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Gibbs ensemble Monte Carlo simulations of multicomponent natural gas mixtures
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ABSTRACT
Vapour–liquid equilibrium (VLE) and volumetric data of multicomponent mixtures are extremely important
for natural gas production and processing, but it is time consuming and challenging to experimentally
obtain these properties. An alternative tool is provided by means of molecular simulation. Here, Monte
Carlo (MC) simulations in the Gibbs ensemble are used to compute the VLE of multicomponent natural gas
mixtures. Two multicomponent systems, one containing a mixture of six components (N2, CH4, CO2, H2S,
C2H6 and C3H8), and the other containing a mixture of nine components (N2, CH4, CO2, H2S, C2H6, C3H8,
C5H12, C7H16 and C10H22) are simulated. The computed VLE from the MC simulations is in good agreement
with available experimental data and the GERG-2008 equation of state modelling. The results show that
molecular simulation can be used to predict properties of multicomponent systems relevant for the natural
gas industry. Guidelines are provided to setup Gibbs ensemble simulations for multicomponent systems,
which is a challenging task due to the increased number of degrees of freedom.
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1. Introduction

Reservoir engineers and technologists require accurate vapour–
liquid equilibrium (VLE) and volumetric (PVT) data to es-
timate gas/condensate production rates, prevent solid/liquid
formation in natural gas production/processing pipelines, and
to design separation units to meet customer specifications [1,2].
However, natural gas is a complexmixture ofmany components
with a variable composition, which makes it nearly impossible
for experimentalists to measure the properties of all possible
mixtures and conditions [3]. Typically, VLE and PVT data of
multicomponent systems are computed with an equation of
state (EoS), which requires experimental data of representa-
tive systems to calibrate the EoS parameters. In practice, three
types of VLE experiments are performed [4,5]: (1) sampling
experiments to measure the composition of one or more phases
(pTxy), (2) bubble-point (PTx) and (3) dew-point (PTy) mea-
surements. The last two types of measurements do not provide
tie-line information, but are easier to perform compared to
the more elaborate sampling experiments. In a bubble-point
experiment, the gas-phase composition is unknown, while in
a dew-point experiment the liquid-phase composition is un-
known, but both can be computed from an EoS by, respectively,
fitting to PTx and PTy data. However, computing high-pressure
phase equilibria of (multiphase) multicomponent mixtures is a
non-trivial task since EoSs often suffer from convergence and
stability problems [6]. These limitations of EoSs are well-known
and have been investigated in great detail by Michelsen [7–9].
For a recent overview of EoS modelling of natural gas systems,
the reader is referred to [10–13].
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Here, we investigate the accuracy of molecular simulations
to compute pTxy data of multicomponent natural gas mixtures.
Note that EoSmodelling ismore practical andwidely used in the
natural gas industry, but molecular simulation can be a valuable
tool especially in the absence of experimental data. Monte Carlo
simulations in the Gibbs ensemble (GEMC) [14,15] are used to
compute the VLE of two multicomponent systems. The first
mixture contains N2, CH4, CO2, H2S, C2H6 and C3H8 and
corresponds to the experimental system studied by Kalra and
Robinson [16]. The second mixture contains N2, CH4, CO2,
H2S, C2H6, and C3H8, C5H12, C7H16 and C10H22 and cor-
responds to the experimental system (mixture 14) studied by
Yarborough [17]. Although Gibbs ensemble simulations are of-
ten performed for unary, binary and ternary (confined) systems,
its application to multicomponent (i.e., 4 or more components)
systems is relatively rare [18–25]. The reason for this is two-
fold; (1) experimental (pTxy) data for multicomponent systems
are extremely scarce,which complicates validationof simulation
results and (2) as itwill become apparent in the next section, per-
forming amulticomponentGibbs ensemble simulation requires
an increased effort compared to unary and binary systems. The
VLE computed from the MC simulations are compared with
experimental data and the GERG-2008 model, which is the
reference EoS for natural gas systems [26].

