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ABSTRACT
We investigate numerically the propagation and the Anderson localization of plane waves in a one-
dimensional lattice chain, where disorder and saturable nonlinearity are simultaneously present.
Using a calculation scheme for solving the stationary discrete non-linear Schrödinger equation in
the fixed input case, the disorder-averaged logarithmic transmittance and the localization length are
calculated in a numerically precise manner. The localization length is found to be a non-monotonic
function of the incident wave intensity, acquiring a minimum value at a certain finite intensity,
due to saturation effects. For low incident intensities where the saturation effect is ineffective,
the enhancement of localization due to Kerr-type nonlinearity occurs in a way similar to the case
without saturation. For sufficiently high incident intensities, we find that the localization length is an
increasing function of the incident wave intensity, which implies that localization is suppressed for
stronger input intensities, and ultimately approaches a saturation value. This feature is associated
with the fact that the non-linear system is reduced to an effectively linear one, when either the
incident wave intensity or the saturation parameter is sufficiently large. The non-linear saturation
effect is found to be stronger and more pronounced when the energy of the incident wave is
larger. We also calculate the variance of the inverse localization length and find that it also shows a
non-monotonic behaviour.
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1. Introduction

Understanding the influence of nonlinearity on Ander-
son localization of waves in disordered systems has at-
tractedmuch interest from researchers over the past years
(1–19). In non-linear wave propagation problems, all
aspects of the dynamics are not determined by the spec-
tral properties unlike in linear problems. Due to the pe-
culiarity of non-linear systems, different ways of pos-
ing the problem are not equivalent to each other (20).
As a consequence, there exist many uncertainties and
unanswered questions associated with the physical sys-
tems in which disorder and nonlinearity are simultane-
ously present (21, 22). Within this context, a fundamen-
tal question is whether the presence of nonlinearity en-
hances or suppresses Anderson localization. The answer
to this question can best be described as inconclusive at
this point. The influence of nonlinearity on Anderson
localization can be studied in three different contexts:
(i) the transmission of plane waves through disordered
non-linear media (1–10), (ii) the effect of non-linear
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perturbations on localized eigenstates in finite-size sys-
tems (11–13, 18), (iii) the effect of nonlinearity on the
spreading of initially localized wave packets (5, 14–17 ,
19). The discrete non-linear Schrödinger equation can
be used in the study of all these cases (23).

Traditionally, much interest has been given to the
standard cubic nonlinearity associated with the Kerr
effect due to its relevance to a wide range of physical
systems (1–19). In particular, it has been shown that the
effect of nonlinearity on Anderson localization is quali-
tatively different for localized and extended excitations.
It favours the propagation of localized excitations, while
it inhibits that of extended excitations (5). By studying
localized eigenstates and wave packet expansion in one-
dimensional (1D) disordered lattices, Lahini et al. have
observed that in the weakly non-linear regime, nonlin-
earity enhances localization for flat-phased states and
induces delocalization for staggered states (18). Other pa-
pers have also reported that pure Anderson localization
is destroyed and turns into a subdiffusive spreading of
wave packets in the presence of nonlinearity (16, 17 , 19).
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However, the cubic nonlinearity does not always
reflect the physical reality and, in certain cases, other
kinds of nonlinearity should be considered. For example,
for short and high peak power pulses, the field-induced
change in the refractive index cannot be described by a
Kerr-type nonlinearity, since it is influenced by higher-
order nonlinearities, such as saturable nonlinearity (24).
The saturationof thenon-linear responsehas been shown
to have novel impacts on the dynamical properties of
wave propagation in clean systems (24–35). For instance,
it has been pointed out that the saturable nonlinearity
allows the existence of stable two-state solitons with the
same timeduration (24) and of breatherswith high power
(25). In (26), genuinely localized travelling waves have
been found in saturable non-linear Schrödinger lattices
for the first time. Furthermore, in recent papers, the
authors have shown that there exists asymmetric wave
propagation through saturable non-linear oligomers and
wave rectification devices can be produced based on such
systems (34, 35).

