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ABSTRACT

Nonlocal Debye-Hückel Equations and

Nonlocal Linearized Poisson-Boltzmann Equations

for Electrostatics of Electrolytes

by

Yi Jiang

The University of Wisconsin-Milwaukee, 2016
Under the Supervision of Professor Dexuan Xie

Dielectric continuum models have been widely applied to the study of aqueous electrolytes

since the early work done by Debye and Hückel in 1910s. Traditionally, they treat the water

solvent as a simple dielectric medium with a permittivity constant without considering any

correlation among water molecules. In the first part of this thesis, a nonlocal dielectric

continuum model is proposed for predicting the electrostatics of electrolytes caused by any

external charges. This model can be regarded as an extension of the traditional Debye-

Hückel equation. For this reason, it is called the nonlocal Debye-Hückel equation. As one

important application, this dissertation considers the case of an ionic solution with fixed

charges from the atoms of a biomolecule. To avoid the singularities caused by the fixed

atomic charges in Dirac-delta distribution, a solution decomposition scheme is constructed

such that the Debye-Hückel equation is split into two equations: one with the analytical

solution and the other one becoming well defined without any singularity. Hence, the study

of the Debye-Hückel equation is simplified remarkably. Furthermore, a linearized nonlocal

Debye-Hückel equation is proposed and thoroughly studied. Its analytic solution is found in

algebraic expressions.

In the second part of this dissertation, two linearized nonlocal Poisson-Boltzmann equa-

tions (PBE) are proposed by using new linearization schemes. The third part of this dis-

sertation reports the finite element algorithms and software packages for solving both the
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nonlocal Debye-Hückel equation and the new linearized nonlocal PBE model. Numerical re-

sults validate the analytical solution of the nonlocal Debye-Hückel equation and the program

packages, which are expected to be valuable in many electrolyte applications.
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Chapter 1

Introduction

An aqueous electrolyte is a water solution containing charged chemical substance, which can

induce an electric field. It is very common to see in the natural, and plays an important role

in the study of many physical/chemical problems, especially with biomolecules involved. In

principle, there are two different mathematical approaches to develop aqueous electrolyte

models: the explicit solvent approach and the implicit solvent approach. In the explicit sol-

vent approach, all the atoms are described explicitly. In particular, for a biomolecular system

immersed in an aqueous electrolyte, each atom is represented by six unknown functions for

its position and momentum. The Newton’s second Law can then be used to determine the

structural configuration, in the form of a large scale system of ordinary differential equations

(c.f. [1, 2, 3]):

r = (r1, .., rn) with ri being the position of atom i,

where N is the total number of atoms, which is the sum of the number Nw of water molecules

and the number Np of atoms from a protein. However, since Nw can be very large, the size N

of this MD system can be huge, causing challenge in calculation and memory storage during

a MD implementation for a large molecular system. This limits the application of MD to a

realistic biomolecular system.

To overcome this difficulty, several implicit solvent approaches have been proposed [4, 5,

6, 7, 8, 9, 10, 11]. It has been known that the electrostatic force is the dominate force for MD

implementation [2, 12]. Hence, calculation on electrostatics plays a very important role in the

study of structures, dynamics, interactions and functions of electrolytes [13, 14, 15, 16, 17].

In MD, it is done by using Coulomb’s law for each pair among all charged atoms. This
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scheme is simple but very expansive since all the atoms of this system have to be considered

explicitly. On the other hand, based on the implicit solvent approach, Maxwell’s equations

(cf. [18]) can be used to calculate the electrostatics so that the effect of ionic solvent can be

considered implicitly. Consequently, the total number of unknowns can be sharply reduced

in MD implementation.

In the implicit solvent approach, a domain of water is treated as a uniform dielectric

medium. When exposed to an external electrostatic field, the intra- and inter-molecular

structure of water molecules will be affected, and in turn, an induced field will react to

the external one. This phenomenon is known as the electric polarizations, and the induced

field is called the polarization field. Traditionally, polarization effects of water molecules are

assumed to be isotropic and local, in the sense that the strength of the polarization field is

determined by the strength of the external electric field according to a constant factor, and

point-by-point over the whole water domain.

The implicit solvent approach has attracted more and more attentions and has been used

in the development of mathematical models for studying many dielectric systems, [19, 20, 21].

However, a lot of important characteristics of water structure are ignored in this simple

treatment, such as their intermolecular correlations and network structures, which are usually

referred to as the nonlocal solvent properties. It has been found that the polarization effects

of water molecules are very complicated due to these nonlocal intermolecular interactions

[22, 23, 24, 25]. To investigate them, about thirty years ago, Kornyshev and Vorotyntsev

proposed and studied a nonlocal solvent model [26, 27]. Since then, a lot of efforts had been

done to study and extend the nonlocal model, and to validate by many experiments that a

nonlocal model could provide better predictions than the corresponding conventional local

model in biophysical applications.

Another important topic in the model development for aqueous electrolytes is how to es-

timate the ionic charge density in a solvent domain. Due to the fact that ions are extremely

small and able to move almost freely in the solvent, it is very difficult to determine the loca-

tion of a specific ion, if not impossible. Hence, one usually turns to look for the concentration

functions of ions through thermostatisitical theories, where the fast degree of freedoms of

ions are averaged by statistical ensembles. In the context of continuum solvent approach,

Boltzmann distribution has been commonly used to estimate the solvent charge density, re-
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sulting in a popular dielectric continuum model, the nonlinear Poisson-Boltzmann equation

(PBE) [8, 28, 29, 30, 31, 32, 33]. PBE is a second order partial differential equation (PDE)

that can be regarded as a specific form of the one of the Maxwell’s equations. In PBE, the

ionic concentration function of each species is described as an exponential function, which

is highly nonlinear in mathematics. Hence, its analytical solution may be acquired only

in very few cases with symmetrical geometries. As a compromised to avoid this difficulty,

traditionally, PBE was approximated by a linearized equation that an analytical solution

can be found. This kind of techniques can be traced back to the work of Debye and Hückel

almost a century ago [34]. Due to this reason, a model constructed by such techniques is

often referred to the Debye-Hückel equation. Nowadays, computational methods become

more popular in the study of PBE because of the progresses of numerical algorithms and

computer hardwares [35, 36, 37, 38, 39, 40, 41, 33, 42]. So far, many fast and robust program

software packages were developed and distributed in public domain, based on the finite ele-

ment, finite different, finite volume and boundary element methods, such as such as APBS

[43], Delphi [44, 45], PBEQ [46], PBSA [47], MIPBP [48] and SDPBS [49]. After being

studied for several decades, the PBE model is still a hot spot in the fields of biochemistry,

biophysics, bioengineering and mathematical biology.

In this dissertation, we studied electrostatics of aqueous electrolyte in a framework that

combines the nonlocal solvent approach and the PBE approach. We proposed several new

nonlocal dielectric continuum models in integral-differential equation forms, and reformulate

them into systems of partial differential equations, such that their solution can be found more

easily, by either an analytical or a numerical method. We also developed a finite element

program package to solve the new models. This program package is expected to be valuable

in the studies of aqueous electrolyte properties in real applications, such as electric double

layer problems and biomolecular simulations.

The remaining part of this dissertation is organized as follows: Chapter 2 introduces some

basic knowledges required in the modeling of biomolecular dielectric systems. In Chapter 3,

a nonlocal Debye-Hückel equation was thoroughly studied, and its analytical solution was

found. In Chapter 4, we propose two linearized nonlocal Poisson-Boltzmann equations by

using new linearization schemes, and solve them numerically. In Chapter 5, we present some

numerical results obtained by using our software program package which is developed based

4



on theoretical and algorithmic analysis in the previous chapters. At last, some conclusions

are given in Chapter 6.

5



Chapter 2

Preliminary Knowledge

In this chapter, we introduce some fundamental knowledge that serves as the basis for study-

ing electrostatics and nonlocal solvent effects. They include the Maxwell equations, the Pois-

son and Poisson-Boltzmann equations, the nonlocal dielectric theory and modeling scheme.

We will also discuss the physical unit system used in this dissertation.