2. Simulation details

Figure 1 shows the resemblance between sampling experiments
and the Gibbs ensemble simulations [14,15]. Monte Carlo
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simulations in the NVT-Gibbs or the NPT-Gibbs ensemble
can be used to compute pTxy data of mixtures [27]. In both
ensembles, the total number of molecules (N) and temperature
(T) are fixed, while the volume (Vi) of the individual simulation
boxes is allowed to change. In the NVT-Gibbs ensemble, the
volume of the two boxes is coupled in such a way that the
total volume (VT=V1 + V2) is constant, but in the NPT-Gibbs
ensemble the volume of the boxes can change independently
to satisfy the imposed pressure (P). As a consequence of the
Gibbs phase-rule, only the NVT-Gibbs ensemble can be used
to compute VLE properties of unary systems. The Gibbs phase-
rule for a non-reacting system is given by,

f = 2 + N − π (1)

where f is the number of degrees of freedom, N the number
of components and π the number of phases. Clearly, for an
unary system (N = 1) with two phases in equilibrium (π =
2) there is only one degree of freedom, which shows that the
NVT-Gibbs is the only eligible ensemble for pure components.
In principle, both ensembles can be used to compute the VLE
of binary and multicomponent systems. In experiments, the
composition of equilibrium phases are sampled and analysed
at constant pressure and temperature conditions. Therefore,
NPT-Gibbs ensemble simulations are more practical and allow
a direct comparison with experiments. The central problem in
Gibbs ensemble simulations, regardless of the chosen ensemble
(NVT orNPT), is the initial distribution of the molecules in the
boxes (1) to keep the size of both boxes larger than twice the
cut-off radius and (2) to allow a quick phase split. Condition (1)
is required to avoid unphysical interactions of particles due to
the nearest neighbour convention [27]. Condition (2) essentially
means that a good initial guess of the phase compositions should
be provided for convergence of the system towards equilibrium.
Note that this condition also holds for equation of state mod-
elling. In fact, the size of the boxes is governed by the density
of the systems, while the phase composition is governed by the
distribution constant, Ki, defined as [28]:

Ki = yi
xi

(2)

where yi and xi are the composition of component i in the gas-
and liquid-phase, respectively. It is clear that in the absence
of experimental data one would need an EoS to perform a
flash calculation to obtain the density of the phases and the
distribution constant of the components. The requirement of an
EoS to setup aGibbs ensemble simulation is amajor drawback of
themethod limiting its application to complexmulticomponent
systems. Here, we seek alternative ways to estimate the Ki’s
avoiding the use of EoSs. Note that in the Gibbs ensemble only
a reasonable guess for the Ki’s needs to be provided, which can
be obtained from ideality considerations or ad-hoc correlations.
For example, Raoult’s law can be used to estimate the distribu-
tion constants as [31]:

Ki = yi
xi

=
(
Psati
P

)
T

(3)

Figure 1. Resemblance of experiments and the Gibbs ensemble simulations. In an
experiment, a streamwith a known overall composition (zi ) is flashed at a constant
temperature and pressure yielding a gas and a liquid-phase with composition
yi and xi , respectively. In a Gibbs ensemble simulation, two simulation boxes
are used to simulate properties of coexisting phases away from the gas/liquid
interface. In an experiment, the conditions for phase equilibrium (i.e., the equality of
temperature, pressure and chemical potentials) aremet using a stable thermostatic
bath, a pressure controller and a stirrer to enhance mass-transfer. Equivalently, in
the Gibbs ensemble simulations, four kinds of MC moves (translation, rotation,
volume change and molecule transfer with CBMC [29]) are performed to satisfy
the equilibrium conditions [30]. In experiments and in simulations, sampling of the
phases is only performed after ensuring that equilibrium is reached.

where Psati and P denote the saturation pressure of compo-
nent i and the flash/total pressure, respectively. Equation (3)
assumes an ideal gas phase (i.e., φ = 1) and an ideal liquid
phase (i.e., γ = 1). Unfortunately, Equation (3) cannot be used
when some of the components are supercritical, which would
require extrapolation of the saturation pressures often leading
to erroneous results. In some cases, the Ki ’s of the supercritical
compounds can be obtained from Henry’s law [31]:

Ki = yi
xi

= Hi

P
(4)

whereHi is the Henry constant of component i. Equation (4) is
difficult to apply formulticomponent systems, sinceHenry con-
stant data might not be available for all the components present
in the liquid mixture. Alternatively, one can use correlations
to estimate the distribution constants. An example of such a
correlation is provided by Wilson [32]:

Ki = Pci
P

exp
[
5.37(1 + ωi)

(
1 − Tci

T

)]
(5)

wherePci,Tci andωi are, respectively, the critical pressure (psia),
critical temperature (in ◦R) and the accentric factor of compo-
nent i. P and T are the pressure (psia) and temperature (in ◦R)
of the system in equilibrium. Equation (5) is mainly developed
for hydrocarbons and applicable for low to moderate pressures
assuming that theK-values are composition independent.Many
more correlations for K-values exist and the reader is referred
to [1,2,33,34] for an overview. Equations (3) and (5) have a
limited application range, but can be very useful to setup aGibbs
ensemble simulation for natural gas systems.