Until now, many researches have been devoted to
soliton propagation in saturable non-linear systems. To
the best of our knowledge, there has been very little
research on the interplay between saturable nonlinearity
and disorder (36–38). The authors of (36) have inves-
tigated light localization in disordered photo-refractive
lattices with saturable self-defocusing nonlinearity. It has
been demonstrated that by increasing the value of the
nonlinearity strength continuously, a phase transition
from a localized state to an extended state can be ob-
tained. In a very recent paper, the authors have studied
numerically the dynamics of an initially localized wave
packet in 1D disordered chains with saturable nonlinear-
ity (38). From a detailed numerical analysis, they have
found that saturable nonlinearity can promote a sub-
diffusive spreading of the wave packet even in the pres-
ence of diagonal disorder for a long time. In addition, they
have also investigated the effect of saturated nonlinearity
for initial times of the electronic evolution thus showing
the possibility of mobile breather-like modes.

In this paper, we investigate the transmission and
localization properties of plane waves in a 1D disor-
dered lattice chain with saturable nonlinearity. Using a
disordered version of the stationary discrete non-linear
Schrödinger equation, the disorder-averaged logarithmic
transmittance and the localization length are calculated in
a numerically precise manner. Unlike in many previous
works, we strictly fix the intensity of the incident wave
and compute physical quantities as a function of other
parameters. We find that the localization length and its
fluctuation are a non-monotonic function of the incident
wave intensity. For low incident intensities, the enhance-
ment of localization due to nonlinearity occurs in a way

similar to the case without saturation. For sufficiently
high incident intensities, we find that the localization
length is an increasing function of the incident wave
intensity and ultimately approaches a saturation value. It
is found that the non-linear saturation effect is stronger
and more pronounced when the energy of the incident
wave is larger. We also calculate the variance of the in-
verse localization length and find that it also shows a
non-monotonic behaviour.

2. Theoretical model and numerical method

In order to study the effects of saturable nonlinearity on
Anderson localization in a 1D disordered lattice, we use
the discrete non-linear Schrödinger equation given by

i�
dCn(t)
dt

= εnCn(t)− V
[
Cn+1(t)+ Cn−1(t)

]
+ α|Cn(t)|2

1+β|Cn(t)|2Cn(t), (1)

where Cn(t) is the wave function amplitude and V is
the hopping integral between the nearest-neighbour sites.
The on-site potential εn varies randomly as a function
of the site index n. We assume that εn’s are indepen-
dent random variables distributed uniformly in the range
[−W/2,W/2]. The parameterα is the strength of a third-
orderKerr-type non-linear response in the regimeof low-
intensity waves, while β is the degree of saturation of
the nonlinearity. We set � = V = 1 for convenience.
We note that when the intensity of the incident wave
is sufficiently weak so that |Cn(t)|2 � 1, the last term
of Equation (1) can be approximated by the expression
[α|Cn(t)|2Cn(t) − αβ|Cn(t)|4Cn(t)]. With this approxi-
mation,we recover the standard cubic discrete non-linear
Schrödinger equation with an additional quartic term
−αβ|Cn(t)|4Cn(t).

In a recent paper, the authors have studied the in-
fluence of saturable nonlinearity on Anderson localiza-
tion of an initially localized wave packet by integrating
Equation (1) directly (38). The main focus in that paper
was to study the time-dependent behaviour when a wave
packet was locally excited in themiddle of a 1D system. It
has beenwidely known that in non-linear disordered sys-
tems described by discrete Schrödinger equations, there
occurs a sub-diffusive spreading of an initially localized
wave packet, without any indication of saturation for
long-time runs (17). On the contrary, in the present pa-
per, we focus on the transmission problem and study how
an incident planewave is transmitted through a finite seg-
ment of a saturable non-linear disordered medium. Such
a set-up may be realized in experiments on layered pho-
tonic structures,wherewave transmission through anon-
linear disordered medium can be studied as afunction of
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Figure 1. Schematic of the transmission problem. A plane wave is
incident on a saturable non-linear disorderedmediumwithα �= 0
and β �= 0 from a uniform linear region on the right (n > L) and
is transmitted to a uniform linear region on the left (n < 1). r0, r1
and t are the complex amplitudes of the incident, reflected and
transmitted waves, respectively.

