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ABSTRACT

Comparing the Riskiness of Dependent
Portfolios

by

Ranadeera Gamage Madhuka Samanthi

The University of Wisconsin-Milwaukee, 2016
Under the Supervision of Professors Vytaras Brazauskas and Wei Wei

A nonparametric test based on nested L-statistics and designed to compare

the riskiness of portfolios was introduced by Brazauskas, Jones, Puri, and Zitikis

(2007). Its asymptotic and small-sample properties were primarily explored for

independent portfolios, though independence is not a required condition for the

test to work. In this dissertation, we investigate how the performance of the test

changes when insurance portfolios are dependent. To achieve that goal, we perform

a simulation study where we consider three different risk measures: conditional tail

expectation, proportional hazards transform, and mean. Further, three portfolios

are generated from exponential, Pareto, and lognormal distributions, and their

interdependence is modeled with the three-dimensional t and Gaussian copulas.

It is found that the presence of comonotonicity makes the test very liberal for all

the risk measures under consideration. For various other types of dependence, the

results are mixed, i.e., they depend on the chosen risk measure, sample size, and

even on the test’s significance level. We illustrate how to incorporate such findings

into sensitivity analysis of the decisions. The risks we analyze represent tornado

damages in different regions of the United States from 1890 to 1999. In addition,
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we provide a theoretical explanation to the behavior of the power function of the

test by considering the usual stochastic orders of the Gini indexes of multivariate

normal risks with the same marginals but different dependence structures. Finally,

we generalize the comparison for the Gini indexes of multivariate elliptical risks.
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Chapter 1

Introduction

1.1 Motivation

Comparing the riskiness of portfolios is an area of practical importance that has

received a fair share of attention from researchers in academia. Depending on the

nature of the business, the purpose of comparing risks may vary. For example, a

portfolio of automobile insurance policies may include policies from different ge-

ographic regions and comparing the riskiness of them may help to assign equal

premiums for equally risky policies. In the finance industry, such tools may be

used for solving portfolio selection problems or for comparing performances of in-

vestment funds. Hence, it is of interest to study the statistical methods of grouping

equally risky portfolios by comparing their riskiness.

Brazauskas, Jones, Puri, and Zitikis (2007) introduced a nonparametric hy-

pothesis test based on nested L-statistics to check the inequality of risk measures

associated with the portfolios of insurance losses. The test statistic for this test is
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defined with the help of the Gini index (Gini, 1912) whose nonparametric estimator

is an L-statistic (i.e., a linear combination of order statistics). The asymptotic
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Figure 1.1: Inflation and wealth adjusted damages from major tornadoes in the
U.S. for the periods 1890-1999 (top row), 1890-1953 (bottom row–left), and 1954-
1999 (bottom row–right).

and small-sample properties of that test were primarily explored for independent

portfolios though independence is not a required condition for the test to work.

Independence is a very restrictive assumption to be satisfied by the data in use,

and we find many examples of real data where the assumption of independence was
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violated. One such example can be found in the practical illustration of the non-

parametric hypothesis test in Brazauskas et al. (2007). The practical performance

of the test was illustrated using the tornado damage data taken from Brooks and

Doswell (2001), who argued that, in order to compare tornado losses over time, it is

appropriate to adjust for inflation and wealth. While this suggestion was followed,

one important detail was overlooked.

As we can see in Figure 1.1 (top row), the adjusted data from 1890-1999 do

not look independent (i.e., data points are not uniformly scattered on the square

[0, 1]× [0, 1]), but dependence patterns disappear when the data set is split into

two at 1953 (bottom row-right and -left panels). Apparently, in 1953, the National

Weather Service introduced its early warning program which shifted the subsequent

losses. Therefore, we believe that it is important to examine the performance of

those procedures when the independence assumption is violated. In this disserta-

tion, we investigate−using theoretical analysis, Monte Carlo simulation, and real

data examples−the performance of the test in Brazauskas et al. (2007) when

insurance portfolios are dependent, with varying strengths of dependence.

1.2 Literature Review

Comparing the risks is an interesting and important actuarial problem. Many

researchers have made contributions to this literature. Wang and Young (1998) and

Wirch and Hardy (2000) used the notion of the stochastic dominance to compare

the risk measures. Jones and Zitikis (2005) approached the same problem from

a different angle and suggested parametric and nonparametric tests to examine

3



the order of two risk measures. They constructed the asymptotic distribution of

the difference between the empirical estimators of two risk measures. Further,

they constructed confidence intervals for the difference of the risk measures at a

prescribed confidence level.

Jones, Puri, and Zitikis (2006) extended the idea of statistical tests about the

equality of risk measures to higher dimensions. They considered one and two

sided alternatives and unordered alternatives based on the specification of the

risk measure in the null hypothesis. Moreover, they discussed the asymptotic

distributions of the test statistics and obtained the asymptotically most powerful

tests. While this paper made a considerable contribution to move the literature

forward, the practical applications of these tests has been very limited as these tests

were developed based on the assumption of independence among the populations.

Brazauskas, Jones, Puri, and Zitikis (2007) considered testing hypothesis about

the equality of risk measures of multivariate risks. This nonparametric proposal

was based on the Gini index (see Gini, 1936, for English translation of the origi-

nal article) which is an L-statistics. We note in passing that statistical inferential

tools based on L-statistics play a leading role in the actuarial literature which is

mostly due to their computational efficiency and straightforward risk measure for-

mulations (see Necir, Meraghni, and Meddi, 2007, and Necir and Meraghni, 2009,

2010). Similar tools have also been proposed in the empirical finance literature

(see Darolles, Gourieroux, and Jasiak, 2009), where performance of hedge funds is

measured using a metric based on L-moments (see Hosking, 1990).

The test proposed in Brazauskas, Jones, Puri, and Zitikis (2007) is the subject

of this dissertation. The nonparametric test introduced by these authors primarily

4



explored the performance of the test when the portfolios of risks are independent.

This test can be applied to dependent portfolios and we examine the performance

of the test when the underlying risks are dependent. This study is carried out in

two stages. In the first stage, we develop a Monte Carlo simulation study where

we consider three portfolios with different dependence structures modeled using

copula. In the second stage, we theoretically explain the numerical results related

to the performance of test that we obtained through the simulation study. In

order to complete the goal of the second stage, we explore the notion of stochastic

ordering of Gini indexes of multivariate normal random variables. Further, we

illustrate how to incorporate such findings into a sensitivity analysis of the decisions

associated with tornado damages in different regions of the United States from 1890

to 1999.

Ordering of Gini indexes of multivariate normal risks that we discuss in this

dissertation opens up a new venue of research due to the popularity of the Gini

index in economics and insurance literature. In addition, all the results developed

for the multivariate normal distribution can be easily extended to more general

elliptical distributions using the relationship between the multivariate normal and

elliptical distributions described by McNeil et al. (2005; Theorem 3.25 and Defini-

tion 3.26). This generalization will move the literature of the central concentration

of elliptical distributions forward.
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1.3 Plan of the Thesis

The rest of the dissertation is arranged in the following manner. In Chapter 2,

we discuss some preliminary concepts such as dependent risks, risk measures, and

ordering of risks under several stochastic orders.

In Chapter 3, we give an overview of the nonparametric hypothesis test in

Brazauskas, Jones, Puri, and Zitikis (2007), and the asymptotic behavior of the test

statistic under the null hypothesis and alternative hypothesis when the insurance

portfolios are dependent. Further, we discuss the decision making process using

the bootstrap estimator of the critical value.

In Chapter 4, we explain Monte Carlo simulation procedure used to investigate

the effect of the dependence on the power of the hypothesis test. As a practi-

cal application, we propose a sensitivity analysis method based on the numerical

findings.

In Chapter 5, we give a theoretical explanation for the results of the simulation

study. In particular, we discuss the dependence effect on the power function of the

hypothesis test by comparing the Gini indexes of multivariate normal risks with

the same marginal distributions. Moreover, we expand the discussion to the Gini

indexes of multivariate elliptical risks.

Finally, in Chapter 6, we summarize the results of this dissertation and briefly

discuss our future research plans.
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Chapter 2

Preliminaries

Throughout the dissertation, we use bold letters to denote vectors or matrices. For

example, X = (X1, . . . , Xk) is a random vector, x = (x1, . . . , xk) is a row vector,

and Σ is a k × k matrix. In particular, the symbol 0 denotes the row vector with

all entries equal to 0, and 1k×k denotes the k × k matrix with all entries equal to

1. The inequality between vectors or matrices denotes componentwise inequalities.

For example, (x1, . . . , xk) ≤ (y1, . . . , yk) implies that xi ≤ yi for all i = 1, . . . k.

2.1 Dependent Risks

Studying the notion of risk is the central idea of actuarial science. Oxford dic-

tionary describes the meaning of risk as a situation involving exposure to danger.

We can broaden this idea and think of risk as an event that brings some adverse

financial consequences with uncertainty. Uncertainty is merged with risks and

hence they are random events. In insurance, one party (policy holder) transfers

the economic impact of their risks to another party (insurer). Based on the nature
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of insurance and the size of the impact, this policy holder transfers the risk fully or

partially to the insurer. The following definition taken from Denuit et al. (2005)

gives a broader idea of risk in the actuarial science context.

Definition 2.1.1. A risk X is a non-negative random variable representing the

random amount of money paid by an insurance company to indemnify a policy-

holder, a beneficiary and/or a third-party in execution of an insurance contract.

In this dissertation, we consider the impact of risks simultaneously rather than

separately. In other words, we focus on dependence among risks. There are many

real life situations with dependent risks. In joint life insurance or annuity policy, it

is important to study the joint mortality patterns of a group of insureds or annui-

tants. Sharing a similar lifestyle, facing an accident, or “broken heart” syndrome

can be considered as factors that show dependence among the mortalities of a

husband and wife, a family with children, or twins. Therefore, we cannot simply

neglect the dependent risks in that situation. If we consider some catastrophic

weather events such as tornadoes, hurricanes, earthquakes, and tsunamis, several

lines of insurance business may be affected simultaneously, and we may want to

consider the dependence among risks in those situations as well.

There are three fundamental dependence structures of random variables; namely,

independence, comonotonicity, and countermonotonicity. Perhaps the most com-

mon dependence structure used in modeling is independence. When portfolios

of risks arise, we say that they are independent if the behavior of one risk does

not influence the behavior of the other risks. In probability theory, the notion of

independence is defined as follows:

8



Definition 2.1.2. The random variables X1, . . . , Xk are independent if, and only

if,

F (x) =
k∏
i=1

Fi(xi) for all x ∈ Rk,

where F is the joint distribution function of the random vector X and Fi are the

marginal distribution functions of Xi for i = 1, . . . , k.

Strong positive dependence or comonotonicity has received a fair share of at-

tention as a fundamental dependence structure. The comonotonicity of risks has

important applications in actuarial science and finance. Dhaene et al. (2002)

conducted a comprehensive study on the concept of comonotonicity and its appli-

cations. Below we cite their definition and several equivalent characterizations of

comonotonicity.

Definition 2.1.3. A set A ⊂ Rk is said to be comonotonic, if for any x,y ∈ A,

either x ≤ y or y ≤ x holds. Intuitively, a set is comonotonic if and only if it is

totally ordered.

Definition 2.1.4. For a random vector, its support is defined by

supp(X) = {x ∈ Rk : P{X ∈ B(x, r)} > 0, for any r > 0},

where B(x, r) denotes the ball centered at x with radius r.

Definition 2.1.5. A random vector X is comonotonic if its support is comono-

tonic.

Dhaene et al. (2002) also developed several well-known characterizations of

comonotonicity.

9



Proposition 2.1.6. A random vector X is comonotonic if and only if one of the

following equivalent conditions holds:

(1) X has a comonotonic support,

(2) P{X1 ≤ x1, . . . , Xk ≤ xk} = min{P{X1 ≤ x1}, . . . ,P{Xk ≤ xk}} for all

(x1, . . . , xk) ∈ Rk,

(3) There exists a random variable Z and increasing functions f1, . . . , fk, such

that (X1, . . . , Xk) d= (f1(Z), . . . , fk(Z)).

The other extreme dependence structure is countermonotonicity which is used

only in the bivariate case. Bivariate risk is said to be countermonotonic if it

is distributed as (f1(Z), f2(Z)) for some random variable Z, with an increasing

function f1 and a decreasing function f2. This dependence structure can not be

extended to higher dimensions.

Copulas are considered to be useful for understanding the relationship between

risks. They are used for modeling dependence among random variables in a wide

variety of disciplines. To understand their use in actuarial science, readers may

be refered to Nelsen (2006), Chapter 5 of McNeil et al. (2005), Frees and Valdez

(1998), or Chapter 4 of Denuit et al. (2005). The annotated bibliography in Frees

and Valdez (1998) provides a collection of other references for researchers.

Definition 2.1.7 (copula). A k-dimensional copula is a joint distribution function

of random variables whose marginal distributions are uniform on the interval [0, 1].

We reserve the notation C(u) = C(u1, . . . , uk) for a k-dimensional copula. The

terminology copula is first used by Sklar, see Nelsen (2006), to link univariate dis-

tribution functions of random variables to their multivariate distribution function
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through the following theorem. It shows that all multivariate distribution func-

tions contain copulas, and copulas may be used in conjunction with univariate

distribution functions to construct multivariate distribution functions.

Theorem 2.1.8 (Sklar 1959). Let F be a joint distribution function with marginal

distributions F1, . . . , Fk. Then there exists a copula C : [0, 1]k → [0, 1] such that,

for all x1, . . . , xk in R = [−∞,∞],

F (x1, . . . , xk) = C(F1(x1), . . . , Fk(xk)). (2.1.1)

If the marginal distributions F1, . . . , Fk are continuous, then C is uniquely deter-

mined. Otherwise, C is unique only on ∏k
i=1 Ran(Fi), where Ran(Fi) denotes the

range of Fi. Conversely, if C is a copula and F1, . . . , Fk are univariate distribution

functions, then the function F defined in (2.1.1) is a joint distribution function

with margins F1, . . . , Fk.

The independence copula (usually denoted as Π) characterizes the independent

random variables and is given by

Π(u1, . . . , uk) =
k∏
i=1

ui for 0 ≤ ui ≤ 1.

Note that Theorem 2.1.8 and Definition 2.1.2 can be used to obtain the indepen-

dence copula.

Comonotonicity of random variables is characterized by the comonotonicity

copula (usually denoted as M), which can capture situations when the random

variables are almost surely strictly increasing functions of each other, and counter-
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monotonicity is characterized by the countermonotonicity copula (usually denoted

as W ), which applies to only two random variables where one is almost surely a

decreasing function of the other. The comonotonicity copula is given by

M(u1, . . . , uk) = min(u1, . . . , uk) for 0 ≤ ui ≤ 1.

The countermonotonicity copula is given by

W (u1, u2) = max{u1 + u2 − 1, 0} for 0 ≤ u1, u2 ≤ 1.

The independence, comonotonicity, and countermonotonicity copulas are the

fundamental copulas (see Chapter 5 of McNeil et al., 2005), and they represent

three important dependence structures. Likewise, many intermediate dependence

structures can be described by identifying a relevant type of copula (see Frees and

Valdez, 1998, Nelsen, 2006, or Joe, 2014).

In order to determine what effect, if any, the dependence structure between the

portfolios has on the power function of the hypothesis test described in Chapter

3, we shall perform a simulation study. For the simulation study, we consider dif-

ferent types of dependent portfolios, which cover the full spectrum of dependence

strength from negative dependence through the strong positive dependence . In

particular, we select four types of dependent portfolios: negative dependence (for

two portfolios, it corresponds to countermonotonicity), zero dependence, moderate

positive dependence, and strong positive dependence (comonotonicity). These de-

pendence structures can be captured using the well-known Gaussian and t copulas.

The Gaussian and t copulas belong to elliptical copula family. Simply, the

12



copula of multivariate normal random variables is the Gaussian copula and that of

multivariate t-distributed random variables is the t copula. Therefore, the Gaus-

sian copula is completely determined by the correlation matrix (Σ) of the random

variables. We use the notation CGa
Σ for a Gaussian copula with a correlation ma-

trix Σ. For example, the identity matrix characterizes independence among the

variables, while the correlation matrix with all entries equal to 1 characterizes the

comonotonicity. In addition to the correlation matrix, we need to know the de-

grees of freedom (df) to determine the t copula. We use the notation Ct
ν,Σ for the t

copula with the correlation matrix Σ. In fact, the Gaussian copula is the limiting

case of t copula. The following are examples of the three-dimensional correlation

matrix for the dependence structures mentioned above. Note that for the Gaussian

copula zero dependence is equivalent to independence.

• Negative (Σ1) and Zero (Σ2) Dependence:

Σ1 =


1 −0.5 −0.5

−0.5 1 −0.5

−0.5 −0.5 1

 and Σ2 =


1 0 0

0 1 0

0 0 1



• Moderate Positive (Σ3) and Strong Positive (Σ4) Dependence:

Σ3 =


1 0.5 0.5

0.5 1 0.5

0.5 0.5 1

 and Σ4 =


1 1 1

1 1 1

1 1 1


In addition, Figure 2.1 illustrates the difference between the two-dimensional t

copula (with ν = 3 degrees of freedom) and the Gaussian copula, i.e., t with

13



ν → ∞, for normal marginals and varying strengths of dependence. (In this

particular instance, the three-dimensional plots provide no new insights.)
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Figure 2.1: 2D copula realizations for negatively dependent, zero dependent, and
moderately positively dependent normal marginals. Left column: t copulas. Right
column: Gaussian copulas.

