
University of Wisconsin Milwaukee
UWM Digital Commons

Theses and Dissertations

May 2016

Longitudinal Data Models with Nonparametric
Random Effect Distributions
Hartmut Jakob Stenz
University of Wisconsin-Milwaukee

Follow this and additional works at: https://dc.uwm.edu/etd
Part of the Applied Mathematics Commons, Mathematics Commons, and the Statistics and

Probability Commons

This Thesis is brought to you for free and open access by UWM Digital Commons. It has been accepted for inclusion in Theses and Dissertations by an
authorized administrator of UWM Digital Commons. For more information, please contact open-access@uwm.edu.

Recommended Citation
Stenz, Hartmut Jakob, "Longitudinal Data Models with Nonparametric Random Effect Distributions" (2016). Theses and Dissertations.
1207.
https://dc.uwm.edu/etd/1207

https://dc.uwm.edu/?utm_source=dc.uwm.edu%2Fetd%2F1207&utm_medium=PDF&utm_campaign=PDFCoverPages
https://dc.uwm.edu/etd?utm_source=dc.uwm.edu%2Fetd%2F1207&utm_medium=PDF&utm_campaign=PDFCoverPages
https://dc.uwm.edu/etd?utm_source=dc.uwm.edu%2Fetd%2F1207&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/115?utm_source=dc.uwm.edu%2Fetd%2F1207&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/174?utm_source=dc.uwm.edu%2Fetd%2F1207&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/208?utm_source=dc.uwm.edu%2Fetd%2F1207&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/208?utm_source=dc.uwm.edu%2Fetd%2F1207&utm_medium=PDF&utm_campaign=PDFCoverPages
https://dc.uwm.edu/etd/1207?utm_source=dc.uwm.edu%2Fetd%2F1207&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:open-access@uwm.edu

Longitudinal data models with

nonparametric random effect

distributions

by

Hartmut Jakob Stenz

A Thesis Submitted in

Partial Ful�llment of the

Requirements for the Degree of

Master of Science

in Mathematics

at

The University of Wisconsin-Milwaukee

May 2016

Abstract

Longitudinal data models with nonparametric

random effect distributions

by

Hartmut Jakob Stenz

The University of Wisconsin-Milwaukee, 2016
Under the Supervision of Professor Daniel Gervini

There is the saying which says you cannot see the woods for the trees. This

thesis aims to circumvent this unfortunate situation: Longitudinal data on

tree growth, as an example of multiple observations of similar individuals

pooled together in one data set, are modeled simultaneously rather than

each individual separately. This is done under the assumption that one

model is suitable for all individuals but its parameters vary following un-

known nonparametric random e�ect distributions. The goal is a maximum

likelihood estimation of these distributions considering all provided data and

using basis-spline-approximations for the densities of each distribution func-

tion over the same spline-base. The implementation of all procedures is

carried out in R and attached to this thesis.

ii

Table of contents

1 Introduction 1

1.1 Data . 1

1.2 General model . 1

2 Maximum likelihood estimation 3

2.1 Conditional independence . 3

2.2 Likelihood function and gradient 4

2.3 Nonparametric random e�ect distribution 7

2.4 Spline basis . 11

3 Real-data examples 14

3.1 Richards' curve implementation and curve �tting 14

3.2 Parametrization and rest of implementation 18

3.3 Initial values . 20

3.4 Genetic algorithm for optimization 25

3.5 Results . 26

3.6 Simulations . 30

4 Outlook 33

4.1 Conclusions . 33

4.2 open problems . 34

R-Code 35

References 43

iii

List of figures

1 tree data . 2

2 histogram of a . 16

3 histogram of b . 17

4 histogram of c . 17

5 example for initial value . 22

6 densities of a . 28

7 densities of b . 29

8 densities of c . 29

9 simulated tree data . 30

10 simulated densities of a . 31

11 simulated densities of b . 32

12 simulated densities of c . 32

iv

List of tables

1 parameter matrix . 18

2 initial values . 23

3 ordered initial values . 24

4 results constrOptim . 26

5 results opt . 27

v

Acknowledgments

First, I would like to express my sincere gratitude to my advisor Professor

Daniel Gervini for his guidance and assistance throughout this thesis project.

I also thank my friend and fellow student Martin G. Vieten, not only for his

advice and academic inspiration, but especially for the time we could spend

together.

Finally, I am very grateful for the support of my friends and roommates here

in the United States.

vi

Für meinen Bruder,

Johannes Mariano,

der mich nie im Stich lässt.

In dubio pro deo.

vii

1 Introduction

1.1 Data

Our data, provided in the R-package "spuRs" belonging to [1], contains N =

106 trees, coded by its location, site and number. For each tree Ti, mi

observations of the bole volumes vij in cubic-decimeters at ages zij, when the

tree was measured, are reported. So, for each tree Ti we have a time-series

(vij)1≤j≤mi over the set (zij)1≤j≤mi of points in time. Neither are for a given

tree (zij)1≤j≤mi equidistant, nor are the mi's equal, so we have a di�erent

number of observations for each tree.

1.2 General model

To describe the relationship between the age of a tree and its bole volume

we will use a model containing the Richards' curve, which computes vij for

a given zij by using parameters θi = (ai, bi, ci)
T :

vij = g (θi, zij) + ε = ai
(
1− e−bizij

)ci
+ εij. (1)

1

0 20 40 60 80 100 120 140

0
10

00
30

00

ages [years]

vo
lu

m
es

 [c
ub

ic
−

dm
]

Figure 1: Plot of all tree data. Each line is an interpolations of the data of one tree.

ai stands for the maximum size of the tree Ti, bi describes the speed of its

growing and ci as a compensatory parameter should be near to 3 for each

tree. For more information see page 238 in [1]. Our goal is to estimate the

distribution functions of these parameters by using basis splines, not like

in [2], where function g describing a shape invariant model is approximated

with b-splines. The quantities εij
i.i.d.∼ N (0, σ2) are the noises of the giving

time series with a constant variance σ2 for all trees. We must also estimate

σ2.

2

2 Maximum likelihood estimation

2.1 Conditional independence

Before an estimation is done questions of independence in a given model

have to be clari�ed: The noises εij are assumed independent and identically

normally distributed. Therefore, if we know θi, a good estimator for the

variance σ2 would be given by the maximum likelihood estimator :

σ2 ≈ 1

mi

mi∑
j=1

(vij − g (θi, zij))
2 .