2.1 Basic theory for dielectric continuum modeling

Maxwell’s equations have been widely used to study electromagnetic phenomena and have

being a fundamental basis for classical Electromagnetics. They describe how electric and

magnetic fields to be induced by charge and current, and to interact each other. These

equations are named after the Scottish physicist James Clerk Maxwell who first found them

in the 19th Century. In differential equation form, they can be written as the follows:






























∇ ·D = ρ (Gauss’s law),

∇×H− ∂D

∂t
= J (Ampere’s circuital law),

∇× E +
∂B

∂t
= 0 (Faraday’s law of induction),

∇ ·B = 0 (Gauss’s law for magnetism),

(2.1.1)

where E is the electric field, D is the electric displacement field, ρ is the charge density in the

space, H is the magnetic field, B is the magnetic flux density, and J is the current density.

Here, the gradient operator ∇ is defined as

∇· =

(

∂

∂x
,
∂

∂y
,
∂

∂z

)

, (2.1.2)
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where (x, y, z) denotes the spatial coordinates of a point in space R
3.

In an electro-magnetic system, the displacement field D can be explained as the electric

influence to the environment induced by explicit charges in the system (such as charged

atoms). On the other hand, the overall electric effect is usually reflected by the electric field

E. It is generated by not only the explicit charges but also the implicit charges (such as

induced charges on a dielectric interface due to polarizations). In vacuum, D and E satisfy

a simple proportion relation:

D = ǫ0E, (2.1.3)

where ǫ0 denotes the vacuum permittivity.

In Maxwell’s equations, all electro-magnetic quantities are functions of spatial variable

r = (x, y, z) and temporal variable t. Sometimes, in an electro-magnetic system, the electric

field E can reach a stable status in the sense that it does not change with respect to time.

In this case, E becomes to a vector function that only depends on the spatial variable r, and

there exists a scalar potential function Φ such that

E(r) = −∇Φ(r), r ∈ R
3. (2.1.4)

This kind of electric field E is usually referred to as the electrostatic field and Φ is called the

electrostatic potential. In an electrostatic system, there does not exist any electric current J,

or magnetic field H, and the magnetic flux B is vanished. Consequently, the only nontrivial

equation in (2.1.1) is the Gauss Law:

∇ ·D(r) = ρ(r). (2.1.5)

Note that by (2.1.3) and (2.1.4), (2.1.5) can be equivalently written as

∇ · E(r) =
1

ǫ0
ρ(r), (2.1.6)

or as a Poisson equation

− ∆Φ(r) =
1

ǫ0
ρ(r), (2.1.7)

where ∆ denotes the Laplace operator that is defined by

∆ = ∇ · ∇ =
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
. (2.1.8)
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Equations (2.1.3), (2.1.6) and (2.1.7) perfectly describe the relations among the charge

distribution ρ, displacements field D, electric field E and electrostatic potential Φ in an

electrostatic system, but they are only valid in a vacuum. For a system involving a dielectric

medium, the polarization effects must be considered. In principle, this effect is explained as

the comprehensive reactions of the dielectric medium to the external electrostatic field. In

Physics, the polarization effect can be modeled by assuming that there exists a polarization

field P such that

D(r) = ǫ0E(r) + P(r). (2.1.9)

There are many different ways to specify the mathematical form of a polarization field,

depending on different description on the dielectric property of the medium. Tradition-

ally, one usually assumes that the polarization filed P responds to the electrostatic field E

proportionally at each spatial position r:

P(r) = ǫ0χ(r)E(r), (2.1.10)

where χ is the electric susceptibility function that measures the degree of polarization of a

dielectric medium in response to the source electrostatic field.

By (2.1.10), we can rewrite (2.1.9) into

D(r) = ǫ0(1 + χ(r))E(r) = ǫ0ǫ(r)E(r), (2.1.11)

where ǫ(r) = 1 + χ(r) is called the relative dielectric function of the medium. Applying

(2.1.4) and (2.1.11) to (2.1.5), we get the Poisson dielectric equation:

−∇ ·
(

ǫ(r)∇Φ(r)
)

=
1

ǫ0
ρ(r), r ∈ R

3, (2.1.12)

which gives the electrostatic potential Φ for the electric field E induced by the charge density

ρ in a dielectric medium with the relative dielectric function ǫ.

(2.1.12) is the fundamental framework of the classic electrostatics. As a special case, we

introduce the Poisson-Boltzmann equation in the next section.

2.2 Poisson-Boltzmann equation

The origin of the Poisson-Boltzmann equation (PBE) can be traced back to the independent

works of Louis Gouy [50] and David Chapman [51], respectively. Due to this reason, it is also
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often referred to as the Gouy-Chapmann theory. It was designed to predict the electrostatic

potential distributions in a dielectric system in which a solid charged object is contacted with

or immersed in an electrolyte. According to this theory, the ions dissolved in the solvent

distribute more likely in a diffusion way because of their thermal activities. In particular, the

local concentration of an ionic species is determined by the energy that is required to bring

an ion of that type to the location from an infinitely far distance. The resulting formula

for calculating ionic concentrations was found satisfying an exponential form and is usually

referred to as the Boltzmann distribution in the literature.

Mathematically, the Poisson-Boltzmann equation can be described as a second order

nonlinear partial differential equation satisfying two continuity interface conditions. Suppose

the whole space R
3 is split as

R
3 = Dp ∪Ds ∪ Γ, (2.2.1)

where Dp is a bounded domain that holds a protein or other biomolecule, such as a lipid or

nucleic acid, Ds is the solvent domain, filled with an ionic solution, and Γ is the interface

between Dp and Ds which is usually set as a surface of the protein. Based on the implicit

solvent approach, both Dp and Ds are treated as two uniform dielectric continuum mediums

with dielectric constants ǫp and ǫs, respectively.

Under the settings as above, PBE can be derived from the classic Poisson dielectric model

(2.1.12) when we set the dielectric function ǫ(r) and charge density ρ as piecewise functions

in the following forms:

ǫ(r) =

{

ǫp, r ∈ Dp,

ǫs, r ∈ Ds,
(2.2.2)

and

ρ(r) =























ec

np
∑

j=1

zjδrj in Dp,

ec

n
∑

i=1

ZiMie
−Zi

ecΦ(r)
kBT in Ds,

(2.2.3)

where we have assumed Ds contains n ionic spices with charge numbers Zi for i = 1, 2, . . . , n,

ec denotes the elementary charge, kB is the Boltzmann constant, T is the temperature, Mi

denotes the bulk concentration of spices i. Here, a molecular structure of the protein with

np atoms has been given in a way that each atom is regarded as a solid ball with its atomic
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charge concentrated at the center. zj and rj denote the charge number and position of atom

j, for j = 1, 2, . . . , np, respectively, and δrj denotes the Dirac delta distribution at rj.

As shown in (2.2.3), the charge densities in PBE are piecewisely defined in the solution

domain Dp and the solvent domain Ds, respectively. In Dp, atomic charges of the biomolecule

are treated as a group of points without volume, and with fixed locations and explicit charge

quantities. In Mathematics, they are expressed as a sum of Dirac delta distributions. On

the other hand, in the solvent domain Ds, the charge density function is defined through the

ionic concentration functions of all species of ions

ρ(r) = ec

n
∑

i=1

Zici(r). (2.2.4)

Further, for the ith species, its concentration function satisfies the following Boltzmann

distribution

ci(r) = Mie
−Zi

ecΦ(r)
kBT . (2.2.5)

In the classic electric theory, both Φ and D are assumed to be continuous along the

outward normal direction of Dp. That is, on the interface Γ, we have the potential continuity

condition,

Φ(s−) = Φ(s+), s ∈ Γ, (2.2.6)

and the flux continuity condition,

D(s+) · n(s) = D(s+) · n(s), s ∈ Γ. (2.2.7)

Here, n(s) represents the outward normal direction at s on Γ, and Φ(s+) denotes the limit

value of Φ when it approaches to the point s ∈ Γ along its outward normal direction n(s)

from outside. Namely, we define

Φ(s±) = lim
ν→0+

Φ(s± νn(s)). (2.2.8)

By using (2.1.4), (2.1.11) and (2.2.2), the flux continuity condition (2.2.7) can be equiv-

alently written as

ǫp
∂Φ(s−)

∂n(s)
= ǫs

∂Φ(s+)

