ρ̃ 2
x1,x3(i)

+ ρ̃ 2
x1,x4(i)

+ ρ̃ 2
x2,x3(i)

+ ρ̃ 2
x2,x4(i)

+ ρ̃ 2
x3,x4(i)

)

+ 2ρx1,x2(i)ρ̃x1,x3(i)ρ̃x2,x3(i) + 2ρx1,x2(i)ρ̃x1,x4(i)ρ̃x2,x4(i)

+ 2ρ̃x1,x3(i)ρ̃x1,x4(i)ρ̃x3,x4(i) + 2ρ̃x2,x3(i)ρ̃x2,x4(i)ρ̃x3,x4(i) + ρ 2
x1,x2(i)

ρ̃ 2
x3,x4(i)

+ ρ̃ 2
x1,x3(i)

ρ̃ 2
x2,x4(i)

+ ρ̃ 2
x1,x4(i)

ρ̃ 2
x2,x3(i)

− 2ρx1,x2(i)ρ̃x1,x3(i)ρ̃x2,x4(i)ρ̃x3,x4(i)

− 2ρx1,x2(i)ρ̃x1,x4(i)ρ̃x2,x3(i)ρ̃x3,x4(i) − 2ρ̃x1,x3(i)ρ̃x1,x4(i)ρ̃x2,x3(i)ρ̃x2,x4(i)

] 1
2
;
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CQ2 =
1

σ2
x1(i)

[

1−
(
ρ̃ 2
x2,x3(i)

+ ρ̃ 2
x2,x4(i)

+ ρ̃ 2
x3,x4(i)

)
+ 2ρ̃x2,x3(i)ρ̃x2,x4(i)ρ̃x3,x4(i)

]

;

CQ3 =
1

σ2
x2(i)

[

1−
(
ρ̃ 2
x1,x3(i)

+ ρ̃ 2
x1,x4(i)

+ ρ̃ 2
x3,x4(i)

)
+ 2ρ̃x1,x3(i)ρ̃x1,x4(i)ρ̃x3,x4(i)

]

;

CQ4 =
1

σ̃2
x3(i)

[

1−
(
ρ 2
x1,x2(i)

+ ρ̃ 2
x1,x4(i)

+ ρ̃ 2
x2,x4(i)

)
+ 2ρx1,x2(i)ρ̃x1,x4(i)ρ̃x2,x4(i)

]

;

CQ5 =
1

σ̃2
x4(i)

[

1−
(
ρ 2
x1,x2(i)

+ ρ̃ 2
x1,x3(i)

+ ρ̃ 2
x2,x3(i)

)
+ 2ρx1,x2(i)ρ̃x1,x3(i)ρ̃x2,x3(i)

]

;

CQ6 =
2

σx1(i)σx2(i)

(

ρx1,x2(i)ρ̃
2
x3,x4(i)

− ρ̃x1,x4(i)ρ̃x2,x3(i)ρ̃x3,x4(i)

− ρ̃x1,x3(i)ρ̃x2,x4(i)ρ̃x3,x4(i) + ρ̃x1,x3(i)ρ̃x2,x3(i) + ρ̃x1,x4(i)ρ̃x2,x4(i)

− ρx1,x2(i)

)

;

CQ7 =
2

σx1(i)σ̃x3(i)

(

ρ̃x1,x3(i)ρ̃
2
x2,x4(i)

− ρx1,x2(i)ρ̃x2,x4(i)ρ̃x3,x4(i)

− ρ̃x1,x4(i)ρ̃x2,x3(i)ρ̃x2,x4(i) + ρx1,x2(i)ρ̃x2,x3(i) + ρ̃x1,x4(i)ρ̃x3,x4(i)

− ρ̃x1,x3(i)

)

;

CQ8 =
2

σx1(i)σ̃x4(i)

(

ρ̃x1,x4(i)ρ̃
2
x2,x3(i)

− ρx1,x2(i)ρ̃x2,x3(i)ρ̃x3,x4(i)

− ρ̃x1,x3(i)ρ̃x2,x3(i)ρ̃x2,x4(i) + ρx1,x2(i)ρ̃x2,x4(i) + ρ̃x1,x3(i)ρ̃x3,x4(i)

− ρ̃x1,x4(i)

)

;

CQ9 =
2

σx2(i)σ̃x3(i)

(

ρ̃ 2
x1,x4(i)

ρ̃x2,x3(i) − ρx1,x2(i)ρ̃x1,x4(i)ρ̃x3,x4(i)

− ρ̃x1,x3(i)ρ̃x1,x4(i)ρ̃x2,x4(i) + ρ̃x2,x4(i)ρ̃x3,x4(i) + ρx1,x2(i)ρ̃x1,x3(i)

− ρ̃x2,x3(i)

)

;

CQ10 =
2

σx2(i)σ̃x4(i)

(

ρ̃ 2
x1,x3(i)

ρ̃x2,x4(i) − ρx1,x2(i)ρ̃x1,x3(i)ρ̃x3,x4(i)

− ρ̃x1,x3(i)ρ̃x1,x4(i)ρ̃x2,x3(i) + ρ̃x2,x3(i)ρ̃x3,x4(i) + ρx1,x2(i)ρ̃x1,x4(i)

− ρ̃x2,x4(i)

)

;
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CQ11 =
2

σ̃x3(i)σ̃x4(i)

(

ρ 2
x1,x2(i)

ρ̃x3,x4(i) − ρx1,x2(i)ρ̃x1,x4(i)ρ̃x2,x3(i)

− ρx1,x2(i)ρ̃x1,x3(i)ρ̃x2,x4(i) + ρ̃x2,x3(i)ρ̃x2,x4(i) + ρ̃x1,x3(i)ρ̃x1,x4(i)

− ρ̃x3,x4(i)

)

.

In Eq. (F1), µx1(i) is the mean of x1 in the ith component, µx2(i) is the mean of x2 in the

ith component, µ̃x3(i) is the mean of ln x3 in the ith component, and µ̃x4(i) is the mean of

ln x4 in the ith component. The ith component standard deviation of x1 is σx1(i), the ith

component standard deviation of x2 is σx2(i), the ith component standard deviation of ln x3

is σ̃x3(i), and the ith component standard deviation of ln x4 is σ̃x4(i). The ith component

correlation of x1 and x2 is ρx1,x2(i), the ith component correlation of x1 and ln x3 is ρ̃x1,x3(i),

the ith component correlation of x1 and ln x4 is ρ̃x1,x4(i), the ith component correlation of

x2 and ln x3 is ρ̃x2,x3(i), the ith component correlation of x2 and ln x4 is ρ̃x2,x4(i), and the ith

component correlation of ln x3 and ln x4 is ρ̃x3,x4(i).

F.2 Functional Form of Trivariate PDFs

There are two types of trivariate PDFs used in the equation set. The first one is a trivariate

normal-normal-lognormal distribution, meaning that the individual marginal of x1 is a nor-

mal distribution, the individual marginal of x2 is a normal distribution, and the individual

marginal of x3 is a lognormal distribution. The functional form of this type of PDF is given

by:

PNNL(i) (x1, x2, x3) =
exp

{
−1

2
λNNL

}

(2π)
3
2 σx1(i)σx2(i)σ̃x3(i)CT1x3

; (F2)

where:

λNNL =
1

C 2
T1

[

CT2

(
x1 − µx1(i)

)2
+ CT3

(
x2 − µx2(i)

)2
+ CT4

(
ln x3 − µ̃x3(i)

)2

+ CT5

(
x1 − µx1(i)

) (
x2 − µx2(i)

)
+ CT6

(
x1 − µx1(i)

) (
ln x3 − µ̃x3(i)

)

+ CT7

(
x2 − µx2(i)

) (
ln x3 − µ̃x3(i)

) ]

;
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and where:

CT1 =
[

1−
(
ρ 2
x1,x2(i)

+ ρ̃ 2
x1,x3(i)

+ ρ̃ 2
x2,x3(i)

)
+ 2ρx1,x2(i)ρ̃x1,x3(i)ρ̃x2,x3(i)

] 1
2
;

CT2 =
1− ρ̃ 2

x2,x3(i)

σ2
x1(i)

; CT3 =
1− ρ̃ 2

x1,x3(i)

σ2
x2(i)

; CT4 =
1− ρ 2

x1,x2(i)

σ̃2
x3(i)

;

CT5 =
2
(
ρ̃x1,x3(i)ρ̃x2,x3(i) − ρx1,x2(i)

)

σx1(i)
σx2(i)

; CT6 =
2
(
ρx1,x2(i)ρ̃x2,x3(i) − ρ̃x1,x3(i)

)

σx1(i)
σ̃x3(i)

;

and CT7 =
2
(
ρx1,x2(i)ρ̃x1,x3(i) − ρ̃x2,x3(i)

)

σx2(i)
σ̃x3(i)

.

In Eq. (F2), µx1(i) is the mean of x1 in the ith component, µx2(i) is the mean of x2 in the

ith component, and µ̃x3(i) is the mean of ln x3 in the ith component. The ith component

standard deviation of x1 is σx1(i), the ith component standard deviation of x2 is σx2(i), and

the ith component standard deviation of ln x3 is σ̃x3(i). The ith component correlation of

x1 and x2 is ρx1,x2(i), the ith component correlation of x1 and ln x3 is ρ̃x1,x3(i), and the ith

component correlation of x2 and ln x3 is ρ̃x2,x3(i).

The second type of trivariate PDF used in the equation set is a trivariate normal-

lognormal-lognormal distribution, meaning that the individual marginal of x1 is a normal

distribution, the individual marginal of x2 is a lognormal distribution, and the individual

marginal of x3 is a lognormal distribution. The functional form of this type of PDF is given

by:

PNLL(i) (x1, x2, x3) =
exp

{
−1

2
λNLL

}

(2π)
3
2 σx1(i)σ̃x2(i)σ̃x3(i)Ct1x2x3

; (F3)

where:

λNLL =
1

C 2
t1

[

Ct2

(
x1 − µx1(i)

)2
+ Ct3

(
ln x2 − µ̃x2(i)

)2
+ Ct4

(
ln x3 − µ̃x3(i)

)2

+ Ct5

(
x1 − µx1(i)

) (
ln x2 − µ̃x2(i)

)
+ Ct6

(
x1 − µx1(i)

) (
ln x3 − µ̃x3(i)

)

+ Ct7

(
ln x2 − µ̃x2(i)

) (
ln x3 − µ̃x3(i)

) ]

;
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and where:

Ct1 =
[

1−
(
ρ̃ 2
x1,x2(i)

+ ρ̃ 2
x1,x3(i)

+ ρ̃ 2
x2,x3(i)

)
+ 2ρ̃x1,x2(i)ρ̃x1,x3(i)ρ̃x2,x3(i)

] 1
2
;

Ct2 =
1− ρ̃ 2

x2,x3(i)

σ2
x1(i)

; Ct3 =
1− ρ̃ 2

x1,x3(i)

σ̃2
x2(i)

; Ct4 =
1− ρ̃ 2

x1,x2(i)

σ̃2
x3(i)

;

Ct5 =
2
(
ρ̃x1,x3(i)ρ̃x2,x3(i) − ρ̃x1,x2(i)

)

σx1(i)
σ̃x2(i)

; Ct6 =
2
(
ρ̃x1,x2(i)ρ̃x2,x3(i) − ρ̃x1,x3(i)

)

σx1(i)
σ̃x3(i)

;

and Ct7 =
2
(
ρ̃x1,x2(i)ρ̃x1,x3(i) − ρ̃x2,x3(i)

)

σ̃x2(i)
σ̃x3(i)

.