Notice how the tail dependence manifests itself for ν = 3 and disappears as

ν →∞, i.e., in the latter case there are essentially no points in the corners of each
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plot.

The Gaussian copulas do not effectively capture the tail dependence, while t

copulas with small ν do. In risk management, focusing on these extreme events

is required as they can have a significant impact on companies and the global

economy. For example, after 2008 financial crisis, the Gaussian copulas models

were partly blamed for not capturing the tail dependence of financial industry

risks. In this dissertation, we introduce both tail independence and dependence

through the Gaussian and t copulas, respectively.

As we mentioned, the Gaussian and t copulas belong to the elliptical copula

family, and they are derived from the multivariate Gaussian and t distributions,

respectively. It is important for us to discuss more about elliptical distributions,

not only because it is important for simulating t copula, but also it is an important

topic in our future research work. Therefore, we recall some basic concepts about

elliptical distributions. The following definition and characterization of elliptical

distribution are taken from McNeil et al. (2005).

Definition 2.1.9. A k-dimensional random vector X has an elliptical distribution

if its characteristic function has the following form:

E[eitXT ] = eitµT
ψ(tΣtT),

where µT ∈ Rk, Σ ∈ Rk×k is a positive semidefinite matrix, and ψ is a characteristic

function. In this case we denote X ∼ ECk(µ,Σ, ψ). ψ is referred to as the

characteristic generator of the elliptical distribution. µ is referred to as location

vector and is equal to the mean of X if it exists, and Σ is referred to as dispersion
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matrix.

McNeil et al. (2005) points out that, generally, characteristic generators may

be used only in certain dimensions. In this dissertation, we shall focus on a special

class of generators and the elliptical distributions induced by this class. Specifically,

we consider all the generators that can be used in any arbitrary dimension and

denote this class by Ψ∞.

The elliptical distribution family induced by Ψ∞ includes many important dis-

tributions, such as multivariate normal distribution and multivariate t distribution.

For more discussion about this family, readers are referred to Chapter 3 of Mc-

Neil et al. (2005). Furthermore, a useful property about this family is that it has

stochastic representation in terms of multivariate normal distribution, as shown by

Proposition 2.1.10. It is essentially a combination of Theorem 3.25 and Definition

3.26 of McNeil et al. (2005), and the proof is thus omitted.

Proposition 2.1.10. Random vector X ∼ ECk(µ,Σ, ψ) with ψ ∈ Ψ∞ if and only

if there exist random vector Z and random variable R such that

X d= µ +RZ, (2.1.2)

where Z ∼MVN(0,Σ) and R ≥ 0 is a random variable independent of Z.

Proposition 2.1.10 presents an important relationship between multivariate nor-

mal and elliptical distributions. With this representation, many properties of mul-

tivariate normal distributions can be easily generalized to elliptical distributions.

In later chapters, we shall see some examples.
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Theorem 5 of Dhaene et al. (2002) develops a characterization of the comono-

tonicity for multivariate normal distribution by its covariance matrix. Specifically,

X = (X1, . . . , Xk) ∼ MVN(µ,Σ) is comonotonic if and only if corr(Xi, Xj) = 1

for all i, j (i.e., rank(Σ) = 1). Furthermore, if all marginal distributions have the

same variance 1, then the comonotonicity of X is equivalent to Σ = 1k×k.

The characterization of comonotonicity of multivariate normal distributions can

be generalized to elliptical distributions induced by Ψ∞. Specifically, an elliptical

distribution with ψ ∈ Ψ∞ is comonotonic if and only if its dispersion matrix has

rank 1. Below, we formally state the characterization and prove it in general case.

Proposition 2.1.11. Let X ∼ ECk(µ,Σ, ψ) with ψ ∈ Ψ∞. X is comonotonic if

and only if rank(Σ) = 1.

Proof. See Appendix A.

2.2 Risk Measures

After the discussion of risks and their dependence structures, we consider the

methods for measuring risks. Next section is devoted to the discussion of risk

measures.

Risks are non-negative random variables (see Definition 2.1.1), and a risk mea-

sure assigns a single nonnegative value to a risk to reflect the riskiness associated

with the distribution of the risk. More formally, a risk measure is a functional

mapping from the set F of distribution functions to the extended real line. Risk

measure is a useful tool for quantifying the riskiness. The interpretation of the risk

measure value may vary based on the nature of the risk. If X is a loss of a financial
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portfolio, we interpret the risk measure as the risk capital of the portfolio and this

can be used to determine the provision and capital requirement in order to avoid

insolvency (see Panjer (1998)). If X is an amount of exposure to liability in an

insurance company, a premium calculation principle gives the minimum amount

the insurer must raise from the insured. This premium calculation principle is

an example of risk measure in the insurance industry. Also, some risk measures

can be used as a premium associated with an insurance contract. Risk measures

have to satisfy some axioms (see Chapter 2 of Denuit et al. (2005)). There is a

vast literature on risk measures and their application to contract pricing, capital

allocation, and risk management. For a quick introduction into these topics, the

reader may be referred to the review papers by Albrecht (2004), Tapiero (2004),

and Young (2004).

In order to compare the riskiness of portfolios of risks, we will utilize a special

class of risk measures, namely, spectral risk measures. Such measures were first

introduced in the finance literature with the intention that the user may wish to

re-weight the initial distribution of the portfolio in order to reflect his/her risk

aversion. In mathematical terms, a spectral risk measure R = R[F ] of a random

variable X, with a cumulative distribution function (cdf) F , is defined as

R[F ] =
∫ 1

0
F−1(u)J(u) du, (2.2.1)

where J is the weight function which controls the risk aversion, and F−1(u) =

inf {x : F (x) ≥ u} denotes the quantile function of X. It is not easy to find a

descriptive guidance on selecting the risk aversion function. But readers may
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find some developments of spectral risk measures and their applications in Acerbi

(2002). The following are a few typical examples of spectral risk measures.

Example 2.2.1. (mean). Choosing J(u) = 1 for 0 ≤ u ≤ 1, in equation (2.2.1),

gives the expected value of X, and we denote it using the notation mean[F ]. 2

Example 2.2.2. (pht, proportional hazards transform). Let r (0 < r ≤ 1) be a

real valued constant which can be chosen depending on the risk aversion. (In the

actuarial literature, r is known as the distortion level.) Choosing J(u) = r(1−u)r−1

for 0 ≤ u ≤ 1, in equation (2.2.1), gives the Proportional Hazards Transform of F ,

and we denote this measure using the notation pht[F ]. 2

Example 2.2.3. (cte, conditional tail expectation). Conditional Tail Expecta-

tion can be defined as spectral risk measure by setting J(u) = 0 for 0 ≤ u < t and

J(u) = 1/(1 − t) for t ≤ u ≤ 1 in equation (2.2.1), where t (0 ≤ t < 1) is a real

valued constant known as the threshold level. We denote this measure using the

notation cte[F ]. 2

In practice, the cdf F is usually unknown and has to be estimated from the

observed data. As discussed in the introduction, one can do that parametrically,

non-parametrically, or semi-parametrically and then insert estimated F in equation

(2.2.1), which would produce an estimator of R[F ]. In this research, we will focus

on the empirical nonparametric estimation. That is, in equation (2.2.1) we replace
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F by the empirical cdf so that R̂ = R[F̂ ] with

R[F̂ ] =
∫ 1

0
F̂−1(u)J(u) du

=
n∑

m=1

(∫ m/n

(m−1)/n
F̂−1(u)J(u)du

)
.

Considering the ordered sample of X, X1:n ≤ · · · ≤ Xn:n, we can obtain the

empirical estimator F̂−1 of the quantile function of F . For u ∈
(
m−1
n
, m
n

)
, F̂−1(u) =

Xm:n. We can express the above equation by

R[F̂ ] =
n∑

m=1
Xm:n

(∫ m/n

(m−1)/n
J(u) du

)
,

where X1:n ≤ · · · ≤ Xn:n denote the ordered values of data X1, . . . , Xn. Hence, the

empirical estimator of a risk measure R[F ] is given by

R[F̂ ] =
n∑

m=1
cmnXm:n (2.2.2)

with cmn =
∫m/n

(m−1)/n J(u) du. Note that R[F̂ ], as defined in (2.2.2), belongs to

a general class of L-statistics, theoretical properties of which are well understood

and have been thoroughly studied by Jones and Zitikis (2003), Necir and Meraghni

(2009, 2010), and other authors.

In Chapter 5 and Chapter 6 of the dissertation, we will present the theoretical

investigation of the simulation study results. In order to do that, we recall some

definitions and theorems associated with ordering of elliptical risks.
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2.3 Ordering of Risks

Definition 2.3.1. Let X and Y be two random variables. X is said to be smaller

than Y in usual stochastic order, denoted as X ≤st Y , if

P{X > t} ≤ P{Y > t} for all t ∈ R. (2.3.1)

Roughly speaking, (2.3.1) says that X is less likely than Y to take on large values,

where “large” means any value greater than t for all t ∈ R.

It is easy to prove that X ≤st Y if and only if,

P{X ≤ t} ≥ P{Y ≤ t} for all t ∈ R. (2.3.2)

In this work, we will use both (2.3.1) and (2.3.2) in proofs.

The above definitions are taken from Shaked and Shanthikumar (2007), which

also provide the following characterization for the usual stochastic order.

Proposition 2.3.2. Let X, Y be two random variables with the respective dis-

tribution functions F and G. X ≤st Y if and only if F−1(u) ≤ G−1(u) for all

u ∈ (0, 1).

Now, we pay our attention to an important dependence order relations for

multivariate distributions. It is concordance order. The following is the definition

of the bivariate concordance order.

Definition 2.3.3. Let X = (X1, X2) and X′ = (X ′1, X ′2) be bivariate random vec-

tors with the same marginals. Then X is said to be smaller than X′ in concordance
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order (written as X ≤c X′ or FX ≤c FX′), if

P (X1 ≤ s,X2 ≤ t) ≤ P (X ′1 ≤ s,X ′2 ≤ t) for all s and t.

The following theorem taken from Müller and Stoyan (2002) gives several equiv-

alent characterizations of the concordance order.

Theorem 2.3.4. Let X and X′ be bivariate random vectors with the same marginals.

Then the following conditions are equivalent:

(1) X ≤c X′.

(2) P (X1 > s,X2 > t) ≤ P (X ′1 > s,X ′2 > t) for all s and t.

(3) Cov (f1(X1), f2(X2)) ≤ Cov (f1(X ′1), f2(X ′2)) for all increasing f1 and f2.

Joe (1990) suggested the following definition as a generalization of the bivariate

concordance order in Definition 2.3.3.

Definition 2.3.5. Let X and X′ be k-dimensional random vectors with the same

marginals. Then X is said to be smaller than X′ in concordance order (written as

X ≤c X′ or FX ≤c FX′), if FX(t) ≤ FX′(t) as well as F̄X(t) ≤ F̄X′(t) hold for all t.

The requirement of equal marginals is not included in the definition as the

inequalities FX(t) ≤ FX′(t) and F̄X(t) ≤ F̄X′(t) automatically satisfy the require-

ment.

The following are important properties of the multivariate concordance order

(see Müller and Stoyan, 2002).
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(P1) (bivariate concordance) (X1, . . . , Xk) ≤c (X ′1, . . . , X ′k) implies (Xi, Xj) ≤c

(X ′i, X ′j) for all 1 ≤ i < j ≤ k.

(P2) (invariance with respect to increasing transforms) (X1, . . . , Xk) ≤c (X ′1, . . . , X ′k)

implies (g1(X1), . . . , gk(Xk)) ≤c (g1(X ′1), . . . , gk(X ′k)) for all increasing func-

tions g1, . . . , gk.

Nelsen (2006) discusses the concordance orders of copulas. The copula of an

elliptically distributed random vector is an elliptical copula, and they are charac-

terized by the correlation matrix. Therefore, the elliptically distributed random

vectors ordered with respect to ≤c, if and only if they have the same marginals

and all their covariances are ordered. At this point, we can revisit some examples

in the discussion of dependent risks (see Section 2.1) and order them as follows.

For a Gaussian copula,

CGa
Σ1 ≤c C

Ga
Σ2 ≤c C

Ga
Σ3 ≤c C

Ga
Σ4 .

Similarly for t copula,

Ct
ν,Σ1 ≤c C

t
ν,Σ2 ≤c C

t
ν,Σ3 ≤c C

t
ν,Σ4 .

In general, if a portfolio X′ with copula C ′ is more positively dependent than a

portfolio X with copula C, then C ≤c C ′.
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Chapter 3

Hypothesis Test

3.1 Hypotheses of Interest

Let X(1), . . . , X(k) be k portfolios of risks with distribution functions F1, . . . , Fk,

respectively. These portfolios can be independent or dependent. Suppose their

riskiness is measured using the risk measures R1 = R[F1], . . . , Rk = R[Fk], as

defined by (2.2.1). The hypothesis of interest is to check whether or not the k risk

measures R1, . . . , Rk are all equal. That is, we can define the hypothesis test as

follows.

H0 : R1 = · · · = Rk versus HA : at least one pair Ri 6= Rj.

To test the above hypothesis, Brazauskas, Jones, Puri, and Zitikis (2007) proposed

a nonparametric test statistic that constructs the Gini index based on R1, . . . , Rk.

Hence, all information about the differences of portfolio riskiness can be summa-
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rized by the inequality index

γ = 1
k2

∑
1≤i,j≤k

∣∣∣Ri −Rj

∣∣∣, (3.1.1)

which leads to a more compact formulation of the problem:

H0 : γ = 0 versus HA : γ > 0.

3.2 Test Statistic

Using standard techniques for order statistics (see, e.g., David and Nagaraja, 2003,

Section 9.4), the Gini index in (3.1.1) can be reexpressed in the following manner:

γ = 1
k2

k∑
i=1

(4i− 2(k + 1))Ri:k

=
k∑
i=1

(∫ i/k

(i−1)/k
K(u)du

)
Ri:k, (3.2.1)

where K(u) := 4u−2 for all 0 ≤ u ≤ 1, and R1:k, . . . , Rk:k are the ordered values of

R1, . . . , Rk. This equation helps us to define the Gini index as a nested L-statistic.

From equation (3.2.1), we can define an estimator of the Gini index by replacing

the Ri:k with R̂i:k,

γ̂ =
k∑
i=1

(∫ i/k

(i−1)/k
K(u)du

)
R̂i:k.
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That is, γ̂ can be defined as a linear combination of ordered values of R̂i, in other

words an L-statistic based on R̂1, . . . R̂k.

Now, lets consider a sample X1(i), . . . , Xn(i) of size n drawn from portfolio

X(i) for any 1 ≤ i ≤ k. Then we can derive an empirical distribution F̂i of X(i)

based on the above sample. By equation (2.2.2), we have

R̂i =
n∑

m=1
cmnXm:n(i) (3.2.2)

with cmn =
∫m/n

(m−1)/n J(u)du. Since R̂1, . . . , R̂k are L-statistics, it is not hard to see

that γ̂ is an L-statistic of L-statistics, hence the name “nested L-statistics”.

To test the hypothesis stated in the previous section, the following test statistic

is used:

T :=
√
n

k
γ̂.

Let Di = R̂i − Ri; then under the null hypothesis H0, Di − Dj = R̂i − R̂j, and

hence

γ̂ = 1
k2

∑
1≤i,j≤k

|Di −Dj|

Then the test statistic can be defined as follows:

T = 1
k2

∑
1≤i,j≤k

|∆i −∆j|, (3.2.3)
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where ∆i :=
√

n
k
Di, or

T = 1
k2

k∑
i=1

(4i− 2(k + 1)) ∆i:k, (3.2.4)

where ∆1:k ≤ · · · ≤ ∆k:k are ordered values of ∆i. With the function Tk : Rk 7→ R

defined by

Tk(x1, . . . , xk) := 1
k2

k∑
i=1

(4i− 2(k + 1))xi:k,

we rewrite formula (3.2.3) as follows:

T = Tk(∆1, . . . ,∆k), (3.2.5)

3.3 Asymptotic Properties

Now, we want to obtain the asymptotic distribution of the test statistic T under

H0. Under the following assumptions (Brazauskas et al., 2007; Jones et al., 2006),

(A1) The weight function J is continuous on the interval (0, 1), except possibly at

a finite number of points at which F−1
i is continuous,

(A2) There exist a, b > 1/2 and c < ∞ such that |J(t)| ≤ cta−1(1 − t)b−1 on the

interval (0, 1),

(A3) The moment E[|X1(i)|p] is finite for some p such that p > 1/(a − 1/2) and

p > 1/(b− 1/2),
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it can be shown that, when n −→∞,

√
n(R̂i −Ri) −→d σiGi, 1 ≤ i ≤ k

where σ2
i :=

∫∞
−∞

∫∞
−∞ (Fi(x ∧ y)− Fi(x)Fi(y)) J(Fi(x))J(Fi(y))dxdy and

Gi ∼ N (0, 1). For 1 ≤ i, j ≤ k,

Cov(Gi, Gj) = σ−1
i σ−1

j Cov(Ai(X1(i)), Aj(X1(j))),

where

Ai(y) := −
∫ ∞
−∞

(
I{y ≤ x} − Fi(x)

)
J(Fi(x))dx. (3.3.1)

Then we have ∆i −→d
1√
k
σiGi, and hence by equation (3.2.5)

T −→d Tk
(

1√
k
σ1G1, . . . ,

1√
k
σkGk

)
.