Assuming now we have a θ for all trees, a reasonable estimator of σ2 can be

the mean of all MLE's with θi = θ for all i:

σ2 ≈ s2 :=
1

N

N∑
i=1

(
1

mi

mi∑
j=1

(vij − g (θ, zij))
2

)
. (2)

However, s2 in (2) is not longer a MLE for σ2. Although observations from

di�erent individuals are independent, the data from a single individual are

not independent, but rather conditionally independent : Given a parameter

3

vector θi = (ai, bi, ci)
T of tree Ti,

vij|θi ∼ N
(
g (θi, zij) , σ

2
)

(3)

for all j ∈ {1, . . . ,mi} and i ∈ {1, . . . , N}. Equation (3) follows from (1) by

solving for εij and using the fact that εij are normally distributed for every

observation.

2.2 Likelihood function and gradient

Based on the idea of conditional independence we can now compute a likeli-

hood function L (η) to estimate the parameter vector η of a density function

fη (θ). Notice that η is not directly a parameter vector for the model itself

but it describes the density function of the model random e�ect θ. Given

4

such a fη (θ), the joint pdf of the observations for each tree is:

fi (vi,j=1,...,mi) =

∫
fη (θ) Πmi

j=1f (vij|θ)dθ

=
(3)

∫
fη (θ) Πmi

j=1

(
1√

2πσ2
exp

(
−vij − g (zij, θ)

2σ2

))
dθ

=
(∗)

∫
fη (θ)

(
1√

2πs2

)mi
exp

(
−
∑mi

j=1 (vij − g (zij, θ))
2

2s2

)
dθ

=
(∗∗)

∫
fη (θ)

(
1√

2πs2

)mi
exp

(
− hi

2s2

)
dθ (4)

with

(∗∗) hi :=

mi∑
j=1

(vij − g (θ, zij))
2 (5)

(∗) s2 :=
(2)

1

N

N∑
i=1

(
1

mi

mi∑
j=1

(vij − g (θ, zij))
2

)
=

1

N

N∑
i=1

hi
mi

. (6)

In (6) we plug in the estimator for σ2 from (2). Notice that the value of hi

and s2 just depend on the data and a given θ, but not on η. To go a step

5

further, we take a look at the joint density f of all observations:

f
(
v i=1,...,N
j=1,...,mi

)
=

Ti independent
ΠN
i=1fi (vi,j=1,...,mi)

=
(4)

ΠN
i=1

∫
fη (θ)

(
1√

2πs2

)mi
exp

(
− hi

2s2

)
dθ

= ΠN
i=1

∫
fη (θ) Iidθ (7)

with

Ii :=

(
1√

2πs2

)mi
exp

(
− hi

2s2

)
. (8)

The maximum likelihood estimator η̂ maximizes L (η). Taking the logarithm

in (7), we get the log-likelihood function l (η):

l (η) = log

(
ΠN
i=1

∫
fη (θ) Iidθ

)
=

N∑
i=1

log

(∫
fη (θ) Iidθ

)
. (9)

Note that η̂ also maximizes l (η), which is numerically easier to work with.

Now we compute the entries of the gradient,

d

dηx
l (η) =

d

dηx

(
N∑
i=1

log

(∫
fη (θ) Iidθ

))
=

N∑
i=1

∫
d
dηx
fη (θ) Iidθ∫

fη (θ) Iidθ
, (10)

6

which are needed to numerically compute η̂. These functions can be written

more explicitly, but to do so we have to specify the density fη (θ) of the

nonparametric random e�ect distribution.

2.3 Nonparametric random e�ect distribution

Now we assume that a ∈ [α, α + dα], b ∈ [β, β + dβ] and c ∈ [γ, γ + dγ].

Furthermore, a, b and c are independent, fα, fβ and fγ are their density

functions on their original ranges and fηα , fηβ and fηγ density functions of

a−α
dα

, b−β
dβ

and c−γ
dγ

approximated by b-splines given by the basis functions

{δ1, . . . , δp} on [0, 1]. Then with η =
{
ηα1 , . . . , η

α
p , η

β
1 , . . . , η

β
p , η

γ
1 , . . . , η

γ
p

}
∈

R3p
+ , a = α + dαu, b = β + dβv, c = γ + dγw and u, v, w ∈ [0, 1] we get

fη (θ) = fα (a) fβ (b) fγ (c) =
1

dα
fηα

(
a− α
dα

)
1

dβ
fηβ

(
b− β
dβ

)
1

dγ
fηγ

(
c− γ
dγ

)
=

1

dαdβdγ

(
p∑
r=1

ηαr δr (u)

)(
p∑
s=1

ηβs δs (v)

)(
p∑
t=1

ηγt δt (w)

)
. (11)

Because (11) has to be a density function, η ∈ R3p
+ and it should hold

1 =

∫ 1

0

fηα (u)du =

p∑
r=1

ηαr

∫ 1

0

δr (u)du =

p∑
r=1

ηαr er

7

with er =
∫ 1

0
δr (u)du. We can reach this by dividing fηα (a) by

∑p
r=1 η

α
r er.

So let us de�ne

fa (u) :=
fηα (u)∑p
r=1 η

α
r er

=

∑p
r=1 η

α
r δr (u)∑p

r=1 η
α
r er

. (12)

Doing the same for fηβ (v) and fηγ (w) we �nally get:

fη (θ) =
(
∑p

r=1 η
α
r δr (u))

(∑p
s=1 η

β
s δs (v)

)
(
∑p

t=1 η
γ
t δt (w))

dαdβdγ (
∑p

r=1 η
α
r er)

(∑p
s=1 η

β
s es

)
(
∑p

t=1 η
γ
t et)

=
fa (u) fb (v) fc (w)

dαdβdγ
. (13)

Equation (13) leads to an interesting fact: Let η′ = kη for a k > 0. Then

fη′ = fη, because for each parameter a, b and c, from (12) we have

∑p
r=1 η

α′
r δr (u)∑p

r=1 η
α′
r er

=

∑p
r=1 kη

α
r δr (u)∑p

r=1 kη
α
r er

=

∑p
r=1 η

α
r δr (u)∑p

r=1 η
α
r er

= fa (u) .

So, if there exists an optimal solution for η, there would actually be in�-

nite optimal solutions, or, more precisely, for an optimal solution η∗ the ray

{η|η = kη∗, k > 0} ⊂ R3p
+ contains only optimal solutions too.