the intensity of the incident wave. To this end, we will
look for stationary solutions to Equation (1) of the form
Cn(t) = ψne−iEt , where E is the energy of the incident
wave. This leads to a set of coupled algebraic equations
for ψn:

Eψn = εnψn − ψn+1 − ψn−1 + α|ψn|2
1 + β|ψn|2ψn. (2)

In order to allow the free propagation of the wave outside
the disordered non-linear region, we take εn, α and β to
be non-zero only in the region 1 ≤ n ≤ L. We note
that the transformation Cn → ( − 1)nC∗

n , α → −α and
εn → −εn leaves Equation (1) invariant (39). Therefore
the sign of α can be fixed to be positive when we consider
disorder-averaged quantities.

We assume that a plane wave is incident from the
right side (see Figure 1) and define the amplitudes of the
incident, reflected and transmitted waves, r0, r1 and t, by

ψn =
{
r0eik(L−n) + r1eik(n−L), n ≥ L,
te−ikn, n ≤ 0,

(3)

where the wave number k satisfies E = −2 cos k. When
there is no dissipation, the conservation law |r1|2+|t|2 =
|r0|2 is satisfied. In our previous works to which we re-
fer the details, we have presented a method for solving
Equations (2) and (3) numerically in the situation where
the incident wave intensity, |r0|2, is fixed (9, 10). We first
choose a positive real number for t and solve Equation (2)
iteratively until we obtain ψL and ψL+1. The quantities
r0 and r1 are given by

r0 = ψLeik − ψL+1

eik − e−ik , r1 = ψL+1 − ψLe−ik

eik − e−ik , (4)

and the reflectance R and the transmittance T are ex-
pressed as

R =
∣∣∣∣ r1r0

∣∣∣∣
2

= |ψLe−ik − ψL+1|2
|ψLeik − ψL+1|2 ,

T =
∣∣∣∣ tr0

∣∣∣∣
2

= |t|2 4sin2k
|ψLeik − ψL+1|2 . (5)

This calculation is repeated for many different initial
values of t (t = δ, 2δ, 3δ, . . .) until we obtain the value of
|r0|2 sufficiently close to the pre-chosen value. The step
size δ is chosen properly to achieve desired accuracy. The
main quantity we calculate is the localization length ξ
defined by

1
ξ

= − lim
L→∞

〈lnT〉
L

, (6)

where 〈· · · 〉 represents averaging over a large number of
randomenergy configurations.Wewill also present some
results on the variance of the inverse localization length,
σ 2, which is defined by

σ 2 = lim
L→∞

〈(lnT)2〉 − 〈lnT〉2
L2

. (7)

3. Results

In order to calculate the localization length ξ , we need to
obtain the disorder-averaged logarithm of the transmit-
tance 〈lnT〉. We have computed 〈lnT〉 by averaging over
10,000 random configurations of εn. Calculations were
performed for the systemsizeLup to 60. In the linear case,
it is necessary to do the calculation for substantially larger
values of L in order to extract accurate results for the
localization length. In the non-linear case, however, the
exponential decay of 〈T〉 or the linear decay of 〈lnT〉with
L is achieved for much smaller values of L. In the present
study, we have verified numerically that calculations up
to L = 60 are sufficient and 〈lnT〉 approaches values
smaller than −6 at this value of L. Our main aim is
to investigate the effects of nonlinearity on localization
properties and all of our results were obtained for a fixed
disorder strength W = 2. The step size for t was δ =
10−7. The error in the calculated value of |r0|2 was always
smaller than 10−5.