In Eq. (F3), µx1(i) is the mean of x1 in the ith component, µ̃x2(i) is the mean of ln x2 in the

ith component, and µ̃x3(i) is the mean of ln x3 in the ith component. The ith component

standard deviation of x1 is σx1(i), the ith component standard deviation of ln x2 is σ̃x2(i), and

the ith component standard deviation of ln x3 is σ̃x3(i). The ith component correlation of

x1 and ln x2 is ρ̃x1,x2(i), the ith component correlation of x1 and ln x3 is ρ̃x1,x3(i), and the ith

component correlation of ln x2 and ln x3 is ρ̃x2,x3(i).

F.3 Functional Form of Bivariate PDFs

There are three types of bivariate PDFs used in the equation set. The first one is a bivariate

normal distribution, meaning that the individual marginal for each of x1 and x2 is a normal

distribution. The functional form of this type of PDF is given by:

PNN(i) (x1, x2) =
exp

{
−1

2
λNN

}

2πσx1(i)σx2(i)

(

1− ρ 2
x1,x2(i)

) 1
2

; where (F4)

λNN =
1

1− ρ 2
x1,x2(i)

[

1

σ2
x1(i)

(
x1 − µx1(i)

)2
+

1

σ2
x2(i)

(
x2 − µx2(i)

)2

− 2ρx1,x2(i)

σx1(i)σx2(i)

(
x1 − µx1(i)

) (
x2 − µx2(i)

)

]

;
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where the ith component mean of x1 is µx1(i), the ith component mean of x2 is µx2(i), the ith

component standard deviation of x1 is σx1(i), the ith component standard deviation of x2 is

σx2(i), and the ith component correlation of x1 and x2 is ρx1,x2(i).

The second type of bivariate PDF used in the equation set is a bivariate normal-lognormal

distribution, meaning that the individual marginal of x1 is a normal distribution and the

individual marginal of x2 is a lognormal distribution. The functional form of this type of

PDF is given by:

PNL(i) (x1, x2) =
exp

{
−1

2
λNL

}

2πσx1(i)σ̃x2(i)

(

1− ρ̃ 2
x1,x2(i)

) 1
2
x2

; where (F5)

λNL =
1

1− ρ̃ 2
x1,x2(i)

[

1

σ2
x1(i)

(
x1 − µx1(i)

)2
+

1

σ̃2
x2(i)

(
ln x2 − µ̃x2(i)

)2

− 2ρ̃x1,x2(i)

σx1(i)σ̃x2(i)

(
x1 − µx1(i)

) (
ln x2 − µ̃x2(i)

)

]

;

where the ith component mean of x1 is µx1(i), the ith component mean of ln x2 is µ̃x2(i), the

ith component standard deviation of x1 is σx1(i), the ith component standard deviation of

ln x2 is σ̃x2(i), and the ith component correlation of x1 and ln x2 is ρ̃x1,x2(i).

The third type of bivariate PDF used in the equation set is a bivariate lognormal distribu-

tion, meaning that the individual marginal for each of x1 and x2 is a lognormal distribution.

The functional form of this type of PDF is given by:

PLL(i) (x1, x2) =
exp

{
−1

2
λLL

}

2πσ̃x1(i)σ̃x2(i)

(

1− ρ̃ 2
x1,x2(i)

) 1
2
x1x2

; where (F6)

λLL =
1

1− ρ̃ 2
x1,x2(i)

[

1

σ̃2
x1(i)

(
ln x1 − µ̃x1(i)

)2
+

1

σ̃2
x2(i)

(
ln x2 − µ̃x2(i)

)2

− 2ρ̃x1,x2(i)

σ̃x1(i)σ̃x2(i)

(
ln x1 − µ̃x1(i)

) (
ln x2 − µ̃x2(i)

)

]

;

where the ith component mean of ln x1 is µ̃x1(i), the ith component mean of ln x2 is µ̃x2(i), the
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ith component standard deviation of ln x1 is σ̃x1(i), the ith component standard deviation of

ln x2 is σ̃x2(i), and the ith component correlation of ln x1 and ln x2 is ρ̃x1,x2(i).

F.4 Functional Form of Single-Variable PDFs

There are two types of single-variable (univariate) PDFs used in the equation set. The first

one is a normal distribution. The functional form of this type of PDF is given by:

PN(i) (x) =
1

(2π)
1
2 σx(i)

exp

{

−
(
x− µx(i)

)2

2 σ2
x(i)

}

; (F7)

where the ith component mean of x is µx(i) and the ith component standard deviation of

x is σx(i). The second type of univariate PDF used in this equation set is a lognormal

distribution. If the natural logarithm was taken for every point in a lognormal distribution,

the resulting distribution would be a normal distribution. The functional form of this type

of PDF is given by:

PL(i) (x) =
1

(2π)
1
2 σ̃x(i) x

exp

{

−
(
ln x− µ̃x(i)

)2

2 σ̃2
x(i)

}

; (F8)

where the ith component mean of ln x is µ̃x(i) and the ith component standard deviation of

ln x is σ̃x(i).
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Appendix G: Integrals

G.1 Integrals of the form

b∫

a

xpe−x2
dx

In the following equations, p is an integer, where p ≥ 0, a is the lower limit of integration,

b is the upper limit of integration, erf (x) is the error function, and ex is the exponential

function.

b∫

a

xpe−x2

dx =







1

2





p−1
2∑

t=0

(
p−1
2

)
!

t!
a2te−a2

−
p−1
2∑

t=0

(
p−1
2

)
!

t!
b2te−b2



 ; where p is odd;

1

2





p
2∑

t=1

p! t!
(
p
2

)
! (2t)! 2p−2t

a2t−1e−a2

−
p
2∑

t=1

p! t!
(
p
2

)
! (2t)! 2p−2t

b2t−1e−b2





+
p!

(
p
2

)
! 2p

√
π

2

(

erf (b)− erf (a)

)

; where p is even.

(G1)

b∫

a

xe−x2

dx =
1

2

(

e−a2 − e−b2
)

(G2)

b∫

a

e−x2

dx =

√
π

2

(

erf (b)− erf (a)

)

(G3)

∞∫

−∞

xpe−x2

dx =







0; where p is odd;

p!
(
p
2

)
! 2p

√
π; where p is even.

(G4)
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∞∫

−∞

xe−x2

dx = 0 (G5)

∞∫

−∞

e−x2

dx =
√
π (G6)

∞∫

0

xpe−x2

dx =







1

2

(
p− 1

2

)

! ; where p is odd;

p!
(
p
2

)
! 2p

√
π

2
; where p is even.

(G7)

∞∫

0

xe−x2

dx =
1

2
(G8)

∞∫

0

e−x2

dx =

√
π

2
(G9)

0∫

−∞

xpe−x2

dx =







− 1

2

(
p− 1

2

)

! ; where p is odd;

p!
(
p
2

)
! 2p

√
π

2
; where p is even.

(G10)

0∫

−∞

xe−x2

dx = −1

2
(G11)

0∫

−∞

e−x2

dx =

√
π

2
(G12)

∞∫

a

xpe−x2

dx =







1

2

p−1
2∑

t=0

(
p−1
2

)
!

t!
a2te−a2 ; where p is odd;

1

2

p
2∑

t=1

p! t!
(
p
2

)
! (2t)! 2p−2t

a2t−1e−a2

+
p!

(
p
2

)
! 2p

√
π

2

(

1− erf (a)

)

; where p is even.

(G13)

∞∫

a

xe−x2

dx =
1

2
e−a2 (G14)
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∞∫

a

e−x2

dx =

√
π

2

(

1− erf (a)

)

(G15)

b∫

−∞

xpe−x2

dx =







− 1

2

p−1
2∑

t=0

(
p−1
2

)
!

t!
b2te−b2 ; where p is odd;

− 1

2

p
2∑

t=1

p! t!
(
p
2

)
! (2t)! 2p−2t

b2t−1e−b2

+
p!

(
p
2

)
! 2p

√
π

2

(

1 + erf (b)

)

; where p is even.

(G16)

b∫

−∞

xe−x2

dx = −1

2
e−b2 (G17)

b∫

−∞

e−x2

dx =

√
π

2

(

1 + erf (b)

)

(G18)

b∫

0

xpe−x2

dx =







1

2

(
p− 1

2

)

!− 1

2

p−1
2∑

t=0

(
p−1
2

)
!

t!
b2te−b2 ; where p is odd;

− 1

2

p
2∑

t=1

p! t!
(
p
2

)
! (2t)! 2p−2t

b2t−1e−b2

+
p!

(
p
2

)
! 2p

√
π

2
erf (b) ; where p is even.

(G19)

b∫

0

xe−x2

dx =
1

2

(

1− e−b2
)

(G20)

b∫

0

e−x2

dx =

√
π

2
erf (b) (G21)
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0∫

a

xpe−x2

dx =







1

2

p−1
2∑

t=0

(
p−1
2

)
!

t!
a2te−a2 − 1

2

(
p− 1

2

)

!; where p is odd;

1

2

p
2∑

t=1

p! t!
(
p
2

)
! (2t)! 2p−2t

a2t−1e−a2

− p!
(
p
2

)
! 2p

√
π

2
erf (a) ; where p is even.

(G22)

0∫

a

xe−x2

dx =
1

2

(

e−a2 − 1
)

(G23)

0∫

a

e−x2

dx = −
√
π

2
erf (a) (G24)

b∫

−b

xpe−x2

dx =







0; where p is odd;

−
p
2∑

t=1

p! t!
(
p
2

)
! (2t)! 2p−2t

b2t−1e−b2

+
p!

(
p
2

)
! 2p

√
π erf (b) ; where p is even.

