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Measurement of planar refractive index profiles with rapid variations in glass using
interferometry and total variation regularized differentiation

R. Oven*

School of Engineering and Digital Arts, The University of Kent, Canterbury, UK

(Received 27 March 2015; accepted 10 August 2015)

Planar refractive index profiles with rapid variations, formed in glass, are measured with interferometry. This involves
forming a bevel in the glass and orientating the fringe pattern to be normal to the bevel edge. The index profile is
determined by differentiation of the phase function of the fringe pattern. The differentiation has been performed using
the total variation regularization method in order to preserve rapid changes in the derivative. This new approach avoids
the necessity of filtering, in order to reduce noise, in the direction perpendicular to the bevel, which would otherwise
smooth out the rapid index changes. The method is assessed using a model refractive index profile that contains an index
gradient of 0.24 μm−1 and is then applied practically to measure the refractive index profile of electrically poled BK7
glass. The new approach allows the sharp transition in the index between poled and unpoled glass to be observed as well
as the accumulation of potassium ions beyond the poled glass region.
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1. Introduction

There are many ways to measure the refractive index
profile in a graded index sample. These include ellip-
sometry using multiple angle data [1], mode measure-
ments mediated with a prism coupler (for both guided
and leaky modes) [2–4], reflectance analysis [5,6] and
numerous interferometric methods [7–13]. Each
method has advantages and disadvantages. For exam-
ple, ellipsometry and mode analysis methods require
no sample preparation and are nondestructive. They
are, however, only applicable to index profiles that
are planar. If the sample supports both guided and
leaky modes, then the mode measurement method
relies on having a model for the index profile whose
parameters require adjustment to fit the experimental
data [2,3]. Hence, some a priori knowledge of the
index profile is required. If the sample is known to
support only guided modes, then a smooth monotoni-
cally decreasing index profile can be deduced without
further assumptions [4]. Reflectance measurements are
not limited to planar index profiles but require careful
sample preparation and are sensitive only to large
index differences [5,6]. Interferometric measurements
on cross sections of samples require careful sample
preparation and are limited to the analysis of index
profiles that are deep due to the magnification of the
optical system [8]. On the other hand, they can mea-
sure two-dimensional index profiles. Some other inter-
ferometric methods, although they are nondestructive,

require a model for the index profile and can only
provide information on planar index profiles [9].

A number of studies have reported on the measure-
ment of refractive index profiles formed in glass using
interferometry with a bevelled sample [10–13]. In these
studies, depth information is imparted onto the interfero-
gram by analysing the sample, in which a bevel has been
formed in the surface by polishing. The bevel cuts
through the index profile, thereby transforming depth
information into lateral information. The method has
been used to obtain refractive index profiles of both pla-
nar and two-dimensional form made by ion exchange
processes in glass [10–13]. Clearly, the method is time-
consuming and partially destructive but it is not neces-
sary to assume a model index profile since the refractive
index profile is proportional to the phase derivative of
the interference pattern in the direction perpendicular to
the bevel edge. In a number of studies, the interferometer
fringes have been orientated with the fringes parallel to
the bevel for the analysis of channel waveguides with
two-dimensional refractive index profiles, [12,13]. This
fringe orientation has also been used for the analysis of
planar waveguides [11].

Various algorithms have been used to analyse the
fringe data produced by this technique including Fourier
fringe analysis [11], a regularization technique [12] and
wavelet transforms [13]. In the Fourier and the regular-
ization technique, the phase is first obtained and is then
numerically differentiated, whilst in the wavelet
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transform method, the phase derivative is obtained
directly. The current author has also used a windowed
Fourier transform method [14] to achieve a similar
analysis. Irrespective of what technique is used, with the
above analysis methods, there is inevitably some degree
of filtering (averaging) to the fringe data occurring in the
direction perpendicular to the bevel edge. The extent of
the filtering required depends on the level of the noise
that will inevitably be present in the interferometer
image. In the Fourier method, a filter is used to extract
the appropriate Fourier component [15]. In the regular-
ization technique, the phase is assumed to vary linearly
over a window of the order of a fringe period and the
regularization can impose further smoothing [12]. In the
wavelet technique and the windowed Fourier transform
method, the phase derivative is determined by the fringe
pattern encompassed within a Gaussian window function.
These will all tend to smooth out any rapid variations in
the index profile. This thus highlights a potential disad-
vantage of this method in analysing samples with rapid
changes in the refractive index profile; they can be
smoothed out due to the filtering processes. This can be
partially overcome by reducing the strength of any regu-
larization smoothing in regions of the profile where a
rapid index variation is known a priori at the expense of
a reduction in the filtering effect [12,13].