Further, it is proved that the asymptotic power of T under the alternative

hypothesis HA is 1. That is under HA,

T = 1
k2

√
n

k

∑
1≤i,j≤k

|(Di −Dj) + (Ri −Rj)|

≥ − 1
k2

√
n

k

∑
1≤i,j≤k

|Di −Dj|+
1
k2

√
n

k

∑
1≤i,j≤k

|Ri −Rj|

The first summand on the right-hand side has a non-degenerate distribution, while∑
1≤i,j≤k |Ri −Rj| ≥ 0 under HA. Therefore, the asymptotic power is 1.
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3.4 Decision Making

Brazauskas et al. (2007) suggested a bootstrap approximation to the critical value

of the test. For this study, we cannot use the exact same procedure, because we

consider dependent random variables. We first introduce a simple bootstrap re-

sampling technique to replicate the original sample. But as further research we can

check some other resampling techniques, such as blocked bootstrap (overlapping

and nonoverlapping) as explained in Lahiri (2003), to find the bootstrap estimate

of the critical value. For 1 ≤ j ≤ n, let (Xj(1), . . . , Xj(k)) be the jth realization

of the dependent random vector (X(1), . . . , X(k)). Then we obtain the bootstrap

samples (n samples), which we denote by (X∗l (1), . . . , X∗l (k)), such that

(X∗l (1), . . . , X∗l (k)) = (Xj(1), . . . , Xj(k))

for each 1 ≤ l ≤ n and for some randomly selected 1 ≤ j ≤ n. Then we obtain the

bootstrap estimate, denoted by R̂∗i of R̂i for every 1 ≤ i ≤ k by replacing Xm:n(i)

with X∗m:n(i) in formula (3.2.2). After that, we estimate the Gini index using the

following relationship:

γ̂∗ = 1
k2

∑
1≤i,j≤k

|D∗i −D∗j |,

where D∗i = R̂∗i − R̂i, i = 1, . . . , k. Then the bootstrap version of the test statistic

can be defined as follows:

T ∗ :=
√
n

k
γ̂∗.
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The bootstrap estimate of the critical value of the test is the (1− α) quantile

of the T ∗, denoted by xα[T ∗]. That quantile can be found by repeating the above

process sufficient number of times, denoted by B, and by finding the bB(1−α)cth

order statistic of the bootstrap replicates
{
T ∗(1), . . . , T ∗(B)

}
of the test statistic T .

Once we find the approximated critical value xα[T ∗], we reject the null hypothesis

H0 in favor of the alternative hypothesis HA if the actual value of the test statistic

T (the value obtained from the original samples) exceeds the approximated critical

value xα[T ∗]. Otherwise, we do not reject H0.
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Chapter 4

Simulation Study

4.1 Study Objectives

Since the sampling distribution of the test statistic does not have a manageable

closed form expression, we use Monte Carlo simulations to investigate how the

performance of the test changes when insurance portfolios are dependent. More

specifically, we are interested in quantifying the relationship between the power of

the test and the strength of portfolio dependence, for selected types of alternatives.

We first generate three dependent portfolios of insurance losses such that they

are either equally risky (H0 setting) or unequally risky (HA setting), according to

a fixed risk measure. For this study, we choose mean, pht, and cte as the risk

measures (see Examples 2.2.1, 2.2.2, and 2.2.3). We then perform the hypothesis

test of Section 3.1 using the generated portfolios and compute its proportion of

rejections. (Such a proportion estimates the nominal level of significance under H0

and the power of the test under HA.) By executing this process for the four types of
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dependence listed in Section 2.1 (negative dependence, zero dependence, moderate

positive dependence, and strong positive dependence), we obtain the proportion of

rejections corresponding to each of the dependence structures. Specific parameters

and other details of the study design are described in Sections 4.2 and 4.3.

4.2 Marginal Distributions

For generation of insurance portfolios with specified riskiness, we follow the sim-

ulation studies of Brazauskas and Kaiser (2004), Kaiser and Brazauskas (2006),

Brazauskas, Jones, Puri, and Zitikis (2007) and choose the following three para-

metric families:

• Exponential with the cdf

F1(x) = 1− e−(x−x0)/θ, x > x0, θ > 0. (4.2.1)

• Pareto with the cdf

F2(x) = 1− (x0/x)β , x > x0, β > 0. (4.2.2)

• Lognormal with the cdf

F3(x) = Φ
(

log(x− x0)− µ
)
, x > x0, −∞ < µ <∞, (4.2.3)

where Φ(·) denotes the standard normal cdf.
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The parameter x0 in the above distributions can be interpreted as a deductible or

a retention level of an insurance policy. (Note that due to x0, the distributions

F1, F2, and F3 have the same support.) Although in general x0 could be any

positive real number, for this study we set x0 = 1. The other parameters θ, β, and

µ are selected in such a way that the cdfs F1, F2, and F3 follow the hypothesized

portfolio riskiness with respect to a fixed risk measure. In particular, if they are

equally risky (under H0), then they must satisfy the equation

R[F1] = R[F2] = R[F3], (4.2.4)

where R[·] represents either mean, pht, or cte. Evaluation of these measures for

the distributions F1, F2, F3 yields the following expressions of (4.2.4).

• For the mean risk measure (when R[Fi] = mean[Fi]):

x0 + θ = x0β

β − 1 = x0 + eµ+0.5. (4.2.5)

• For the pht risk measure (when R[Fi] = pht[Fi]):

x0 + θ

r
= x0 + x0

rβ − 1 = x0 + Cre
µ, (4.2.6)

where for fixed r, the integral Cr =
∫∞
−∞ (1− Φ(z))r ez dz is found numeri-

cally. For example, as reported by Brazauskas and Kaiser (2004), C0.55 =

3.896, C0.70 = 2.665, C0.85 = 2.030, C0.95 = 1.758. Note that when r = 1, the

pht measure becomes the mean.
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• For the cte risk measure (when R[Fi] = cte[Fi]):

x0 − θ(log(1− t)− 1) = x0β

β − 1(1− t)−1/β =

x0 + 1
1− te

µ+0.5Φ(1− Φ−1(t)). (4.2.7)

Note that when t = 0, the cte measure becomes the mean.

For the simulation study we fix x0 = 1 and β = 5.5, and then compute the

corresponding values of θ and µ for each risk measure. Table 4.1 provides all

distribution related parameters under H0, which are calculated using equations

(4.2.5), (4.2.6), and (4.2.7).

Table 4.1: The distribution related parameters under H0.

Risk Measure Parametric Distribution-Related Parameters Under H0

Distribution H0 : R[F1] = R[F2] = R[F3]

mean Exponential x0 = 1, θ = 0.222

Pareto x0 = 1, β = 5.5

Lognormal x0 = 1, µ = −2.004, σ = 1

pht (r = 0.85) Exponential x0 = 1, θ = 0.231

Pareto x0 = 1, β = 5.5

Lognormal x0 = 1, µ = −2.010, σ = 1

cte (t = 0.75) Exponential x0 = 1, θ = 0.240

Pareto x0 = 1, β = 5.5

Lognormal x0 = 1, µ = −1.978, σ = 1

Under HA, the riskiness of portfolios can be unequal in numerous ways. In this

study, we consider the following two types of alternatives:

34



• Two portfolios are equally risky but the third one differs; that is,

R[F ∗1 ] = c∗R[F1], R[F ∗2 ] = R[F2], R[F ∗3 ] = R[F3], (4.2.8)

where F ∗1 , F ∗2 , and F ∗3 are parametric distributions of portfolios under this

alternative, c∗ 6= 1, and R[F1] = R[F2] = R[F3].

• Relative riskiness of all three portfolios is equally-spaced; that is,

R[F ∗∗1 ] = c∗∗R[F1], R[F ∗∗2 ] = R[F2], R[F ∗∗3 ] = c2
∗∗R[F3], (4.2.9)

where F ∗∗1 , F ∗∗2 , and F ∗∗3 are parametric distributions of portfolios under this

alternative, c∗∗ > 1, and R[F1] = R[F2] = R[F3].

To simulate these scenarios, we choose parameters θ and µ to be identical to their

values under H0. Also, constants c∗ and c∗∗ are such that c∗ = 0.85, 0.90, 0.95,

1.05, 1.10, 1.15, 1.25 and c∗∗ = 1.05, 1.10,1.15, 1.20, 1.25. The remaining distribu-

tion related parameters are derived from equations (4.2.8) and (4.2.9), and their

values or formulas are presented in Table 4.2 and 4.3.
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Table 4.2: The distribution related parameters under HA : First type of alterna-
tives.

Risk Measure Parametric Distribution-Related Parameters Under HA

Distribution R[F ∗1 ] = c∗R[F ∗2 ] and R[F ∗2 ] = R[F ∗3 ]

mean Exponential x0 = 1, θ∗ = x0(c∗ − 1) + c∗θ

Pareto x0 = 1, β = 5.5

Lognormal x0 = 1, µ = −2.004, σ = 1

pht (r = 0.85) Exponential x0 = 1, θ∗ = x0r(c∗ − 1) + c∗θ

Pareto x0 = 1, β = 5.5

Lognormal x0 = 1, µ = −2.010, σ = 1

cte (t = 0.75) Exponential x0 = 1, θ∗ = x0(c∗−1)
1−log(1−t) + c∗θ

Pareto x0 = 1, β = 5.5

Lognormal x0 = 1, µ = −1.978, σ = 1

Table 4.3: The distribution related parameters under HA: Second type of alterna-
tives.

Risk Measure Parametric Distribution-Related Parameters Under HA

Distribution R[F ∗∗1 ] = c∗∗R[F ∗∗2 ] and R[F ∗∗3 ] = c2
∗∗R[F ∗∗2 ]

mean Exponential x0 = 1, θ∗∗ = x0(c∗∗ − 1) + c∗∗θ

Pareto x0 = 1, β = 5.5

Lognormal x0 = 1, µ∗∗ = log(x0(c2
∗∗ − 1) + c2

∗∗e
µ+0.5)− 0.5

pht (r = 0.85) Exponential x0 = 1, θ∗∗ = x0r(c∗∗ − 1) + c∗∗θ

Pareto x0 = 1, β = 5.5

Lognormal x0 = 1, µ∗∗ = log(x0(c2
∗∗−1)
Cr

+ c2
∗∗e

µ)

cte (t = 0.75) Exponential x0 = 1, θ∗∗ = x0(c∗∗−1)
1−log(1−t) + c∗∗θ

Pareto x0 = 1, β = 5.5

Lognormal x0 = 1, µ∗∗ = log(x0(1−t)(c2
∗∗−1)

Φ(1−Φ−1(t)) + c2
∗∗e

µ+0.5)− 0.5
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4.3 Dependence Structures

This section presents algorithms and major steps for generation of dependent port-

folios with exponential, Pareto, and lognormal margins and the dependence struc-

tures specified by the correlation matrices of Section 2.1. Briefly, a key idea is

to use the meta-tν distribution which is a multivariate distribution with arbitrary

margins and the dependence structure governed by t copula. In our examples,

the degrees of freedom parameter is either ν = 3 or ν → ∞ (the latter case

corresponds to the meta-Gaussian distribution). Specifically, we implement the

following three-step procedure:

Step 1. For a fixed risk measure and a fixed scenario of riskiness, we

first generate a random realization of the trivariate variable tν , with

the location vector 0 and the correlation matrix Σ (examples of which

are specified in Section 2.1). The sample size of each margin is n, and

we denote this variable as Y = (Y1, Y2, Y3).

Step 2. Next, we transform Y into U such that Ui = Gν(Yi) for

i = 1, 2, 3, where Gν is the cdf of the standard tν variable (i.e., with

location 0 and scale 1). The distribution of U is the trivariate t copula

with the correlation matrix Σ.

Step 3. Finally, as Theorem 2.1.8 ensures, the quantile transforma-

tion of the uniform margins returns the output with the desired prob-

abilistic features. That is, the trivariate vector X = (X1, X2, X3) =
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(
F−1

1 (U1), F−1
2 (U2), F−1

3 (U3)
)
, where

F−1
1 (u) = x0 − θ log(1− u),

F−1
2 (u) = x0(1− u)−1/β,

F−1
3 (u) = x0 + exp

(
Φ−1(u) + µ

)
,

represents portfolios X1, X2, X3 with marginal cdfs F1, F2, F3, defined

by (4.2.1)–(4.2.3), and their interdependence governed by t copula with

the correlation matrix Σ.

Further, since t copula is fully characterized by its correlation matrix Σ and

df, one can easily see that setting Σ equal to Σ1,Σ2,Σ3, or Σ4 (see Section 2.1) in

Step 1 produces portfolio realizations with negative dependence, zero dependence,

moderate positive dependence, or strong positive dependence, respectively. Also,

to generate equally and unequally risky portfolios, we change the parameters of

the quantile functions according to the specifications of Tables 4.1, 4.2, and 4.3,

respectively.

Finally, while Steps 2 and 3 are straightforward transformations of random

variables, Step 1 requires a more careful explanation. For Σ’s with non-diagonal

elements strictly less than 1, we generate the trivariate variable tν (with the loca-

tion vector 0) by implementing Algorithm 5.2 of Embrechts, Lindskog, and McNeil

(2003):

(a) Find the Cholesky decomposition M of Σ.

(b) Simulate three independent standard normal random variables Z1, Z2, Z3.
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(c) Simulate a random variable V from χ2
ν that is independent of Z = (Z1, Z2, Z3).

(d) Then Y =
√
ν/V MZ is the trivariate tν variable with location 0 and corre-

lation Σ.

In the case when ν → ∞, the (c) step can be skipped and the transformation

of variables in (d) replaced with Y = MZ. This results in the trivariate Gaus-

sian variable with location 0 and correlation Σ. In addition, for commonotonic

cases (e.g., Σ4 in Section 2.1), the tail-dependence differences between the t and

Gaussian copulas vanish (see McNeil et al., 2005, Section 5.3.1). Thus the strong

positively dependent portfolios can be generated by ignoring Steps 1 and 2 and

modifying Step 3 as follows: simulate a standard uniform random variable U and

then compute X =
(
F−1

1 (U), F−1
2 (U), F−1

3 (U)
)
, where F−1

1 , F−1
2 , F−1

3 are defined

as in Step 3 above (see McNeil et al., 2005, Proposition 5.16).

4.4 Numerical Findings and Observations

Once a set of portfolios is generated then they are resampled according to the boot-

strap procedure of Section 3.4, an α-level test is performed, and its decision—reject

H0 or not—is recorded. This procedure is repeated 5000 times, for each of the three

risk measures, four dependence structures, and for each of the hypothesized scenar-

ios. Using the recorded 5000 decisions for the tests based on the mean, pht, and

cte measures, respectively, we estimate the proportion p̂ of test’s rejections. Under

H0, if p̂ falls within the 99% confidence interval α ± z0.005

√
α(1− α)/5000, where

z0.005 is a critical value of the standard normal variable, then the test performs as

expected. If p̂ exceeds the upper bound of the interval, then the test is labeled as
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liberal. And if it is below the lower bound, then the test is called conservative.

The study is performed for the following choices of simulation parameters:

• Level of significance: α = 0.01, 0.05, 0.10.

• Sample size: n = 50, 100, 200.

• Number of bootstrap samples: B = 1000.