8

Now we calculate d
dηαx

fη (θ). Therefore we see that:

d

dηαx
fη (θ) =

fb (v) fc (w)

dαdβdγ

d

dηαx
fa (u) . (14)

So it is enough to compute d
dηαx

fa (u). This can be done by using the quotient

rule in (12):

d

dηαx
fa (u) =

δx (u) (
∑p

r=1 η
α
r er)− ex

∑p
r=1 η

α
r δr (u)

(
∑p

r=1 η
α
r er)

2

=
δx (u)− exfa (u)∑p

r=1 η
α
r er

. (15)

Plugging (15) into (14) we get:

d

dηαx
fη (θ) =

fb (v) fc (w) (δx (u)− exfa (u))

dαdβdγ
∑p

r=1 η
α
r er

=
1∑p

r=1 η
α
r er

(
δx (u) fb (v) fc (w)

dαdβdγ
− exfη (θ)

)
. (16)

Under our assumptions about the ranges of a,b and c, we can transform g, a

function of vector θ = (a, b, c)T , to g̃, a function of θ′ = (u, v, w)T ∈ [0, 1]3:

g̃ (θ′, zij) = (α + dαu)
(

1− e−(β+dβv)zij
)γ+dγw

. (17)

9

Same for hi, s and I by plugging in (17) into (5), (6) and (8), so they become

h̃i, s̃ and Ĩi. Also by plugging in (13) into (9) and doing integration by

substitution we �nally get:

l (η) =
(9)

N∑
i=1

log

(∫
fη (θ) Iidθ

)
=
θ→θ′

N∑
i=1

log

(∫
[0,1]3

fη (θ′) Ĩidαdβdγdθ
′
)

=
(13)

N∑
i=1

log

(∫
[0,1]3

fa (u) fb (v) fc (w) Ĩidθ
′
)
. (18)

In a similar way we can plug in (16) into (10) for each parameter and use

the same substitutions to get the �nal gradient:

d

dη
l (η) =

(
d

dηα1
l (η) , . . . ,

d

dηαp
l (η) ,

d

dηβ1
l (η) , . . . ,

d

dηαp
l (η) ,

d

dηγ1
l (η) , . . . ,

d

dηγp
l (η)

)
with

d

dηαx
l (η) =

(∑N
i=1

∫
[0,1]3 δx(u)fb(v)fc(w)Ĩidθ

′∫
[0,1]3 fη(θ

′)Ĩidθ′

)
−Nex∑p

r=1 η
α
r er

(19)

d

dηβx
l (η) =

(∑N
i=1

∫
[0,1]3 fa(u)δx(v)fc(w)Ĩidθ

′∫
[0,1]3 fη(θ

′)Ĩidθ′

)
−Nex∑p

s=1 η
β
s es

(20)

d

dηγx
l (η) =

(∑N
i=1

∫
[0,1]3 fa(u)fb(v)δx(w)Ĩidθ

′∫
[0,1]3 fη(θ

′)Ĩidθ′

)
−Nex∑p

t=1 η
γ
t et

. (21)

10

2.4 Spline basis

Now we want to specify the basis {δ1, . . . , δp} on [0, 1] under the assumption

that the splines have degree q < p and we divide [0, 1] in p − q equidistant

pieces. We de�ne our knots with ωk = k
p−q for all k as follows:

ω−q < · · · < ω−1 < 0 = ω0 < ω1 < · · · < ωp−q−1 < ωp−q = 1 < ωp−q+1 < · · · < ωp.

Let us denote with δqt (w) the tth b-spline at w of degree q. In this case we

have the following recursive de�nition of a b-spline:

δ0t (w) =


1 ωt−1 ≤ w < ωt

0 otherwise

= I[ωt−1,ωt) (w) (22)

δqt (w) =
w − ωt−q−1
ωt−1 − ωt−q−1

δq−1t−1 (w) +
ωt − w
ωt − ωt−q

δq−1t (w)

=
p− q
q

(
(w − ωt−q−1) δq−1t−1 (w) + (ωt − w) δq−1t (w)

)
. (23)

For δqt (w) we can also use the following explicit formula:

δqt (w) =
(p− q)q

q!

q+1∑
k=0

(
q + 1

k

)
(−1)k (w − ωk+t−q−1)q+. (24)

11

We will prove (24) by induction, with (a− b)c+ = (a− b)c−1+ (a− b) and the

convention 00 = 1:

q = 0

(p− 0)0

0!

1∑
k=0

(
1

k

)
(−1)k (w − ωk+t−0−1)0+

=

(
1

0

)
(w − ωt−1)0+ −

(
1

1

)
(w − ωt)0+ = I[ωt−1,ωt) (w) = δ0t (w) .

q − 1→ q

(p− q)q

q!

q+1∑
k=0

(
q + 1

k

)
(−1)k (w − ωk+t−q−1)q+

=
(p− q)q

q!

(
(w − ωt−q−1)q+ +

q∑
k=1

(
q + 1

k

)
(−1)k (w − ωk+t−q−1)q+

)

+
(p− q)q

q!
(−1)q+1 (w − ωt)q+

=
(p− q)q

q!

(
(w − ωt−q−1)q+ +

q∑
k=1

((
q

k

)
+

(
q

k − 1

))
(−1)k (w − ωk+t−q−1)q+

)

+
(p− q)q

q!
(−1)q+1 (w − ωt)q+

=
(p− q)q

q!

(
q∑

k=0

(
q

k

)
(−1)k (w − ωk+t−q−1)q+ +

q∑
k=1

(
q

k − 1

)
(−1)k (w − ωk+t−q−1)q+

)

+
(p− q)q

q!
(−1)q+1 (w − ωt)q+

12

=
(p− q)q

q!

(
q∑

k=0

(
q

k

)
(−1)k (w − ωk+t−q−1)q+ +

q∑
k=0

(
q

k

)
(−1)k+1 (w − ωk+t−q)q+

)

=
(p− q)q

q!

q∑
k=0

(
q

k

)
(−1)k (w − ωk+t−q−1)q−1+

(
w − ωt−q−1 −

k

p− q

)

+
(p− q)q

q!

q∑
k=0

(
q

k

)
(−1)k (w − ωk+t−q)q−1+

(
ωt − w −

q − k
p− q

)

=
(p− q)
q

(w − ωt−q−1)
(p− q)q−1

(q − 1)!

q∑
k=0

(
q

k

)
(−1)k

(
w − ωk+(t−1)−(q−1)−1

)q−1
+

+
(p− q)
q

(ωt − w)
(p− q)q−1

(q − 1)!

q∑
k=0

(
q

k

)
(−1)k

(
w − ωk+t−(q−1)−1

)q−1
+

−
q∑

k=1

(p− q)q−1

(q − k)! (k − 1)!
(−1)k (w − ωk+t−q−1)q−1+ +

q−1∑
k=0

(p− q)q−1

(q − k − 1)!k!
(−1)k+1 (w − ωk+t−q)q−1+︸ ︷︷ ︸

=0

=
p− q
q

(
(w − ωt−q−1) δq−1t−1 (w) + (ωt − w) δq−1t (w)

)
.

q.e.d.