In this study, we investigate the use of a different
numerical approach that overcomes the above problem.
In the method, the fringes are rotated by 90° so they are
perpendicular to the bevel edge in the unbevelled part of
the glass. This means that for a planar index profile,
along a line of the image parallel to the bevel edge, the
phase of the interferogram is almost a constant. This
implies that it is not necessary to choose a phase analysis
technique with a small filter window in that direction.
However, in order to obtain the index profile, it is still
necessary to determine the phase derivative in the bev-
elled region in the direction perpendicular to the bevel
edge. This then necessitates differentiation of the phase
data, which will inevitably contain noise. However,
smoothing coupled with normal finite difference differ-
entiation will again result in a recovered index profile
where the rapid transitions are smoothed out. Hence, in
this study, we investigate the use of a total variation
regularization differentiation (TVRD) algorithm [16].
This algorithm has been applied in numerous fields of
study other than interferometry and has been shown to
be effective at recovering the derivative of a function
even in the presence of noise but it preserves rapid varia-
tions in the derivative. Here, we apply the TVRD algo-
rithm for the first time, to our knowledge, in the field of
interferometry. For our application, it hence allows us to
recover rapid changes in the refractive index profile that
are not possible using the previous approaches. A total
variation regularization technique for the recovery of

phase functions has recently been reported [17]. How-
ever, this is applicable to the case where the phase func-
tion itself is expected to have discontinuities or rapid
changes in them. In our study, rapid changes in the
phase derivative are of interest.

In Section 2 of this study, the interferometer method
is outlined in more detail. In Section 3, the TVRD
method is summarized. In Section 4, the recovery of an
index profile from noiseless and noisy model fringe data
using the TVRD algorithm is compared with that recov-
ered using conventional finite difference differentiation.
Finally, in Section 5, the TVRD algorithm is used to
analyse practical fringe data obtained by analysing elec-
trically poled BK7 glass.

2. Interferometer measurements

The measurement technique involves polishing a shallow
bevel (typically 2°–8° depending on the expected depth
of the index profile) in the glass surface, which passes
through the index profile. The sample together with
index matching oil is placed on a reflective optical flat in
one arm of an interferometer [12,13]. Due to the reflec-
tive optical flat, the light passes twice through the sam-
ple and then interferes with a reference beam. The
fringes are orientated to be perpendicular to the bevel
edge as shown in Figure 1. With this orientation, the
influence of the index profile on the fringes can clearly
be observed. Hence, moving from top to bottom of
Figure 1, the fringes change orientation at line A–A due
to the start of the bevel. Near line B–B, the fringes
change orientation again due to the end of the index pro-
file layer. Well beyond line B–B, the fringe orientation is
due to the bevelling continuing into the bulk of the
glass. The index depth profile n(z) is related to the gradi-
ent of the phase, /, of the interferometer image by

Figure 1. Interferometer image and details of arrangement in
sample arm of interferometer showing bevelled sample, index
matching fluid and reflective optical flat. (The colour version of
this figure is included in the online version of the journal.)
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n ¼ n0 x\0

n z ¼ xtanhð Þ ¼ n0 � k
4p tanh

d/
dx

x[ 0 (1)

where x is the coordinate defined in Figure 1 and is mea-
sured from the start of the bevel, θ is the bevel angle
and n0 is the refractive index of the oil. The wavelength
of light λ used for the measurements is 546 nm. The
bevel angle was measured with a Dektak 6 M surface
profiler.

3. Total variation regularization differentiation

The TVRD algorithm has been applied to numerical data
from a number of research fields [15]. Here, we use the
algorithm to obtain the phase derivative /′ = d//dx from
the phase function /. The TVRD algorithm is based on
minimizing a functional F [16]. For our application, we
write it in terms of / and its derivate as

F /0ð Þ ¼ 1

2

ZL

0

A/0 � /j j2dxþ a
ZL

0

/0j jdx (2)

In this expression, A /′ is the integral
R x
0 /

0dx. The first
term in Equation (2) is the data term. The second term is
the sum of the total variation in the phase derivative.
Minimizing F with the second term included results in a
solution that contains less noise since noisy solutions
have large total variation. The relative importance of the
total variation term is determined by the regularization
parameter α. Minimizing F amounts to finding the solu-
tion to the following Euler–Lagrange equation [16]

0 ¼ a
d

dx

/0

/0j j � AT ðA/0 � /Þ (3)

where ATvðxÞ ¼ R L
x vdx. Details on the implementation

of the algorithm to solve Equation (3) are given else-
where [16].