Our simulation results are summarized in Table 4.4, where probabilities of

type I error are reported, as well as in Figures 4.1 and 4.2, where estimated power

curves are plotted. Specifically, we notice from Table 4.4 that in the presence of

strong positive dependence (comonotonicity), the probability of the type I error

exceeds the nominal level several times, sometimes even more than four times (see,

e.g., the entries for α = 0.01), for all the risk measures under consideration. This

means that the test is very liberal under this scenario of dependence, which is most

extreme. For the less extreme strengths of dependence, however, the results are

mixed. That is, they depend on the chosen risk measure (mean is never liberal,

pht almost always, and cte sometimes), sample size (liberal performances are

most common for n = 50, less for n = 100, and least for n = 200), and even on the

test’s significance level (for α = 0.10, the bold entries are most frequent, but their

frequency declines as α decreases). Further, outside of the comonotonic case, there

is no statistical evidence to suggest that the strength of dependence monotonically

affects the test’s level. Finally, except for several borderline cases, the effect of tail

dependence is also undetectable (compare the corresponding entries for ν = 3 and

ν →∞).
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Table 4.4: Estimated probabilities of the type I error of the tests based on the
mean, pht, cte measures, for selected n, α, ν, and various dependence structures.

n α Risk Measure Dependence Structure (characterized by Σi’s of Section 2.1)

Negative Zero Mod. Positive Strong Positive

ν = 3 ν →∞ ν = 3 ν →∞ ν = 3 ν →∞ ν = 3 ν →∞

50 0.01 mean 0.007 0.008 0.008 0.007 0.008 0.008 0.013 0.014

pht (r = 0.85) 0.013 0.014 0.015 0.013 0.015 0.013 0.036 0.038

cte (t = 0.75) 0.012 0.014 0.016 0.012 0.011 0.013 0.019 0.026

0.05 mean 0.049 0.052 0.052 0.049 0.044 0.044 0.063 0.059

pht (r = 0.85) 0.065 0.070 0.074 0.065 0.068 0.069 0.115 0.116

cte (t = 0.75) 0.063 0.065 0.063 0.063 0.060 0.058 0.080 0.085

0.10 mean 0.106 0.111 0.115 0.107 0.104 0.103 0.124 0.125

pht (r = 0.85) 0.130 0.130 0.141 0.135 0.138 0.140 0.192 0.193

cte (t = 0.75) 0.124 0.120 0.129 0.126 0.118 0.121 0.140 0.154

100 0.01 mean 0.009 0.008 0.009 0.011 0.008 0.010 0.015 0.012

pht (r = 0.85) 0.015 0.014 0.016 0.018 0.014 0.017 0.035 0.040

cte (t = 0.75) 0.011 0.011 0.013 0.013 0.009 0.012 0.020 0.022

0.05 mean 0.049 0.050 0.050 0.050 0.048 0.051 0.062 0.060

pht (r = 0.85) 0.064 0.069 0.065 0.069 0.070 0.070 0.110 0.110

cte (t = 0.75) 0.056 0.057 0.054 0.059 0.055 0.057 0.074 0.074

0.10 mean 0.100 0.104 0.098 0.106 0.104 0.105 0.118 0.119

pht (r = 0.85) 0.128 0.126 0.123 0.128 0.141 0.131 0.182 0.189

cte (t = 0.75) 0.115 0.114 0.115 0.115 0.114 0.111 0.130 0.136

200 0.01 mean 0.007 0.008 0.010 0.010 0.009 0.010 0.014 0.015

pht (r = 0.85) 0.011 0.015 0.015 0.018 0.015 0.017 0.035 0.041

cte (t = 0.75) 0.008 0.010 0.010 0.014 0.011 0.011 0.016 0.021

0.05 mean 0.045 0.049 0.046 0.051 0.047 0.048 0.051 0.057

pht (r = 0.85) 0.058 0.062 0.060 0.063 0.064 0.064 0.092 0.105

cte (t = 0.75) 0.053 0.053 0.048 0.056 0.050 0.050 0.061 0.074

0.10 mean 0.096 0.097 0.102 0.106 0.098 0.097 0.101 0.112

pht (r = 0.85) 0.121 0.120 0.119 0.125 0.126 0.120 0.156 0.166

cte (t = 0.75) 0.109 0.111 0.105 0.115 0.105 0.103 0.111 0.132

Note: The 99% margins of error are: ±0.004 (for α = 0.01), ±0.008 (for α = 0.05), ±0.011 (for α = 0.10).

The bold entries correspond to the cases when the test performance is liberal.
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Figure 4.1: The first type of alternatives. Estimated power curves of the tests based
on the mean, pht, cte measures, for various dependence structures, n = 200,
and α = 0.05. Left column: t3 copulas. Right column: Gaussian copulas.
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Figure 4.2: The second type of alternatives. Estimated power curves of the tests
based on the mean, pht, cte measures, for various dependence structures, n =
200, and α = 0.05. Left column: t3 copulas. Right column: Gaussian copulas.
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Figures 4.1 and 4.2 provide power estimates against the two types of alter-

natives described above, for n = 200 and α = 0.05 (see the Appendix B figures

for other sample sizes and significance levels). Similar to the type I error inves-

tigations, we notice that the power of the test is uniformly highest in the strong

positive dependence case, for all risk measures and both types of copulas. Of

course, this finding is not unexpected because the test exceeds the nominal level

under H0 and its power curve is simply shifted across all scenarios of riskiness.

We also notice that the power of the test depends on the underlying risk mea-

sures. That is, all things being equal, the test is more powerful for the ‘light’

measure (such as the mean) than for the ‘heavy’ one (such as the pht or cte).

There is no effect of tail dependence on the power curves, i.e., t3 and Gaussian

copulas produce similar power curves, but there is some effect of the strength of

dependence. In particular, while negative dependence slightly decreases the power

of the test when compared to the zero dependence case, the positive dependence

improves the test’s performance. Other features of the estimated power curves are

typical: the test becomes more powerful as c∗ (c∗∗) moves further away from c∗ = 1

(c∗∗ = 1), i.e., when data go deeper into the alternative. Further, comparison of

the two types of alternatives reveals that the test is more powerful against the

second type of alternatives, which can be anticipated because under the second

scenario the differences in portfolio riskiness are more pronounced. Finally, we

conclude that the test—which was designed for independent portfolios—performs

adequately when portfolios are dependent, and it will successfully detect, with the

probability substantially above 0.50, the differences in portfolio riskiness of at least

15% (corresponding to c∗ ≤ 0.85 or c∗ ≥ 1.15, and c∗∗ ≥ 1.15) for portfolios of
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n ≥ 200 losses. Of course, a caveat to this conclusion is the comonotonic case

which requires a separate analysis.

Some natural questions arise based on the simulation study: in general, does

the power of the hypothesis test increase as the dependence among the portfolios

become positive? or does the power associated with strong positive dependence set

an upper bound for the power of the test associated with the other dependences?

Theoretical explanations for these problems have been achieved for some special

cases (see Chapter 5). The remaining questions will be deferred to future research.

4.5 Practical Considerations

In this section, we illustrate how to apply the findings of Section 4.4 in practice.

Using the tornado damage data of Brooks and Doswell (2001), normalized values

of which (i.e., data adjusted for wealth and inflation) are available in Table A.3 of

Brazauskas, Jones, Puri, and Zitikis (2007), we reanalyze the real-data example of

the latter paper by investigating potential effects of portfolio dependence on the

decision making procedure.

The given data set was sorted in two ways: (i) by time period, and (ii) by census

region. The first way of sorting yields three time periods—from 1890 to 1929,

1930-1969, and 1970-1999—with the respective number of losses n1890−1929 = 42,

n1930−1969 = 57, and n1970−1999 = 38. Thus three portfolios of tornado damages

can be formed and their riskiness compared according to a selected risk measure

R[F ]. In the second case, the portfolios are formed for two regions—Midwest and

South—with the respective sample sizes nmidwest = 47 and nsouth = 86. (The data
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set also contains a third region, Northeast, but it has only four observations, which

is way too small to assure valid statistical inference.) Both hypotheses (that the

portfolios are equally risky) were tested by applying the procedure of Section 3.4.

We used the same risk measures as in the simulation study: mean, pht (r = 0.85),

and cte (t = 0.75). Also, B = 1000 bootstrap samples were generated to calculate

the critical values at 1%, 5%, and 10% levels of significance. Tables 4.5 and 4.6

provide summary estimates and decisions of the tornado damage data by time

period and region, respectively.

Table 4.5: Estimates and decisions for analysis of the tornado damage data by
time period.

mean pht (r = 0.85) cte (t = 0.75)

R̂1890-1929 7,120 9,531 23,549

R̂1930-1969 7,244 8,625 18,067

R̂1970-1999 11,693 13,885 30,832

γ̂ 2,032 2,342 5,673

x0.10[γ̂∗] 2,497 3,016 8,281

x0.05[γ̂∗] 2,828 3,407 9,507

x0.01[γ̂∗] 3,757 4,482 13,006

Reject H0 (at level α)? No (at α ≤ 0.10) No (at α ≤ 0.10) No (at α ≤ 0.10)

Note: n1890−1929 = 42, n1930−1969 = 57, and n1970−1999 = 38.

According to the estimates of mean, pht (r = 0.85), and cte (t = 0.75) in

Table 4.5, the third portfolio (period 1970–1999) seems riskier than the other two.

(Notice that a similar observation can be gleaned from data in Figure 1.1.) Also,

since sample sizes for the three portfolios are not too different from each other and

the riskiness of the first two periods is similar, one may suspect that the underlying
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situation belongs to the first type of alternatives of unequal riskiness (see Section

4.2). This, however, is just a coincidence because all three risk measures failed to

reject the null hypothesis at all typical levels of significance (α = 0.01, 0.05, 0.10).

Hence for this problem, there is no need to consider possible effects of dependence

since the statistical decision is not to reject H0.

Table 4.6: Estimates and decisions for analysis of the tornado damage data by
region.

mean pht (r = 0.85) cte (t = 0.75)

R̂midwest 12,287 14,819 31,315

R̂south 5,787 7,381 16,884

γ̂ 3,250 3,719 7,215

x0.10[γ̂∗] 1,940 2,421 6,580

x0.05[γ̂∗] 2,332 2,918 7,671

x0.01[γ̂∗] 3,122 3,788 10,106

Reject H0 (at level α)? Yes (α ≥ 0.01) Yes (α ≥ 0.05) Yes (α = 0.10)

Note: nmidwest = 47 and nsouth = 86.

The results in Table 4.6 are less clear-cut and thus more interesting. Indeed,

as the point estimates of all three risk measures suggest, the Midwest region is

roughly twice as risky as the South. More formally, according to the mean mea-

sure, the difference is statistically significant at all typical levels of significance.

And the pht (r = 0.85) and cte (t = 0.75) measures reject H0 at α = 0.05, 0.10

and α = 0.10, respectively. Further, we need to check how sensitive these decisions

are due to (potentially) misspecified portfolio dependence. Aside from the comono-

tonic case, the results of Section 4.4 suggest that the decision to reject H0 at the
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significance level α will remain at that level as long as portfolios are compared ac-

cording to the mean measure. For the pht (r = 0.85) and cte (t = 0.75) measures,

a premium of 20%–40% has to be added to α. That is, in many practical situations,

the actual probability of type I error for pht (r = 0.85) and cte (t = 0.75) can

reach 1.20α to 1.40α. Finally, the comonotonic case—no matter how rare it may

be—represents a perfect-storm scenario that can break down the test and easily

yield probabilities for the type I error as high as 0.30 or even higher. Thus the

user of the test should keep such a possibility in mind.
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Chapter 5

Theoretical Properties of Gini

Indexes

From the simulation study we acquired some evidence of a relationship between

the power of the test and the dependence structure. That is, in the presence of

positive dependence among the portfolios the test is more conservative for the risk

measures under consideration. In order to explain the monotonicity of the test

power function, with respect to the strength of dependence, we propose the fol-

lowing conjecture.

Conjecture 5.0.1. Let (Y1, . . . , Yk) follow a multivariate normal distribution with

mean 0 and covariance matrix Σ, i.e., (Y1, . . . , Yk) ∼ MVN(0,Σ). Then its Gini

index 1
k2
∑

1≤i,j≤k |Yi− Yj| decreases in the sense of usual stochastic order (see def-

inition 2.3.1) as the covariance matrix Σ increases component-wise with diagonal

elements fixed.
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For notation convenience, denote

G(Y) =
∑

1≤i,j≤k
|Yi − Yj| . (5.0.1)

Basically, Conjecture 5.0.1 aims to order Gini indexes of multivariate normal

risks with the same marginals but different strength of dependence. Proving Con-

jecture 5.0.1 is a challenging task but gives us a theoretical explanation for the

questions that we raised in Section 4.4. If we denote the asymptotic distribution

function of the test statistic T under H0 with a certain dependence structure by

FT0 and denote that of more positive dependence by FT ′0 , then the power of the

test increases as the strength of positive dependence increases if

F−1
T ′0

(1− α) ≤ F−1
T0 (1− α) for α ∈ (0, 1),

where F−1
T0 and F−1

T ′0
are the quantile functions of T0 and T ′0 respectively.

By Proposition 2.3.2, the above inequality is true if T ′0 ≤st T0. Therefore, com-

paring the test statistics, T , of portfolios with different dependence can be achieved

by comparing the Gini indexes of multivariate normal risks. In this dissertation,

we partially complete the task of proving Conjecture 5.0.1 and generalizes the

conclusion to elliptical distributions, yet still leaves some open problems.

Besides its actuarial application, the comparison of Gini indexes of multivariate

elliptical risks shows its own independent interest. Intuitively, Conjecture 5.0.1

suggests that P
{

1
k2
∑

1≤i,j≤k |Yi − Yj| ≤ t
}

increases as Σ increases for any t ≥ 0

or P {G(Y) ≤ t} increases as Σ increases for any t ≥ 0. In this sense, the study

of Conjecture 5.0.1 falls into the scope of the problem of central concentration of
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elliptical distributions, which is formulated as follows: how the probability

PΣ(D) = P{(Y1, . . . , Yk) ∈ D} (5.0.2)

changes according to the change of Σ? Here (Y1, . . . , Yk) follows an elliptical dis-

tribution with mean 0 and dispersion matrix Σ.

This problem was first studied by Slepain (1962), which states that if (Y1, . . . , Yk)

follows a multivariate normal distribution with mean 0 and covariance matrix Σ,

then PΣ(D) increases as Σ increases component-wise with diagonal elements re-

maining unchanged for any lower orthant set D. Later literature has generalized

the study to elliptical distributions while regions of different shapes have been

considered, such as upper orthant sets, rectangles, and convex and centrally sym-

metric regions. Interested readers are referred to Das Gupta et al (1972), Joe

(1990), Eaton and Perlman (1991), and Anderson (1996). These studied all im-

posed certain assumptions on the structure of the covariance matrix. The results

derived in this paper enriches the studies on this problem in the sense that it

broadens the choice of the set D.

We start proving the Conjecture 5.0.1 from two dimensions and implement the

proof for higher dimensions by imposing some assumptions. We can prove this

two dimensions case without much effort, but for higher dimensions it gets more

complicated as it is hard to visualize the geometric shapes.
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5.1 2-Dimensional Gaussian Risks

We first use a geometric argument to show a special two dimensional version of

Conjecture 5.0.1 and then prove a general two dimensional version using much

simpler technique. Consider the following proposition. The geometric argument

used in this section is motivated by Theorem A2 of Joe (1990), which establishes the

concordance order between elliptical distributions. We shall restate the Conjecture

5.0.1 for k = 2.

Proposition 5.1.1. Let (Y1, Y2) ∼ BV N(0, 0, 1, 1, ρ). Then G(Y) decreases in

the sense of usual stochastic order as ρ increases.

Proof. By using Cholesky decomposition of variance-covariance matrix of (Y1, Y2),

we obtain, Y1 = Z1 and Y2 = ρZ1 +
√

1− ρ2Z2, where Z1 and Z2 are independent

standard normal random variables. Then,

Pr(|Y1 − Y2| ≤ t) = Pr

(
(1− ρ)Z1 − t√

1− ρ2 ≤ Z2 ≤
(1− ρ)Z1 + t√

1− ρ2

)
. (5.1.1)

Now, we want to show that the probability on the right hand side of (5.1.1)

is increasing in ρ. By changing (Z1, Z2) to the polar coordinates and using the

transformation

Z1 = R cos(Θ) and Z2 = R sin(Θ)

we obtain the joint density function of (R,Θ) as follows:

gR,Θ(r, θ) = rf(Z1,Z2)(z1, z2),
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where r > 0, 0 ≤ θ ≤ 2π, and fZ1,Z2(z1, z2) = 1
2πexp{−1

2(z2
1 + z2

2)} is the joint

density function of (Z1, Z2). That is,

gR,Θ(r, θ) = 1
2πre

−r2/2,

which implies that R and Θ are independent and Θ is uniform on [0, 2π] and R2

is exponential with mean 1
2 . Therefore, to prove that the probability on the right

hand side of (5.1.1) is increasing in ρ, it suffices to prove that, for a given r, the

length of the shaded arc of the circle x2 + y2 = r2 in Figure 5.1 is increasing in ρ.

Figure 5.1: An illustrative diagram.

Let L1 be the line with the equation y = (1−ρ)x+t√
1−ρ2

and L2 be the line with the

equation y = (1−ρ)x−t√
1−ρ2

. Since the shaded arc length is directly proportional to the

distance between the line L1 and L2, denoted by d(L1, L2), we can easily obtain

the desired result because d(L1, L2) =
√

2t√
1−ρ is increasing in ρ.

The reason for using this geometric proof is to put a foundation for the three

dimensional proof. On the other hand, we can introduce a much simpler proof for

more general version of Proposition 5.1.1 as follows.

53



Theorem 5.1.2. Let (Y1, Y2) ∼ BV N(0, 0, σ1, σ2, ρ). Then G(Y) decreases in the

sense of usual stochastic order as ρ increases.

Proof. We want to prove that Pr{|Y1 − Y2| ≤ t} increases in ρ for any t ≥ 0.

E[Y1 − Y2] = 0, and

Var(Y1 − Y2) = Var(Y1) + Var(Y2)− 2Cov(Y1, Y2),

= σ2
1 + σ2

2 − 2σ1σ2ρ.

Therefore, |Y1 − Y2|
d=
√
σ2

1 + σ2
2 − 2σ1σ2ρ |Z| where Z ∼ N(0, 1). The rest of the

proof is obvious as
√
σ2

1 + σ2
2 − 2σ1σ2ρ decreases in ρ.

Now, we move on to three dimensional version of Conjecture 5.0.1. As the

matrix Σ gets complicated, checking the proof of the Conjecture 5.0.1 gets com-

plicated. Therefore, we break down the problem and try to prove that Conjecture

5.0.1 is true for some special three dimensional Σ.