(G25)

b∫

−b

xe−x2

dx = 0 (G26)

b∫

−b

e−x2

dx =
√
π erf (b) (G27)
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G.2 Integrals of the form

b∫

a

e−Ax2+Bx
dx

In the following equations, both A and B are coefficients, where A > 0, a is the lower

limit of integration, b is the upper limit of integration, erf (x) is the error function, and the

exponential function is written exp (x) or ex.

b∫

a

e−Ax2+Bx dx =

√
π

4A
exp

{
B2

4A

}(

erf

(√
Ab− B

2
√
A

)

− erf

(√
Aa− B

2
√
A

))

(G28)

∞∫

−∞

e−Ax2+Bx dx =

√
π

A
exp

{
B2

4A

}

(G29)

∞∫

0

e−Ax2+Bx dx =

√
π

4A
exp

{
B2

4A

}(

1 + erf

(
B

2
√
A

))

(G30)

0∫

−∞

e−Ax2+Bx dx =

√
π

4A
exp

{
B2

4A

}(

1− erf

(
B

2
√
A

))

(G31)

∞∫

a

e−Ax2+Bx dx =

√
π

4A
exp

{
B2

4A

}(

1− erf

(√
Aa− B

2
√
A

))

(G32)

b∫

−∞

e−Ax2+Bx dx =

√
π

4A
exp

{
B2

4A

}(

1 + erf

(√
Ab− B

2
√
A

))

(G33)

b∫

0

e−Ax2+Bx dx =

√
π

4A
exp

{
B2

4A

}(

erf

(√
Ab− B

2
√
A

)

+ erf

(
B

2
√
A

))

(G34)

0∫

a

e−Ax2+Bx dx =

√
π

4A
exp

{
B2

4A

}(

−erf

(√
Aa− B

2
√
A

)

− erf

(
B

2
√
A

))

(G35)

b∫

−b

e−Ax2+Bx dx =

√
π

4A
exp

{
B2

4A

}(

erf

(√
Ab− B

2
√
A

)

+ erf

(√
Ab+

B

2
√
A

))

(G36)
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G.3 Integrals of the form

b∫

a

xpe−Ax2+Bx
dx

In the following equations, p is an integer, where p ≥ 0, both A and B are coefficients, where

A > 0, a is the lower limit of integration, b is the upper limit of integration, erf (x) is the

error function, and the exponential function is written exp (x) or ex.

b∫

a

xpe−Ax2+Bx dx =
1

√
A

p+1 exp

{
B2

4A

} p
∑

r=0

p!

(p− r)! r!

(
B

2
√
A

)p−r

√
Ab− B

2
√
A∫

√
Aa− B

2
√

A

yre−y2dy (G37)

b∫

a

xpe−Ax2+Bx dx

=
1

√
A

p+1 exp

{
B2

4A

} p
∑

r=0

p!

(p− r)! r!

(
B

2
√
A

)p−r

×







1

2





r−1
2∑

t=0

(
r−1
2

)
!

t!

(√
Aa− B

2
√
A

)2t

exp

{

−
(√

Aa− B

2
√
A

)2
}

−
r−1
2∑

t=0

(
r−1
2

)
!

t!

(√
Ab− B

2
√
A

)2t

exp

{

−
(√

Ab− B

2
√
A

)2
}

 ;

when r is odd;

1

2





r
2∑

t=1

r! t!
(
r
2

)
! (2t)! 2r−2t

(√
Aa− B

2
√
A

)2t−1

exp

{

−
(√

Aa− B

2
√
A

)2
}

−
r
2∑

t=1

r! t!
(
r
2

)
! (2t)! 2r−2t

(√
Ab− B

2
√
A

)2t−1

exp

{

−
(√

Ab− B

2
√
A

)2
}



+
r!

(
r
2

)
! 2r

√
π

2

(

erf

(√
Ab− B

2
√
A

)

− erf

(√
Aa− B

2
√
A

))

;

when r is even.

(G38)
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∞∫

−∞

xpe−Ax2+Bx dx

=
1

√
A

p+1 exp

{
B2

4A

} p
∑

r=0

p!

(p− r)! r!

(
B

2
√
A

)p−r







0; when r is odd;

r!
(
r
2

)
! 2r

√
π; when r is even.

(G39)

This can be rewritten as

∞∫

−∞

xpe−Ax2+Bx dx =

√
π

√
A

p+1 exp

{
B2

4A

} ⌊ p
2⌋∑

r=0

p!

(p− 2r)! (2r)!

(
B

2
√
A

)p−2r
(2r)!

r! 22r
, (G40)

and can be further rewritten as

∞∫

−∞

xpe−Ax2+Bx dx =

√
π

A

1
(

2
√
A
)p exp

{
B2

4A

} ⌊ p
2⌋∑

r=0

p!

(p− 2r)! r!

(
B√
A

)p−2r

. (G41)

∞∫

0

xpe−Ax2+Bx dx

=
1

√
A

p+1 exp

{
B2

4A

} p
∑

r=0

p!

(p− r)! r!

(
B

2
√
A

)p−r

×







1

2

r−1
2∑

t=0

(
r−1
2

)
!

t!

(
B2

4A

)t

exp

{

−B2

4A

}

; when r is odd;

1

2

r
2∑

t=1

r! t!
(
r
2

)
! (2t)! 2r−2t

(

− B

2
√
A

)2t−1

exp

{

−B2

4A

}

+
r!

(
r
2

)
! 2r

√
π

2

(

1− erf

(

− B

2
√
A

))

; when r is even.

(G42)
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0∫

−∞

xpe−Ax2+Bx dx

=
1

√
A

p+1 exp

{
B2

4A

} p
∑

r=0

p!

(p− r)! r!

(
B

2
√
A

)p−r

×







− 1

2

r−1
2∑

t=0

(
r−1
2

)
!

t!

(
B2

4A

)t

exp

{

−B2

4A

}

; when r is odd;

− 1

2

r
2∑

t=1

r! t!
(
r
2

)
! (2t)! 2r−2t

(

− B

2
√
A

)2t−1

exp

{

−B2

4A

}

+
r!

(
r
2

)
! 2r

√
π

2

(

1 + erf

(

− B

2
√
A

))

; when r is even.

(G43)

∞∫

a

xpe−Ax2+Bx dx

=
1

√
A

p+1 exp

{
B2

4A

} p
∑

r=0

p!

(p− r)! r!

(
B

2
√
A

)p−r

×







1

2

r−1
2∑

t=0

(
r−1
2

)
!

t!

(√
Aa− B

2
√
A

)2t

exp

{

−
(√

Aa− B

2
√
A

)2
}

;

when r is odd;

1

2

r
2∑

t=1

r! t!
(
r
2

)
! (2t)! 2r−2t

(√
Aa− B

2
√
A

)2t−1

exp

{

−
(√

Aa− B

2
√
A

)2
}

+
r!

(
r
2

)
! 2r

√
π

2

(

1− erf

(√
Aa− B

2
√
A

))

;

when r is even.

(G44)
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b∫

−∞

xpe−Ax2+Bx dx

=
1

√
A

p+1 exp

{
B2

4A

} p
∑

r=0

p!

(p− r)! r!

(
B

2
√
A

)p−r

×







− 1

2

r−1
2∑

t=0

(
r−1
2

)
!

t!

(√
Ab− B

2
√
A

)2t

exp

{

−
(√

Ab− B

2
√
A

)2
}

;

when r is odd;

− 1

2

r
2∑

t=1

r! t!
(
r
2

)
! (2t)! 2r−2t

(√
Ab− B

2
√
A

)2t−1

exp

{

−
(√

Ab− B

2
√
A

)2
}

+
r!

(
r
2

)
! 2r

√
π

2

(

1 + erf

(√
Ab− B

2
√
A

))

;

when r is even.

(G45)
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b∫

0

xpe−Ax2+Bx dx

=
1

√
A

p+1 exp

{
B2

4A

} p
∑

r=0

p!

(p− r)! r!

(
B

2
√
A

)p−r

×







1

2





r−1
2∑

t=0

(
r−1
2

)
!

t!

(
B2

4A

)t

exp

{

−B2

4A

}

−
r−1
2∑

t=0

(
r−1
2

)
!

t!

(√
Ab− B

2
√
A

)2t

exp

{

−
(√

Ab− B

2
√
A

)2
}

 ;

when r is odd;

1

2





r
2∑

t=1

r! t!
(
r
2

)
! (2t)! 2r−2t

(

− B

2
√
A

)2t−1

exp

{

−B2

4A

}

−
r
2∑

t=1

r! t!
(
r
2

)
! (2t)! 2r−2t

(√
Ab− B

2
√
A

)2t−1

exp

{

−
(√

Ab− B

2
√
A

)2
}



+
r!

(
r
2

)
! 2r

√
π

2

(

erf

(√
Ab− B

2
√
A

)

+ erf

(
B

2
√
A

))

;

when r is even.

(G46)
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0∫

a

xpe−Ax2+Bx dx

=
1

√
A

p+1 exp

{
B2

4A

} p
∑

r=0

p!

(p− r)! r!

(
B

2
√
A

)p−r

×







1

2





r−1
2∑

t=0

(
r−1
2

)
!

t!

(√
Aa− B

2
√
A

)2t

exp

{

−
(√

Aa− B

2
√
A

)2
}

−
r−1
2∑

t=0

(
r−1
2

)
!

t!

(
B2

4A

)t

exp

{

−B2

4A

}


 ;

when r is odd;

1

2





r
2∑

t=1

r! t!
(
r
2

)
! (2t)! 2r−2t

(√
Aa− B

2
√
A

)2t−1

exp

{

−
(√

Aa− B

2
√
A

)2
}

−
r
2∑

t=1

r! t!
(
r
2

)
! (2t)! 2r−2t

(

− B

2
√
A

)2t−1

exp

{

−B2

4A

}




+
r!

(
r
2

)
! 2r

√
π

2

(

erf

(

− B

2
√
A

)

− erf

(√
Aa− B

2
√
A

))

;

when r is even.

(G47)
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b∫

−b

xpe−Ax2+Bx dx

=
1

√
A

p+1 exp

{
B2

4A

} p
∑

r=0

p!

(p− r)! r!

(
B

2
√
A

)p−r

×







1

2





r−1
2∑

t=0

(
r−1
2

)
!

t!

(√
Ab+

B

2
√
A

)2t

exp

{

−
(√
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B

2
√
A

)2
}

−
r−1
2∑

t=0

(
r−1
2

)
!

t!