Equation (23) implies that δqt (w) > 0 only for ωt−q−1 ≤ w ≤ ωt, which can

be simply proved by induction over q: δ0t (w) = I[ωt−1,ωt) (w) and therefore

holds for q > 1 that δqt (w) as linear-combination of δq−1t−1 (w), by induction not

0 between ω(t−1)−(q−1)−1 = ωt−q−1 and ωt−1, and δ
q−1
t (w), also by induction

not 0 between ωt−(q−1)−1 and ωt, is in fact not 0 between ωt−q−1 and ωt. This

fact will become important in Section 3.3 when we want to �nd good initial

values for the optimization.

13

3 Real-data examples

3.1 Richards' curve implementation and curve �tting

In R, all trees are written in a list B0, where B0[[i]][1,] is the time series

of volumes vij for tree Ti to the corresponding points in time zij saved in

B0[[i]][2,]. The function L(B0) in the appendix returns a vector containing

the number of observations mi for each tree. Model (1) is implemented as

function g(θi, zij) in the appendix in a way that it takes not only a single

parameter vector θi, but also a whole parameter matrix (θi1 . . . , θin)T and

a given array (zi1, . . . , zimi)
T of points in time and calculates the matrix

(vikj) k=1,...,n
j=1,...,mi

of estimated bole volumes. The reason for this is (18); for the

likelihood function we have to compute integrals over [0, 1]. We will do that

by generating di�erent combinations of θik and evaluating g(θik , zikj) at these

combinations. The sum of these evaluations will then be divided by the total

number of di�erent combinations to get an estimation of the integral. To

generate these di�erent combinations we use function Int in the appendix,

which returns a (n3)×3-matrix, where each line is a di�erent combination of

parameters chosen to be equal to k+0.5
n

for k = 0, . . . n− 1. An example of an

output of this function is given in the appendix. Before implementation of hi

14

and s, the ranges [α, α + dα], [β, β + dβ] and [γ, γ + dγ] have to be estimated

comparing Section 2.3. This can be done by using the method of curve �tting

and the R-function Optim. For more information see Section 12.7 in [1]. The

sum of squares will be set as loss-function fkt in the appendix. We also have

to choose an initial value θ0: This choice leads to di�erent results. This will

be discussed in chapter 4. We will set θ0 = (1000, 0.1, 3)T as it is done in [1].

The results of the curve �tting for the whole data-set is written in a list P0 by

the function P, function 5 in the appendix: The �rst three list members are

arrays consisting of all curve �tting results for parameters a, b and c each; the

last member is a 3 × 2-matrix reporting in its �rst column the lowest curve

�tting results α, β and γ of all parameters and in the second column the

di�erence between the lowest and highest results and therefore the lengths

dα, dβ and dγ of the ranges for each parameter. The values in P0[[1]], P0[[2]]

and P0[[3]] are represented in histograms with equal sized categories over

the normalized ranges of each parameter, so that each category represents a

percentage of the whole range. This is done by function Hst in the appendix,

which gives back the number of results in each category. This procedure will

be important for �nding initial values in the section 3.3. Of course, di�erent

numbers of categories lead to di�erent results, not only for the histograms,

15

but also for the initial values; concerning this last question, the number of

categories is related to the number of b-splines. For more information see

Section 3.3.

% of Range

D
en

si
ty

0.0 0.2 0.4 0.6 0.8 1.0

0
2

4
6

Figure 2: Histogram of a with n = 20 categories.

16

% of Range

D
en

si
ty

0.0 0.2 0.4 0.6 0.8 1.0

0
1

2
3

4

Figure 3: Histogram of b with n = 20 categories.

% of Range

D
en

si
ty

0.0 0.2 0.4 0.6 0.8 1.0

0
5

10
15

Figure 4: Histogram of c with n = 20 categories.

17

P00[[4]] min max-min

a 557.8971 1097.766

b 0.003185994 0.09697149

c 1.297667 359.4736

Table 1: Parameter matrix concerning all curve-�tting results

3.2 Parametrization and rest of implementation

The matrix P0[[4]] is reported in Table 1 and will be used in upcoming cal-

culations frequently because of the following relationship; let θ be a vector

in [0, 1]3, then θ′ with

θ′i :=P0[[4]][i, 1] + θi · P0[[4]][i, 2] (25)

for i = 1, 2, 3 is a vector in [α, α + dα]×[β, β + dβ]×[γ, γ + dγ]. With (25), hi,

s and Ii can be transformed to h̃i, s̃ and Ĩi, which is done in the beginning of

function h in the appendix: The input, a n3×3-matrix M=Int(n) with entries

in [0, 1], is changed to matrix A with entries in the ranges of the corresponding

parameters before it is used to calculate hi following equation (5). The output

is then a vector of length n3 containing h̃i of tree Ti for n
3 di�erent parameter

18

combinations. Function H in the appendix creates matrix H =
(
h̃1 · · · h̃N

)
,

so that the ith column is h̃i of tree Ti, and function s in the appendix uses

H and L to calculate s̃ following equation (6). Finally, function I in the

appendix computes matrix
(
Ĩ1k , · · · , ĨNk

)
1≤k≤n3

following equation (8) and

taking P0, B0 and M=Int(n) as inputs: For each tree Ti and each parameter

combination θ′k, Ĩik is independent from any η. Also independent from η are

the spline bases: For a given p, q and a vector x ∈ [0, 1]n
3

, function bsplines

in the appendix calculates matrix
(
δq1 (xk) , . . . , δ

q
p (xk)

)
1≤k≤n3 following (24).

To apply de�nition (12) we also use function bint in the appendix, which

computes for a given p, q and m vector (e1, . . . , ep) with ek =
∫ 1

0
δqr (u)du

by taking for each δqr the mean over δqr (x) with x =
(

1
m
, 2
m
, . . . , m

m
= 1
)
.