In the following proposition, we assume that only two random variables are

independent of each other, but there is a dependency among the other random

variables. Further, in the proof of the following theorem, we use the same initial

procedure used in Proposition 5.1.1. In particular, we find Cholesky’s decomposi-

tion and then transform the variables into the spherical coordinate system. As we

used the length of arcs created by two parallel chords on a circle, in three dimen-

sional case, we look at the surface area of a sphere created by a hexagon based

cylinder.
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5.2 3-Dimensional Gaussian Risks

Proposition 5.2.1. Let (Y1, Y2, Y3) ∼MVN(0, σ2Σ). If,

Σ =


1 0 ρ1

0 1 ρ

ρ1 ρ 1

 with 0 ≤ ρ1 ≤ ρ ≤ 1 and ρ+ ρ1 ≤ 1,

then G(Y) decreases in the sense of usual stochastic order as Σ increases in ρ.

Proof. See Appendix A.

As another special 3-dimensional case of Conjecture 5.0.1, we shall prove that

comonotonicity produces the stochastically smallest Gini index among all multi-

variate Gaussian risks with common marginals.

Proposition 5.2.2. Let Y = (Y1, Y2, Y3) and Y′ = (Y ′1 , Y ′2 , Y ′3) follow multivari-

ate normal distributions with mean 0 and common marginal distributions. If

(Y ′1 , Y ′2 , Y ′3) is comonotonic, then G(Y′) ≤st G(Y).

Proof. See Appendix A.

5.3 More General Results

We say that a random vector Y is exchangeable if
(
Y1, . . . , Yk

)
d=
(
YΠ(1), . . . , YΠ(k)

)
for any permutation

(
Π(1), . . . ,Π(k)

)
of (1, . . . , k). For Gaussian random variable,

we can explain the exchangeability using the correlation matrix. If the correlation

matrix is equicorrelation matrix, we say that multivariate Gaussian random vector
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is exchangeable, i.e., Σ = ρ1k×k + (1− ρ)Ik×k. Here we only talk about the corre-

lation matrix, because the variances of all random variables should be the same in

order to be exchangeable. We use this idea to prove the following proposition.

Proposition 5.3.1. Let (Y1, . . . , Yk) ∼ MVN(0,Σ). If Y1, . . . , Yk are exchange-

able with common correlation ρ, then G(Y) decreases in the sense of usual stochas-

tic order as ρ increases.

Proof. If (Y1, . . . , Yk) is exchangeable with correlation coefficient ρ, then there exist

W ∼ N(0, 1) which is independent of Z ∼MVN(0, Ik×k), such that Yi = √ρW +
√

1− ρZi for all 1 ≤ i ≤ k. Then G(Y) =
√

1− ρG(Z), and the result follows as

(1− ρ) is decreasing in ρ.

Proposition 5.3.2. Let Y = (Y1, . . . , Yk) follow a multivariate normal distribution

with mean 0 and positive definite covariance matrix Σ = (σij) ∈ Rk×k. If σ1i = σ2i

for all i = 3, . . . , k and σ11 = σ22, then its Gini index 1
k2
∑

1≤i,j≤k |Yi − Yj| decreases

in the sense of usual stochastic order as σ12 increases.

Proposition 5.3.2 suggests that if we impose a conditional exchangeable struc-

ture on the multivariate normal random vector Y, i.e., (Y1, Y2) is exchangeable

conditioning on the remaining components, then G(Y) is stochastically decreasing

in Cov(Y1, Y2), which is one component of the covariance matrix.

Now, we look at a new structure of the covariance matrix. We first cite Theorem

4.1 of Eaton and Perlman (1991) below.

Lemma 5.3.3. Let Yi ∼MVN(0,Σi) for i = 1, 2. If Σ2−Σ1 is positive semidef-

inite, then P{Y2 ∈ D} ≤ P{Y1 ∈ D} for any convex and centrally symmetric set

D (i.e., D = −D).
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Proposition 5.3.4. Let Y ∼ MVN(0,ΣY ) and Y′ ∼ MVN(0,ΣY ′). If there

exists a ∈ R such that

a1k×k + ΣY −ΣY ′ is positive semidefinite, (5.3.1)

where 1k×k denotes the k × k matrix with all entries equal to 1, then G(Y) ≥st

G(Y′).

Proof. See Appendix A.

A matrix P is said to dominate another matrix Q if P −Q is positive semidef-

inite. In this sense, condition (5.3.1) in Proposition 5.3.4 is referred to as “quasi”

dominance. Intuitively, Lemma 5.3.3 indicates that the covariance matrix deter-

mines the degree of central concentration of a multivariate normal distribution.

Specifically, the “smaller” the covariance matrix is, the more concentrated the

normal random vector is on a convex and centrally symmetric region.

In this work, we focus on the comparison of dependence structure without

changing marginals. That means the dispersion matrices we compare have the

same diagonal elements. When taking difference, the diagonal elements become 0.

In this sense, we do not expect one dispersion matrix to dominate another since the

difference matrix is not positive semidefinite. Therefore, the dominance condition

in Lemma 5.3.3 is relaxed to “quasi” dominance condition in Proposition 5.3.4 to

deal with this situation.

Example 5.3.5. Examples satisfying condition (5.3.1).

(i) All the off-diagonal elements of the covariance matrix increase by same

amount, i.e., ΣY ′ = ΣY + σ(1k×k − Ik) with σ > 0. This includes the
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case that Y and Y′ are both exchangeable. The conclusion of Proposition

5.3.4 for exchangeable Y and Y′ has been verified from other approaches,

see for example, Theorem 6.25 of Tong (1990).

(ii) The off-diagonal elements of the covariance on the ith row and column in-

crease by same amount, i.e., ΣY ′ = ΣY + σ
∑
j 6=i(∆ji + ∆ij) with σ > 0,

where ∆ij denotes the matrix with 1 on the (i, j) position and 0 on others.

Now, we generalize Propositions 5.2.1, 5.2.2, and 5.3.1–5.3.4 for elliptical risks

using Proposition 2.1.10. We restate those propositions for elliptical distributions

as follows. We show the proofs of Proposition 5.3.6 and omit the other proofs as

they are similar to the proof of Proposition 5.3.6.

Proposition 5.3.6. Let (Y1, Y2, Y3) ∼ EC3(0, σ2Σ, ψ) with ψ ∈ Ψ∞. If,

Σ =


1 0 ρ1

0 1 ρ

ρ1 ρ 1

 with 0 ≤ ρ1 ≤ ρ ≤ 1 and ρ+ ρ1 ≤ 1,

then G(Y) decreases in the sense of usual stochastic order as Σ increases in ρ.

Proof. According to Proposition 2.1.10, there exist Z ∼MVN(0,Σ) and a random

variable R ≥ 0 independent of Z such that Y d= RZ .

Note that for any given r > 0, rZ follows multivariate normal distributions

with covariance matrices satisfying the condition in Proposition 5.2.1. Therefore,

[G(Y) | R = r] decreases in the sense of usual stochastic order as ρ increases for

all r ≥ 0.
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Since the usual stochastic order is closed under mixture (see Theorem 1.2.15 of

Müller and Stoyan, 2002), G(Y) decreases in the sense of usual stochastic order

as ρ increases.

The proofs of the following propositions are similar to the proof of Proposition

5.3.6 and thus are omitted.

Proposition 5.3.7. Let Y = (Y1, Y2, Y3) and Y′ = (Y ′1, Y ′2, Y ′3) follow elliptical

distributions with mean vector 0, common marginal distributions and a common

generator ψ ∈ Ψ∞. If Y′ is comonotonic, then G(Y′) ≤st G(Y).

Proposition 5.3.8. Let (Y1, . . . , Yk) ∼ ECk(0,Σ, ψ) with ψ ∈ Ψ∞. If Y1, . . . , Yk

are exchangeable, then G(Y) decreases in the sense of usual stochastic order as ρ

increases.

Proposition 5.3.9. Let Y ∼ ECk(0,Σ, ψ) with Σ = (σij) ∈ Rk×k and ψ ∈ Ψ∞.

If σ1i = σ2i for all i = 3, . . . , k and σ11 = σ22, P{G(Y) ≤ t} is increasing in σ12 for

any t ≥ 0.

Proposition 5.3.10. Let Y ∼ ECk(0,ΣY , ψ) and Y′ ∼ ECk(0,ΣY ′ , ψ) with

ψ ∈ Ψ∞. If there exists a ∈ R such that

a1k×k + ΣY −ΣY ′ is positive semidefinite,

where 1k×k denotes the k × k matrix with all entries equal to 1, then G(Y) ≥st

G(Y′).
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Chapter 6

Conclusions and Future Research

6.1 Concluding Remarks

In this dissertation, we have considered a hypothesis testing problem about the

equality of risk measures using a nested L-statistic. Asymptotic and small-sample

properties of the test have been studied by Brazauskas, Jones, Puri, and Zitikis

(2007) under the assumption of independent insurance portfolios. Here, using

Monte Carlo simulations, we have investigated the performance of the test when

portfolios are dependent. We have concluded that the presence of strong posi-

tive dependence (comonotonicity) makes the test very liberal for the pht, cte,

and mean risk measures, when marginal portfolios follow exponential, Pareto,

and lognormal distributions and their interdependence is governed by the three-

dimensional t and Gaussian copulas. For non-comonotonic scenarios of depen-

dence, the test performs adequately, with its probabilities of type I error being on

target for the mean measure and getting inflated by about 20% to 40% for the pht
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and cte measures. In addition, for the alternative hypotheses considered in this

dissertation, we have not observed any significant effects of tail dependence, but

detected some effect of the strength of dependence. In particular, while negative

dependence slightly decreases the power of the test when compared to the zero

dependence case, the positive dependence improves the test’s performance. We

have also demonstrated how to incorporate such findings into sensitivity analysis

of the decisions by providing a real-data example.

Further, it is of interest to understand the mathematical phenomenon of how

the power function of the test behaves due to changes in the correlation matrix

that controls the interdependence of portfolios. This problem is related to the usual

stochastic ordering of multivariate elliptical risks, and we have managed to order

Gini indexes when the dispersion matrices follow special structures. Furthermore,

we have demonstrated that among all dependence structures, comonotonicity pro-

duces the smallest Gini index in the sense of usual stochastic order. This explains

the devastating effect of comonotonic case on the hypothesis test of Chapter 3.

Apart from its usefulness in actuarial applications, the comparison of Gini indexes

presented in this paper enriches the studies of the concentration of elliptical ran-

dom vectors on convex centrally symmetric regions.

Finally, the results of this dissertation motivate open problems and generate

several ideas for further research. First, to what extent can Gini indexes of multi-

variate elliptical risks be ordered in the sense of usual stochastic order? and does

the conclusion still hold for higher dimensional risks with general elliptical distri-

butions? Second, what is the relationship between the covariance of risks and the

covariance of the empirical estimates of risk measures? Finally, one may abandon
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the idea of using the Gini index on risk measures and construct a completely dif-

ferent test. Some of these problems are discussed in more detail in Section 6.2 and

6.3.

6.2 Ordering of Multivariate Elliptical Risks

Over a hundred years ago, Corrado Gini introduced an index to measure concentra-

tion or inequality of incomes (see Gini, 1936, for English translation of the original

article). It later became known as the Gini index and has been extensively studied

in many field such as economics, insurance, finance, and statistics. This is a well-

known tool in economics that is often used for measuring income inequalities. In

insurance, the index and its modifications have been used to compare the riskiness

of portfolios and to summarize insurance scores. At the intersection of insurance

and statistics, for example, the index has been used for comparing distributions

of risks and prices (see Frees et al., 2011). The comparisons are usually based on

insurance scores relative to price, also known as “relativities,” that point to areas

of potential discrepancies between risk and price distributions. After ordering both

risks and prices based on relativities, one arrives at an ordered Lorenz curve that

can be summarized using a Gini index. Interestingly, the Lorenz curve and Gini in-

dex defined via relativities can cope with adverse selection, help measure potential

profit, and serve as useful tools in predictive modeling (for more information, see

Frees et al., 2014). Moreover, Lorenz curve and Lorenz order, the concepts closely

related to Gini index, have been employed by Denuit and Vermandele (1999) to

order reinsurance contracts. Therefore, we believe that devoting our time to study
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the behavior of the Gini index of dependent random variables is beneficial to those

who are interested in studying the Gini index. Thus, we intend to continue the

study of stochastic ordering of the Gini index on multivariate random variables in

general.

6.3 Dependence of Risk Measures

In practice, we can obtain the covariance of the risks. Therefore, if we can de-

velop the relationship between the covariance of risks and the covariance of the

nonparametric estimators of risk measures it will be much easier to use the above

mentioned ordering of the Gini indexes of multivariate normal risks. However,

it is not easy to obtain the covariance matrix of the empirical estimators of the

risk measures even by facilitating the asymptotic distributions of those estimators.

So far, we can show that more positively dependent risks have more positively

dependent risk measures, that is, they have a one-to-one correspondence. When

the underlying risk measure is the mean, we can easily obtain that the covariance

matrix of the losses is equal to the covariance matrix of the sample means (an

estimator of the population mean). Moreover, when the risks are independent

so are their risk measures. For other spectral risk measures, we have established

some results and hope to study it further in our future research work. Studying

these types of asymptotic behavior of estimators of risk measures is of interest to

actuaries.

As discussed in Section 2.3, if X′ with copula C ′ is more positive than X with

copula C, then C ≤c C ′. By using Theorem 2.3.3 and properties P1 and P2 (see
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Section 2.3), it is clear that Cov
(
Xi, Xj

)
≤ Cov

(
X ′i, X

′
j

)
implies

Cov
(
Ai(Xi), Aj(Xj)

)
≤ Cov

(
Ai(X ′i), Aj(X ′j)

)
.

since function Ai(y) is an increasing function in y (see equation (3.3.1)). Now,

we want to check the possibility of obtaining the Cov
(
Ai(Xi), Aj(Xj)

)
using the

Cov
(
Xi, Xj

)
. It is easy to see that E

[
Ai(Xi)

]
= 0. Then, Cov

(
Ai(Xi), Aj(Xj)

)
=

E
[
Ai(Xi)Aj(Xj)

]

= E
[∫ ∞
−∞

∫ ∞
−∞

(
I{Xi≤x} − Fi(x)

)(
I{Xj≤y} − Fj(y)

)
J(Fi(x))J(Fj(y))dxdy

]

=
∫ ∞
−∞

∫ ∞
−∞

(
F (x, y)− Fi(x)Fj(y)

)
J(Fi(x))J(Fj(y))dxdy,

where the last result is obtained by taking the expected value of

I{Xi≤x}I{Xj≤y} − Fi(x)I{Xj≤y} − Fj(y)I{Xi≤x} + Fi(x)Fj(y),

where F is the joint distribution function of Xi and Xj. With the risk measure

mean, J(Fi(x)) = J(Fj(y)) = 1 for all x, y ∈ R. Hence,

Cov
(
Ai(Xi), Aj(Xj)

)
=
∫ ∞
−∞

∫ ∞
−∞

(
F (x, y)− Fi(x)Fj(y)

)
dxdy

(∗)= Cov(Xi, Xj).

Note that equality (*) is nothing else but Hoeffding’s Lemma (see Nelsen, 2006 and

McNeil et al., 2005). Therefore, if the risk measure is mean, the above equality

holds regardless of the distribution.
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If Xi and Xj are independent, then F (x, y) = Fi(x)Fj(y) and

Cov
(
Ai(Xi), Aj(Xj)

)
= 0 = Cov(Xi, Xj).

Therefore, regardless of the risk measure, when the dependence structure is inde-

pendence, we have

Cov
(
Xi, Xj

)
= Cov

(
Ai(Xi), Aj(Xj)

)
= 0.
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Appendix A: Proofs

Proof of Proposition 2.1.11.

Recalling the stochastic representation (2.1.2), there exists Z ∼ MVN(0,Σ)

and R ≥ 0 independent of Z such that X d= µ +RZ.

The “if” part. Assume rank(Σ) = 1, then corr(Zi, Zj) = 1 for all i, j. There-

fore, there exists Z ∼ N(0, 1) such that Zi = aiZ with ai ≥ 0 for all i = 1, . . . , k.

It immediately follows that X is comonotonic from the stochastic representation

(2.1.2) and the functional characterization of comonotonicity.

The “only if” part. Assume that X is comonotonic. Consider any y, z ∈

supp(Z). Since R is independent of Z, then µ + ry,µ + rz ∈ supp(X) for any

0 < r ∈ supp(Z). From the comonotonicity of X, it holds that µ + ry ≤ µ + rz or

µ + ry ≥ µ + rz, which implies that y ≤ z or y ≥ z. Therefore, we conclude that

Z is comonotonic and thus rank(Σ) = 1.

Proof of Proposition 5.2.1.

By considering Cholesky decomposition of Σ we obtain,

Y = AZ,
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where Z = (Z1, Z2, Z3) is multivariate standard normal vector, and

A =


1 0 0

0 1 0

ρ1 ρ
√

1− ρ2 − ρ2
1

 .