In Figure 2, we plot the inverse localization length
1/ξ as a function of the incident wave intensity |r0|2 in
the absence of saturation effects (β = 0). The energy
of the incident wave, E, is equal to 0, 0.5 and 1 and the
nonlinearity parameter α is fixed to 0.5. We find that
the enhancement of localization occurs in the presence
of weak nonlinearity for all cases. When |r0|2 is small,
the localization length is a decreasing function of it. For
sufficiently large values of |r0|2, the localization length
is found to approach a saturation value. The specific
saturation value of ξ depends on the energy E and the
disorder strength W . A similar behaviour has also been
demonstrated in our previous work, though there is a
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Figure 2. Inverse localization length 1/ξ plotted as a function of
the incidentwave intensity |r0|2 for different values of the incident
wave energy, E = 0, 0.5 and 1, in the absence of saturation
effects (β = 0). The value of the nonlinearity parameter α is
equal to 0.5 and the disorder strength W is equal to 2. For small
values of the incident wave intensity, the localization length is a
decreasing function of it. For a sufficiently large |r0|2, however,
the localization length is found to approach a saturation value.

Figure 3. Inverse localization length 1/ξ plotted as a function
of the incident wave intensity, |r0|2, when E = 0, α = 0.5 and
β = 0, 1, 3. When |r0|2 or β is sufficiently large, an effective linear
behaviour is achieved. The curve for β = 3 is compared with the
dashed straight line corresponding to the linear result obtained
when E = −0.5/3.

subtle difference in the way in which the results are ob-
tained (9). In contrast to the present study, in (9), the
incidentwave intensity |r0|2 wasfixed and the localization
length was calculated as a function of the nonlinearity
parameterα.Whenβ is zero, varying |r0|2 is theoretically
equivalent to varying α. When β is non-zero, however,
they are not equivalent.

In Figure 3, we plot the inverse localization length 1/ξ
as a function of the incident wave intensity |r0|2, when
E = 0, α = 0.5 and β = 0, 1, 3. When the saturation of
the non-linear response is taken into account (β �= 0), the
localization behaviour of waves is substantially changed.
A non-monotonic dependence of the localization length
on the incident wave intensity occurs for finite satura-
tion strengths. The inverse localization length takes a
maximum value, which is a decreasing function of β ,
at a certain value of |r0|2. The reason for this behaviour
is fairly simple. For sufficiently low incident intensities
where the saturation effect is ineffective, the enhance-
ment of localization due to nonlinearity still occurs in
a way similar to the case with β = 0, and therefore
the inverse localization length 1/ξ grows rapidly as |r0|2
increases. For larger values of |r0|2, however, the satura-
tion effect begins to affect the localization behaviour and
the growth of 1/ξ is suppressed (more strongly when β
is larger). For sufficiently high incident intensities, the
inverse localization length is a decreasing function of the
incident wave intensity, which implies that localization is
suppressed for stronger input intensities, and ultimately
approaches a saturation value. This feature is associated
with the fact that the non-linear system is reduced to an
effectively linear one with α = β = 0 and the renormal-
ized energy Ẽ = E − α/β due to the saturation of the
non-linear response, when either |r0|2 or β is sufficiently
large.We illustrate this by comparing the curve for β = 3
with the dashed straight line corresponding to the linear
result obtained when E = −0.5/3 in Figure 3. When
the linear value of 1/ξ at Ẽ is substantially smaller than
the non-linear saturation value of 1/ξ at E for the Kerr-
type non-linear model, the non-monotonic dependence
of 1/ξ is bound to occur.

In a recent paper, where thewave propagation through
a saturable non-linear asymmetric dimer has been stud-
ied, it has been shown that the saturation of the non-
linear response has distinct impacts on the wave trans-
mission properties for short-and long-wavelength input
signals (34). In other words, the saturation effect depends
strongly on the energy of incident waves. A similar be-
haviour is also observed in the present study. In Figure 4,
we plot the inverse localization length as a function of
the incident wave intensity for three values of the energy,
E = 0, 0.5, 1, and α = 0.5, when β is equal to 1 and
3. From both figures, we observe that the non-linear
saturation effect is stronger and more pronounced when
the energy of the incident wave E is larger.