Taking a parameter combination, given as matrix M=
(
θi1 , . . . , θin3

)
, and m

as input, function b in the appendix calculates a list; the �rst three members

of the list contain the b-splines for vectors
(
ai1 , . . . , ain3

)
,
(
bi1 , . . . , bin3

)
and(

ci1 , . . . , cin3
)
, and the last member is bint(p, q,m). So far, every calculation

can be done without a speci�c η. Now function dstb in appendix with

inputs k, a vector v ∈ Rp
+ and a list b of b-splines and their integrals, applies

de�nition (12) by using matrix multiplication and returns the density fa of

a for k = 1,fb of b for k = 2 and fc of c for k = 3. Finally, the joint

19

density fa (u) fb (v) fc (w) over a given parameter combination
(
θi1 , . . . , θin3

)
for vector η ∈ R3p

+ is computed by function f in the appendix, which returns

vector
(
fη
(
θ′i1
)
, . . . , fη

(
θ′in3

))
. As a consequence, this output corresponds

to the output of I on a given parameter combination M: Vector f∈ [0, 1]n
3

multiplied with matrix I∈ Rn3×N
+ becomes a vector. The N entries of this

vector, divided by n3, are an estimation of the integrals in our likelihood

function from (18). So we get l (η) by taking the logarithm of each entry and

sum them up. This does function l in the appendix and in a similar way,

applying (19) − (21), function dl in the appendix computes d
dη
l (η). Both

functions do not have any for-loops and for each input of η they have the

same input I0 and b0. Therefore, an evaluation of l and also dl is done very

quickly once I0 and b0 are computed.

3.3 Initial values

Our optimization problem is constrained because ηi ≥ 0 for all 1 ≤ i ≤ 3p.

If I ∈ R3p×3p is the identity matrix, we can formalize this condition:

I · η ≥ c :=0 ∈ R3p. (26)

20

R provides function constrOptim taking as input our functions l and dl,

values I and c from (26), our calculated values for I0 and b0 and an ini-

tial value for η. Therefore, we will �rst try to �nd such an initial value.

We have already discussed that, if there is an optimal solution η∗, the ray

{η|η = kη∗, k > 0} ⊂ R3p
+ actually contains in�nite optimal solutions, more

precisely, l (η′) is the same for all η′ ∈ {η|η = kη∗, k > 0}. Our initial value

should be near to that ray in order to increase the probability of reaching

it faster. One idea for �nding such a value would be to use a histogram

with n categories: As a discrete estimation of the density, a histogram gives

an idea what this density should look like. Therefore, if we take as initial

value a η which computes a density near to the histogram, we would get a

continuous estimation of the real density. To do so, we use the fact, that

the b-spline δqt is not 0 on the interval (ωt−q−1, ωt). Let (ci)i=1,...,n be the

categories of the given histogram and (hi)i=1,...,n the corresponding numbers

of observations in these categories. We want to identify ci with the interval

(ωi−1, ωi) for i = 1, . . . , n and add c0, . . . , c−q+1 with h0 = · · · = h−q+1 = h1

and also cn+1, . . . , cn+q with hn+1 = · · · = hn+q = hn. Setting η
k
t =

∑t
i=t−q hi

for all 1 ≤ t ≤ p and k = α, β, γ. Length p has to be equal to n − q, so

the choice for the histogram is also a choice for the dimension of η which we

21

% of Range

D
en

si
ty

0.0 0.2 0.4 0.6 0.8 1.0

0
1

2
3

4

Figure 5: Density (red) of the initial value for parameter b with n = 20 and q = 2.

want to estimate. Function initial in the appendix computes, for a given

p and q, the initial value we need by using P0 and function Hst. In Table

2, l (η = initial (P0, p, q) , I0, b0) for di�erent p and q are listed, there I0

and b0 were calculated with M=Int(20). Some values can not be calculated

because it has to be that p > q, so they are not de�ned (n.d.). Looking closer

to the values we can �nd out that

l(initial(P, 1 + t · q1, q1)...) ≤ l(initial(P, 1 + t · q2, q2)...). (27)

22

initial(p, q) q = 1 q = 2 q = 3 q = 4 q = 5

p = 1 n.d. n.d. n.d. n.d. n.d.

p = 2 -9045.926 n.d. n.d. n.d. n.d.

p = 3 -8987.880 -9045.926 n.d. n.d. n.d.

p = 4 -8960.650 -9003.681 -9045.926 n.d. n.d.

p = 5 -8946.797 -8976.492 -9012.699 -9045.926 n.d.

p = 6 -8928.720 -8958.863 -8990.256 -9018.530 -9045.926

p = 7 -8920.689 -8940.767 -8970.755 -9000.464 -9022.614

p = 8 -8914.226 -8931.262 -8952.147 -8982.014 -9007.739

p = 9 -8905.135 -8923.521 -8940.938 -8963.103 -8991.655

p = 10 -8901.141 -8915.379 -8932.025 -8950.472 -8973.378

Table 2: l for di�erent initial values.

for q1 < q2 but the same t. Inequality (27) also makes sense if we look again

at the procedure how an initial value is calculated. Therefore, let q1 < q2,

pk = 1+t·qk for k = 1, 2 and nk be the number of categories of the histograms

23

used to calculate initial(P0, pk, qk). It holds that

n1 =
Def.

p1 − q1 =
Def.

1 + (t− 1) q1 ≤
q1<q2

1 + (t− 1) q2 =
Def.

p2 − q2 =
Def.

n2.

So, the histogram used to calculate initial(P0, p2, q2) has more categories

and therefore leads to a better estimation. In other words, if we want to use

basis splines with a higher degree, we also have to increase the number of

basis splines to get still better solutions. For the rest of this thesis we will only

compare solutions of di�erent degree by taking the same t and pk = 1 + t · qk

for k = 1, 2, . . . , so our results will be reported not as pairs (pk, qk) but as

pairs (t, qk), as in Table 3.

l (initial (p, q)) q = 1 q = 2 q = 3 q = 4 q = 5

t = 1 -9045.926 -9045.926 -9045.926 -9045.926 -9045.926

t = 2 -8987.880 -8976.492 -8970.755 -8963.103 -8959.772

t = 3 -8960.650 -8940.767 -8932.025 -8922.397 -8914.360

t = 4 -8946.797 -8923.521 -8906.264 -8899.908 -8889.419

t = 5 -8928.720 -8909.789 -8895.985 -8886.056 -8882.050

Table 3: l for di�erent initial values ordered by (t, qk).