∂n(s)
, (2.2.9)

where the directional derivative ∂Φ(s±)/∂n(s) is defined by

∂Φ(s±)

∂n(s)
= ∇Φ(s±) · n(s). (2.2.10)

10



Substituting (2.2.2) and (2.2.3) into the Poisson dielectric model (2.1.12), and using the

interface condition (2.2.6) and (2.2.9), we can obtain the Poisson-Boltzmann equation as the

following second order nonlinear partial differential equation interface problem:






















−ǫp∆Φ(r) =
ec
ǫ0

np
∑

j=1

zjδrj , r ∈ Dp,

−ǫs∆Φ(r) − ec
ǫ0

n
∑

i=1

ZiMie
−Zi

ecΦ(r)
kBT = 0, r ∈ Ds,

(2.2.11)

satisfying the interface conditions

Φ(s−) = Φ(s+), ǫp
∂Φ(s−)

∂n(s)
= ǫs

Φ(s+)

∂n(s)
, s ∈ Γ. (2.2.12)

Moreover, according to the fact that the electrostatic potential Φ vanishes when far away

from the biomolecule, we have the following boundary condition

Φ(r) → 0 as |r| → ∞. (2.2.13)

After being studied for several decades, the Poisson-Boltzmann equation is still a hot

spot to study in many research areas, and it has been proved to be very successful in many

applications, such as protein structure predictions [52, 53, 54, 55], free energy and pKa

calculations [56, 57, 58, 59, 60, 61, 62], ion channel problems [63, 64, 40], and rational drug

design [65, 66, 67].

2.3 Nonlocal dielectric effects of water solvent

In the traditional dielectric continuum models, such as PBE, people do not consider any

effect of interactions among water molecules in an aqueous electrolyte. As a result, this

treatment usually induces a spatial point-to-point correspondence between the electrostatic

field E and the displacement field D, such as (2.1.11). For this reason, these models are

called being of local.

In practice, when exposed in an external electric field, water molecules will behave more

likely as electric dipole moments because of the unevenly distributed ion cloud around the

hydrogen and oxygen atoms. These dipole moments interact with each other, as being

attracted, repelled or twisted. This phenomenon is called the spatial nonlocal dielectric
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property. It would force the water molecules in an aqueous electrolyte to form a network

structure, especially in the area with a strong electric field. In a word, water molecules not

only response the electrostatic field due to the external source charges, but also affect each

others because of their internal induced charges. Hence, the polarization effect of an aqueous

electrolyte essentially depends on the electrostatic field among the whole space, directly or

indirectly.

2.4 A basic nonlocal dielectric theory

The earliest attempts to investigate the nonlocal dielectric effects via mathematical methods

can be traced back to the pioneer works of Kornyshev and Vorotyntsev about forty years ago

[26, 27]. In their papers, the electrostatic nonlocal polarization effects of water molecules

were modeled as an integral over the whole solvent domain, and coupled into the framework

of Poisson’s equation.

In Mathematics, the nonlocal interaction between D and E can be discussed in a frame-

work of operator equations. Suppose the whole space R
3 is filled with water, the nonlocal

polarization effect of water molecules can be described through the following operator equa-

tion which maps an electrostatic field function E to a polarization field function P:

P = ǫ0X (E), (2.4.1)

where X : U → V is an operator, and U and V denote two appropriate vector function

spaces.

(2.4.1) is a generalization of the classic local response of P to E in (2.1.10). Here, X
plays a role as the simple proportional constant factor χ does in (2.1.10), but X is expected

to reflect the property that the value of P at each position r will be affected by the values

of E all over the space. Mathematically, it may be defined as an integral:

P = ǫ0

∫

R3

χ(r, r′)E(r′)dr′, ∀r ∈ R
3, (2.4.2)

where χ(r, r′) is called the susceptibility function.

In Physics, χ(r, r′) describes the electrostatic correspondence between two water molecules

locating at position r and r′, respectively. Ideally, the value of χ(r, r′) is determined by the

status of these two water molecules, including their distance, relative angles and internal

12



structures. However, it would be extremely difficult to investigate χ if all these factor are

taken into account. To simplify the discussion, all water molecules are usually assumed to

be isotropical and distributed uniformly over the solvent domain, such that the value of

function χ depends only on the difference r− r′:

χ(r, r′) = χ(r− r′). (2.4.3)

Accordingly, (2.4.2) becomes a convolution

P = ǫ0

∫

R3

χ(r− r′)E(r′)dr′, ∀r ∈ R
3, (2.4.4)

with χ denoting the convolution kernel function.

In principle, there are many different kinds of nonlocal polarizations, and one specific

type determines one specific form of the kernel function χ. Among them, there is a well-

known and thoroughly investigated model, named the Fourier-Lorenztian model, which can

be defined via a Lorentzian function in the frequency space under the Fourier transform (cf.

[68, 69, 70]):

χ̂(k) = χ∞ +
χs − χ∞

1 + λ2k2
, (2.4.5)

where χs and χ∞ are the susceptibilities of water molecules for static and optical cases,

respectively, λ is usually explained as the nonlocal correlation length which indicates the

range that the intermolecular interactions between each pair of water molecules is significant,

and k denotes the norm of the frequency space variable k. By inverse the Fourier transform,

the expression of χ in the spatial space can be found as:

χ(r) = χ∞δr + (χs − χ∞)
e−r/λ

4πλ2r
, (2.4.6)

where r denotes the norm of spatial variable r, and δ is the Dirac Delta distribution at r.

Based on all above arguments, we now can induce a specific nonlocal relation between

the displacement field D and the electric field E as

D(r) =ǫ0E(r) + P(r)

=ǫ0E(r) + ǫ0X (E)(r)

=ǫ0E(r) + ǫ0

(

χ∞E(r) + (χs − χ∞)

∫

R3

e−|r−r
′|/λ

4πλ2|r− r′|E(r′)dr′
)

=ǫ0

(

ǫ∞E(r) + (ǫs − ǫ∞)

∫

R3

e−|r−r
′|/λ

4πλ2|r− r′|E(r′)dr′
)

, r ∈ R
3,

(2.4.7)
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where we have defined

ǫ∞ = 1 + χ∞ (2.4.8)

as a new dielectric parameter of water medium that corresponds to the limit case when water

molecules vibrate in high frequency.

For clarification, we conclude our results in the following proposition:

Proposition 2.4.1. Under the effects of nonlocal solvent polarizations, the displacement

field D interacts with the electrostatic field E according to the operator equation:

D = ǫ0E(E), (2.4.9)

where E : U → V is an operator for two appropriate vector function spaces U and V, which

reflects the nonlocal effects.

As a special case, operator E can be defined by the Fourier-Lorentzian model, such that

D(r) = ǫ0

(

ǫ∞E(r) + (ǫs − ǫ∞)

∫

R3

e−|r−r
′|/λ

4πλ2|r− r′|E(r′)dr′
)

, r ∈ R
3. (2.4.10)

Usually, people are more interested in the electrostatic potential Φ. Thus, substituting

(2.4.10) into the Gauss law (2.1.5), and use the fact E = −∇Φ, we get the following nonlocal

dielectric Poisson equation:

−∇ ·
(

ǫ∞∇Φ(r) + (ǫs − ǫ∞)

∫

R3

e−|r−r
′|/λ

4πλ2|r− r′|∇Φ(r′)dr′
)

=
1

ǫ0
ρ. (2.4.11)

2.5 Solution decomposition techniques

Solution decomposition techniques are commonly used in searching for the solution of the

Poisson equation and its variants. To show the basic principle, we define a Poisson-like

equation written in the operator form as follows

L(Φ) = ρ in Ω, (2.5.1)

subject to the boundary condition

B(Φ) = g on ∂Ω, (2.5.2)
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where ρ is the charge density in the domain Ω, L and B denote two operators, and g is a

boundary value function. We would like to decompose the solution Φ into n components:

Φ = Φ1 + Φ2 + · · · + Φn. (2.5.3)

Accordingly, L(Φ) and ρ are split as

L(Φ) = L1(Φ1,Φ2, . . . ,Φn) + L2(Φ1,Φ2, . . . ,Φn) + Ln(Φ1,Φ2, . . . ,Φn), (2.5.4)

and

ρ = ρ1 + ρ2 + · · · + ρn, (2.5.5)

such that these components satisfy the following system of equations:


























L1(Φ1,Φ2, . . . ,Φn) = ρ1,

L2(Φ1,Φ2, . . . ,Φn) = ρ2,

· · ·
Ln(Φ1,Φ2, . . . ,Φn) = ρn.