(√
Ab− B

2
√
A

)2t

exp

{

−
(√

Ab− B

2
√
A

)2
}

 ;

when r is odd;

1

2





r
2∑

t=1

r! t!
(
r
2

)
! (2t)! 2r−2t

(

−
√
Ab− B

2
√
A

)2t−1

exp

{

−
(√

Ab+
B

2
√
A

)2
}

−
r
2∑

t=1

r! t!
(
r
2

)
! (2t)! 2r−2t

(√
Ab− B

2
√
A

)2t−1

exp

{

−
(√

Ab− B

2
√
A

)2
}



+
r!

(
r
2

)
! 2r

√
π

2

(

erf

(√
Ab− B

2
√
A

)

+ erf

(√
Ab+

B

2
√
A

))

;

when r is even.

(G48)
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G.4 Other related integrals

In the following equations, a is an integer, where a ≥ 0, both A and B are coefficients, where

A > 0, C is a coefficient, x is the overall mean of x, and the exponential function is written

exp (x) or ex.

∞∫

−∞

(x− x)a e−Ax2+Bx dx

=

√
π

A

1
(

2
√
A
)a exp

{
B2

4A

} ⌊a
2⌋∑

p=0

a!

(a− 2p)! p!

(
B√
A

− 2
√
Ax

)a−2p
(G49)

∞∫

−∞

(x+ C)a e−Ax2+Bx dx

=

√
π

A

1
(

2
√
A
)a exp

{
B2

4A

} ⌊a
2⌋∑

p=0

a!

(a− 2p)! p!

(
B√
A

+ 2
√
AC

)a−2p
(G50)
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Appendix H: Integrals Related to the Parabolic

Cylinder Function

In the following equations, A, B, and z are coefficients, where A > 0, Γ (x) is the gamma

function, Dν (x) is the parabolic cylinder function of order ν, the exponential function is

written exp (x) or ex, and α is an exponent where α > 0.

The integral form of the parabolic cylinder function is given by (multiple sources)

∞∫

0

xαe−
1
2
x2−zxdx = exp

{
1

4
z2
}

Γ (α + 1)D−(α+1) (z) ,

and can also be written as

∞∫

0

xαe−Ax2+Bxdx =
1

√
2A

α+1 exp

{
B2

8A

}

Γ (α + 1)D−(α+1)

( −B√
2A

)

. (H1)

It can also be used to solve

0∫

−∞

xαe−Ax2+Bxdx =
(−1)α

√
2A

α+1 exp

{
B2

8A

}

Γ (α + 1)D−(α+1)

(
B√
2A

)

, (H2)

where (−1)α must not be a complex number.
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Appendix I: Multivariate PDF Integrals of General

Mixed Moment Form

I.1 Quadrivariate General Mixed Moment Integral

The quadrivariate integral of general mixed moment form is solved by splitting it into two

integrals, such that

∞∫

−∞

∞∫

−∞

∞∫

0

∞∫

0

(

x1 − C1

)a(

xα
2 (H (−x2))

α xβ
3x

γ
4 − C2

)b

PNNLL (x1, x2, x3, x4) dx4 dx3 dx2 dx1 =

∞∫

−∞

0∫

−∞

∞∫

0

∞∫

0

(

x1 − C1

)a(

xα
2 (H (−x2))

α xβ
3x

γ
4 − C2

)b

PNNLL (x1, x2, x3, x4) dx4 dx3 dx2 dx1

+

∞∫

−∞

∞∫

0

∞∫

0

∞∫

0

(

x1 − C1

)a(

xα
2 (H (−x2))

α xβ
3x

γ
4 − C2

)b

PNNLL (x1, x2, x3, x4) dx4 dx3 dx2 dx1;

where both a and b are positive integers, both C1 and C2 are constants, and α > 0. Addition-

ally, (−1)α must not be a complex number. The quadrivariate PDF, PNNLL (x1, x2, x3, x4), is

a normal-normal-lognormal-lognormal PDF, meaning that the individual marginals of both

x1 and x2 are normal distributions and the individual marginals of both x3 and x4 are log-

normal distributions. The Heaviside step function is denoted H (x). These two integrals can

be reduced to

∞∫

−∞

∞∫

−∞

∞∫

0

∞∫

0

(

x1 − C1

)a(

xα
2 (H (−x2))

α xβ
3x

γ
4 − C2

)b

PNNLL (x1, x2, x3, x4) dx4 dx3 dx2 dx1

=

∞∫

−∞

0∫

−∞

∞∫

0

∞∫

0

(

x1 − C1

)a(

xα
2x

β
3x

γ
4 − C2

)b

PNNLL (x1, x2, x3, x4) dx4 dx3 dx2 dx1

+

∞∫

−∞

∞∫

0

(

x1 − C1

)a(

− C2

)b

PNN (x1, x2) dx2 dx1;
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where the bivariate PDF, PNN (x1, x2), is a normal-normal PDF, since both x1 and x2 are

normal distributions.

I.1.1 Quadrivariate Integral

The general form of the quadrivariate “lower” integral is

GQL =

∞∫

−∞

0∫

−∞

∞∫

0

∞∫

0

(

x1 − C1

)a(

xα
2x

β
3x

γ
4 − C2

)b

PNNLL (x1, x2, x3, x4) dx4 dx3 dx2 dx1.

When x1, x2, x3, and x4 all vary (σx1 > 0, σx2 > 0, σx3 > 0, and σx4 > 0), the integral is

solved by first integrating over x4 using Eq. (G29), then integrating over x3 using Eq. (G29),

then integrating over x1 using Eq. (G50), and then integrating over x2 using Eq. (H2). The

solution to the integral, denoted GQL, is

GQL=

⌊a
2⌋∑

p=0

a−2p
∑

r=0

b∑

q=0

1√
2π

a!

(a− 2p)! p!

(a− 2p)!

(a− 2p− r)! r!

b!

(b− q)! q!

(
− C2

)b−q

×
(
− σx2

)αq
[
1

2

(
1− ρ 2

x1,x2

)
σ2
x1

]p
(
− ρx1,x2σx1

)r

×
(

µx1 − C1 −
µx2

σx2

ρx1,x2σx1 + (ρ̃x1,x3 − ρx1,x2 ρ̃x2,x3) σx1σ̃x3βq

+ (ρ̃x1,x4 − ρx1,x2 ρ̃x2,x4) σx1 σ̃x4γq

)a−2p−r

× exp

{

µ̃x3βq + µ̃x4γq +
1

2

(
1− ρ̃ 2

x2,x3

)
σ̃2
x3
β2q2

+
1

2

(
1− ρ̃ 2

x2,x4

)
σ̃2
x4
γ2q2 + (ρ̃x3,x4 − ρ̃x2,x3 ρ̃x2,x4) σ̃x3βσ̃x4γq

2

}

× exp

{

1

4
ς2 − µx2

σx2

ς +
1

2

µ2
x2

σ2
x2

}

Γ (αq + r + 1)D−(αq+r+1) (ς) ;

(I1)

where ς =
µx2

σx2

+ ρ̃x2,x3σ̃x3βq + ρ̃x2,x4σ̃x4γq.
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The gamma function is denoted Γ (x) and the parabolic cylinder function of order ν is

denoted Dν (x). Additionally, µx1 and σx1 denote the mean and standard deviation of x1

in the quadrivariate PDF, µx2 and σx2 denote the mean and standard deviation of x2 in

the quadrivariate PDF, µx3 and σx3 denote the mean and standard deviation of x3 in the

quadrivariate PDF, and µx4 and σx4 denote the mean and standard deviation of x4 in the

quadrivariate PDF. For lognormal variates, µ̃x3 and σ̃x3 denote the mean and standard

deviation of ln x3 in the quadrivariate PDF, while µ̃x4 and σ̃x4 denote the mean and standard

deviation of ln x4 in the quadrivariate PDF. The correlation of x1 and x2 is denoted ρx1,x2 ,

the correlation of x1 and ln x3 is denoted ρ̃x1,x3 , the correlation of x1 and ln x4 is denoted

ρ̃x1,x4 , the correlation of x2 and ln x3 is denoted ρ̃x2,x3 , the correlation of x2 and ln x4 is

denoted ρ̃x2,x4 , and the correlation of ln x3 and ln x4 is denoted ρ̃x3,x4 .

When one or more of the variables is constant (has a standard deviation of 0), the

integral simplifies and reduces. The above integral has 16 sub-forms (including the fully-

varying solution). There are four sub-forms that contain one constant variable. When x1 is

constant, but x2, x3, and x4 vary, the solution is

GQL =
b∑

q=0

1√
2π

(
µx1 − C1

)a b!

(b− q)! q!

(
− C2

)b−q(− σx2

)αq

× exp

{

µ̃x3βq + µ̃x4γq +
1

2

(
1− ρ̃ 2

x2,x3

)
σ̃2
x3
β2q2

+
1

2

(
1− ρ̃ 2

x2,x4

)
σ̃2
x4
γ2q2 + (ρ̃x3,x4 − ρ̃x2,x3 ρ̃x2,x4) σ̃x3βσ̃x4γq

2

}

× exp

{

1

4
ς2 − µx2

σx2

ς +
1

2

µ2
x2

σ2
x2

}

Γ (αq + 1)D−(αq+1) (ς) ;

(I2)

where ς =
µx2

σx2

+ ρ̃x2,x3σ̃x3βq + ρ̃x2,x4σ̃x4γq.
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When x2 is constant, but x1, x3, and x4 vary, the solution is

GQL =

⌊a
2⌋∑

p=0

b∑

q=0

a!

(a− 2p)! p!

b!

(b− q)! q!

(
− C2

)b−q
µαq
x2

(
1

2
σ2
x1

)p

×
(

µx1 − C1 + ρ̃x1,x3σx1 σ̃x3βq + ρ̃x1,x4σx1σ̃x4γq

)a−2p

× exp

{

µ̃x3βq + µ̃x4γq +
1

2
σ̃2
x3
β2q2 +

1

2
σ̃2
x4
γ2q2 + ρ̃x3,x4 σ̃x3βσ̃x4γq

2

}

,

(I3)

when µx2 ≤ 0; otherwise GQL = 0 when µx2 > 0 because the limits of integration for GQL

are outside the domain of the PDF in this special case. When x3 is constant, but x1, x2,

and x4 vary, the solution is

GQL=

⌊a
2⌋∑

p=0

a−2p
∑

r=0

b∑

q=0

1√
2π

a!

(a− 2p)! p!

(a− 2p)!

(a− 2p− r)! r!

b!

(b− q)! q!