By transforming (Z1, Z2, Z3) to the spherical coordinates system

Z1 = R sin(Θ) cos(Φ) , Z2 = R sin(Θ) sin(Φ) andZ3 = R cos(Θ),

we obtain the joint distribution function of (R,Θ,Φ) as follows:

g(R,Θ,Φ)(r, θ, φ) = r2 sin(θ)fZ(z),

where r ∈ (0,∞), θ ∈ [0, 2π], φ ∈ [0, π), and fZ(z) = (2π)− 3
2 exp

{
−1

2zzT
}
. That

is,

g(R,Θ,Φ)(r, θ, φ) = (2π)− 3
2 r2 sin(θ)e− r2

2 = 1
2π ×

1
2 sin(θ)×

√
2
π
r2e−

r2
2 ,

which implies that R,Θ, and Φ are independent. Therefore, to prove Proposition

5.2.1, we study the surface area on the sphere created by the set, Eρ, given by the

following inequality

|z1 − z2|+
∣∣∣∣(1− ρ1)z1 − ρz2 −

√
1− ρ2 − ρ2

1z3

∣∣∣∣+ ∣∣∣∣−ρ1z1 + (1− ρ)z2 −
√

1− ρ2 − ρ2
1z3

∣∣∣∣ < t,

for t > 0.

The set Eρ is a hexagon base cylinder and its axis of symmetry changes as we

change ρ. We want to show that, for fixed r > 0, the surface area of the intersection
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of Eρ with the sphere is an increasing function of ρ. To simplify this problem we

transform the above set so that the axis of symmetry of the hexagon base cylinder

remains the same as we change ρ. We use the orthogonal matrix

Q =



0 1−ρ−ρ1
V

−
√

1−ρ2−ρ2
1

V

− V 2

VW

1−ρ2−ρ2
1

VW

(1−ρ−ρ1)
√

1−ρ2−ρ2
1

VW

√
1−ρ2−ρ2

1
W

√
1−ρ2−ρ2

1
W

1−ρ−ρ1
W


,

where V =
√

2(1− ρ)(1− ρ1) and W =
√

(1− ρ)(3 + ρ− 2ρ1)− ρ2
1 .

We transform u = Qz, where u = [u1, u2, u3]T , z = [z1, z2, z3]T. Then

z1 − z2 = (1− ρ− ρ1)
V

u1 + W

V
u2,

(1− ρ1)z1 − ρz2 −
√

1− ρ2 − ρ2
1z3 = (1− ρ1)(1− ρ+ ρ1)

V
u1 + (1− ρ1)W

V
u2,

and − ρ1z1 + (1− ρ)z2 −
√

1− ρ2 − ρ2
1z3 = ((1− ρ)(2− ρ1)− ρ2

1)
V

u1 + ρ1W

V
u2.

The set given by the inequality

∣∣∣ (1−ρ−ρ1)
V

u1 + W
V
u2

∣∣∣+ ∣∣∣ (1−ρ1)(1−ρ+ρ1)
V

u1 + (1−ρ1)W
V

u2

∣∣∣+ ∣∣∣∣((1−ρ)(2−ρ1)−ρ2
1)

V
u1 + ρ1W

V
u2

∣∣∣∣ < t

is a hexagon in the x, y−plane, i.e, the axis of symmetry of the cylinder is z−axis.

Figure A.1 shows the above mentioned hexagon when ρ = 0.5 and ρ1 = 0.3.
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In that figure, di = perpendicular distance from the origin to each side and vi =

distance between the origin and the vertexes as indicated in the figure.

d1 = 1√
1− ρ, d2 = 1, d3 = 1√

1− ρ1
, v1 = 2

√
1− ρ1

W
, v2 = 2

√
1− ρ
W

, and v3 = 2
W
.

Figure A.1: The cross section through the origin perpendicular to the axis of
symmetry.

We consider the area S(ρ, r) of the sphere x2 + y2 + z2 = r2 which lies above

the hexagon region. Let L(ρ, s) be the arc length of the part of the of the circle

x2 + y2 = s2 which lies within hexagon in the x, y-plane.

S(ρ, r) = 2
∫ r

0
L(ρ, s) k√

k2 − s2
ds.

In order to show that S(ρ, r) is an increasing function of ρ it is enough to show

that L(ρ, s) is an increasing function of ρ for every s > 0. Let θ be the total central

angle such that the circle lies outside the hexagon. Then, L(ρ, s) = s(2π − θ) and

we want to show θ is a decreasing function in ρ. To show this we consider two

cases.

(1) d2 < d3 < d1 < v2 < v1 < v3.
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(2) d2 < d3 < v2 < d1 < v1 < v3.

In case (1),

θ =



0 ; s < d2,

4 cos−1
(
d2
s

)
; d2 < s < d3,

4∑3
i=2 cos−1

(
di

s

)
; d3 < s < d1,

4∑3
i=1 cos−1

(
di

s

)
; d1 < s < v2,

4 cos−1
(
d1
s

)
+ 2∑3

i=2

(
cos−1

(
di

s

)
+ cos−1

(
di

v2

))
; v2 < s < v1,

π + 2 cos−1
(
d1
s

)
+ 2 cos−1

(
d3
s

)
+ 2 cos−1

(
d3
v2

)
; v1 < s < v3,

2π ; s > v3.

Notice that, d1 = 1√
1−ρ is an increasing function of ρ and d2, d3 are independent

of ρ.

d2

v2
= W

2
√

(1− ρ)
=

√
(1− ρ)(3 + ρ− 2ρ1)− ρ2

1

2
√

(1− ρ)
,

d3

v2
= W

2
√

(1− ρ1)(1− ρ)
=

√
(1− ρ)(3 + ρ− 2ρ1)− ρ2

1

2
√

(1− ρ1)(1− ρ)
,

d1

v1
= W

2
√

(1− ρ1)(1− ρ)
=

√
(1− ρ)(3 + ρ− 2ρ1)− ρ2

1

2
√

(1− ρ1)(1− ρ)
,

are increasing functions of ρ, if ρ+ ρ1 ≤ 1.

Hence, θ is a decreasing function of ρ for 0 < ρ1 < ρ, and d2 < d3 < d1 < v2 <

v1 < v3.
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In case (2),

θ =



0 ; s < d2,

4 cos−1
(
d2
s

)
; d2 < s < d3,

4∑3
i=2 cos−1

(
di

s

)
; d3 < s < v2,

2∑3
i=2

(
cos−1

(
di

s

)
+ cos−1

(
di

v2

))
; v2 < s < d1,

2∑3
i=1 cos−1

(
di

s

)
+ 2∑3

i=2 cos−1
(
di

v2

)
; d1 < s < v1,

π + 2 cos−1
(
d1
s

)
+ 2 cos−1

(
d3
s

)
+ 2 cos−1

(
d3
v2

)
; v1 < s < v3,

2π ; s > v3.

As mentioned above, d1,
d2
v2
, d3
v2
, and d1

v1
are increasing functions of ρ, if ρ+ρ1 ≤ 1.

Hence, θ is a decreasing function of ρ for 0 < ρ1 < ρ, and d2 < d3 < v2 < d1 <

v1 < v3. 2

Proof of Proposition 5.2.2. Denote the variances of the marginal distributions by

σ2
1 ≤ σ2

2 ≤ σ2
3. There exists {Z1, Z2, Z3}

i.i.d.∼ N(0, 1), such that (Y ′1, Y ′2, Y ′3) d=

(σ1Z1, σ2Z1, σ3Z1) and

(Y1, Y2, Y3) d=


σ1 0 0

0 σ2 0

0 0 σ3




l11 0 0

l21 l22 0

l31 l32 l33




Z1

Z2

Z3



where LY =


l11 0 0

l21 l22 0

l31 l32 l33

 is the Cholesky decomposition of the correlation
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matrix of (Y1, Y2, Y3), which means that l11 = 1, l221 + l222 = 1 and l231 + l232 + l233 = 1.

Therefore, P{G(Y) ≤ t} = P{(Z1, Z2, Z3) ∈ RY (t)} and P{G(Y′) ≤ t} =

P{(Z1, Z2, Z3) ∈ RY ′(t)}, where

RY ′(t) = {(z1, z2, z3) : 4(σ3 − σ1)|z1| ≤ t}

RY (t) = {(z1, z2, z3) : 2|σ1z
′
1 − σ2z

′
2|+ 2|σ2z

′
2 − σ3z

′
3|+ 2|σ3z

′
3 − σ1z

′
1| ≤ t}

= {(z1, z2, z3) : 4|σ1z
′
1 − σ2z

′
2| ≤ t} ∩ {(z1, z2, z3) : 4|σ2z

′
2 − σ3z

′
3| ≤ t}

∩{(z1, z2, z3) : 4|σ3z
′
3 − σ1z

′
1| ≤ t},

with z′1 = z1, z
′
2 = l21z1 + l22z2 and z′3 = l31z1 + l32z2 + l33z3.

Now we compare the two regions RY ′(t) and R1
Y (t) = {(z1, z2, z3) : 4|σ3z

′
3 −

σ1z
′
1| ≤ t}. Note that both of them are regions between a pair of parallel planes.

For RY ′(t), the distance between the boundary planes is t
2(σ3−σ1) . For R1

Y (t),

the distance between the boundary planes is t

2
√
σ2

1+σ2
3−2l31σ1σ3

≤ t
2(σ3−σ1) . Since

both RY ′(t) and R1
Y (t) are centered at the origin, we conclude that R1

Y (t), and

thus RY (t) as a subset of R1
Y (t), can be moved inside RY ′(t) through certain

rational transformations. Since the distribution of (Z1, Z2, Z3) is rational invariant,

it immediately follows that P{(Z1, Z2, Z3) ∈ RY (t)} ≤ P{(Z1, Z2, Z3) ∈ RY ′(t)},

i.e., P{G(Y) ≤ t} ≤ P{G(Y′) ≤ t} for any t ≥ 0, which implies that G(Y) ≥st

G(Y′). 2

In order to prove Proposition 5.3.2, we propose the following lemma.

Lemma A.1. Assume (X, Y ) have an exchangeable bivariate normal random
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vector with correlation coefficient ρ. Let D ⊂ R2 be any convex set such that

{(x, y) | (y, x) ∈ D} = D. Then P{(X, Y ) ∈ D} is increasing in ρ.

Proof. For simplicity, assume D is bounded. The unbounded case can be ap-

proached by limiting argument. Denote by ∂D the boundary of D with pos-

itive (counterclockwise) orientation. The ∂D is piecewise smooth due to the

convexity of D. Furthermore, denote ∂D+ = {(x, y) ∈ ∂D | y ≥ x} and

∂D− = {(x, y) ∈ ∂D | y ≤ x} , then ∂D = ∂D+ ∪ ∂D−. Let ∂D′+ be same

as ∂D+ but with the opposite (clockwise) orientation. Then ∂D′− be same as ∂D−

are reflection to each other with respect to the line y = x. Figure A.2 provides an

illustration (not an accurate representation) of these orientation curves.

Figure A.2: Orientation Curves. Left: ∂D+ (solid) and ∂D− (dashed). Right:
∂D′+ (solid) and ∂D− (dashed).

Without loss of generality, assume E[X] = E[Y ] = 0 and Var(X) = Var(Y ) =

1. Then the density function of (X, Y ) by f(x, y) = 1
2π
√

1−ρ2
exp

{
− x2+y2−2ρxy

2(1−ρ2)

}
.

Plackett’s identity (Plackett, 1954) states that ∂
∂ρ
f(x, y) = ∂2

∂x∂y
f(x, y). According
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to Fubini’s theorem, we have

∂

∂ρ
P{(X, Y ) ∈ D} = ∂

∂ρ

∫
D
f(x, y)dxdy =

∫
D

∂

∂ρ
f(x, y)dxdy

=
∫
D

∂2

∂x∂y
f(x, y)dxdy (∗)=

∮
∂D

∂

∂y
f(x, y)dy

=
( ∫

∂D+
+
∫
∂D−

)
∂

∂y
f(x, y)dy

=
(
−
∫
∂D′+

+
∫
∂D−

)
∂

∂y
f(x, y)dy, (A.1)

where Equality (∗) follows from Green’s theorem.

Note that ∂
∂y
f(x, y) = ρx−y

1−ρ2 f(x, y). Following equation (A.1), we have

∂

∂ρ
P{(X, Y ) ∈ D} = −

∫
∂D′+

ρx− y
1− ρ2 f(x, y)dy +

∫
∂D−

ρx− y
1− ρ2 f(x, y)dy

= −
∫
∂D′+

f(x, y)dy ×
∫
∂D′+

ρx− y
1− ρ2

f(x, y)∫
∂D′+

f(x, y)dydy

+
∫
∂D−

f(x, y)dy ×
∫
∂D−

ρx− y
1− ρ2

f(x, y)∫
∂D−

f(x, y)dydy

= −
∫
∂D′+

f(x, y)dy × E
[
ρX − Y
1− ρ2

∣∣∣∣ (X, Y ) ∈ ∂D′+
]

+

∫
∂D−

f(x, y)dy × E
[
ρX − Y
1− ρ2

∣∣∣∣ (X, Y ) ∈ ∂D−
]
.

Due to the symmetry between ∂D′+ and ∂D− and the exchangeability of (X, Y )
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(or f(x, y)), we know that
∫
∂D′+

f(x, y)dy =
∫
∂D−

f(x, y)dy and

E
[
ρX − Y
1− ρ2

∣∣∣∣ (X, Y ) ∈ ∂D′+
]

= E
[
ρY −X
1− ρ2

∣∣∣∣ (Y,X) ∈ ∂D′+
]

= E
[
ρY −X
1− ρ2

∣∣∣∣ (X, Y ) ∈ ∂D−
]
.

Therefore,

∂

∂ρ
P{(X, Y ) ∈ D} =

∫
∂D−

f(x, y)dy ×−E
[
ρX − Y
1− ρ2

∣∣∣∣ (X, Y ) ∈ ∂D′+
]

+

∫
∂D−

f(x, y)dy × E
[
ρX − Y
1− ρ2

∣∣∣∣ (X, Y ) ∈ ∂D−
]

=
∫
∂D−

f(x, y)dy ×−E
[
ρY −X
1− ρ2

∣∣∣∣ (X, Y ) ∈ ∂D−
]

+

∫
∂D−

f(x, y)dy × E
[
ρX − Y
1− ρ2

∣∣∣∣ (X, Y ) ∈ ∂D−
]

=
∫
∂D−

f(x, y)dy × E
[(1 + ρ)(X − Y )

1− ρ2

∣∣∣∣ (X, Y ) ∈ ∂D−
]
≥ 0.

The last inequality hods because (X, Y ) ∈ ∂D− implies X ≥ Y. It immediately

follows that P{(X, Y ) ∈ D} is increasing in ρ.

Proof of Proposition 5.3.2. We shall use conditioning argument. According to

the property of multivariate normal distribution, we know that conditioning on

{Y3 = y3, . . . , Yk = yk}, (Y1, Y2) has an exchangeable bivariate normal distribution

with covariance σ∗12 = σ12 − s, where s is determined by other components of the

covariance matrix.
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For any fixed y3, . . . , yk and t ≥ 0, denote D = {(y1, y2) | G(y1, . . . , yk) ≤ t}.

Note that D ⊂ R2 is a convex polygon and symmetric with respect to the line

y1 = y2. According to Lemma A.1, P{G(Y) ≤ t | Y3 = y3, . . . , Yk = yk} =

P{(Y1, Y2) ∈ D | Y3 = y3, . . . , Yk = yk} is increasing in σ∗12 and thus in σ12.

Therefore, P{G(Y) ≤ t} = E[P{G(Y) ≤ t | Y3, . . . , Yk}] is also increasing in

σ12.

Proof of Proposition 5.3.4. Recall expression G(Y) can be expressed as follows,

G(Y) =
k∑
i=1

(4i− 2k − 2)Yi:k :=
k∑
i=1

ciYi:k,

where ci = 4i− 2k − 2. Noting that {ci, i = 1, 2, . . . , k} is an increasing sequence,

according to arrangement inequality, we have

G(Y) = max
π∈P

{
k∑
i=1

ciYπ(i)

}
= max

π∈P

{
k∑
i=1

cπ(i)Yi

}
,

where P denotes the collection of all permutations of (1, 2, . . . , k). Let C ∈ Rk!×k

be the matrix generated by all different permutations of (c1, . . . , ck). Then G(Y)

and G(Y′) are the largest order statistics of random vectors CYT and CY′T re-

spectively. On the other hand, since Y and Y′ follow multivariate normal dis-

tributions, so do CYT and CY′T. Specifically, CYT ∼ MVN(0,CΣY CT) and

CY′T ∼MVN(0,CΣY ′CT).

Noting that C1k×kCT = 0 since ∑k
i=1 ci = 0, comparing covariance matrices of
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CYT and CY′T yields that

CΣY CT −CΣY ′CT = CΣY CT −CΣY ′CT + aC1k×kCT

= C(ΣY −ΣY ′ + a1k×k)CT,

which is positive semidefinite since ΣY −ΣY ′ + a1k×k is positive semidefinite.

Recall that G(Y) = max{rowiC.YT, i = 1, . . . , k!}. Since {c1, . . . , ck} =

{−c1, . . . ,−ck}, then {rowiC.YT, i = 1, . . . , k!} = {−rowiC.YT, i = 1, . . . , k!}.