To perform a Gibbs ensemble simulation, one requires force
fields, which are potentials to describe the intra and intermolec-
ular interactions of all components in the mixture. The TraPPE
united-atom (UA) force field have been used to describe N2,
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CH4, CO2, H2S, C2H6, C3H8, C5H12, C7H16 and C10H22 [35–
37]. The molecules N2, CH4, CO2, H2S and C2H6 were consid-
ered rigid in the simulations, while the higher alkanes were con-
sidered flexible. The internal degrees of freedom of the flexible
molecules were sampled using the configurational-bias Monte
Carlo (CBMC) scheme [29]. Interactions between dissimilar
atoms were described by the Lorentz–Berthelot mixing rules
[38]. The electrostatic interactions were described by the Ewald
method using a relative precision of 10−5 [27]. Note that only
N2, CO2 and H2S contain partial charges, whereas the alkanes
are uncharged. The Lennard-Jones (LJ) interactions were trun-
cated at 14 Å and tail corrections were applied [27]. Given an
initial/overall composition, zi, the following steps are required
to setup a Gibbs ensemble simulation: (1) Choose the total
number of particles (NT ). Note that the VLE is independent
of NT , but it should be chosen such that the statistics and the
computational time are acceptable. (2) Compute the K-values
of all components from an EoS or the correlations outlined
in the previous section and distribute molecules in both boxes
accordingly. The initial molecule distribution can be computed
from a known zi andKi, by simultaneously solving Equation (2)
and the component-balance equation,

xiNL
T + yiNG

T = ziNT , (6)

using the constraints
∑

xi = ∑
yi = ∑

zi = 1. In Equation
(6), xi and yi are the liquid- and gas-phase mole fractions of
component i, respectively. NL

T and NG
T are the total number of

molecules in the liquid- and gas-phase. (3) Estimate the size
of both boxes corresponding with the molecule distribution
of the previous step. The density of each subsystem can be
estimated from an NPT simulation or from an EoS. Since the
cut-off radius in our simulation is 14 Å, the size of both boxes
should be at least 28 Å. Typically, the size of the gas box is
twice the size of the liquid box. However, note that the box size
(volume) is an output of the Gibbs ensemble simulation and
controlled by the total number of particles (NT ) at given T and
P. Hence, if the equilibrium box size is less than twice the cut-off
radius, one should simply increase the total number of particles
keeping zi fixed. (4) Start the Gibbs ensemble simulation with
the estimated molecule distribution and box sizes. The GEMC
simulationswere startedwith an equilibration run of 50,000MC
cycles followed by a production run of 0.2 million cycles. The
number of steps in a MC cycle equals the total number of par-
ticles in the simulation box. The reported error bars represent
the 95% confidence interval obtained from four independent
simulations with different random seed numbers and initial
configurations.

Furthermore, it is important to choose the state-points (T ,
P) carefully, since Gibbs ensemble simulations become unstable
near critical points [39]. Therefore, one should avoid simula-
tions near critical points of pure components and/or mixtures.
Protocols to setup efficient Gibbs ensemble simulations are
provided by Cortés Morales et al. [40]. Here, the simulation
conditionswere chosenbasedon the availability of experimental
data. The total number of molecules in our simulation was
varied from around 500 to 1500 and Equation (5) was used to
estimate the K-values. In Table 1, the properties of the studied

components and the initial composition (zi) of the mixtures are
listed.