(
− C2

)b−q

×
(
− σx2

)αq
[
1

2

(
1− ρ 2

x1,x2

)
σ2
x1

]p
(
− ρx1,x2σx1

)r
µβq
x3

×
(

µx1 − C1 −
µx2

σx2

ρx1,x2σx1 + (ρ̃x1,x4 − ρx1,x2 ρ̃x2,x4) σx1σ̃x4γq

)a−2p−r

× exp

{

µ̃x4γq +
1

2
σ̃2
x4
γ2q2 − 1

4
ς2

}

Γ (αq + r + 1)D−(αq+r+1) (ς) ;

(I4)

where ς =
µx2

σx2

+ ρ̃x2,x4σ̃x4γq.

When x4 is constant, but x1, x2, and x3 vary, the solution is

GQL=

⌊a
2⌋∑

p=0

a−2p
∑

r=0

b∑

q=0

1√
2π

a!

(a− 2p)! p!

(a− 2p)!

(a− 2p− r)! r!

b!

(b− q)! q!

(
− C2

)b−q

×
(
− σx2

)αq
[
1

2

(
1− ρ 2

x1,x2

)
σ2
x1

]p
(
− ρx1,x2σx1

)r
µγq
x4

×
(

µx1 − C1 −
µx2

σx2

ρx1,x2σx1 + (ρ̃x1,x3 − ρx1,x2 ρ̃x2,x3) σx1σ̃x3βq

)a−2p−r

× exp

{

µ̃x3βq +
1

2
σ̃2
x3
β2q2 − 1

4
ς2

}

Γ (αq + r + 1)D−(αq+r+1) (ς) ;

(I5)
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where ς =
µx2

σx2

+ ρ̃x2,x3σ̃x3βq.

There are six sub-forms that contain two constant variables. When both x1 and x2 are

constant, but both x3 and x4 vary, the solution is

GQL =
b∑

q=0

(
µx1 − C1

)a b!

(b− q)! q!

(
− C2

)b−q
µαq
x2

× exp

{

µ̃x3βq + µ̃x4γq +
1

2
σ̃2
x3
β2q2 +

1

2
σ̃2
x4
γ2q2 + ρ̃x3,x4σ̃x3βσ̃x4γq

2

}

,

(I6)

when µx2 ≤ 0; otherwise GQL = 0 when µx2 > 0. When both x1 and x3 are constant, but

both x2 and x4 vary, the solution is

GQL =
b∑

q=0

1√
2π

(
µx1 − C1

)a b!

(b− q)! q!

(
− C2

)b−q(− σx2

)αq
µβq
x3

× exp

{

µ̃x4γq +
1

2
σ̃2
x4
γ2q2 − 1

4
ς2

}

Γ (αq + 1)D−(αq+1) (ς) ;

(I7)

where ς =
µx2

σx2

+ ρ̃x2,x4σ̃x4γq.

When both x1 and x4 are constant, but both x2 and x3 vary, the solution is

GQL =
b∑

q=0

1√
2π

(
µx1 − C1

)a b!

(b− q)! q!

(
− C2

)b−q(− σx2

)αq
µγq
x4

× exp

{

µ̃x3βq +
1

2
σ̃2
x3
β2q2 − 1

4
ς2

}

Γ (αq + 1)D−(αq+1) (ς) ;

(I8)

where ς =
µx2

σx2

+ ρ̃x2,x3σ̃x3βq.
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When both x2 and x3 are constant, but both x1 and x4 vary, the solution is

GQL =

⌊a
2⌋∑

p=0

b∑

q=0

a!

(a− 2p)! p!

b!

(b− q)! q!

(
− C2

)b−q
µαq
x2

µβq
x3

(
1

2
σ2
x1

)p

×
(

µx1 − C1 + ρ̃x1,x4σx1 σ̃x4γq

)a−2p

exp

{

µ̃x4γq +
1

2
σ̃2
x4
γ2q2

}

,

(I9)

when µx2 ≤ 0; otherwise GQL = 0 when µx2 > 0. When both x2 and x4 are constant, but

both x1 and x3 vary, the solution is

GQL =

⌊a
2⌋∑

p=0

b∑

q=0

a!

(a− 2p)! p!

b!

(b− q)! q!

(
− C2

)b−q
µαq
x2

µγq
x4

(
1

2
σ2
x1

)p

×
(

µx1 − C1 + ρ̃x1,x3σx1 σ̃x3βq

)a−2p

exp

{

µ̃x3βq +
1

2
σ̃2
x3
β2q2

}

,

(I10)

when µx2 ≤ 0; otherwise GQL = 0 when µx2 > 0. When both x3 and x4 are constant, but

both x1 and x2 vary, the solution is

GQL =

⌊a
2⌋∑

p=0

a−2p
∑

r=0

b∑

q=0

1√
2π

a!

(a− 2p)! p!

(a− 2p)!

(a− 2p− r)! r!

b!

(b− q)! q!

(
− C2

)b−q

×
(
− σx2

)αq
[
1

2

(
1− ρ 2

x1,x2

)
σ2
x1

]p
(
− ρx1,x2σx1

)r
µβq
x3
µγq
x4

×
(

µx1 − C1 −
µx2

σx2

ρx1,x2σx1

)a−2p−r

× exp

{

− 1

4

µ2
x2

σ2
x2

}

Γ (αq + r + 1)D−(αq+r+1)

(
µx2

σx2

)

.

(I11)

There are four sub-forms that contain three constant variables. When x1, x2, and x3 are

constant, but x4 varies, the solution is

GQL =
b∑

q=0

(
µx1 − C1

)a b!

(b− q)! q!

(
− C2

)b−q
µαq
x2

µβq
x3
exp

{

µ̃x4γq +
1

2
σ̃2
x4
γ2q2

}

, (I12)
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when µx2 ≤ 0; otherwise GQL = 0 when µx2 > 0. When x1, x2, and x4 are constant, but x3

varies, the solution is

GQL =
b∑

q=0

(
µx1 − C1

)a b!

(b− q)! q!

(
− C2

)b−q
µαq
x2

µγq
x4
exp

{

µ̃x3βq +
1

2
σ̃2
x3
β2q2

}

, (I13)

when µx2 ≤ 0; otherwise GQL = 0 when µx2 > 0. When x1, x3, and x4 are constant, but x2

varies, the solution is

GQL =
b∑

q=0

1√
2π

(
µx1 − C1

)a b!

(b− q)! q!

(
− C2

)b−q(− σx2

)αq
µβq
x3
µγq
x4

× exp

{

− 1

4

µ2
x2

σ2
x2

}

Γ (αq + 1)D−(αq+1)

(
µx2

σx2

)

.

(I14)

When x2, x3, and x4 are constant, but x1 varies, the solution is

GQL =

⌊a
2⌋∑

p=0

a!

(a− 2p)! p!

(
1

2
σ2
x1

)p
(
µx1 − C1

)a−2p(
µα
x2
µβ
x3
µγ
x4

− C2

)b
, (I15)

when µx2 ≤ 0; otherwise GQL = 0 when µx2 > 0. When x1, x2, x3, and x4 are all constant

(σx1 = 0, σx2 = 0, σx3 = 0, and σx4 = 0), the solution is

GQL =
(
µx1 − C1

)a(
µα
x2
µβ
x3
µγ
x4

− C2

)b
, (I16)

when µx2 ≤ 0; otherwise GQL = 0 when µx2 > 0.

I.1.2 Bivariate Integral

The general form of the bivariate “upper” integral is

GBU =

∞∫

−∞

∞∫

0

(

x1 − C1

)a(

− C2

)b

PNN (x1, x2) dx2 dx1.
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When both x1 and x2 vary (σx1 > 0 and σx2 > 0), the solution to the main integral is

∞∫

−∞

∞∫

0

(

x1 − C1

)a

PNN (x1, x2) dx2 dx1

=

⌊a
2⌋∑

p=0

a−2p
∑

r=0

1√
2π

a!

(a− 2p)! p!

(a− 2p)!

(a− 2p− r)! r!

×
[
1

2

(
1− ρ 2

x1,x2

)
σ2
x1

]p(

ρx1,x2σx1

)r(

µx1 − C1 −
µx2

σx2

ρx1,x2σx1

)a−2p−r

× exp

{

− 1

4

µ2
x2

σ2
x2

}

Γ (r + 1)D−(r+1)

(

−µx2

σx2

)

,

(I17)

and the solution to GBU is

GBU =

⌊a
2⌋∑

p=0

a−2p
∑

r=0

1√
2π

a!

(a− 2p)! p!

(a− 2p)!

(a− 2p− r)! r!

(
− C2

)b

×
[
1

2

(
1− ρ 2

x1,x2

)
σ2
x1

]p(

ρx1,x2σx1

)r(

µx1 − C1 −
µx2

σx2

ρx1,x2σx1

)a−2p−r

× exp

{

− 1

4

µ2
x2

σ2
x2

}

Γ (r + 1)D−(r+1)

(

−µx2

σx2

)

.

(I18)

When x1 is constant, but x2 varies, the solution is

GBU =
(

µx1 − C1

)a(

− C2

)b 1

2

(

1 + erf

(

µx2√
2σx2

))

. (I19)

When x2 is constant, but x1 varies, the solution is

GBU =

⌊a
2⌋∑

p=0

a!

(a− 2p)! p!

(

− C2

)b(
1

2
σ2
x1

)p(

µx1 − C1

)a−2p

, (I20)

when µx2 > 0; otherwise GBU = 0 when µx2 ≤ 0 because the limits of integration for GBU

are outside the domain of the PDF in this special case. When both x1 and x2 are constant
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(σx1 = 0 and σx2 = 0), the solution is

GBU =
(

µx1 − C1

)a(

− C2

)b

, (I21)

when µx2 > 0; otherwise GBU = 0 when µx2 ≤ 0.

I.2 Trivariate General Mixed Moment Integral

The trivariate integral of general mixed moment form is solved by splitting it into two

integrals, such that

∞∫

−∞

∞∫

−∞

∞∫

0

(

x1 − C1

)a(

xα
2 (H (x2))

α xβ
3 − C2

)b

PNNL (x1, x2, x3) dx3 dx2 dx1 =

∞∫

−∞

0∫

−∞

∞∫

0

(

x1 − C1

)a(

xα
2 (H (x2))

α xβ
3 − C2

)b

PNNL (x1, x2, x3) dx3 dx2 dx1

+

∞∫

−∞

∞∫

0

∞∫

0

(

x1 − C1

)a(

xα
2 (H (x2))

α xβ
3 − C2

)b

PNNL (x1, x2, x3) dx3 dx2 dx1;

where both a and b are positive integers, both C1 and C2 are constants, and α > 0. The

trivariate PDF, PNNL (x1, x2, x3), is a normal-normal-lognormal PDF, meaning that the

individual marginals of both x1 and x2 are normal distributions and the individual marginal

of x3 is a lognormal distribution. These two integrals can be reduced to

∞∫

−∞

∞∫

−∞

∞∫

0

(

x1 − C1

)a(

xα
2 (H (x2))

α xβ
3 − C2

)b

PNNL (x1, x2, x3) dx3 dx2 dx1

=

∞∫

−∞

0∫

−∞

(

x1 − C1

)a(

− C2

)b

PNN (x1, x2) dx2 dx1

+

∞∫

−∞

∞∫

0

∞∫

0

(

x1 − C1

)a(

xα
2x

β
3 − C2

)b

PNNL (x1, x2, x3) dx3 dx2 dx1;
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where the bivariate PDF, PNN (x1, x2), is a normal-normal PDF, since both x1 and x2 are

normal distributions.