Therefore

P{G(Y) ≤ t} = P{CYT ≤ (t, .., t)T} = P{−CYT ≤ (t, .., t)T}

= P{(−t, . . . ,−t)T ≤ CYT ≤ (t, .., t)T} := P{CYT ∈ Qt},

where Qt is a super cube centered at origin with side length of 2t. It is clear that

Qt is convex and centrally symmetric. According to Lemma 5.3.3,

P{G(Y) ≤ t} = P{CYT ∈ Qt} ≤ P{CY′T ∈ Qt} = P{G(Y′) ≤ t},

for any t, which implies that G(Y) ≥st G(Y′) from Definition 2.3.1. 2
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Appendix B: Figures
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Figure B.1: The first type of alternatives. Estimated power curves of the tests
based on the mean, pht, cte measures, for various dependence structures, n =
200, and α = 0.01. Left column: t3 copulas. Right column: Gaussian copulas.
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Figure B.2: The first type of alternatives. Estimated power curves of the tests
based on the mean, pht, cte measures, for various dependence structures, n =
200, and α = 0.10. Left column: t3 copulas. Right column: Gaussian copulas.
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Figure B.3: The first type of alternatives. Estimated power curves of the tests
based on the mean, pht, cte measures, for various dependence structures, n =
100, and α = 0.01. Left column: t3 copulas. Right column: Gaussian copulas.
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Figure B.4: The first type of alternatives. Estimated power curves of the tests
based on the mean, pht, cte measures, for various dependence structures, n =
100, and α = 0.05. Left column: t3 copulas. Right column: Gaussian copulas.

86



0.85 0.95 1.05 1.15 1.25
0

0.2

0.4

0.6

0.8

1

Constant (c
*
)

P
o
w

e
r

MEAN, t
3
 Copula

 

 

Negative

Zero

Moderate−Positive

Strong−Positive

0.85 0.95 1.05 1.15 1.25
0

0.2

0.4

0.6

0.8

1

Constant (c
*
)

P
o
w

e
r

MEAN, Gaussian Copula

 

 

Negative

Zero

Moderate−Positive

Strong−Positive

0.85 0.95 1.05 1.15 1.25
0

0.2

0.4

0.6

0.8

1

Constant (c
*
)

P
o
w

e
r

PHT, t
3
 Copula

 

 

Negative

Zero

Moderate−Positive

Strong−Positive

0.85 0.95 1.05 1.15 1.25
0

0.2

0.4

0.6

0.8

1

Constant (c
*
)

P
o
w

e
r

PHT, Gaussian Copula

 

 

Negative

Zero

Moderate−Positive

Strong−Positive

0.85 0.95 1.05 1.15 1.25
0

0.2

0.4

0.6

0.8

1

Constant (c
*
)

P
o
w

e
r

CTE, t
3
 Copula

 

 

Negative

Zero

Moderate−Positive

Strong−Positive

0.85 0.95 1.05 1.15 1.25
0

0.2

0.4

0.6

0.8

1

Constant (c
*
)

P
o
w

e
r

CTE, Gaussian Copula

 

 

Negative

Zero

Moderate−Positive

Strong−Positive

Figure B.5: The first type of alternatives. Estimated power curves of the tests
based on the mean, pht, cte measures, for various dependence structures, n =
100, and α = 0.10. Left column: t3 copulas. Right column: Gaussian copulas.
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Appendix C: Hypothesis Testing
in R

#=============================================================
The code is created to carry out the simulation study explained in chapter 5. This code includes
functions: (1) To simulate exponential with parameter theta, Pareto with parameters x0 and beta,
lognormal with parameters mu and sigma. (2) To simulate Gaussian and t copulas with four different
dependence structures, namely strong positive, moderate positive, zero, and negative dependence.(3) To
find the bootstrap estimate of the critical value for the decision making process. (4) To check the decision
making requirements.

#=============================================================
# R− libraries
library (VGAM)
library (abind)
library (Matrix)
# Remove all the variables from the workspace
rm(list=ls())
#=============================================================

Defined Parameters as in Chapter 4
nk=200 # sample size − e.g. 50,100,200
alpha=c(0.01,0.05,0.1) # desired significance levels
B = 1000 # no of iterations for bootstrap sampling
M = 5000 # no of iterations for Monte Carlo
riskM = 3 # no of risk measures used in the study− e.g. MEAN, PHT, and CTE
t<− 0.25 # threshold level of PHT (see Example 2.2.2)
r<− 0.85 # distortion level of CTE (see Example 2.2.3)
x0<−1.0 # Pareto parameters
beta<− 5.5 # Pareto parameters
gamma=0 # user define:= Gini index when H0 is true
# define constants c∗ and c∗∗ in equations 4.2.8 and 4.2.9
alter1<−c(seq(0.85,1.15, by=0.05), 1.25, 1.50, 2.00) # first type of alternatives
alter2<−c(seq(1.00,1.25, by=0.05), seq (1.50,3.00, by=0.5)) # second type of alternatives
a0=1 # a0=1 if first type; a0=2 if second type of alternatives
EE=10ˆ(−15) # a small number to make the following matrices positive definite (useful in Cholesky

decomposition)
# copula correlation matrices to generate dependence structures: here we define four , namely
# Sig1 = negative dependence, Sig2 = independence,
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# Sig3 = moderate positive dependence, Sig4 = strong positive dependence
Sig1=matrix(c(1,−0.5,−0.5,−0.5,1,−0.5+EE,−0.5,−0.5+EE,1),nrow=3)
Sig2=matrix(c (1,0,0,0,1,0,0,0,1) ,nrow=3)
Sig3=matrix(c (1,0.5,0.5,0.5,1,0.5,0.5,0.5,1) ,nrow=3)
Sig4=matrix(c(1,1−EE,1−EE,1−EE,1,1−EE,1−EE,1−EE,1),nrow=3)
#=============================================================
SigAll=list(Sig1,Sig2,Sig3,Sig4) # make a list of all correlation matrices
N=length(SigAll) # length of the above list

alter=if(a0==1) alter1 else alter2 # select the alternative according to the users ’ choice
a=length(alter)
indexNull= if(a0==1) 4 else 1

al=length(alpha) # no: of significance levels
#=============================================================
# True Parameters & Risk Measures
#=============================================================
# Distribution related parameters under H0 (see equation 4.2.5−−4.2.7)
gb1<−function(x0,beta,t){ x0∗((beta/(beta−1))∗(tˆ(−1/beta))−1)}
gb2 <−function(t){pnorm(1−qnorm(1−t,0,1),0,1)}
thetaM<− x0/(beta−1)
thetaP<−(x0∗r)/(beta∗r−1)
thetaC<−(−(gb1(x0,beta,t))/(log(t)−1))

Cr<−2.03 # Used in calculation of the CTE of the lognormal
muM<−log(x0/(beta−1)) − 0.5
muP <−log(x0/(Cr∗(beta∗r−1)))
muC<−log(t∗gb1(x0,beta,t)/gb2(t)) − 0.5

# Risk Measures under H0 (e − exponential, p−Pareto, l−lognormal)
MEANe<− x0 + thetaM
MEANp<− x0 + x0/(beta−1)
MEANl<− x0 + exp(1/2)∗exp(muM)

PHTe<−x0 + thetaP/r
PHTp<−x0 + x0/(beta∗r−1)
PHTl<−x0 + Cr∗exp(muP)

CTEe<−x0 − thetaC∗(log(t)−1)
CTEp<−x0 + gb1(x0,beta,t)
CTEl<−x0 + gb2(t)∗exp(muC+0.5)/t

# Distribution related parameters under Ha (see Table 4.2−4.3)
thetaM 1 <−function(thetaM,x0,alter){ thetaM∗alter + x0∗(alter−1)}
thetaP 1<−function(thetaP,x0,alter){thetaP∗alter + x0∗r∗(alter−1)}
thetaC 1 <−function(thetaC,x0,alter,t){
thetaC∗alter+ x0∗(alter−1)/(1−log(t))}

muM 1<−function(muM,x0,alter) {log(x0∗(alterˆ2−1) + alterˆ2∗exp(muM+0.5)) − 0.5}
muP 1<−function(muP,x0,alter,Cr) {log(x0∗(alterˆ2−1)/Cr+alterˆ2∗exp(muP))}
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muC 1<−function(muC,x0,alter,t){ log(x0∗(alterˆ2−1)∗t/gb2(t)+alterˆ2∗exp(muC+0.5))−0.5}

theta1=rbind(thetaM 1(thetaM,x0,alter1),thetaP 1(thetaP,x0,alter1),
thetaC 1(thetaC,x0,alter1,t)) # theta for the first type of alternatives
theta2=rbind(thetaM 1(thetaM,x0,alter2),thetaP 1(thetaP,x0,alter2),
thetaC 1(thetaC,x0,alter2,t)) # theta for the second type of alternatives

theta=if(a0==1) theta1 else theta2 # theta for the selected type alternatives

Mu1=rbind(rep(muM,length(alter1)),rep(muP,length(alter1)),rep(muC,length(alter1))) # Mu for the first type
of alternatives

Mu2=rbind(muM 1(muM,x0,alter2),muP 1(muP,x0,alter2,Cr), muC 1(muC,x0,alter2,t)) # Mu for the second
type of alternatives

Mu=if(a0==1) Mu1 else Mu2 # Mu for the selected type alternatives

#=============================================================
# Functions for Dependent Data Generation (see Algorithms in Section 4.3)
#=============================================================
# Name of the function: tCopula
# Purpose: generate uniformly distributed dependent data
# Input: nk= sample size; dim=dimention; Q=chol(Sig) Cholesky decomposition of correlation matrix

(Sig1,...,Sig4); df=degrees of freedom
# Output: Ut= t copula; Ug = Gaussian copula
tCopula<−function(nk,dim,Q,df){
x<−array(NA, dim=c(nk,dim))
y<−array(NA, dim=c(nk,dim))
z<−array(NA, dim=c(nk,dim))
s<−array(NA, dim=c(nk,dim))
Ug<−array(NA, dim=c(nk,dim)) # Gaussian copula
Ut<−array(NA, dim=c(nk,dim)) # t copula
for(j in 1:dim){z[, j]=rnorm(nk,0,1)}
s=rchisq(nk, df, ncp = 0)
y = z%∗%Q
Ug=pnorm(y)

for( i in 1:nk){
for(j in 1:dim){

x[ i , j]=sqrt(df)∗y[ i , j ]/sqrt(s [ i ])
Ut[i , j]=pt(x[i , j ], df , lower. tail = TRUE, log.p = FALSE)}}

return( list (Ug,Ut))}

#generate exp in the form f(x)=(1/lambda)∗eˆ(−x/lamda)
expFROMunif<−function(u2,lambda){ExP<−(−log(1−u2)∗lambda)
return(ExP)}

#generate lognormal with mu and sigma
lognFROMunif<−function(u3,Muu,Sigma){logn1<−array(NA,dim=c(length(u3)))
for( i in 1:length(u3)){logn1[i]=exp(Sigma∗qnorm(u3[i])+Muu)}
return(logn1)}
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#=============================================================
# Data Generation for the Analysis
#=============================================================
# Name of the function: fnUData
# Purpose: generate uniformly distributed dependent data
# Input: nk = sample size
# Output: Ut= t copula; Ug = Gaussian copula
fnUData<−function(nk){
Ut<− array(NA,dim=c(N,nk,3))
Ug<− array(NA,dim=c(N,nk,3))
for(k1 in 1:N){
Q = chol(SigAll[[k1 ]])
Ug[k1,,]=tCopula(nk,riskM,Q,3)[[1]]
Ut[k1,,]=tCopula(nk,riskM,Q,3)[[2]]}
return( list (Ut,Ug))}

# Name of the function: fnDataANDsort
# Purpose: generating and sorting data for the analysis
# Input: nk = sample size ; U = output from fnUdata
# Output: xe = exponential; xp = Pareto; xl = lognormal; Xe,Xp,Xl = ordered xe,xp, and xpl respectively
fnDataANDsort <−function(nk,U){
xe<−array(NA,dim=c(N,nk,a,riskM))
xp<−array(NA, dim=c(N,nk,a,riskM))
xlp<−array(NA,dim=c(N,nk,a,riskM))

Xe<−array(NA,dim=c(N,nk,a,riskM))
Xp<−array(NA, dim=c(N,nk,a,riskM))
Xl<−array(NA,dim=c(N,nk,a,riskM))

for(k1 in 1:N){
for(q in 1: riskM){
for( i in 1:nk){
for(j in 1:a){

xe[k1, i , j ,q]=expFROMunif(U[k1,i,1],theta[q,j])
xp[k1, i , j ,q]=exp(expFROMunif(U[k1,i,2],1/beta))
xlp[k1, i , j ,q]=lognFROMunif(U[k1,i,3],Mu[q,j],1)}}

for(j in 1:a){
Xe[k1,, j ,q]=x0+xe[k1,order(xe[k1,,j,q]) , j ,q]
Xp[k1,,j ,q]=x0∗xp[k1,order(xp[k1,,j,q]) , j ,q]
Xl[k1,, j ,q]=x0+xlp[k1,order(xlp[k1,,j ,q]) , j ,q]}}}

return( list (xe,xp,xlp,Xe,Xp,Xl))}

#=============================================================
# Computing Risk Measures
#=============================================================
# Name of the function: fnRiskMeasure
# Purpose: computing the risk measures of samples
# Input: nk = sample size; DataANDsort = output of fnDataANDsort
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# Output: RMe, RMp, RMl = risk measures of exponential, Pareto, and lognormal; RMAll = sorted out all
the risk measure values.

fnRiskMeasure<−function(nk,DataANDsort){
meanE<−array(NA,dim=c(N,a))
meanP<−array(NA,dim=c(N,a))
meanL<−array(NA,dim=c(N,a))
MEAN<−array(NA,dim=c(N,a,riskM))

phtE<−array(NA,dim=c(N,a))
phtP<−array(NA,dim=c(N,a))
phtL<−array(NA,dim=c(N,a))
PHT<−array(NA,dim=c(N,a,riskM))
ttE<−array(NA,dim=c(N,nk,a))
ttP<−array(NA,dim=c(N,nk,a))
ttL<−array(NA,dim=c(N,nk,a))

cteE<−array(NA,dim=c(N,a))
cteP<−array(NA,dim=c(N,a))
cteL<−array(NA,dim=c(N,a))
CTE<−array(NA,dim=c(N,a,riskM))
w=floor(nk∗t)
cteLevel=nk−w+1

for(k2 in 1:nk){
cons=(1−(k2−1)/nk)ˆr−(1−k2/nk)ˆr
for(k1 in 1:N){

for(j in 1:a){
ttE[k1,k2,j]=cons∗DataANDsort[[4]][k1,k2,j,2]
ttP[k1,k2,j]=cons∗DataANDsort[[5]][k1,k2,j,2]
ttL[k1,k2,j]=cons∗DataANDsort[[6]][k1,k2,j,2]}}}

for(k1 in 1:N){
for(j in 1:a){
meanE[k1,j]=mean(DataANDsort[[4]][k1,,j,1])
meanP[k1,j]=mean(DataANDsort[[5]][k1,,j,1])
meanL[k1,j]=mean(DataANDsort[[6]][k1,,j,1])
phtE[k1,j]=sum(ttE[k1,,j])
phtP[k1,j]=sum(ttP[k1,,j])
phtL[k1,j]=sum(ttL[k1,,j ])
cteE[k1,j]=sum(DataANDsort[[4]][k1,cteLevel:nk,j,3])/w
cteP[k1,j]=sum(DataANDsort[[5]][k1,cteLevel:nk,j,3])/w
cteL[k1,j]=sum(DataANDsort[[6]][k1,cteLevel:nk,j,3])/w}}

for(k1 in 1:N){
for(j in 1:a){

MEAN[k1,j,]=sort(c(meanE[k1,j],meanP[k1,j],meanL[k1,j]))
PHT[k1,j,]=sort(c(phtE[k1,j],phtP[k1,j ], phtL[k1,j ]) )
CTE[k1,j,]=sort(c(cteE[k1,j ], cteP[k1,j ], cteL[k1,j ]) )}}

RMe = list(meanE,phtE,cteE)
RMp = list(meanP,phtP,cteP)
RMl = list(meanL,phtL,cteL)
RMAll =list(MEAN,PHT,CTE)
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return( list (RMe,RMp,RMl,RMAll))}

#=============================================================
# Computing Gamma
#=============================================================
# Coefficient of the order statistics in equation 3.2.1
K<−function(k){

kk<−c(rep(NA, k))
for( i in 1:k){kk[i ]<−4∗i−2∗(k+1)}
return(kk)}

KU=K(riskM)