24

3.4 Genetic algorithm for optimization

Besides constrOptim we want to compute a genetic algorithm of optimiza-

tion because these algorithms are often better to �nd a global maximum than

algorithms using gradient methods. For more information see [3]. The algo-

rithm here is based on the idea of swarm intelligence: First we set an initial

value η∗ ∈ R3p
+ and then generate 2N particles ηi randomly chosen from area

F = R3p
+ ∩ (1± h) η∗. After that we set g = η∗, G = l (η∗, . . .) and vector

D with Di = l (ηN+i, . . .). G will be interpreted as the global maximum

which was reached by at least one particle so far, and Di as the individual

maximum which was reached by each particle itself so far. In each iteration

we are going through the set {η1, . . . , ηN} and comparing di = l (ηi, . . .) with

G and Di. If di > Di we set ηN+i = ηi and Di = di. If also di > G, we set

g = ηi and G = di. In the end we update each ηi by

ηi = w1 · (ηN+i − ηi)︸ ︷︷ ︸
:=v1

+w2 · (g − ηi)︸ ︷︷ ︸
:=v2

+w3 · r, (28)

where r is randomly chosen from the set {v|v = a · v1 + b · v2, 0 ≤ a, b ≤ 1}.

So, each particle moves in the direction of its best individual position (v1),

in the direction of the best global position (v2) and in a random direction in

25

between these two. The weights 0 ≤ wj ≤ 1 are adjusted at the beginning.

The algorithm returns g when all particles are close enough to each other.

The whole procedure is implemented as Function opt in the appendix.

3.5 Results

First we look at the likelihood function values of the results generated by

constrOptim using the initial values of Table 3:

l (constrOptim (p, q)) q = 1 q = 2 q = 3 q = 4 q = 5

t = 1 -8958.145 -8947.838 -8985.513 -8966.426 -9003.047

t = 2 -8973.315 -8961.603 -8955.014 -8944.304 -8940.630

t = 3 -8940.264 -8926.225 -8916.200 -8903.978 -8898.286

t = 4 -8931.290 -8912.719 -8895.984 -8887.176 -8877.553

t = 5 -8922.828 -8896.184 -8883.133 -8872.131 -8876.420

Table 4: l for the results of constrOptim ordered by (t, qk).

Sometimes it is necessary to add a small number (i.e. 10−16) to an entry of

an initial value, otherwise constrOptim would not accept the input because

0 /∈ R+. We also give −l and −dl as input because constrOptim always

tries to minimize, and the maximization of a function f is equivalent to the

26

minimization of −f . Comparing values from Table 4 with Table 3 we see

that all of them have been improved, so in fact a maximization-process is in

fact happening. Now we try function opt; we set as input N = 300 particles,

h = 25% and weights ωj = 1
3
for all j.

l (opt (p, q)) q = 1 q = 2 q = 3 q = 4 q = 5

t = 1 -9025.413 -9031.659 -9031.582 -9036.228 -9034.539

t = 2 -8958.860 -8953.851 -8949.213 -8943.480 -8940.477

t = 3 -8933.926 -8921.908 -8912.149 -8896.244 -8895.509

t = 4 -8923.981 -8902.244 -8884.411 -8882.399 -8874.017

t = 5 -8907.143 -8889.035 -8876.822 -8868.573 -8866.713

Table 5: l for the results of opt ordered by (t, qk).

Comparing Table 5 with Table 4 and Table 3 it holds for all p = 1 + t · q with

t > 1 and all q that

l(initial(p, q)) < l(constrOpt(p, q)) < l(opt(p, q)). (29)

To get an idea of what is behind these values we take a look at an example

of estimated densities. Therefore, let q = 2. Then the best result is reported

27

for t = 5 and therefore for p = 1 + 5 · 2 = 11. By taking these values and

plotting the densities for a, b and c, we can see that the results calculated

with opt (red line) di�er more from the initial value (blue line) than the

results calculated with constrOptim (red dashed).

% of Range

D
en

si
ty

0.0 0.2 0.4 0.6 0.8 1.0

0
2

4
6

Figure 6: Densities of the initial value (blue), constrOptim (red dashed) and opt (red)
for parameter a with t = 5 and q = 2.

28

% of Range

D
en

si
ty

0.0 0.2 0.4 0.6 0.8 1.0

0
1

2
3

4

Figure 7: Densities of the initial value (blue), constrOptim (red dashed) and opt (red)
for parameter b with t = 5 and q = 2.

% of Range

D
en

si
ty

0.0 0.2 0.4 0.6 0.8 1.0

0
5

10
15

Figure 8: Densities of the initial value (blue), constrOptim (red dashed) and opt (red)
for parameter c with t = 5 q = 2.

29

3.6 Simulations

0 20 40 60 80 100 120 140

0
20

00
60

00

ages [years]

vo
lu

m
es

 [c
ub

ic
−

dm
]

Figure 9: Simulation of tree data.

We will now run a simulation to verify that if our algorithm reaches the real

densities. To do so, we use the same ranges from P0 but choose u ∼ B (2, 8),

v ∼ B (3, 7) and w ∼ B (1, 9) with a = α+u·dα, b = β+v·dβ and c = γ+w·dγ.

We can do so because Beta-distributed random variables only take values in

[0, 1]. The generating function of this simulation is implemented as function

simulation in the appendix and takes as input P0, N for the number of

trees being simulated, m for the number of observations per tree, t for the

30

time between two observations and all B-parameters. As output we get each

parameter per tree and the original ranges in the same order, as it is in the

output of function P. We can also simulate the tree data themselves from

this output easily. With both outputs we can proceed like we did before

with our original data but now we can compare our solutions with the real

densities. As an example for this we look at the results for t = 5 and q = 2

again. Here the color of the real density is purple and the histograms in

the backgrounds are also changed to new histogram showing the empirical

density of the simulated u, v and w.

% of Range

D
en

si
ty

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

1.
5

3.
0

Figure 10: calculated densities of the initial value (blue), constrOptim (red dashed)
and opt (red) and real density (purple) for parameter a with t = 5 and
q = 2.

31

% of Range

D
en

si
ty

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

1.
5

3.
0

Figure 11: Densities of the initial value (blue), constrOptim (red dashed) and opt

(red) and real density (purple) for parameter b with t = 5 and q = 2.

% of Range

D
en

si
ty

0.0 0.2 0.4 0.6 0.8 1.0

0
2

4
6

8

Figure 12: Densities of the initial value (blue), constrOptim (red dashed) and opt

(red) and real density (purple) for parameter c with t = 5 q = 2.

32

4 Outlook

4.1 Conclusions

Our goal was to �nd distributions of our model parameters a, b and c. We

accomplished this goal by estimating the densities of these distributions with

our algorithms and our calculated log-likelihood function. However, consid-

ering the last section about simulation and also looking at our exemplary

plots of our results, the estimated densities are closer to the histograms than

the real density. The reason therefore can be found in the calculation of the

initial value: η is �rst set to be as close as possible to the given histograms.