In Figure 5, we show some examples of the spatial dis-
tribution of the intensity of the wave function calculated
for a particular realization of disorder, when the system
size N is 60 and a plane wave is incident from the region
where n > 60. The wave function intensity is normalized
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(a)

(b)

Figure 4. Inverse localization length 1/ξ plotted as a function of
the incident wave intensity |r0|2 for three values of the energy,
E = 0, 0.5, 1, and α = 0.5, when (a) β = 1 and (b) β = 3. The
non-linear saturation effect depends strongly on the energy of
the incident wave and is more pronounced when E is large.

by the intensity of the incident wave, |r0|2. The parame-
ters α and E are fixed to 0.5 and 0, respectively. In Figure
5(a), we fix |r0|2 = 4 and compare the results for β = 0
and β = 1.We find that the wave penetrates more deeply
into the medium and its intensity is significantly larger
in a wider region when β = 1. This is consistent with the
result that the localization length for β = 1 is larger than
that for β = 0 (see Figure 3). In Figure 5(b), we fix β = 3
and compare the results for |r0|2 = 0.16 and |r0|2 = 2.25.
Again, we find that the wave penetrates more deeply into
themediumwhen |r0|2 = 2.25, for which the localization
length is larger as can be seen in Figure 4(b).

We have also considered the influence of the saturable
nonlinearity on the fluctuation of the localization length.
In Figure 6,weplot the variance of the inverse localization
length, σ 2, as a function of the incident wave intensity

(a)

(b)

Figure 5. Spatial distribution of the intensity of the normalized
wave function for one particular realization of the random
potential, when (a) α = 0.5, β = 0, 1, |r0|2 = 4 and (b) α = 0.5,
β = 3, |r0|2 = 0.16, 2.25. The values of N and E are fixed to 60
and 0, respectively. A plane wave is assumed to be incident from
the right side.

|r0|2, for three values of the energy, E = 0, 0.5 and 1,
when α = 0.5 and β = 3 (cf. Figure 4(b)). We find that
this quantity also shows anon-monotonic behaviour. The
variance takes aminimumvalue at the same value of |r0|2,
at which 1/ξ takes a maximum value.

The effects studied in this paper may be realized in
experiments on layered photonic structures. In such sys-
tems, it has been demonstrated that the evolution of lon-
gitudinal Bloch waves can be approximated sensibly by
the discrete non-linear Schrödinger equation (7 , 40). For
instance, we can employ a layered photonic system that is
fabricated from lithium niobate (LiNbO3) crystals. This
type of material exhibits a saturable self-defocusing non-
linearity corresponding to our consideration, via photo-
refractive effects (41, 42). Spatial disorder is introduced
into the system through a random variation of the layer
width in the process of fabrication.
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Figure 6. Variance of the inverse localization length, σ 2, plotted
as a function of the incident wave intensity |r0|2 for three values
of the energy, E = 0, 0.5 and 1, when α = 0.5 and β = 3.

4. Conclusion

In this paper, we have presented a numerical study of
the propagation and the Anderson localization of plane
waves in a 1D lattice chain, where disorder and saturable
nonlinearity are simultaneously present. Using a calcu-
lation scheme for solving a disordered version of the
stationary discrete non-linear Schrödinger equation in
the fixed input case, the disorder-averaged logarithmic
transmittance and the localization length have been cal-
culated in a numerically precisemanner. For low incident
intensities where the saturation effect is ineffective, the
enhancement of localization due to nonlinearity has been
found to occur in a way similar to the case without satu-
ration. For sufficiently high incident intensities, we have
found that the localization length is an increasing func-
tion of the incident wave intensity, which implies that
disorder-induced localization is suppressed for stronger
input intensities. This feature is associated with the fact
that the non-linear system is reduced to an effectively
linear one, when either the incident wave intensity or
the saturation parameter is sufficiently large. It is found
that the non-linear saturation effect is stronger and more
pronounced when the energy of the incident wave is
larger.We have also calculated the variance of the inverse
localization length and found that it also shows a non-
monotonic behaviour, taking a minimum value at the
same value of the incident wave intensity, at which the
localization length takes a minimum.
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