I.2.1 Trivariate Integral

The general form of the trivariate “upper” integral is

GTU =

∞∫

−∞

∞∫

0

∞∫

0

(

x1 − C1

)a(

xα
2x

β
3 − C2

)b

PNNL (x1, x2, x3) dx3 dx2 dx1.

When x1, x2, and x3 all vary (σx1 > 0, σx2 > 0, and σx3 > 0), the integral is solved by

first integrating over x3 using Eq. (G29), then integrating over x1 using Eq. (G50), and then

integrating over x2 using Eq. (H1). The solution to the integral, denoted GTU , is

GTU =

⌊a
2⌋∑

p=0

a−2p
∑

r=0

b∑

q=0

1√
2π

a!

(a− 2p)! p!

(a− 2p)!

(a− 2p− r)! r!

b!

(b− q)! q!

(
− C2

)b−q

× σ αq
x2

[
1

2

(
1− ρ 2

x1,x2

)
σ2
x1

]p
(
ρx1,x2σx1

)r

×
(

µx1 − C1 −
µx2

σx2

ρx1,x2σx1

+ (ρ̃x1,x3 − ρx1,x2 ρ̃x2,x3) σx1σ̃x3βq

)a−2p−r

× exp

{

µ̃x3βq +
1

2
σ̃2
x3
β2q2 − 1

4
ς2

}

Γ (αq + r + 1)D−(αq+r+1) (−ς) ;

(I22)

where ς =
µx2

σx2

+ ρ̃x2,x3σ̃x3βq.
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There are three sub-forms that contain one constant variable. When x1 is constant, but x2

and x3 vary, the solution is

GTU =
b∑

q=0

1√
2π

(
µx1 − C1

)a b!

(b− q)! q!

(
− C2

)b−q
σ αq
x2

× exp

{

µ̃x3βq +
1

2
σ̃2
x3
β2q2 − 1

4
ς2

}

Γ (αq + 1)D−(αq+1) (−ς) ;

(I23)

where ς =
µx2

σx2

+ ρ̃x2,x3σ̃x3βq.

When x2 is constant, but both x1 and x3 vary, the solution is

GTU =

⌊a
2⌋∑

p=0

b∑

q=0

a!

(a− 2p)! p!

b!

(b− q)! q!

(
− C2

)b−q
µαq
x2

(
1

2
σ2
x1

)p

×
(

µx1 − C1 + ρ̃x1,x3σx1 σ̃x3βq

)a−2p

exp

{

µ̃x3βq +
1

2
σ̃2
x3
β2q2

}

,

(I24)

when µx2 ≥ 0; otherwise GTU = 0 when µx2 < 0 because the limits of integration for GTU

are outside the domain of the PDF in this special case. When x3 is constant, but both x1

and x2 vary, the solution is

GTU =

⌊a
2⌋∑

p=0

a−2p
∑

r=0

b∑

q=0

1√
2π

a!

(a− 2p)! p!

(a− 2p)!

(a− 2p− r)! r!

b!

(b− q)! q!

(
− C2

)b−q

× σ αq
x2

[
1

2

(
1− ρ 2

x1,x2

)
σ2
x1

]p
(
ρx1,x2σx1

)r
µβq
x3

×
(

µx1 − C1 −
µx2

σx2

ρx1,x2σx1

)a−2p−r

× exp

{

− 1

4

µ2
x2

σ2
x2

}

Γ (αq + r + 1)D−(αq+r+1)

(

−µx2

σx2

)

.

(I25)

There are three sub-forms that contain two constant variables. When both x1 and x2 are
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constant, but x3 varies, the solution is

GTU =
b∑

q=0

(
µx1 − C1

)a b!

(b− q)! q!

(
− C2

)b−q
µαq
x2

exp

{

µ̃x3βq +
1

2
σ̃2
x3
β2q2

}

, (I26)

when µx2 ≥ 0; otherwise GTU = 0 when µx2 < 0. When both x1 and x3 are constant, but x2

varies, the solution is

GTU =
b∑

q=0

1√
2π

(
µx1 − C1

)a b!

(b− q)! q!

(
− C2

)b−q
σ αq
x2
µβq
x3

× exp

{

− 1

4

µ2
x2

σ2
x2

}

Γ (αq + 1)D−(αq+1)

(

−µx2

σx2

)

.

(I27)

When both x2 and x3 are constant, but x1 varies, the solution is

GTU =

⌊a
2⌋∑

p=0

a!

(a− 2p)! p!

(
1

2
σ2
x1

)p
(
µx1 − C1

)a−2p(
µα
x2
µβ
x3

− C2

)b
, (I28)

when µx2 ≥ 0; otherwise GTU = 0 when µx2 < 0. When x1, x2, and x3 are all constant

(σx1 = 0, σx2 = 0, and σx3 = 0), the solution is

GTU =
(
µx1 − C1

)a(
µα
x2
µβ
x3

− C2

)b
, (I29)

when µx2 ≥ 0; otherwise GTU = 0 when µx2 < 0.

I.2.2 Bivariate Integral

The general form of the bivariate “lower” integral is

GBL =

∞∫

−∞

0∫

−∞

(

x1 − C1

)a(

− C2

)b

PNN (x1, x2) dx2 dx1.
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When both x1 and x2 vary (σx1 > 0 and σx2 > 0), the solution to the main integral is

∞∫

−∞

0∫

−∞

(

x1 − C1

)a

PNN (x1, x2) dx2 dx1

=

⌊a
2⌋∑

p=0

a−2p
∑

r=0

1√
2π

a!

(a− 2p)! p!

(a− 2p)!

(a− 2p− r)! r!

×
[
1

2

(
1− ρ 2

x1,x2

)
σ2
x1

]p(

− ρx1,x2σx1

)r(

µx1 − C1 −
µx2

σx2

ρx1,x2σx1

)a−2p−r

× exp

{

− 1

4

µ2
x2

σ2
x2

}

Γ (r + 1)D−(r+1)

(
µx2

σx2

)

,

(I30)

and the solution to GBL is

GBL =

⌊a
2⌋∑

p=0

a−2p
∑

r=0

1√
2π

a!

(a− 2p)! p!

(a− 2p)!

(a− 2p− r)! r!

(
− C2

)b
[
1

2

(
1− ρ 2

x1,x2

)
σ2
x1

]p

×
(

− ρx1,x2σx1

)r(

µx1 − C1 −
µx2

σx2

ρx1,x2σx1

)a−2p−r

× exp

{

− 1

4

µ2
x2

σ2
x2

}

Γ (r + 1)D−(r+1)

(
µx2

σx2

)

.

(I31)

When x1 is constant, but x2 varies, the solution is

GBL =
(

µx1 − C1

)a(

− C2

)b 1

2

(

1− erf

(

µx2√
2σx2

))

. (I32)

When x2 is constant, but x1 varies, the solution is

GBL =

⌊a
2⌋∑

p=0

a!

(a− 2p)! p!

(

− C2

)b(
1

2
σ2
x1

)p(

µx1 − C1

)a−2p

, (I33)

when µx2 < 0; otherwise GBL = 0 when µx2 ≥ 0 because the limits of integration for GBL

are outside the domain of the PDF in this special case. When both x1 and x2 are constant
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(σx1 = 0 and σx2 = 0), the solution is

GBL =
(

µx1 − C1

)a(

− C2

)b

, (I34)

when µx2 < 0; otherwise GBL = 0 when µx2 ≥ 0.
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Appendix J: Multivariate PDF Integrals of Covariance

and Mean Forms

J.1 Quadrivariate PDF Integrals of Covariance Form

The integrals of the general form

GQC =

∞∫

−∞

∞∫

−∞

∞∫

0

∞∫

0

(

x1 − C1

)(

xα
2 (H (−x2))

α xβ
3x

γ
4 − C2

)

× PNNLL (x1, x2, x3, x4) dx4 dx3 dx2 dx1

are referred to as quadrivariate PDF integrals of covariance form. Both C1 and C2 are

constants, and when they both represent the appropriate overall mean values, the resulting

integral is a covariance. The quadrivariate PDF, PNNLL (x1, x2, x3, x4), is a normal-normal-

lognormal-lognormal PDF, meaning that the individual marginals of both x1 and x2 are

normal distributions and the individual marginals of both x3 and x4 are lognormal distribu-

tions. The Heaviside step function is denoted H (x). The above integral has 16 sub-forms.

When one or more of the variables is constant (has a standard deviation of 0), the integral

simplifies and reduces.

In the solutions below, denoted GQC , µx1 and σx1 denote the mean and standard deviation

of x1 in the quadrivariate PDF, µx2 and σx2 denote the mean and standard deviation of x2

in the quadrivariate PDF, µx3 and σx3 denote the mean and standard deviation of x3 in

the quadrivariate PDF, and µx4 and σx4 denote the mean and standard deviation of x4 in

the quadrivariate PDF. For lognormal variates, µ̃x3 and σ̃x3 denote the mean and standard

deviation of ln x3 in the quadrivariate PDF, while µ̃x4 and σ̃x4 denote the mean and standard

deviation of ln x4 in the quadrivariate PDF. The correlation of x1 and x2 is denoted ρx1,x2 ,

the correlation of x1 and ln x3 is denoted ρ̃x1,x3 , the correlation of x1 and ln x4 is denoted
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ρ̃x1,x4 , the correlation of x2 and ln x3 is denoted ρ̃x2,x3 , the correlation of x2 and ln x4 is

denoted ρ̃x2,x4 , and the correlation of ln x3 and ln x4 is denoted ρ̃x3,x4 . The gamma function

is denoted Γ (x) and the parabolic cylinder function of order ν is denoted Dν (x).