(2.5.6)

For each of the above equations, its boundary or interface conditions shall be constructed

from the original condition B(Φ) = g. We expect that a solution of the above system can

be found more easily in comparison to the case of solving the original equation.

Several solution decomposition techniques have been proposed in case of Poisson-Boltzmann

equation. By them, the decomposition of a PBE solution can be restricted to a subdomain

(Dp or Ds) or applied to the whole space. Usually, the solution of PBE is split into two or

three components, one of which is a function with known algebraic formula that catches all

singularities induced by Dirac delta distributions. As an example, in the following, we present

a decomposition scheme of PBE that was proposed in [33] (theorem 3.1). Other different

solution decomposition technique used for solving PBE can be found in [36, 71, 72, 73].

Proposition 2.5.1. The solution Φ of (2.2.11) can be decomposed into three parts:

Φ = G + Ψ + Φ, (2.5.7)

where G is defined as

G =
e2c

4πǫ0ǫskBT

np
∑

j=1

zj
|r− rj|

, (2.5.8)
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Ψ satisfies the following linear interface problem






























∆Ψ(r) = 0, r ∈ Dp ∪Ds,

ǫpΨ(s−) = ǫsΨ(s+), s ∈ Γ,

ǫp
∂Ψ(s−)

∂n(s)
= ǫs

∂Ψ(s+)

∂n(s)
+ (ǫs − ǫp)

∂G(s)

∂n(s)
, s ∈ Γ,

Ψ(r) → 0, as |r| → 0,

(2.5.9)

and Φ̃ satisfies the following nonlinear interface problem







































−ǫp∆Φ̃(r) = 0, r ∈ Dp,

−ǫs∆Φ̃(r) − e2c
ǫ0kBT

n
∑

i=1

ZiMie
−Zi(G(r)+Ψ(r)+Φ̃(r)) = 0, r ∈ Ds,

ǫpΦ̃(s−) = ǫsΦ̃(s+), ǫp
∂Φ̃(s−)

∂n(s)
= ǫs

∂Φ̃(s+)

∂n(s)
, s ∈ Γ,

Φ̃(r) → 0, as |r| → 0.

(2.5.10)

Comparing to the original PBE, we can obtain the following advantages by using the

decomposition formula of (2.5.7):

• All the singularities are taken out from the PBE solution to form function G whose

analytical expression is known.

• The jump flux interface condition occurs only in the linear problem for solving Ψ,

such that the nonlinear problem for solving Φ̃ has a simpler continuous flux interface

condition.

• The three components of Φ have a clear physical explanation:

1. G is the potential induced by the explicit fixed charges from the protein.

2. Ψ is the electrostatic potential induced by the implicit surface charge due to the

dielectric jump across the interface Γ.

3. Φ̃ is the electrostatic potential induced by the charges of ions in the solvent.

• The solution decomposition leads to an efficient algorithm for finding the solution Φ

as follows:

1. Calculate G by (2.5.8).
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2. Solve Ψ by (2.5.9).

3. Solve Φ̃ by (2.5.10).

4. Obtain Φ = G + Ψ + Φ̃.

2.6 Physical parameters and units

There exist different physical unit systems to describe various models. In this thesis, we only

consider the equations under the SI unit system [74], in which the electrostatic potential, Φ,

and its components are measured in Volts. For clarity, we list all the parameters of PBE in

Table 2.1, along with their physical meanings and units.

Table 2.1: Magnitudes & Units of PBE parameters in SI unit system

Concepts Units(abbr.) Magnitudes

ǫ0 Permittivity of vacuum Farad/Meter(F/m) 8.854187817 × 10−12

ec Elementary charge Coulomb(C) 1.602176565 × 10−19

T Absolute temperature Kelvin(K) 298.15

kB Boltzmann constant Joule/Kelvin(J/K) 1.380648813 × 10−23

Besides, the related dimensionless physical constants are listed shown in Table 2.2.

Table 2.2: Physical Constants

Concepts Magnitudes

ǫp Dielectric constant of protein in Dp 2.0

ǫs Dielectric constant of water in Ds 78.5

Na Alvogadro’s constant 6.0220450 × 1023

To simplify calculation, we can transfer PBE to a dimensionless form. The basic principle

is to multiply the electrostatic potential, Φ by the constant ec/kBT , such that the product

ecΦ/kBT takes no dimension. Same manipulations can be applied to the components of Φ,

such as G, Ψ and Φ̃ induced from the decomposition scheme as shown in Proposition 2.5.1.

If we keep the same notation, i.e.,

ec
kBT

Φ → Φ,
ec

kBT
Ψ → Ψ,

ec
kBT

G → G, (2.6.1)
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then, the Poisson equation (2.6.2) is written in the dimensionless form:

−∇ ·
(

ǫ(r)∇Φ(r)
)

=
ec

ǫ0kBT
ρ(r), r ∈ R

3, (2.6.2)

and the Poisson-Boltzmann equation (2.2.11) has the dimensionless form:























−ǫp∆Φ(r) =
e2c

ǫ0kBT

np
∑

j=1

zjδrj , r ∈ Dp,

−ǫs∆Φ(r) +
e2c

ǫ0kBT

n
∑

i=1

ZiMie
−ZiΦ(r) = 0, r ∈ Ds.

(2.6.3)

Note that the new interface conditions have the same forms as the ones given in (2.2.12).

Usually, this dimensionless setting can simplify the study and solution of the Poisson

equation and PBE. In the rest of the paper, we will restrict our discussions to their dimen-

sionless forms.
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Chapter 3

Nonlocal Debye-Hückel Equations

The classic Debye-Hückel equation is a continuum model for investigating electrostatic prop-

erties of ionic solution. It was first proposed by Peter Debye and Erich Hückel for calculating

the activity coefficient of ionic solutions [34]. In their thesis, they pointed out that dissolved

ions in a solution do not distribute ideally when exposed to an external electrostatic field,

due to the electric interactions among them. Mathematically, the Debye-Hückel equation is

usually described as a second order linear partial differential equation. As a quick review, we

will first follow the Poisson-Boltzmann theory to derive a nonlinear Debye-Hückel equation.

We then will couple it with the nonlocal dielectric properties to propose and investigate

several nonlocal Debye-Hückel equations.

3.1 A nonlinear Debye-Hückel equation

Let the whole space R
3 be filled with an ionic solution containing n ionic species, and be

treated as one continuum medium with the dielectric constant ǫs. Two charge density func-

tions, ρf and ρm, are given to denote the fixed charges and ionic mobile charges, respectively,

such that the total charge density function ρ is given by

ρ = ρf + ρm. (3.1.1)

Hence, by (2.1.12), the electrostatic potential, Φ, can be determined by Poisson’s equation

in the dimensionless form:

− ǫs∆Φ(r) =
ec

ǫ0kBT
(ρf (r) + ρm(r)), r ∈ R

3. (3.1.2)
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Usually, it is easy to get ρf in many real applications, but how to estimate ρm is chal-

lenging, which remains a research topic by itself. In this section, we assume that there exist

ionic concentration functions, ci, for i = 1, 2, . . . , n, such that

ρm(r) =
e2c

ǫ0kBT

n
∑

i=1

Zici(r), (3.1.3)

where ec is the elementary charge, and Zi is the charge number of the i-th ionic species.

To simplify calculation, we apply a solution decomposition technique to (3.1.2) to split

Φ as

Φ = G + Ψ, (3.1.4)

where G and Ψ are the solutions of the following two equations, respectively:







−ǫs∆G(r) =
ec

ǫ0kBT
ρf (r), r ∈ R

3,

G(r) → 0 as |r| → ∞,
(3.1.5)

and










−ǫs∆Ψ(r) =
e2c

ǫ0kBT

n
∑

i=1

Zici(r), r ∈ R
3,

Ψ(r) → 0 as |r| → ∞.

(3.1.6)

Since G is determined by ρf only, it is independent of c. Hence, we only need to consider

the equation (3.1.6) to search for the optimal electrostatic potential Φ.