3. Results and discussion

To compute the VLE of multicomponent natural gas mixtures,
MC simulations in the NPT-Gibbs ensemble were performed
using RASPA [41,42], a molecular simulation tool. The simula-
tions were performed at different temperatures and pressures.
In Figure 2, the K-values computed from the MC simulations
at two temperatures were compared with the experimental data
of Kalra and Robinson [16], and the GERG-2008 EoS mod-
elling [26]. The results show that the MC simulation is in good
agreement for N2 and CH4. The K-values of CO2 and H2S
are slightly underestimated, while the K-values of C2H6 and
C3H8 are slightly, but systematically, overestimated. However,
the temperature and pressure dependency of the K-values are
correctly captured by the MC simulations. In Figure 3, the
coexistence densities of the vapour and liquid-phase computed
from the MC simulations are compared with the experiments
of Kalra and Robinson [16], and the GERG-2008 EoS mod-
elling. The gas-phase densities are in good agreement with the
experimental data, but the MC simulations slightly overpredict
the liquid-phase densities. This overprediction is due to the UA
description of the alkanes,which results in amore dense packing
of the molecules in the liquid [43]. Furthermore, the GERG-
2008EoS is able to correctly describe this six-component (Mix 1)
natural gas mixture. The MC simulations were extended to a
more challenging nine-component natural gas system (Mix 2),
whichwas experimentally studiedbyYarborough [17]. InFigure
4, the K-values computed from the MC simulations are com-
pared with experimental data and the GERG-2008 EoS. The
K-values of N2 and CH4 from the MC simulations are in good
agreement with experiments, but again the K-values of CO2
and H2S are slightly underestimated, while the K-values of the
higher alkanes, especially n-pentane, n-heptane and n-decane,
are systematically overestimated. Moreover, the GERG-2008
modelling results are, except for nitrogen, in good agreement
with experiments. For N2, the GERG-2008 EoS overestimate
theK-values, while theMC data are in good agreement with the
experiments. In Figure 5, the coexistence densities of the vapour
and liquid-phase computed from the MC simulations are com-
paredwith theGERG-2008 EoSmodelling. Again, the gas-phase
densities are in good agreement with the EoS results, but the
liquid-phase densities are slightly overpredicted. Furthermore,
the GERG-EoS failed to converge for the Yarborough mixture
beyond a pressure of 10 MPa, which exemplifies the difficulties
associated with the modelling of multicomponent mixtures at
high pressures.

The mismatch between experiments and MC data for some
of the components can be attributed to the inadequacy of the
molecular models (i.e., force fields) to accurately describe: (1)
the pure component properties (e.g., vapour pressures), and
(2) the cross-interactions using the simple Lorentz–Berthelot
mixing rules. For example, the force field of alkanes slightly
overpredicts the vapour pressures [35,36], which explains the
overestimation of the gas-phase compositions and theK-values.
The solubility of CO2 in alkanes in the liquid-phase is generally
overestimated by the TraPPE-UA [44] force field and other UA
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Table 1. Molecular weights (MW), critical parameters (Tc , Pc ) [31], acentric factors (ω) [31] and the initial composition of the studied mixtures. Mix 1 corresponds to the
six-component system of Kalra and Robinson [16], and Mix 2 corresponds to the nine-component mixture of Yarborough [17].

Component MW/g/mol Tc /K Pc /MPa ω Mix 1a Mix 2

N2 28.01 126.2 3.398 0.037 0.077 0.030
CH4 16.04 190.6 4.599 0.011 0.712 0.718
CO2 44.01 304.1 7.374 0.225 0.019 0.030
C2H6 30.07 305.3 4.872 0.099 0.066 0.046
H2S 34.08 373.4 8.963 0.090 0.099 0.030
C3H8 44.10 369.8 4.248 0.152 0.028 0.025
n-C5H12 72.15 469.7 3.370 0.252 0.053
n-C7H16 100.21 540.2 2.740 0.350 0.038
n-C10H22 142.29 617.8 2.110 0.490 0.030
aEstimated from reported molar volumes and phase compositions.

Table 2. Comparison of the K -values computed from the MC simulations and the Wilson equation for the Yarborough mixture (Mix 2) at 310.9 K and 3.65 MPa.

Component Kexp.i K sim.
i KWilson

i

N2 13.8 14.3 25.4
CH4 5.1 5.9 10.3
CO2 2.8 2.1 2.3
C2H6 1.3 1.6 1.5
H2S 1.1 0.8 0.8
C3H8 0.45 0.68 0.36
n-C5H12 0.059 0.12 0.030
n-C7H16 0.008 0.022 0.004
n-C10H22 0.0005 0.002 0.0002

(a) (b)

Figure 2. (Colour online) Comparison of K -values from experiments (closed symbols), MC simulations (open symbols) and GERG-2008 EoS modelling (lines) at (a) 213.7 K
and (b) 227.6 K for the mixture of Kalra and Robinson (Mix 1) [16]. Error bars of the simulation results are smaller than the symbol size.