When x1, x2, x3, and x4 all vary (σx1 > 0, σx2 > 0, σx3 > 0, and σx4 > 0), the solution is

GQC =
1√
2π

(−σx2)
α exp

{

µ̃x3β + µ̃x4γ +
1

2

(
1− ρ̃ 2

x2,x3

)
σ̃2
x3
β2

+
1

2

(
1− ρ̃ 2

x2,x4

)
σ̃2
x4
γ2 + (ρ̃x3,x4 − ρ̃x2,x3 ρ̃x2,x4) σ̃x3βσ̃x4γ

}

× exp

{

1

4
ς2 − µx2

σx2

ς +
1

2

µ2
x2

σ2
x2

}

×
(

− ρx1,x2σx1Γ (α + 2)D−(α+2) (ς)

+

(

µx1 − C1 −
µx2

σx2

ρx1,x2σx1 + (ρ̃x1,x3 − ρx1,x2 ρ̃x2,x3) σx1 σ̃x3β

+ (ρ̃x1,x4 − ρx1,x2 ρ̃x2,x4) σx1 σ̃x4γ

)

Γ (α + 1)D−(α+1) (ς)

)

− C2 (µx1 − C1) ;

(J1)

where ς =
µx2

σx2

+ ρ̃x2,x3σ̃x3β + ρ̃x2,x4 σ̃x4γ.

There are four sub-forms that contain one constant variable. When x1 is constant, but x2,

150



x3, and x4 vary, the solution is

GQC =
1√
2π

(µx1 − C1) (−σx2)
α

× exp

{

µ̃x3β + µ̃x4γ +
1

2

(
1− ρ̃ 2

x2,x3

)
σ̃2
x3
β2

+
1

2

(
1− ρ̃ 2

x2,x4

)
σ̃2
x4
γ2 + (ρ̃x3,x4 − ρ̃x2,x3 ρ̃x2,x4) σ̃x3βσ̃x4γ

}

× exp

{

1

4
ς2 − µx2

σx2

ς +
1

2

µ2
x2

σ2
x2

}

Γ (α + 1)D−(α+1) (ς)

− C2 (µx1 − C1) ;

(J2)

where ς =
µx2

σx2

+ ρ̃x2,x3σ̃x3β + ρ̃x2,x4 σ̃x4γ.

When x2 is constant, but x1, x3, and x4 vary, the solution is

GQC =







µα
x2

(

µx1 − C1 + ρ̃x1,x3σx1σ̃x3β + ρ̃x1,x4σx1σ̃x4γ
)

× exp

{

µ̃x3β + µ̃x4γ +
1

2
σ̃2
x3
β2 +

1

2
σ̃2
x4
γ2 + ρ̃x3,x4 σ̃x3βσ̃x4γ

}

−C2 (µx1 − C1) , when µx2 ≤ 0; and

−C2 (µx1 − C1) , when µx2 > 0.

(J3)

151



When x3 is constant, but x1, x2, and x4 vary, the solution is

GQC =
1√
2π

(−σx2)
α µβ

x3
exp

{

µ̃x4γ +
1

2
σ̃2
x4
γ2 − 1

4
ς2

}

×
(

− ρx1,x2σx1Γ (α + 2)D−(α+2) (ς)

+

(

µx1 − C1 −
µx2

σx2

ρx1,x2σx1 + (ρ̃x1,x4 − ρx1,x2 ρ̃x2,x4) σx1 σ̃x4γ

)

× Γ (α + 1)D−(α+1) (ς)

)

− C2 (µx1 − C1) ;

(J4)

where ς =
µx2

σx2

+ ρ̃x2,x4σ̃x4γ.

When x4 is constant, but x1, x2, and x3 vary, the solution is

GQC =
1√
2π

(−σx2)
α µγ

x4
exp

{

µ̃x3β +
1

2
σ̃2
x3
β2 − 1

4
ς2

}

×
(

− ρx1,x2σx1Γ (α + 2)D−(α+2) (ς)

+

(

µx1 − C1 −
µx2

σx2

ρx1,x2σx1 + (ρ̃x1,x3 − ρx1,x2 ρ̃x2,x3) σx1 σ̃x3β

)

× Γ (α + 1)D−(α+1) (ς)

)

− C2 (µx1 − C1) ;

(J5)

where ς =
µx2

σx2

+ ρ̃x2,x3σ̃x3β.

There are six sub-forms that contain two constant variables. When both x1 and x2 are
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constant, but both x3 and x4 vary, the solution is

GQC =







(µx1 − C1)µ
α
x2
exp

{

µ̃x3β + µ̃x4γ +
1

2
σ̃2
x3
β2 +

1

2
σ̃2
x4
γ2 + ρ̃x3,x4σ̃x3βσ̃x4γ

}

−C2 (µx1 − C1) , when µx2 ≤ 0; and

−C2 (µx1 − C1) , when µx2 > 0.

(J6)

When both x1 and x3 are constant, but both x2 and x4 vary, the solution is

GQC =
1√
2π

(µx1 − C1) (−σx2)
α µβ

x3
exp

{

µ̃x4γ +
1

2
σ̃2
x4
γ2 − 1

4
ς2

}

Γ (α + 1)D−(α+1) (ς)

− C2 (µx1 − C1) ;

(J7)

where ς =
µx2

σx2

+ ρ̃x2,x4σ̃x4γ.

When both x1 and x4 are constant, but both x2 and x3 vary, the solution is

GQC =
1√
2π

(µx1 − C1) (−σx2)
α µγ

x4
exp

{

µ̃x3β +
1

2
σ̃2
x3
β2 − 1

4
ς2

}

Γ (α + 1)D−(α+1) (ς)

− C2 (µx1 − C1) ;

(J8)

where ς =
µx2

σx2

+ ρ̃x2,x3σ̃x3β.

When both x2 and x3 are constant, but both x1 and x4 vary, the solution is

GQC =







µα
x2
µβ
x3

(

µx1 − C1 + ρ̃x1,x4σx1 σ̃x4γ
)

exp

{

µ̃x4γ +
1

2
σ̃2
x4
γ2

}

−C2 (µx1 − C1) , when µx2 ≤ 0; and

−C2 (µx1 − C1) , when µx2 > 0.

(J9)
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When both x2 and x4 are constant, but both x1 and x3 vary, the solution is

GQC =







µα
x2
µγ
x4

(

µx1 − C1 + ρ̃x1,x3σx1 σ̃x3β
)

exp

{

µ̃x3β +
1

2
σ̃2
x3
β2

}

−C2 (µx1 − C1) , when µx2 ≤ 0; and

−C2 (µx1 − C1) , when µx2 > 0.

(J10)

When both x3 and x4 are constant, but both x1 and x2 vary, the solution is

GQC =
1√
2π

(−σx2)
α µβ

x3
µγ
x4
exp

{

− 1

4

µ2
x2

σ2
x2

}

×
(

− ρx1,x2σx1Γ (α + 2)D−(α+2)

(
µx2

σx2

)

+

(

µx1 − C1 −
µx2

σx2

ρx1,x2σx1

)

Γ (α + 1)D−(α+1)

(
µx2

σx2

))

− C2 (µx1 − C1) .

(J11)

There are four sub-forms that contain three constant variables. When x1, x2, and x3 are

constant, but x4 varies, the solution is

GQC =







(µx1 − C1)µ
α
x2
µβ
x3
exp

{

µ̃x4γ +
1

2
σ̃2
x4
γ2

}

−C2 (µx1 − C1) , when µx2 ≤ 0; and

−C2 (µx1 − C1) , when µx2 > 0.

(J12)
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When x1, x2, and x4 are constant, but x2 varies, the solution is

GQC =







(µx1 − C1)µ
α
x2
µγ
x4
exp

{

µ̃x3β +
1

2
σ̃2
x3
β2

}

−C2 (µx1 − C1) , when µx2 ≤ 0; and

−C2 (µx1 − C1) , when µx2 > 0.

(J13)

When x1, x3, and x4 are constant, but x2 varies, the solution is

GQC =
1√
2π

(µx1 − C1) (−σx2)
α µβ

x3
µγ
x4
exp

{

− 1

4

µ2
x2

σ2
x2

}

Γ (α + 1)D−(α+1)

(
µx2

σx2

)

− C2 (µx1 − C1) .

(J14)

When x2, x3, and x4 are constant, but x1 varies, the solution is

GQC =







(
µx1 − C1

)(
µα
x2
µβ
x3
µγ
x4

− C2

)
, when µx2 ≤ 0; and

−C2 (µx1 − C1) , when µx2 > 0.

(J15)

When x1, x2, x3, and x4 are all constant (σx1 = 0, σx2 = 0, σx3 = 0, and σx4 = 0), the

solution is

GQC =







(
µx1 − C1

)(
µα
x2
µβ
x3
µγ
x4

− C2

)
, when µx2 ≤ 0; and

−C2 (µx1 − C1) , when µx2 > 0.

(J16)

J.2 Trivariate PDF Integrals of Covariance Form

The integrals of the general form

GTC =

∞∫

−∞

∞∫

−∞

∞∫

0

(

x1 − C1

)(

xα
2 (H (x2))

α xβ
3 − C2

)

PNNL (x1, x2, x3) dx3 dx2 dx1

155



are referred to as trivariate PDF integrals of covariance form. Both C1 and C2 are constants,

and when they both represent the appropriate overall mean values, the resulting integral

is a covariance. The trivariate PDF, PNNL (x1, x2, x3), is a normal-normal-lognormal PDF,

meaning that the individual marginals of both x1 and x2 are normal distributions and the

individual marginal of x3 is a lognormal distribution. The above integral has eight sub-forms.

When one or more of the variables is constant (has a standard deviation of 0), the integral

simplifies and reduces.

When x1, x2, and x3 all vary (σx1 > 0, σx2 > 0, and σx3 > 0), the solution, denoted GTC ,

is

GTC =
1√
2π

σα
x2
exp

{

µ̃x3β +
1

2
σ̃2
x3
β2 − 1

4
ς2

}

×
(

ρx1,x2σx1Γ (α + 2)D−(α+2) (−ς)

+

(

µx1 − C1 −
µx2

σx2

ρx1,x2σx1 + (ρ̃x1,x3 − ρx1,x2 ρ̃x2,x3) σx1σ̃x3β

)

× Γ (α + 1)D−(α+1) (−ς)

)

− C2 (µx1 − C1) ;

(J17)

where ς =
µx2

σx2

+ ρ̃x2,x3σ̃x3β.

There are three sub-forms that contain one constant variable. When x1 is constant, but x2

and x3 vary, the solution is

GTC =
1√
2π

(µx1 − C1) σ
α
x2
exp

{

µ̃x3β +
1

2
σ̃2
x3
β2 − 1

4
ς2

}

Γ (α + 1)D−(α+1) (−ς)

− C2 (µx1 − C1) ;

(J18)

where ς =
µx2

σx2

+ ρ̃x2,x3σ̃x3β.
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When x2 is constant, but x1 and x3 vary, the solution is

GTC =







µα
x2

(

µx1 − C1 + ρ̃x1,x3σx1 σ̃x3β
)

exp

{

µ̃x3β +
1

2
σ̃2
x3
β2

}

−C2 (µx1 − C1) , when µx2 ≥ 0; and

−C2 (µx1 − C1) , when µx2 < 0.