4. Analysis using model data

In order to assess the effectiveness of the algorithm, two
artificial fringe patterns are generated based on a model
refractive index profile with sharp transitions. We choose
an index profile of the form of a Fermi function

n zð Þ ¼ nsub � Dn

1þ exp z�d
a

� � (4)

where nsub = 1.5187, Δn = 0.05, d = 3 μm and
a = 0.04 μm. This is used to generate a model fringe pat-
tern for a 4° bevelled glass substrate and an index oil of
1.54. The amplitude of the fringe pattern is unity and
has a period of 30 pixels. For one of the fringe patterns,

Gaussian noise with a standard deviation of 0.4 is added.
A value of a = 0.04 μm corresponds to an average transi-
tion width from n = nsub − 0.9Δn to n = nsub − 0.1Δn of
0.17 μm; hence, the average refractive index gradient of
the model index profile is 0.24 μm−1.

The phase of the model fringe patterns is determined
row by row (y coordinate, see Figure 1) using a syn-
chronous detection algorithm [18] followed by smooth-
ing and differentiation in the x direction or just
application of the TVRD algorithm. Averaging can be
done over the y coordinate to further reduce the fluctua-
tions due to noise. This is important for those profiles
not recovered by the TVRD algorithm. We first consider
the recovery of the index profile from these patterns by
smoothing with a moving average filter of 20 pixels
width in the x direction with standard numerical differ-
entiation. Figures 2 and 3 show the recovered profiles
using this approach in comparison with the original pro-
file in Figure 2 from the noiseless fringe pattern and in
Figure 3 using the fringe pattern with noise. The index
profile of Figure 3 is clearly still affected by the noise in
the fringe pattern and suggests that more smoothing is
required. But the recovered profile in Figure 3, and more
clearly in Figure 2, shows that the transitions in the
index profile are already being smeared out by this
degree of smoothing. 20 pixels corresponds to a spread
in depth Δz = 20 · p · tan(θ) where p is the magnified
pixel size in μm. This gives Δz ~ 0.5 μm which is greater
than the average transition width of 0.17 μm.

For comparison, Figures 4 and 5 show the index pro-
file recovered using the TVRD algorithm with α = 5.
Figure 4 is obtained from the noiseless fringe pattern,
and Figure 5 is obtained from the fringe pattern with
noise. It can be seen from Figure 4 that the TVRD algo-
rithm recovers the index profile with good accuracy
including the transitions whilst Figure 5 shows that the
fluctuations due to the noise are greatly suppressed.
Numerically, the RMS error between the model and
recovered profile is 0.0035 for the profiles in Figure 4
and has only increased to 0.0037 for the profiles in
Figure 5.

Figure 6 shows the recovered index profiles for vari-
ous values of the regularization parameter α using the
fringe pattern with noise. It can be seen that small values
of α result in little smoothing of the noise whilst very
large values of α overly smooth the recovered index pro-
file and sharp transitions in the index profile are eventu-
ally lost with the TVRD algorithm. It can also be seen
from Figure 6 that very large values of α also result in a
loss of contrast (i.e. a reduction in the magnitude of the
transition in the index). This loss of contrast in the
derivative for large α is a known effect of the TVRD
algorithm in the presence of noise and can be reduced
using as small a value of α as possible consistent with
the required noise reduction [16].
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5. Measurements on poled glass