force fields [45,46], which also explains the underprediction of
the K-values in the MC simulations. Similarly, the TraPPE-UA
force field overestimates the liquid-phase solubility of alkanes
in alkanes [35,47,48], which consequently result in the over-
prediction of the K-values, e.g. for n-pentane, n-heptane and
n-decane. We note that the explicit-hydrogen version of the
TraPPE force field (TraPPE-EH) for alkanes yields a better
description of vapour pressures and VLE of CO2, H2S, CH4 and
higher alkane mixtures [36,37,43,49,50]. However, the TraPPE-
EH force field for the current study would be computationally
too expensive, since every methane molecule would have four

additional interaction sites, while higher alkanes would have
2n+ 2 additional sites, where n is the number of carbon atoms.
Considering that we have more than 1000 molecules (mainly
methane, but also a considerable fraction of higher alkanes) and
that the computational time scales with ∼ N2, where N is the
number of interaction sites, it is clear that the computational
time would increase significantly. The computational time for
the VLE calculations of the Yarborough mixture was approxi-
mately four weeks on a Xeon-E52620 machine.

Furthermore, theLorentz–Berthelotmixing rules [38],which
are similar to the van der Waals mixing rules without binary
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Figure 3. (Colour online) Comparison of coexistence densities from experiments
(closed symbols), MC simulations (open symbols) and GERG-2008 EoS modelling
(lines) at 213.7 K for the mixture of Kalra and Robinson (Mix 1) [16].

Figure 4. (Colour online) Comparison of K -values from experiments (closed
symbols), MC simulations (open symbols) and GERG-2008 EoS modelling (lines)
at 310.9 K for the mixture of Yarborough (Mix 2) [17]. The GERG-2008 EoS did not
converge for pressures beyond 10 MPa. Error bars are only shown for nitrogen and
the higher alkanes, as for the other components the error bars are smaller than the
symbol size.

interaction parameters [51], might not be adequate to describe
such a complex asymmetric system. However, it is generally
difficult to use a different mixing rule, since the force field
parameters are typically fitted in combinationwith the Lorentz–
Berthelot mixing rules, which would require re-fitting of all
parameters. Another cause of uncertainty in the simulations
is introduced using a relatively small system size to reduce the
computational time.As a consequence, thenumber ofmolecules
in the liquid-phase for a low-soluble component (e.g., N2), and
the number of molecules in the gas-phase for a low-volatile
component (e.g., C10H22) is relatively small. This issue can only
be solved using a relatively large number of molecules, which

Figure 5. (Colour online) Comparison of coexistence densities fromMC simulations
(open symbols) and GERG-2008 EoS modelling (lines) at 310.9 K for the mixture
of Yarborough (Mix 2) [17]. The GERG-2008 EoS did not converge for pressures
beyond 10 MPa.

is computationally prohibitive. In order to reduce computa-
tional time, the recently coarse-grained force fields developed by
Herdes et al. [52] tomodel natural gas systemsmight be promis-
ing. In Table 2, we compare theK-values from experiments, the
Wilson method and the MC simulations. The Wilson equation
is known to yield poor results for super-critical components,
non-hydrocarbons, high pressures and relatively large alkanes.
However, theWilson equationor anyotherK-value correlations
can be useful to setup Gibbs ensemble simulations. Overall,
these results show that molecular simulation can be useful to
natural gas engineers.

4. Conclusion

Vapour–liquid equilibrium data (i.e., PTxy, PTx and PTy) are
extremely important in natural gas processing. PTxy data can
be obtained from sampling experiments, but it is a challenging
task formulticomponentmixtures. Bubble-point (PTx) or dew-
point (PTy) measurements are easier to perform, but do not
provide tie-line information. Typically, the unknown gas-phase
or liquid-phase composition is computed from an equation
of state by fitting bubble-point or dew-point data. Alterna-
tively, molecular simulations can be used to compute the VLE
of mixtures. Here, we used Monte Carlo Simulations in the
Gibbs ensemble to compute the VLE of a six-component and a
nine-component natural gasmixture using standard force fields
from the literature. The PTxy data from the MC simulations
are compared with available experimental data and GERG-
2008 equation of state modelling. Overall, a good agreement
between experiments, EoS modelling and MC simulations is
observed. Guidelines are provided to setup multicomponent
Gibbs ensemble simulations without using equations of state or
experimental data.
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