For simplicity, we restrict our discussion on a bounded domain Ω satisfying the following

conditions:

1. Ω is large enough such that it contains all the fixed charges.

2. Φ satisfies a homogeneous Dirichlet boundary condition, Φ|∂Ω = 0, where ∂Ω denotes

the boundary of Ω.

An inhomogeneous boundary condition can be discussed similarly as what was done in [75].

Let c = (c1, c2, . . . , cn). According to the Poisson-Boltzmann theory, we determine an

optimal c as a solution of the following partial differential equation constrained minimization

problem:

min
c∈V,Ψ∈U

F (c,Ψ) (3.1.7)
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subject to Poisson’s equation











−ǫs∆Ψ(r) =
e2c

ǫ0kBT

n
∑

i=1

Zici(r), r ∈ Ω,

Ψ(s) = −G(s), s ∈ ∂Ω,

(3.1.8)

where V and U denote two appropriate function spaces, F is an energy functional defined

by

F (c,Ψ) = Fes(c,Ψ) + Fid(c) + FG(c). (3.1.9)

Here, the electrostatic energy term Fes is defined by

Fes(c,Ψ) =
kBT

2ec

∫

Ω

ρf (r)Ψ(r)dr +
kBT

2

n
∑

i=1

Zi

∫

Ω

ci(r)
[

G(r) + Ψ(r)
]

dr, (3.1.10)

the idea gas energy term Fid is defined by

Fid(c) = kBT
n
∑

i=1

∫

Ω

ci(r)
[

ln(ci(r)Λ
3
i ) − 1

]

dr, (3.1.11)

and the Gibbs free energy term FG is defined by

FG(c) = −
n
∑

i=1

µi

∫

Ω

ci(r)dr, (3.1.12)

where Λi and µi are the de Broglie wavelength and the chemistry potential of the i-th ionic

species, respectively.

Usually, the fixed charges are assumed to be a set of point charges from a structure of a

protein molecule. In this case, ρf is defined by

ρf = ec

np
∑

j=1

zjδrj , (3.1.13)

where zj and rj denote the charge number and position of atom j, and np is the number of

all atoms of the protein. For the above ρf , the analytic solution of (3.1.5) can be found in

the formula:

G(r) =
e2c

4πǫ0ǫskBT

np
∑

j=1

zj
|r− rj|

. (3.1.14)
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Next we consider the solution existence and uniqueness of (3.1.8). Let C(Ω) and C2(Ω)

denote the function spaces for continuous and second-order continuously differentiable func-

tions defined on Ω, respectively. We assume ci ∈ C(Ω) for i = 1, 2, . . . , n. Since the

linear operator ∆ : C2(Ω) → C(Ω) is positive, continuous, and self-adjoint, its inverse

∆−1 : C(Ω) → C2(Ω) exists. Thus, Ψ can be expressed in the operator form:

Ψ = − e2c
ǫ0ǫskBT

n
∑

i=1

Zi∆
−1(ci), (3.1.15)

Because of (3.1.15), we can regard Ψ as a function of ionic concentrations functions c, denoted

as Ψ = Ψ(c). Hence, by (3.1.9), we can define a function of c, f(c), as

f(c) = F (c,Ψ(c)). (3.1.16)

Let f ′(c) and f ′′(c) denote the first and second Fréchet differentials of f at c, which are

respectively defined as

f ′(c)v =
n
∑

i=1

∂f(c)

∂ci
vi and f ′′(c)(v, w) =

n
∑

i,j=1

∂2f(c)

∂cj∂ci
viwj,

where v = (v1, v2, . . . , vn) and w = (w1, w2, . . . , wn) with vi, wj ∈ L2(Ω) for i, j = 1, 2, . . . , n,

and ∂f(c)
∂ci

and ∂2f(c)
∂cj∂ci

denote the first and second order partial derivatives of f , respectively.

Following what was done in [42], we can show that the energy functional f is strictly

convex so that the minimization problem (3.1.7) has a unique local minimizer, which is also

the global minimizer. For clarity, we collect some important results as follows:

1. The first and second Fréchet derivatives f ′ and f ′′ can be found in the forms:

f ′(c)v =
n
∑

i=1

∫

Ω

[ZikBTΦ(r) + kBT ln(ci(r)Λ
3
i ) − µi]vi(r)dr,

and

f ′′(c)(v, w) = kBT

n
∑

i,j=1

ZiZje
2
c

∫

Ω

L−1vi(r)wj(r)dr + kBT

n
∑

i=1

∫

Ω

1

ci
viwidr,

for any v, w ∈ V . Here, the operator L : U → L2(Ω) is defined as follows:

〈Lu, v〉L2(Ω) = ǫs

∫

Ω

∇u · ∇vdr, ∀u, v ∈ U. (3.1.17)
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2. The second derivative f ′′(c) is positive definite. Thus, f is strictly convex and has a

unique local minimal point c∗ = (c∗1, c
∗
2, . . . , c

∗
n), which is also the global minimal point.

3. The minimizer c∗ can be found by the following first order optimization condition

f ′(c∗) = 0. (3.1.18)

4. By solving (3.1.18), each c∗i can be represented in the Boltzmann distribution:

c∗i (r) = Mie
−ZiΦ

∗(r), i = 1, 2, . . . , n, (3.1.19)

where the constant Mi = Λ−3
i eµi/kBT that is often explained as the average concentra-

tion of the ith species of ions. Correspondingly, the mobile charge density function ρm

has the following form

ρm(r) = ec

n
∑

i=1

Zic
∗
i (r) = ec

n
∑

i=1

ZiMie
−ZiΦ

∗(r). (3.1.20)

5. By (3.1.4), the optimal electrostatic potential is obtained by

Φ∗ = Ψ(c∗) + G. (3.1.21)

Substituting the Boltzmann distribution (3.1.19) into (3.1.6), we can get a nonlinear

Debye-Hückel equation as follows:















−ǫs∆Φ(r) − e2c
ǫ0kBT

n
∑

i=1

ZiMie
−ZiΦ(r) =

e2c
ǫ0kBT

np
∑

j=1

zjδrj , r ∈ Ω,

Φ(s) = 0, s ∈ ∂Ω.

(3.1.22)

We conclude the above arguments in the following theorem:

Theorem 3.1.1. The minimization problem (3.1.7) is equivalent to the nonlinear Debye-

Hückel equation (3.1.22), with the minimizer ci being given in (3.1.19).

As a typical case, for a symmetric 1:1 monovalent ionic solution, such as NaCl aqueous

solution, we have n = 2, Z1 = 1, Z2 = −1, and M1 = M2 = M , where M denotes a given bulk
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concentration of the salt dissolved in the solution. In this case, the nonlinear Debye-Hückel

equation becomes














−ǫs∆Φ(r) +
2Me2c
ǫ0kBT

sinh (Φ(r)) =
e2c

ǫ0kBT

np
∑

j=1

zjδrj , r ∈ R
3,

Φ(s) = 0, s ∈ ∂Ω.

(3.1.23)

In the case that the potential magnitude |Φ| is sufficiently close to zero, the hyperbolic

term in (3.1.23) may be approximated by:

sinh (Φ(r)) ≈ Φ(r). (3.1.24)

Consequently, (3.1.23) is simplified to the traditional Debye-Hückel equation:














−ǫs∆Φ(r) +
2Me2c
ǫ0kBT

Φ(r) =
e2c

ǫ0kBT

np
∑

j=1

zjδrj , r ∈ R
3,

Φ(s) = 0, s ∈ ∂Ω.

(3.1.25)

It is well known that the solution of the above equation has the following form:

Φ(r) =
e2c

4πǫ0ǫskBT

np
∑

j=1

e−κ|r−rj |

|r− rj|
, ∀r ∈ R

3, r 6= rj, (3.1.26)

where the constant κ is defined by

κ =

√

2Me2c
ǫ0ǫskBT

(3.1.27)

which is called the inverse Debye length.

3.2 A nonlocal Debye-Hückel equation

In this section, we derive a nonlocal Debye-Hückel equation from the basic nonlocal dielectric

Poisson equation (2.4.11).