# Name of the function: fnGammaT
# Purpose: computing Gamma using the equation 3.2.1
# Input: nk = sample size; RiskMeasure = output of fnRiskMeasure
# Output: gammaMEAN, gammaPHT, gammaPHT = calculated gamma for the risk measures MEAN, PHT,

and CTE
fnGammaT<−function(nk,RiskMeasure){
gamMEAN<−array(NA,dim=c(N,a,riskM))
gammaMEAN<−array(NA,dim=c(N,a))
gamPHT<−array(NA,dim=c(N,a,riskM))
gammaPHT<−array(NA,dim=c(N,a))
gamCTE<−array(NA,dim=c(N,a,riskM))
gammaCTE<−array(NA,dim=c(N,a))
RMAll=RiskMeasure[[4]]

for(k1 in 1:N){
for(j in 1:a){

for(j1 in 1:riskM){
gamMEAN[k1,j,j1]=(KU[j1])∗RMAll[[1]][k1,j,j1]
gamPHT[k1,j,j1]=(KU[j1])∗RMAll[[2]][k1,j,j1]
gamCTE[k1,j,j1]=(KU[j1])∗RMAll[[3]][k1,j,j1]}
gammaMEAN[k1,j]=sum(gamMEAN[k1,j,])/(riskMˆ2)
gammaPHT[k1,j]=sum(gamPHT[k1,j,])/(riskMˆ2)
gammaCTE[k1,j]=sum(gamCTE[k1,j,])/(riskMˆ2)}}

return( list (gammaMEAN,gammaPHT,gammaCTE))}

#=============================================================
# Test Statistic
#=============================================================
# Name of the function: fnTstat
# Purpose: computing the test statistic , T
# Input: nk = sample size; GammaT = output of fnGammaT
# Output: Tmean, Tpht, Tcte = calculated T for the risk measures MEAN, PHT, and CTE
fnTstat<−function(nk,GammaT){
Tmean<−array(NA,dim=c(N,a))
Tpht<−array(NA,dim=c(N,a))
Tcte<−array(NA,dim=c(N,a))

for(k1 in 1:N){
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for(j in 1:a){
Tmean[k1,j]=(GammaT[[1]][k1,j]−gamma)/sqrt(riskM/nk)
Tpht[k1,j]=(GammaT[[2]][k1,j]−gamma)/sqrt(riskM/nk)
Tcte[k1,j]=(GammaT[[3]][k1,j]−gamma)/sqrt(riskM/nk)}}

return( list (Tmean,Tpht,Tcte))}

#=============================================================
# Generating Bootstrap Data
#=============================================================
# Name of the function: fnBootData
# Purpose: generating bootstrap data
# Input: nk = sample size; GammaT = output of fnDataANDsort
# Output: ”B” represents bootstrap; xeB = exponential; xpB = Pareto; xlB = lognormal; XeB,XpB,XlB =

ordered xeB, xpB, and xplB respectively
fnBootData<−function(nk,DataANDsort){
xeB<−array(NA,dim=c(N,nk,a,riskM))
xpB<−array(NA,dim=c(N,nk,a,riskM))
xlB<−array(NA,dim=c(N,nk,a,riskM))

XeB<−array(NA,dim=c(N,nk,a,riskM))
XpB<−array(NA,dim=c(N,nk,a,riskM))
XlB<−array(NA,dim=c(N,nk,a,riskM))
sam<−array(NA,dim=c(nk))
eplDataANDsort=DataANDsort[1:3]
sam=sample(1:nk,nk,replace = TRUE)

for( q in 1: riskM){
for(k3 in 1:N){
for(i1 in 1:nk){
for(j in 1:a){

xeB[k3,i1, j ,q]=eplDataANDsort[[1]][k3,sam[i1],j,q]
xpB[k3,i1, j ,q]=eplDataANDsort[[2]][k3,sam[i1],j,q]
xlB[k3,i1 , j ,q]=eplDataANDsort[[3]][k3,sam[i1],j,q]}}

for(j in 1:a){
XeB[k3,,j,q]=x0+xeB[k3,order(xeB[k3,,j,q]),j ,q]
XpB[k3,,j,q]=x0∗xpB[k3,order(xpB[k3,,j,q]),j ,q]
XlB[k3,,j ,q]=x0+xlB[k3,order(xlB[k3,,j,q]) , j ,q]}}}

return( list (xeB,xpB,xlB,XeB,XpB,XlB))}

#=============================================================
# Computing Risk Measure of the Bootstrap Data
#=============================================================
# Name of the function: fnBootRiskM
# Purpose: computing the risk measures of samples
# Input: nk = sample size; BootData = output of fnBootData; RiskMeasure = output of fnRiskMeasure
# Output: DmeanB, DphtB, DcteB = sorted risk measures, MEAN, PHT, and CTE, of the bootstrap data
fnBootRiskM<−function(nk,BootData,RiskMeasure){
meanEb<−array(NA,dim=c(N,a))
meanPb<−array(NA,dim=c(N,a))
meanLb<−array(NA,dim=c(N,a))
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DmeanB<−array(NA,dim=c(N,a,riskM))

phtEb<−array(NA,dim=c(N,a))
phtPb<−array(NA,dim=c(N,a))
phtLb<−array(NA,dim=c(N,a))
DphtB<−array(NA,dim=c(N,a,riskM))
ttEb<−array(NA,dim=c(N,nk,a))
ttPb<−array(NA,dim=c(N,nk,a))
ttLb<−array(NA,dim=c(N,nk,a))

cteEb<−array(NA,dim=c(N,a))
ctePb<−array(NA,dim=c(N,a))
cteLb<−array(NA,dim=c(N,a))
cteB1<−array(NA,dim=c(N,a,riskM))
DcteB<−array(NA,dim=c(N,a,riskM))
w=floor(nk∗t)
cteLevel=nk−w+1
eplRM=RiskMeasure[1:3]

for(k2 in 1:nk){
cons=(1−(k2−1)/nk)ˆr−(1−k2/nk)ˆr

for(k1 in 1:N){
for(j in 1:a){
ttEb[k1,k2,j]=cons∗BootData[[4]][k1,k2,j ,2]
ttPb[k1,k2,j]=cons∗BootData[[5]][k1,k2,j ,2]
ttLb[k1,k2,j]=cons∗BootData[[6]][k1,k2,j ,2]}}}

for(k1 in 1:N){
for(j in 1:a){
meanEb[k1,j]=mean(BootData[[4]][k1,,j,1])
meanPb[k1,j]=mean(BootData[[5]][k1,,j,1])
meanLb[k1,j]=mean(BootData[[6]][k1,,j,1])
phtEb[k1,j]=sum(ttEb[k1,,j])
phtPb[k1,j]=sum(ttPb[k1,,j])
phtLb[k1,j]=sum(ttLb[k1,,j])
cteEb[k1,j]=sum(BootData[[4]][k1,cteLevel:nk,j ,3]) /w
ctePb[k1,j]=sum(BootData[[5]][k1,cteLevel:nk,j ,3]) /w
cteLb[k1,j]=sum(BootData[[6]][k1,cteLevel:nk,j ,3]) /w}}

for(k1 in 1:N){
for(j in 1:a){

DmeanB[k1,j,]= sort(c((meanEb[k1,j]−eplRM[[1]][[1]][k1,j ]) ,(meanPb[k1,j]−eplRM[[2]][[1]][k1,j ]) ,
(meanLb[k1,j]−eplRM[[3]][[1]][k1,j ]) ))
DphtB[k1,j,]= sort(c((phtEb[k1,j]−eplRM [[1]][[2]][ k1,j ]) ,(phtPb[k1,j]−eplRM [[2]][[2]][ k1,j ]) ,
(phtLb[k1,j]−eplRM [[3]][[2]][ k1,j ]) ))
DcteB[k1,j,]= sort(c((cteEb[k1,j]−eplRM [[1]][[3]][ k1,j ]) ,(ctePb[k1,j]−eplRM [[2]][[3]][ k1,j ]) ,
(cteLb[k1,j]−eplRM [[3]][[3]][ k1,j ]) ))}}

return( list (DmeanB,DphtB,DcteB))}

95



#=============================================================
# Computing Bootstrap Gamma
#=============================================================
# Name of the function: fnBootGammaT
# Purpose: computing Gamma of the bootstrap risk measures (see Section 3.4)
# Input: nk = sample size; BootRiskM = output of fnBootRiskM
# Output: gammaMEANb, gammaPHTb, gammaPHTb = calculated gamma for the bootstrap risk measures

MEAN, PHT, and CTE
fnBootGammaT<−function(nk,BootRiskM){
gamMEANb<−array(NA,dim=c(N,a,riskM))
gammaMEANb<−array(NA,dim=c(N,a))
gamPHTb<−array(NA,dim=c(N,a,riskM))
gammaPHTb<−array(NA,dim=c(N,a))
gamCTEb<−array(NA,dim=c(N,a,riskM))
gammaCTEb<−array(NA,dim=c(N,a))

for(k1 in 1:N){
for(j in 1:a){
for(j1 in 1:riskM){

gamMEANb[k1,j,j1]=(KU[j1])∗BootRiskM[[1]][k1,j,j1]
gamPHTb[k1,j,j1]=(KU[j1])∗BootRiskM[[2]][k1,j,j1]
gamCTEb[k1,j,j1]=(KU[j1])∗BootRiskM[[3]][k1,j,j1]}
gammaMEANb[k1,j]=sum(gamMEANb[k1,j,])/(riskMˆ2)
gammaPHTb[k1,j]=sum(gamPHTb[k1,j,])/(riskMˆ2)
gammaCTEb[k1,j]=sum(gamCTEb[k1,j,])/(riskMˆ2)}}

return( list (gammaMEANb,gammaPHTb,gammaCTEb))}

#=============================================================
# Decision Making
#=============================================================
# Name of the function: fnBootTstat
# Purpose: decision making based on sample T statistics and bootstrap risk measures
# Input: nk = sample size; DataANDsort, RiskMeasure, Tstat = output of fnDataANDsort, fnRiskMeasure,

fnTstat; B = no of iterations in bootstrap; alpha = significance level
# Output: Tmean, Tpht, Tcte = calculated T for the risk measures MEAN, PHT, and CTE
fnBootTstat<−function(nk,DataANDsort,RiskMeasure,Tstat,B,alpha){
TmeanB<−array(NA,dim=c(B,N,a))
TmeanBB<−array(NA,dim=c(B,N,a))

TphtB<−array(NA,dim=c(B,N,a))
TphtBB<−array(NA,dim=c(B,N,a))

TcteB<−array(NA,dim=c(B,N,a))
TcteBB<−array(NA,dim=c(B,N,a))

decMEAN<−array(NA, dim=c(N,a,al))
decPHT<−array(NA, dim=c(N,a,al))
decCTE<−array(NA, dim=c(N,a,al))
al=length(alpha)
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for(b in 1:B){
BootData=fnBootData(nk,DataANDsort)
BootRiskM =fnBootRiskM(nk,BootData,RiskMeasure)
BootGammaT=fnBootGammaT(nk,BootRiskM)

for(k1 in 1:N){
for(j in 1:a){

TmeanB[b,k1,j]=(BootGammaT[[1]][k1,j]−gamma)/sqrt(riskM/nk)
TphtB[b,k1,j]=(BootGammaT[[2]][k1,j]−gamma)/sqrt(riskM/nk)
TcteB[b,k1,j]=(BootGammaT[[3]][k1,j]−gamma)/sqrt(riskM/nk)}}}

#sorting bootsrap data
for(k1 in 1:N){
for(j in 1:a){

TmeanBB[,k1,j]=TmeanB[order(TmeanB[,k1,j]),k1,j]
TphtBB[,k1,j]=TphtB[order(TphtB[,k1,j]),k1,j]
TcteBB[,k1,j]=TcteB[order(TcteB[,k1,j]),k1,j ]}}

for( i in 1:al){
cc=floor(B∗(1−alpha[i]))
for(k1 in 1:N){
for(j in 1:a){

if ( (Tstat [[1]][ k1,j ]) > (TmeanBB[cc,k1,j])){
decMEAN[k1,j,i]=1}
else decMEAN[k1,j,i]=0

if ( (Tstat [[2]][ k1,j ]) > (TphtBB[cc,k1,j])){
decPHT[k1,j,i]=1}
else decPHT[k1,j,i]=0

if ( (Tstat [[3]][ k1,j ]) > (TcteBB[cc,k1,j])){
decCTE[k1,j,i]=1}
else decCTE[k1,j,i]=0}}}

return( list (decMEAN,decPHT,decCTE))}

#=============================================================
# Monte Carlo Simulation
#=============================================================
# Name of the function: fnMonteC
# Purpose: Monte Carlo simlation with M no: of iterations using all the above functions
# Input: nk = sample size; alpha = significance level ; B = no of iterations in bootstrap; M = no of Monte

Carlo iterations
# Output: MonteC.G, MonteC.T = collection of true or false decision for each iteration
fnMonteC <−function(nk,alpha,B,M){
MonteC.G<−array(NA, dim=c(N,a,al,riskM,M))
MonteC.t<−array(NA, dim=c(N,a,al,riskM,M))

for( i in 1:M){
U = fnUData(nk)

DataANDsort.G=fnDataANDsort(nk,U[[1]])
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DataANDsort.t=fnDataANDsort(nk,U[[2]])

RiskMeasure.G=fnRiskMeasure(nk,DataANDsort.G)
RiskMeasure.t=fnRiskMeasure(nk,DataANDsort.t)

GammaT.G=fnGammaT(nk,RiskMeasure.G)
GammaT.t=fnGammaT(nk,RiskMeasure.t)

Tstat.G=fnTstat(nk,GammaT.G)
Tstat.t=fnTstat(nk,GammaT.t)

BootTstat.G=fnBootTstat(nk,DataANDsort.G,RiskMeasure.G,Tstat.G,B,alpha)
BootTstat.t=fnBootTstat(nk,DataANDsort.t,RiskMeasure.t,Tstat.t,B,alpha)

for(j in 1:riskM){
MonteC.G[,,,j, i ]=BootTstat.G[[j]]
MonteC.t[,,, j , i ]=BootTstat.t[[j ]]}}

return( list (MonteC.G,MonteC.t))}

#=============================================================
# Power function for the Selected Alternatives under Different Dependence
#=============================================================
# Name of the function: fnFinalOUT
# Purpose: evaluating the power of the hypothesis test for each alternative based on four dependence

structures and selected copula
# Input: MonteC = MonteC.G or MonteC.t output of fnMonte
# Output: MonteC.G, MonteC.T = collection of true or false decision for each iteration
fnFinalOUT<−function(MonteC){

alMean<−array(NA, dim=c(N,a,al))
alPht<−array(NA, dim=c(N,a,al))
alCte<−array(NA, dim=c(N,a,al))

for(k1 in 1:N){
for(j in 1:a){
for( i in 1:al){

alMean[k1,j, i]=mean(MonteC[k1,j,i,1,])
alPht[k1,j , i ]=mean(MonteC[k1,j,i,2,])
alCte[k1,j , i]=mean(MonteC[k1,j,i,3,])}}}

return( list (alMean,alPht,alCte))}

98



CURRICULUM VITAE

RANADEERA SAMANTHI

EDUCATION
2016 Ph.D., Mathematics (concentration in Statistics & Actuarial

Science),
University of Wisconsin - Milwaukee.
Thesis Title : “Comparing the Riskiness of Dependent Porfolios.”
Advisors: Prof. Vytaras Brazauskas and Prof. Wei Wei.

2010 M.S., Mathematical Sciences,
University of Arkansas at Little Rock, AR, (GPA – 4.00/4.00 ).

2006 B.S. (honors), Finance, Business, and Computational Mathe-
matics,
University of Colombo, Colombo, Sri Lanka.
Thesis Title: “Risk Analysis Involved in a Financial Investment.”
Advisors: Dr. R.T. Samaratunga and Dr. Chula Jayawardene.

ACTUARIAL EDUCATION
Society of Actuaries, Schaumburg, IL, USA.
• Passed all preliminary exams: P/1, FM/2, MFE/3F, MLC, C/4.
• Obtained all VEE credits: VEE-Applied Statistics, VEE-Economics,

VEE-Corporate Finance.

PROFESSIONAL SOCIETY MEMBERSHIPS
2015–Present American Statistical Association (ASA).
2010–Present American Mathematical Society (AMS).

PUBLICATIONS
2015 Samanthi, R.G.M., Wei, W., Brazauskas, V., “Ordering Gini Indexes of

Multivariate Elliptical Risks”. Insurance: Mathematics and Economics
68, 84-91.

2015 Samanthi, R.G.M., Wei, W., Brazauskas, V., “Comparing the Riski-
ness of Dependent Portfolios via Nested L-Statistics”. Submitted to
Insurance: Mathematics and Economics.

99



CONFERENCE PRESENTATIONS
2015 “Comparing the Riskiness of Dependent Portfolios via Nested L-Statistics”.

50th Actuarial Research Conference, University of Toronto, Toronto,
Canada.

2014 “Comparing the Riskiness of Dependent Portfolios”. 49th Actuarial Re-
search Conference, University of California-Santa Barbara, Santa Bar-
bara, CA.

HONORS AND AWARDS
2016 Morris and Miriam Marden Award in Mathematics,

Department of Mathematical Sciences, University of Wisconsin-Milwaukee,
WI.

2015–Present Research Excellence Award,
Department of Mathematical Sciences, University of Wisconsin-Milwaukee,
WI.

2014 & 2015 SOA Travel Award,
Society of Actuaries, Schaumburg, IL.

2014 & 2015 Graduate School Travel Award,
University of Wisconsin-Milwaukee, WI.

2014 & 2015 Travel Award,
Department of Mathematical Sciences, University of Wisconsin-Milwaukee,
WI.

2010–2015 Chancellor’s Graduate Student Award,
University of Wisconsin-Milwaukee, WI.

2010 Award for Outstanding Teaching by a Graduate Student,
Department of Mathematics and Statistics, University of Arkansas at
Little Rock, AR.

2010 Award for Outstanding Achievement by a Graduate Student,
Department of Mathematics and Statistics, University of Arkansas at
Little Rock, AR.

2009 & 2010 Harambee Award for Outstanding Graduate GPA,
University of Arkansas at Little Rock, AR.

100


	University of Wisconsin Milwaukee
	UWM Digital Commons
	May 2016

	Comparing the Riskiness of Dependent Portfolios
	Ranadeera Gamage Madhuka Samanthi
	Recommended Citation


	tmp.1466706968.pdf.6bg_Q