(J19)

When x3 is constant, but x1 and x2 vary, the solution is

GTC =
1√
2π

σα
x2
µβ
x3
exp

{

− 1

4

µ2
x2

σ2
x2

}

×
(

ρx1,x2σx1Γ (α + 2)D−(α+2)

(

−µx2

σx2

)

+

(

µx1 − C1 −
µx2

σx2

ρx1,x2σx1

)

Γ (α + 1)D−(α+1)

(

−µx2

σx2

))

− C2 (µx1 − C1) .

(J20)

There are three sub-forms that contain two constant variables. When both x1 and x2 are

constant, but x3 varies, the solution is

GTC =







µα
x2
(µx1 − C1) exp

{

µ̃x3β +
1

2
σ̃2
x3
β2

}

− C2 (µx1 − C1) , when µx2 ≥ 0; and

−C2 (µx1 − C1) , when µx2 < 0.

(J21)

When both x1 and x3 are constant, but x2 varies, the solution is

GTC =
1√
2π

(µx1 − C1) σ
α
x2
µβ
x3
exp

{

− 1

4

µ2
x2

σ2
x2

}

Γ (α + 1)D−(α+1)

(

−µx2

σx2

)

− C2 (µx1 − C1) .

(J22)
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When both x2 and x3 are constant, but x1 varies, the solution is

GTC =







(
µx1 − C1

)(
µα
x2
µβ
x3

− C2

)
, when µx2 ≥ 0; and

−C2 (µx1 − C1) , when µx2 < 0.

(J23)

When x1, x2, and x3 are all constant (σx1 = 0, σx2 = 0, and σx3 = 0), the solution is

GTC =







(
µx1 − C1

)(
µα
x2
µβ
x3

− C2

)
, when µx2 ≥ 0; and

−C2 (µx1 − C1) , when µx2 < 0.

(J24)

J.3 Trivariate PDF Integrals of Mean Form

The integrals of the general form

GTM =

∞∫

−∞

∞∫

0

∞∫

0

xα
1 (H (−x1))

α xβ
2x

γ
3PNLL (x1, x2, x3) dx3 dx2 dx1

=

0∫

−∞

∞∫

0

∞∫

0

xα
1x

β
2x

γ
3PNLL (x1, x2, x3) dx3 dx2 dx1

are referred to as trivariate PDF integrals of mean form. The trivariate PDF,

PNLL (x1, x2, x3), is a normal-lognormal-lognormal PDF, meaning that the individual

marginal of x1 is a normal distribution and the individual marginals of both x2 and x3

are lognormal distributions. The above integral has eight sub-forms. When one or more of

the variables is constant (has a standard deviation of 0), the integral simplifies and reduces.

In the solutions below, denotedGTM , µx1 and σx1 denote the mean and standard deviation

of x1 in the trivariate PDF, µx2 and σx2 denote the mean and standard deviation of x2 in

the trivariate PDF, and µx3 and σx3 denote the mean and standard deviation of x3 in the

trivariate PDF. For lognormal variates, µ̃x2 and σ̃x2 denote the mean and standard deviation

of ln x2 in the trivariate PDF, while µ̃x3 and σ̃x3 denote the mean and standard deviation of
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ln x3 in the trivariate PDF. The correlation of x1 and ln x2 is denoted ρ̃x1,x2 , the correlation

of x1 and ln x3 is denoted ρ̃x1,x3 , and the correlation of ln x2 and ln x3 is denoted ρ̃x2,x3 . The

gamma function is denoted Γ (x) and the parabolic cylinder function of order ν is denoted

Dν (x).

When x1, x2, and x3 all vary (σx1 > 0, σx2 > 0, and σx3 > 0), the solution is

GTM =
1√
2π

(−σx1)
α exp

{

µ̃x2β + µ̃x3γ +
1

2

(
1− ρ̃ 2

x1,x2

)
σ̃2
x2
β2

+
1

2

(
1− ρ̃ 2

x1,x3

)
σ̃2
x3
γ2 + (ρ̃x2,x3 − ρ̃x1,x2 ρ̃x1,x3) σ̃x2βσ̃x3γ

}

× exp

{

1

4
ς2 − µx1

σx1

ς +
1

2

µ2
x1

σ2
x1

}

Γ (α + 1)D−(α+1) (ς) ;

(J25)

where ς =
µx1

σx1

+ ρ̃x1,x2σ̃x2β + ρ̃x1,x3 σ̃x3γ.

There are three sub-forms that contain one constant variable. When x1 is constant, but x2

and x3 vary, the solution is

GTM =







µα
x1
exp

{

µ̃x2β + µ̃x3γ +
1

2
σ̃2
x2
β2 +

1

2
σ̃2
x3
γ2 + ρ̃x2,x3 σ̃x2βσ̃x3γ

}

,

when µx1 ≤ 0; and

0, when µx1 > 0.

(J26)

When x2 is constant, but x1 and x3 vary, the solution is

GTM =
1√
2π

(−σx1)
α µβ

x2
exp

{

µ̃x3γ +
1

2
σ̃2
x3
γ2 − 1

4
ς2

}

Γ (α + 1)D−(α+1) (ς) ; (J27)

where ς =
µx1

σx1

+ ρ̃x1,x3σ̃x3γ.
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When x3 is constant, but x1 and x2 vary, the solution is

GTM =
1√
2π

(−σx1)
α µγ

x3
exp

{

µ̃x2β +
1

2
σ̃2
x2
β2 − 1

4
ς2

}

Γ (α + 1)D−(α+1) (ς) ; (J28)

where ς =
µx1

σx1

+ ρ̃x1,x2σ̃x2β.

There are three sub-forms that contain two constant variables. When both x1 and x2 are

constant, but x3 varies, the solution is

GTM =







µα
x1
µβ
x2
exp

{

µ̃x3γ +
1

2
σ̃2
x3
γ2

}

, when µx1 ≤ 0; and

0, when µx1 > 0.

(J29)

When both x1 and x3 are constant, but x2 varies, the solution is

GTM =







µα
x1
µγ
x3
exp

{

µ̃x2β +
1

2
σ̃2
x2
β2

}

, when µx1 ≤ 0; and

0, when µx1 > 0.

(J30)

When both x2 and x3 are constant, but x1 varies, the solution is

GTM =
1√
2π

(−σx1)
α µβ

x2
µγ
x3
exp

{

− 1

4

µ2
x1

σ2
x1

}

Γ (α + 1)D−(α+1)

(
µx1

σx1

)

. (J31)

When x1, x2, and x3 are all constant (σx1 = 0, σx2 = 0, and σx3 = 0), the solution is

GTM =







µα
x1
µβ
x2
µγ
x3
, when µx1 ≤ 0; and

0, when µx1 > 0.

(J32)
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J.4 Bivariate PDF Integrals of Mean Form

The integrals of the general form

GBM =

∞∫

−∞

∞∫

0

xα
1 (H (x1))

α xβ
2PNL (x1, x2) dx2 dx1

=

∞∫

0

∞∫

0

xα
1x

β
2PNL (x1, x2) dx2 dx1

are referred to as bivariate PDF integrals of mean form. The bivariate PDF, PNL (x1, x2), is a

normal-lognormal PDF, meaning that the individual marginal of x1 is a normal distribution

and the individual marginal of x2 is a lognormal distribution. The above integral has four

sub-forms. When one or more of the variables is constant (has a standard deviation of 0),

the integral simplifies and reduces. In the solutions below, denoted GBM , the notation is the

same as in Section J.3.

When both x1 and x2 vary (σx1 > 0 and σx2 > 0), the solution is

GBM =
1√
2π

σα
x1
exp

{

µ̃x2β +
1

2
σ̃2
x2
β2 − 1

4
ς2

}

Γ (α + 1)D−(α+1) (−ς) ; (J33)

where ς =
µx1

σx1

+ ρ̃x1,x2σ̃x2β.

When x1 is constant, but x2 varies, the solution is

GBM =







µα
x1
exp

{

µ̃x2β +
1

2
σ̃2
x2
β2

}

, when µx1 ≥ 0; and

0, when µx1 < 0.

(J34)

When x2 is constant, but x1 varies, the solution is

GBM =
1√
2π

σα
x1
µβ
x2
exp

{

− 1

4

µ2
x1

σ2
x1

}

Γ (α + 1)D−(α+1)

(

−µx1

σx1

)

. (J35)
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When both x1 and x2 are constant (σx1 = 0 and σx2 = 0), the solution is

GBM =







µα
x1
µβ
x2
, when µx1 ≥ 0; and

0, when µx1 < 0.

(J36)

162



Curriculum Vitae

Brian M. Griffin
Department of Mathematical Sciences
University of Wisconsin – Milwaukee

bmg2@uwm.edu

Education

University of Wisconsin – Milwaukee (UWM), Milwaukee, WI

• Graduate:
Pursuing PhD, Mathematics (Atmospheric Science Concentration), 2011–present

Dissertation Title: Improving the Subgrid-Scale Representation of Hydrometeors and
Microphysical Feedback Effects Using a Multivariate PDF.

Master of Science, Mathematics (Atmospheric Science Concentration), 2011

Thesis Title: A PDF-Based Method for Parameterizing the Effects of Microphysics
on Subgrid-Scale Variances and Covariances.

Graduate GPA: 3.953

• Undergraduate:
Bachelor of Science, Atmospheric Sciences, 2006 (Mathematics Minor)

Employment

• Graduate Research Assistant (Department of Mathematical Sciences) under Vincent
E. Larson: August 2009 – present.

• Research Intern for Vincent E. Larson: May 2002 – August 2009.

Publications

• Griffin, B. M. and V. E. Larson, 2016: A new subgrid-scale representation of hydrom-
eteor fields using a multivariate PDF. Geosci. Model Dev. Discuss., doi:10.5194/gmd-
2015-280, in review.

• Griffin, B. M. and V. E. Larson, 2013: Analytic upscaling of a local microphysics
scheme. Part II: Simulations. Quart. J. Roy. Meteor. Soc., 139, 58–69,
doi:10.1002/qj.1966.

163



• Larson, V. E. and B. M. Griffin, 2013: Analytic upscaling of a local micro-
physics scheme. Part I: Derivation. Quart. J. Roy. Meteor. Soc., 139, 46–57,
doi:10.1002/qj.1967.

• Thayer-Calder, K., A. Gettelman, C. Craig, S. Goldhaber, P. A. Bogenschutz, C.-C.
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