Clearly, the dimensionless form of (2.4.11) can be obtained as follows:






−ǫ∞∆Φ(r) + (ǫs − ǫ∞)∇ ·
∫

R3

Qλ(r− r′)∇Φ(r′)dr′ =
ec

ǫ0kBT
ρ(r), r ∈ R

3,

Φ(r) → 0 as |r| → ∞,

(3.2.1)
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where Qλ is defined as a Poisson kernel:

Qλ(r) =
1

4πλ2|r|e
−|r|/λ, r 6= 0. (3.2.2)

Similar to the case of the traditional Debye-Hückel equation, we defined the charge density

ρ by
ρ(r) =ρf (r) + ρm(r)

=ec

np
∑

j=1

zjδrj + ec

n
∑

i=1

ZiMie
−ZiΦ(r).

(3.2.3)

Applying the above ρ into (3.2.1), we get the nonlinear nonlocal Debye-Hückel equation:































−ǫ∞∆Φ(r)+(ǫs − ǫ∞)∇ ·
∫

R3

Qλ(r− r′)∇Φ(r′)dr′

− e2c
ǫ0kBT

n
∑

i=1

ZiMie
−ZiΦ(r) =

e2c
ǫ0kbT

np
∑

j=1

zjδrj ,

Φ(r) → 0 as |r| → ∞.

(3.2.4)

For the typical 1:1 ionic solution, the above equation can be simplified as



























−ǫ∞∆Φ(r) + (ǫs − ǫ∞)∇ ·
∫

R3

Qλ(r− r′)∇Φ(r′)dr′

+
2Me2c
ǫ0kBT

sinh(Φ(r)) =
e2c

ǫ0kBT

np
∑

j=1

zjδrj , r ∈ R
3,

Φ(r) → 0 as |r| → ∞.

(3.2.5)

In the case that |Φ(r)| is small enough, the above nonlinear equation can be linearized

into



























−ǫ∞∆Φ(r) + (ǫs − ǫ∞)∇ ·
∫

R3

Qλ(r− r′)∇Φ(r′)dr′

+
2Me2c
ǫ0kBT

Φ(r) =
e2c

ǫ0kBT

np
∑

j=1

zjδrj , r ∈ R
3,

Φ(r) → 0 as |r| → ∞.

(3.2.6)

Clearly, when ǫ∞ approaches to ǫs, (3.2.6) reduces to the traditional Debye-Hückel equation

(3.1.25). Due to this reason, we will call (3.2.6) the nonlocal Debye-Hückel equation for

clarity.
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3.3 Derivation of analytical solutions

In this section, we present the analytic solution of the nonlocal Debye-Hückel equation

(3.2.6). By the superposition principal, we only need to calculate the fundamental solution

of the following problem:







−ǫ∞∆Φ(r) + (ǫs − ǫ∞)∇ ·
∫

R3

Qλ(r− r′)∇Φ(r′)dr′ + κ̄2Φ(r) = δ, r ∈ R
3,

Φ(r) → 0, as |r| → ∞,

(3.3.1)

where κ̄ is defined by

κ̄ =
√
ǫsκ =

√

2Me2c
ǫ0kBT

. (3.3.2)

First, we notice that Qλ is the fundamental solution of the following partial differential

equation:

− λ2∆Qλ + Qλ = δ. (3.3.3)

Taking convolutions with Φ on both sides, and using the multiplication property of convo-

lution, we get

− λ2∆(Qλ ∗ Φ) + Qλ ∗ Φ = Φ. (3.3.4)

Regarding Qλ ∗ Φ as an auxiliary function, the above can be written as

− λ2∆u + u− Φ = 0, (3.3.5)

and (3.3.1) can be reformulated as

− ǫ∞∆Φ(r) + (ǫs − ǫ∞)∆u(r) + κ̄2Φ(r) = δ, (3.3.6)

and further into

− ǫ∞∆Φ(r) +
ǫs − ǫ∞

λ2
(u(r) − Φ(r)) + κ̄2Φ(r) = δ. (3.3.7)

Combining (3.3.5) and (3.3.7), we get a system of partial differential equations with

respect to the unknown functions Φ and u as follows:














−ǫ∞∆Φ(r) + (α1 + κ̄2)Φ(r) − α1u(r) = δ, r ∈ R
3,

−λ2∆u(r) + u(r) − Φ(r) = 0, r ∈ R
3,

Φ(r) → 0, u(r) → 0 as |r| → ∞,

(3.3.8)
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where

α1 =
ǫs − ǫ∞

λ2
.

Due to the property of spherical symmetry, it is easy to see that the solutions Φ and

u must be radial functions in the sense that Φ(r) = Φ(|r|) and u(r) = u(|r|). Denoting

r = |r|, and changing the variable r = (x, y, z) into the spherical coordinates (r, θ, ϕ), we

can reformulate (3.3.8) as the following second order ODE system:






















−ǫ∞
d2

dr2
(rΦ(r)) + (α1 + κ̄2)(rΦ(r)) − α1(ru(r)) = 0, r > 0,

−λ2 d2

dr2
(ru(r)) + ru(r) − rΦ(r) = 0, r > 0,

Φ(r) → 0, u(r) → 0 as r → ∞.

(3.3.9)

Setting Φ̄(r) = rΦ(r) and ū(r) = ru(r), the above ODE system becomes










−ǫ∞
d2

dr2
(Φ̄(r)) + (α1 + κ̄2)(Φ̄(r)) − α1(ū(r)) = 0, r > 0,

−λ2 d2

dr2
(ū(r)) + ū(r) − Φ̄(r) = 0, r > 0,

(3.3.10)

or equivalently, in the matrix form

d2

dr2

(

Φ̄

ū

)

=

[

a1 −a2

−b b

](

Φ̄

ū

)

, (3.3.11)

where a1, a2, and b are defined by

a1 =
α1 + κ̄2

ǫ∞
, a2 =

α1

ǫ∞
, b =

1

λ2
.

By direct calculations, the two eigenvalues of the coefficient matrix
[

a1 −a2

−b b

]

can be found respectively as

ω1 =
1

2
(a1 + b + c), ω2 =

1

2
(a1 + b− c), (3.3.12)

and their corresponding eigenvectors ζ1 and ζ2 are:

ζ1 =

(

1

τ1

)

, ζ2 =

(

1

τ2,

)

, (3.3.13)
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where c, τ1, and τ2 are defined by

c =
√

(a1 − b)2 + 4a2b, τ1 =
1

2a2
(a1 − b− c), τ2 =

1

2a2
(a1 − b + c).

Substituting the original notations to the above expressions, we get

ω1 =
κ̄2λ2 + ǫs + ξ

2ǫ∞λ2
, ω2 =

κ̄2λ2 + ǫs − ξ

2ǫ∞λ2
,

τ1 =
κ̄2λ2 + ǫs − 2ǫ∞ − ξ

2(ǫs − ǫ∞)
, τ2 =

κ̄2λ2 + ǫs − 2ǫ∞ + ξ

2(ǫs − ǫ∞)
,

(3.3.14)

where ξ is defined by

ξ =
√

(κ̄2λ2 + ǫs)2 − 4ǫ∞λ2κ̄2. (3.3.15)

Lemma 3.3.1. If ǫs ≥ ǫ∞, then the eigenvalues ω1 and ω2 defined in (3.3.12) are two positive

real numbers.

Proof. Because a1, a2 and b are positive, c is a positive real number, thus ω1 is positive. To

prove ω2 ≥ 0, by the equivalent form (3.3.14), it is sufficient to show that the numerator

κ̄2λ2 + ǫs − ξ is positive. We first show that ξ is real: Suppose ǫs ≥ ǫ∞ (which is reasonable

in physics, e.g., when the solvent is water, under the room temperature, one has ǫs ≈ 80 and

ǫ∞ ≈ 1.8), the radicand of ξ can be factorized as

(κ̄2λ2 + ǫs)
2 − 4ǫ∞λ2κ̄2 =

(

ǫs + κ̄2λ2 + 2λκ̄
√
ǫ∞
)(

ǫs + κ̄2λ2 − 2λκ̄
√
ǫ∞
)

,

it is easy to see that the first factor is positive, and the second factor satisfies

ǫs + κ̄2λ2 − 2λκ̄
√
ǫ∞ ≥ ǫ∞ + κ̄2λ2 − 2λκ̄

√
ǫ∞ = (

√
ǫ∞ − κ̄λ)2 ≥ 0,

hence ξ =
√

(κ̄2λ2 + ǫs)2 − 4ǫ∞λ2κ̄2 is real. Further, note that

(κ̄2λ2 + ǫs)
2 > (κ̄2λ2 + ǫs)

2 − 4ǫ∞κ̄2λ2 = ξ2

thus

κ̄2λ2 + ǫs > ξ,

which implies that the numerator of ω2 is positive.