But in the case that the histograms are not a good estimation of the real

density this is not e�cient. In fact, the initial value can be interpreted as

an estimation of an estimation of the real density because the histogram is

the discrete estimation of the continuous density. On the other hand, up-

dating the initial value could be the key for solving that problem; we can

be sure that the real optimum has been estimated to the degree that the

initial value has been updated. Considering this, the generic algorithm opt

provides better solutions than constrOpt.

33

4.2 open problems

One suggestion for future research would be to investigate how the input

values of opt in�uence the output. It would be reasonable that more par-

ticles lead to a better estimation. If we increase h and therefore the area

from which the �rst particles are chosen we may also get better results be-

cause more di�erent points would become part of our optimization process.

Anyway we should keep in mind that all optimal solutions are on a ray and

therefore we are not only interested in how big this area is, but if it has a

good position in R3p
+ to reach that ray. Also, by changing weights wj, we may

get better results. To answer these questions, lots of di�erent combinations

of (t, q) have to be investigated, and their results should be compared based

on di�erent inputs for opt. Also better results would maybe generated if we

use another estimator of σ2 or tread σ2 as an parametrr like η; in this case

l (η, σ2) has to be maximized. The choice of θ0 for the curve �tting in the

parametrization also provides opportunities for further research; all calcula-

tions of the histograms and the computations of the initial values are based

on the estimation of the ranges for the model parameters. Therefore, the

e�ects of the inputs for the curve �tting are also topics for further research.

34

R-Code

func t i on s f o r c a l c u l a t i o n s

#1 numbers o f o b s e r va t i on s per t r e e

L=function (B){
l=rep (0 , length (B))
for (k in 1 : length (B)){

l [k]= length (B [[k]] [1 ,])
}
return (l)

}

#2 richards−curve

g=function (M, z){
x=rep (z , length (z) , each=length (M[, 1]))
a=rep (M[, 1] , length (z))
b=rep (M[, 2] , length (z))
c=rep (M[, 3] , length (z))
return (matrix (a*(1−exp(−b*x))^c , length (M[, 1]) , length (z)))

}

#3 in t e g r a t i onma t r i x

Int=function (N){
return (matrix (c (rep (seq (0 . 5/N,1−0.5/N,1/N) ,N^2) ,

rep (sort (rep (seq (0 . 5/N,1−0.5/N,1/N) ,N)) ,N) ,
sort (rep (seq (0 . 5/N,1−0.5/N,1/N) ,N^2))) ,N^3 ,3))

}

35

#4 lo s s−f unc t i on

f k t=function (p ,A){
M=matrix (p , 1 , 3)
return (sum((A[1 ,]− g (M,A[2 ,])) ^ 2))

}

#5 curve− f i t t i n g

P=function (p0 ,B){
a=rep (0 , length (B))
b=rep (0 , length (B))
c=rep (0 , length (B))
for (k in 1 : length (B)){

p=optim(p0 , fkt ,A=B [[k]]) [[1]]
a [k]=p [1]
b [k]=p [2]
c [k]=p [3]

}
return (l i s t (a , b , c ,matrix (c (min(a) ,max(a)−min(a) ,

min(b) ,max(b)−min(b) ,
min(c) ,max(c)−min(c)) , 3 , 2 ,TRUE)))

}

#6 histogram

Hst=function (P, k ,N){
return (hist ((P [[k]]−min(P [[k]])) / (max(P [[k]])−min(P [[k]])) ,

seq (0 ,1 , 1/N) ,
f r e q=FALSE, xlab="% o f Range" ,main="")$counts)

}

36

#7 R−ve r s i on o f h_i

h=function (M, k ,P,B){
A=M
A[,1]=P[1 ,1]+M[, 1] *P[1 , 2]
A[,2]=P[2 ,1]+M[, 2] *P[2 , 2]
A[,3]=P[3 ,1]+M[, 3] *P[3 , 2]
H=(matrix (B [[k]] [1 ,] , length (A[, 1]) , length (B [[k]] [1 ,]) ,TRUE)
−g (A,B [[k]] [2 ,])) ^ 2

return (rowSums(H))
}

#8 matrix H=(h_1 , . . . , h_N)

H=function (M,P,B){
K=matrix (0 , length (M[, 1]) , length (B))
for (k in 1 : length (B)){

K[, k]=h(M, k ,P,B)
}
return (K)

}

#9 R−ve r s i on o f s

s=function (M,P,B){
l=1/L(B)
return (as . vector (H(M,P,B)%*%l)/length (B))

}

37

#10 R−ve r s i on o f I

I=function (M,P,B){
l=L(B)
s=s (M,P,B)
H=H(M,P,B)
A=matrix (0 , length (M[, 1]) , length (B))
for (k in 1 : length (B)){

A[, k]=(1/sqrt (2*pi*s))^ l [k] *exp(−(H[, k] /s))
}
return (A)

}

#11 bas i s−s p l i n e func t i on

b sp l i n e s=function (x , p ,q){
n=p−q
A=matrix (rep (n*x , p)−rep (c (1 : p) , each=length (x)) , length (x) , p)
B=matrix (0 , length (x) , p)
for (k in 0 : (q+1)){

B=B+i f e l s e (A−k+q+1>0,choose (q+1,k)*(−1)^k* (A−k+q+1)^q , 0)
}
return (B/ f a c t o r i a l (q))

}

#12 bas i s−s p l i n e i n t e g r a l s

bint=function (p ,q ,m){
x=seq (1/m,1 , 1/m)
return (colMeans (b s p l i n e s (x , p ,q)))

}

38

#13 bas i s−s p l i n e s o f a combination

b=function (M, p ,q ,m){
b0=l i s t ()
b0 [[1]] = b sp l i n e s (M[, 1] , p ,q)
b0 [[2]] = b sp l i n e s (M[, 2] , p ,q)
b0 [[3]] = b sp l i n e s (M[, 3] , p ,q)
b0 [[4]] = b int (p ,q ,m)
return (b0)

}

#14 den s i t y o f a s i n g l e parameter

dstb=function (k , v , b){
return (as . vector (b [[k]]%*%v)/sum(v*b [[4]]))

}

#15 j o i n t d en s i t y o f a l l parameters

f=function (v , b){
m=length (v)/3
return (dstb (1 , v [1 :m] , b)

*dstb (2 , v [(m+1):(2*m)] , b)
*dstb (3 , v [(2*m+1):(3*m)] , b))