The effectiveness of the bevel method coupled with the
TVRD algorithm is demonstrated by investigating a

sample of BK7 glass that has been electrically poled at
~2 kV at 261 °C. The glass is poled using graphite elec-
trodes in air. The poling process forms a region of glass
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Figure 2. (Solid) model index profile. (Dash) index profile recovered using smoothing and ordinary differentiation from model
fringe data with no noise. (The colour version of this figure is included in the online version of the journal.)
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Figure 3. (Solid) model index profile. (Dash) index profile recovered using smoothing and ordinary differentiation from model
fringe data with noise. (The colour version of this figure is included in the online version of the journal.)
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below the anode that is depleted of mobile Na+ and K+

ions and hence reduces the refractive index [19–21].
Based on ion transport models of the process, a rapid

change in Na+ and K+ ion concentrations is to be
expected at a depth corresponding to the boundary
between the depleted and undepleted glass [22]. Hence,
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Figure 4. (Solid) model index profile. (Dash) index profile recovered using TVRD from model fringe data with no noise.
Regularization parameter α = 5. (The colour version of this figure is included in the online version of the journal.)
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Figure 5. (Solid) model index profile. (Dash) index profile recovered using TVRD from model fringe data with noise.
Regularization parameter α = 5. (The colour version of this figure is included in the online version of the journal.)
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Figure 6. Index profiles recovered using TVRD from model fringe data with noise. Dash, α = 0.1; solid α = 5; dash-dot α = 100.
(The colour version of this figure is included in the online version of the journal.)
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Figure 7. Poled glass index profile recovered using TVRD. α = 5. (Dash-dot) unsmoothed and ordinary differentiation; (Dash)
smoothed and ordinary differentiation; (Solid) using TVRD with α = 5. Horizontal line is bulk refractive index. (The colour version
of this figure is included in the online version of the journal.)
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a rapid change in the refractive index at that depth is to
be expected. Figure 7 shows a graph of the index profile
extracted using normal differentiation on the unsmoothed
data, smoothing and normal differentiation and that
obtained using the TVRD algorithm. It can be seen that
the refractive index in the poled glass region is ~1.475,
and the refractive index changes rapidly between the
depleted glass and the bulk of the sample. The reduction
in refractive index observed between the bulk unpoled

glass and the depletion region Δn ~ 0.045 is larger than
that estimated for poled V073 glass Δn ~ 0.02, which is
evidently similar in composition to BK7 [21]. From
Figure 7, it is also possible to observe a small (~0.0023)
increase in refractive index above the substrate index
immediately under the poled glass region in the unpoled
glass. This can be attributed to the pile-up of K+ ions
that are present in BK7 glass. They are removed from
the poled glass region and accumulate just beyond the

Figure 8. Poled glass refractive index surface recovered using smoothing with normal differentiation. (The colour version of this
figure is included in the online version of the journal.)

Figure 9. Poled glass refractive index surface recovered using TVRD. (The colour version of this figure is included in the online
version of the journal.)
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poled region due to their lower mobility in comparison
with the sodium ions [19,20]. K+ ions have a larger
polarizability than Na+ ions and also cause stress-induced
index changes resulting in an increase in the refractive
index [19,23]. The index profile due to the K+ ions can
be observed to be approximately step-like in shape
which is consistent with field assisted diffusion [22].

The near surface profile is strongly influenced by the
quality of the bevel. For the sample shown in Figure 7,
the transition in the bevel was measured with a surface
profiler and extends over a distance x, as defined in
Figure 1, of 4 μm. This converts to a depth range, z, in
Figure 7 of ~0.3 μm. Hence, although there is some evi-
dence in Figure 7 of a slope in the index profile within
the glass near the surface, the data are distorted by the
bevel profile. Figures 8 and 9 show the complete refrac-
tive index surfaces for the same sample recovered using
smoothing with normal numerical differentiation and by
TVRD, respectively. The transitions in refractive index
are sharper in the profile recovered using TVRD. The
increase in refractive index due to the accumulation of
K+ ions is hardly discernible in the profile obtained with
smoothing and normal differentiation (Figure 8), but can
clearly be observed in the surface obtained by TVRD
(Figure 9).

6. Conclusions

Planar refractive index depth profiles in glass with rapid
variations in refractive index have been measured using
an interferometric method. This involves forming a bevel
in the glass and orientating the fringe pattern to be nor-
mal to the bevel edge. The differentiation of the phase
function has been performed using the TVRD method in
order to reduce the effects of noise but preserve the rapid
transitions in the refractive index. This new approach has
allowed us to measure the refractive index profile of
electrically poled BK7 glass and observe the rapid transi-
tion in refractive index between the poled and unpoled
glass. The region of glass depleted of Na+ and K+ ions
is found to have a refractive index of ~1.475. In addi-
tion, the method has allowed the observation of the
index change caused by the accumulation of K+ ions
below the poled glass region.
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