Based on the results of Lemma 3.3.1, we have
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Theorem 3.3.2. The fundamental solution of PDE system (3.3.8) has the form

Φ(r) =
τ2

4πǫ∞(τ2 − τ1)

e−η1|r|

|r| +
τ1

4πǫ∞(τ1 − τ2)

e−η2|r|

|r| ,

u(r) =
τ1τ2

4πǫ∞(τ2 − τ1)

e−η1|r|

|r| +
τ1τ2

4πǫ∞(τ1 − τ2)

e−η2|r|

|r| ,

(3.3.16)

where

η1 =
√
ω1 =

1

λ

√

κ̄2λ2 + ǫs + ξ

2ǫ∞
, η2 =

√
ω2 =

1

λ

√

κ̄2λ2 + ǫs − ξ

2ǫ∞
. (3.3.17)

Proof. According to Lemma 3.3.1, η1 and η2 are two positive real numbers. Based on the

classic ODE theory, the general solution of (3.3.11) can be written in the form

Φ̄(r) =c1e
−η1r + c2e

−η2r + c3e
η1r + c4e

η2r,

ū(r) =c1τ1e
−η1r + c2τ2e

−η2r + c3τ1e
η1r + c4τ2e

η2r,

which implies that the general solutions of (3.3.9) has the following form

Φ(r) =c1
e−η1r

r
+ c2

e−η2r

r
+ c3

eη1r

r
+ c4

eη2r

r
, (3.3.18)

u(r) =c1τ1
e−η1r

r
+ c2τ2

e−η2r

r
+ c3τ1

eη1r

r
+ c4τ2

eη2r

r
, (3.3.19)

where c1, c2, c3 and c4 denote four constants to be determined.

By the boundary conditions Φ(r) → 0 and u(r) → 0 as r → ∞, it is easy to get that

c3 = 0, c4 = 0. To determine the values of c1 and c2, two more conditions are needed.

Because u is a smooth function in the whole space, we have

lim
r→0

ru(r) = 0, (3.3.20)

from which we can obtain

c1τ1 + c2τ2 = 0. (3.3.21)

The second condition can be obtained by integrating the both sides of the first equation of

(3.3.8) over a small ball Bǫ =: {r
∣

∣|r| ≤ ǫ} centering at the origin with radius ǫ.

− ǫ∞

∫

Bǫ

∆Φ(r)dr + (α1 + κ̄2)

∫

Bǫ

Φ(r)dr− α1

∫

Bǫ

u(r)dr = 1. (3.3.22)
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Here the property of the Dirac delta distribution δ has been used to get the right hand side

of the above equation equal to 1.

Note that for a point s = (x, y, z) on the boundary of Bǫ, its outward normal vector

n(s) = 1
ǫ
(x, y, z) where x2 + y2 + z2 = ǫ2. By the divergence theorem [18], we have

∫

Bǫ

∆Φ(r)dr =

∫

∂Bǫ

∇Φ(s) · n(s)ds =
1

ǫ

∫

∂Bǫ

(Φxx + Φyy + Φzz)ds

=

∫

∂Bǫ

dΦ(r)

dr
ds =

∫ 2π

0

∫ π

0

dΦ(ǫ)

dr
sinφǫ2dφdθ = 4πǫ2

dΦ(ǫ)

dr
.

(3.3.23)

We then can calculate

dΦ(ǫ)

dr
=

d

dr

(

c1
e−η1r

r
+ c2

e−η2r

r

) ∣

∣

∣

∣

r=ǫ

=

(

c1
−η1e

−η1rr − e−η1r

r2
+ c2

−η2e
−η2rr − e−η2r

r2

) ∣

∣

∣

∣

r=ǫ

=c1
−η1e

−η1ǫǫ− e−η1ǫ

ǫ2
+ c2

−η2e
−η2ǫǫ− e−η2ǫ

ǫ2
.

(3.3.24)

Hence, the first term of (3.3.22) can be evaluated as

− ǫ∞

∫

Bǫ

∆Φ(r)dr = −4πǫ∞[c1(−η1e
−η1ǫǫ− e−η1ǫ) + c2(−η2e

−η2ǫǫ− e−η2ǫ)]. (3.3.25)

Taking the limit as ǫ approaches to zero on both sides of (3.3.25), we get

lim
ǫ→0

{

− ǫ∞

∫

Bǫ

∆Φ(r)dr

}

= 4πǫ∞(c1 + c2).

For the second term of (3.3.22), we have

∫

Bǫ

Φ(r)dr =

∫

Bǫ

(

c1
e−η1|r|

|r| + c2
e−η2|r|

|r|

)

dr

=c1

∫ 2π

0

∫ π

0

∫ ǫ

0

e−η1r

r
r2 sinφdrdφdθ + c2

∫ 2π

0

∫ π

0

∫ ǫ

0

e−η2r

r
r2 sinφdrdφdθ

=4πc1

∫ ǫ

0

re−η1rdr + 4πc2

∫ ǫ

0

re−η2rdr.

Because the integrands are smooth functions, the above two integrals approach to 0 as ǫ

approaches zero. This gives

lim
ǫ→0

∫

Bǫ

Φ(r)dr = 0.
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Similarly, we can show that

lim
ǫ→0

∫

Bǫ

u(r)dr = 0.

Hence, letting ǫ approach to zero on the both sides of (3.3.22), we obtain the following

equation as the second condition.

4πǫ∞(c1 + c2) = 1. (3.3.26)

Combining (3.3.21) with (3.3.26) we get:
{

c1τ1 + c2τ2 = 0,

4πǫ∞(c1 + c2) = 1.
(3.3.27)

Solving the above algebraic system, we can find the values of c1 and c2 as follows:

c1 =
τ2

4πǫ∞(τ2 − τ1)
, c2 =

τ1
4πǫ∞(τ1 − τ2)

. (3.3.28)

At last, according to (3.3.18), we substitute c1 and c2 by their values defined in (3.3.28),

and use the fact c3 = c4 = 0, the fundamental solution of the ODE system (3.3.9) is found

in the form of (3.3.16).

The analytical solution of the nonlocal Debye-Hückel equation (3.3.9) can be obtained

by applying the superposition principle with respect to the multiple delta distribution {δrj}.

For clarity, we conclude our main results of this chapter as the following theorem.

Theorem 3.3.3. The analytic solution of the nonlocal Debye-Hückel equation (3.2.6) has

the form

Φ(r) =
ατ2

4πǫ∞(τ2 − τ1)

np
∑

j=1

zj
e−η1|r−rj |

|r− rj|
+

ατ1
4πǫ∞(τ1 − τ2)

np
∑

j=1

zj
e−η2|r−rj |

|r− rj|

=
α

4πǫ∞(τ2 − τ1)

np
∑

j=1

zj
|r− rj|

(

τ2e
−η1|r−rj | − τ1e

−η2|r−rj |
)

,

u(r) =
ατ1τ2

4πǫ∞(τ2 − τ1)

np
∑

j=1

zj
e−η1|r−rj |

|r− rj|
+

ατ1τ2
4πǫ∞(τ1 − τ2)

np
∑

j=1

zj
e−η2|r−rj |

|r− rj|

=
ατ1τ2

4πǫ∞(τ2 − τ1)

np
∑

j=1

zj
|r− rj|

(

e−η1|r−rj | − e−η2|r−rj |
)

,

(3.3.29)

where r ∈ R
3 and r 6= rj for j = 1, 2, . . . , np.
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The nonlocal Debye-Hückel equation can be regarded as an extension of the traditional

Debye-Hückel equation. The following corollary shows that the former can reduce to the

latter as a limit case.

Corollary 3.3.4. If κ̄2λ2 > ǫs, the solution of the nonlocal Debye-Hückel equation (3.2.6)

includes the solution of the traditional Debye-Hückel equation (3.1.25) as a special case.