}

#16 l i k e l i h o o d func t i on

l=function (p , I , b){
f=f (p , b)
return (sum(log (as . vector (f%*%I)/length (I [, 1]))))

}

39

#17 grad i en t o f the l i k e l i h o o d func t i on

dl=function (p , I , b){
n=length (b [[4]])
f=f (p , b)
d=1/ (as . vector (f%*%I)/length (I [, 1]))
d1=(t (b [[1]] *dstb (2 , p [(n+1):(2*n)] , b)*dstb (3 , p [(2*n+1):(3*n)] , b))

%*%I)/length (I [, 1])
D1=(d1%*%d−(length (I [1 ,]) *b [[4]])) /sum(p [1 : n] *b [[4]])
d2=(t (dstb (1 , p [1 : n] , b)*b [[2]] *dstb (3 , p [(2*n+1):(3*n)] , b))

%*%I)/length (I [, 1])
D2=(d2%*%d−(length (I [1 ,]) *b [[4]])) /sum(p [(n+1):(2*n)] *b [[4]])
d3=(t (dstb (1 , p [1 : n] , b)*dstb (2 , p [(n+1):(2*n)] , b)*b [[3]])

%*%I)/length (I [, 1])
D3=(d3%*%d−(length (I [1 ,]) *b [[4]])) /sum(p [(2*n+1):(3*n)] *b [[4]])
return (c (D1 ,D2 ,D3))

}

#18 i n i t i a l va lue

i n i t i a l=function (P, p ,q){
n=p−q
V1=matrix (c (rep (c (rep (Hst (P, 1 , n) [1] ,q) ,

Hst (P, 1 , n) , rep (Hst (P, 1 , n) [n] ,q)) , n+q) ,
rep (0 , n+q)) , n+2*q+1,n+q)

v1=colSums (V1 [1 : (q+1) ,])
V2=matrix (c (rep (c (rep (Hst (P, 2 , n) [1] ,q) ,

Hst (P, 2 , n) , rep (Hst (P, 2 , n) [n] ,q)) , n+q) ,
rep (0 , n+q)) , n+2*q+1,n+q)

v2=colSums (V2 [1 : (q+1) ,])
V3=matrix (c (rep (c (rep (Hst (P, 3 , n) [1] ,q) ,

Hst (P, 3 , n) , rep (Hst (P, 3 , n) [n] ,q)) , n+q) ,
rep (0 , n+q)) , n+2*q+1,n+q)

v3=colSums (V3 [1 : (q+1) ,])
v=c (v1 , v2 , v3)
return (v/max(v))

}

40

#19 gene t i c a l gor i thm

Opt=function (P,q , b , I ,N, h , u , v ,w,O, t o l){
p=i n i t i a l (P, length (b [[4]]) , q)
n=3*length (b [[4]])
A=matrix (runif (2*n*N,pmax(p*(1−h) , 0) , p*(1+h)) ,N, 2*n ,TRUE)
G=l0 (p , I , b)
g=p
D=rep (0 ,N)
for (k in 1 :N){
D[k]= l 0 (A[k , (n+1):(2*n)] , I , b)

}
Z=0
while (max(abs (D−G))>abs (t o l*G)){

i f (Z>O){ return (l i s t (p ,A,D,G, g , Z))}
for (k in 1 :N){

d=l0 (A[k , 1 : n] , I , b)
i f (d>D[k]) {
D[k]=d
A[k , (n+1):(2*n)]=A[k , 1 : n]

}
i f (d>G){
G=d
g=A[k , 1 : n]

}
A[k , 1 : n]=abs (A[k , 1 : n]+(u/ (u+v+w))* (g−A[k , 1 : n])

+(v/ (u+v+w))* (A[k , (n+1):(2*n)]−A[k , 1 : n])
+(w/ (u+v+w))*runif (n ,pmin(g−A[k , 1 : n] ,

A[k , (n+1):(2*n)]−A[k , 1 : n]) ,
pmax(g−A[k , 1 : n] ,
A[k , (n+1):(2*n)]−A[k , 1 : n])))

}
Z=Z+1

}
return (l i s t (p ,A,D,G, g , Z))

}

41

#20 s imu la t i on o f a data−s e t

s imu la t i on=function (P,N,m, t , c1 , c2 , c3){
S=l i s t ()
u=rep (0 ,N)
v=rep (0 ,N)
w=rep (0 ,N)
for (k in 1 :N){

u [k]=rbeta (1 , c1 [1] , c1 [2])
v [k]=rbeta (1 , c2 [1] , c2 [2])
w[k]=rbeta (1 , c3 [1] , c3 [2])
S [[k]]=matrix (0 , 2 ,m)
a=P[1 ,1]+P[1 , 2] *u [k]
b=P[2 ,1]+P[2 , 2] *v [k]
c=P[3 ,1]+P[3 , 2] *w[k]
S [[k]] [2 ,] = seq (0 , t* (m−1) , t)
S [[k]] [1 ,] = a*(1−exp(−S [[k]] [2 ,] *b))^c

}
datp lo t (S)
return (l i s t (u , v ,w,P))

}

OUTPUT EXAMPLE OF INT(2)

> Int (2)
[, 1] [, 2] [, 3]

[1 ,] 0 .25 0 .25 0 .25
[2 ,] 0 .75 0 .25 0 .25
[3 ,] 0 .25 0 .75 0 .25
[4 ,] 0 .75 0 .75 0 .25
[5 ,] 0 .25 0 .25 0 .75
[6 ,] 0 .75 0 .25 0 .75
[7 ,] 0 .25 0 .75 0 .75
[8 ,] 0 .75 0 .75 0 .75

42

References

[1] Owen Jones, Robert Maillardet, and Andrew Robinson. Introduction to

Scienti�c Programming and Simulation Using R, Second Edition -. CRC

Press, Boca Raton, Fla, 2 rev ed. edition, 2014.

[2] Mary J. Lindstrom. Self-modelling with random shift and scale param-

eters and a free-knot spline shape function. Statistics in Medicine, Vol.

14, 2009-2021, 1995.

[3] Shi Yuhui. Emerging Research on Swarm Intelligence and Algorithm Op-

timization -. IGI Global, Hershey, 2014.

43

	University of Wisconsin Milwaukee
	UWM Digital Commons
	May 2016

	Longitudinal Data Models with Nonparametric Random Effect Distributions
	Hartmut Jakob Stenz
	Recommended Citation

	tmp.1466706968.pdf.Zm8EC