Proof. We consider the limit case when ǫ∞ approaches to ǫs. By (3.3.14) and (3.3.15),

lim
ǫ∞→ǫs

ξ = lim
ǫ∞→ǫs

√

(κ̄2λ2 + ǫs)2 − 4ǫ∞λ2κ̄2 = κ̄2λ2 − ǫs,

and

lim
ǫ∞→ǫs

ω1 = lim
ǫ∞→ǫs

κ̄2λ2 + ǫs + ξ

2ǫ∞λ2
=

κ̄2

ǫs
, lim

ǫ∞→ǫs
ω2 = lim

ǫ∞→ǫs

κ̄2λ2 + ǫs − ξ

2ǫ∞λ2
=

1

λ2
,

lim
ǫ∞→ǫs

τ1 = lim
ǫ∞→ǫs

κ̄2λ2 + ǫs − 2ǫ∞ − ξ

2(ǫs − ǫ∞)
= 1, lim

ǫ∞→ǫs
τ2 = lim

ǫ∞→ǫs

κ̄2λ2 + ǫs − 2ǫ∞ + ξ

2(ǫs − ǫ∞)
= ∞,

we get

lim
ǫ∞→ǫs

η1 = lim
ǫ∞→ǫs

√
ω1 =

κ̄√
ǫs
, lim

ǫ∞→ǫs
η2 = lim

ǫ∞→ǫs

√
ω2 =

1

λ
.

Therefore, when ǫ∞ approaches to ǫs, the solution Φ of the nonlocal Debye-Hückel equation

becomes

lim
ǫ∞→ǫs

Φ(r)

= lim
ǫ∞→ǫs

(

ατ2
4πǫ∞(τ2 − τ1)

np
∑

j=1

zj
e−η1|r−rj |

|r− rj|
+

ατ1
4πǫ∞(τ1 − τ2)

np
∑

j=1

zj
e−η2|r−rj |

|r− rj|

)

= lim
ǫ∞→ǫs





α

4πǫ∞

(

1 − τ1
τ2

)

np
∑

j=1

zj
e−η1|r−rj |

|r− rj|
+

ατ1
4πǫ∞(τ1 − τ2)

np
∑

j=1

zj
e−η2|r−rj |

|r− rj|





=
α

4πǫs

np
∑

j=1

zj
|r− rj|

e
− κ̄√

ǫs
|r−rj |,

(3.3.30)

which is exactly the solution of the local Debye-Hückel equation as shown in (3.1.26). Mean-
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while, the auxiliary function u becomes:

lim
ǫ∞→ǫs

u(r)

= lim
ǫ∞→ǫs

ατ1τ2
4πǫ∞(τ2 − τ1)

np
∑

j=1

zj
|r− rj|

(

e−η1|r−rj | − e−η2|r−rj |
)

= lim
ǫ∞→ǫs

ατ1

4πǫ∞

(

1 − τ1
τ2

)

np
∑

j=1

zj
|r− rj|

(

e−η1|r−rj | − e−η2|r−rj |
)

=
α

4πǫs

np
∑

j=1

zj
|r− rj|

(

e
− κ̄√

ǫs
|r−rj | − e−

1
λ
|r−rj |

)

.

(3.3.31)

3.4 A solution decomposition scheme

The Dirac delta distributions bring strong singularities in the nonlocal Debye-Huckel equa-

tions, which induces difficulties in analyzing and solving these equations. In this section,

similar to the case of PBE, we propose a solution decomposition scheme to deal with this

issue.

Clearly, setting u = Φ ∗Qλ, we can formulate (3.2.5) as a system of two PDEs:







































−ǫ∞∆Φ(r) +
ǫs − ǫ∞

λ2

(

Φ(r) − u(r)
)

+
2Me2

ǫ0kBT
sinh

(

Φ(r)
)

=
e2c

ǫ0kBT

np
∑

j=1

zjδrj , r ∈ R
3,

−λ2∆u(r) + u(r) − Φ(r) = 0, r ∈ R
3,

Φ(r) → 0 as |r| → ∞.

(3.4.1)

We decompose the solution Φ and u of (3.4.1) as follows

Φ(r) = Ψ(r) + G(r), and u = u0 + u1, (3.4.2)

where G is given as

G(r) =
α

4πǫ∞

np
∑

j=1

zj
|r− rj|

(3.4.3)
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u0 = G ∗Qλ, which can be found as [76]:

u0(r) =
α

4πǫ∞

np
∑

j=1

zj
1 − e−|r−rj |/λ

|r− rj|
, (3.4.4)

and u1 = Ψ ∗Qλ.

From (3.4.1), it can be found that Ψ and u1 satisfy the following PDE system






























−ǫ∞∆Ψ(r) +
ǫs − ǫ∞

λ2

(

Ψ(r) − u1(r)
)

+
2Me2

ǫ0kBT
sinh

(

Ψ(r) + G(r)
)

=
ǫ∞ − ǫs

λ2

(

G(r) − u0(r)
)

, r ∈ R
3,

−λ2∆u1(r) + u1(r) − Ψ(r) = 0, r ∈ R
3,

Ψ(r) → 0, u1(r) → 0 as |r| → ∞.

(3.4.5)

As a linear case of (3.4.5), we find that Ψ and u1 satisfy the following system of linear

PDEs:






















−ǫ∞∆Ψ(r) + (α1 + κ̄2)Ψ(r) − α1u1(r)

= −(α1 + κ̄2)G(r) + α1u0(r), r ∈ R
3,

−λ2∆u1(r) + u1(r) − Ψ(r) = 0, r ∈ R
3,

Ψ(r) → 0, u1(r) → 0 as |r| → ∞.

(3.4.6)

Using the analytical expression of Φ and u given in (3.3.29), we can obtain the analytical

expressions of Ψ and u1 as follows:






































































Ψ(r) ≡ α

4πǫ∞

np
∑

j=1

zj

(

τ2
τ2 − τ1

e−η1|r−rj |

|r− rj|
+

τ1
τ1 − τ2

e−η2|r−rj |

|r− rj|
− 1

|r− rj|

)

=
α

4πǫ∞(τ2 − τ1)

np
∑

j=1

zj
τ2e

−η1|r−rj | − τ1e
−η2|r−rj | − (τ2 − τ1)

|r− rj|
,

u1(r) ≡
α

4πǫ∞

np
∑

j=1

zj

(

τ1τ2
τ2 − τ1

e−η1|r−rj |

|r− rj|
+

τ1τ2
τ1 − τ2

e−η2|r−rj |

|r− rj|
− 1 − e−|r−rj |/λ

|r− rj|

)

=
α

4πǫ∞(τ2 − τ1)

np
∑

j=1

zj
τ1τ2(e

−η1|r−rj | − e−η2|r−rj |) − (τ2 − τ1)(1 − e−|r−rj |/λ)

|r− rj|
.

(3.4.7)

Remark 3.4.1. Clearly, Ψ and u1 have potential singular terms at r = ri in their terms

Ψi =
αzi

4πǫ∞(τ2 − τ1)

τ2e
−η1|r−ri| − τ1e

−η2|r−ri| − (τ2 − τ1)

|r− ri|
,
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and

u1,i =
αzi

4πǫ∞(τ2 − τ1)

τ1τ2(e
−η1|r−ri| − e−η2|r−ri|) − (τ2 − τ1)(1 − e−|r−ri|/λ)

|r− ri|
.

By L’Hôpital’s law, their limits can be found as follows:

lim
|r−ri|→0

τ2e
−η1|r| − τ1e

−η2|r| − (τ2 − τ1)

|r|
= lim

|r−ri|→0
−τ2η1e

−η1|r| + τ1η2e
−η2|r| = τ1η2 − τ2η1

and

lim
|r−ri|→0

τ1τ2(e
−η1|r| − e−η2|r|) − (τ2 − τ1)(1 − e−|r|/λ)

|r|

= lim
|r−ri|→0

(

τ1τ2(−η1e
−η1|r| + η2e

−η2|r|) − τ2 − τ1
λ

e−|r|/λ

)

=τ1τ2(η2 − η1) −
τ2 − τ1

λ
.

Hence,

lim
|r−ri|→0

Ψi(r) =
αzi(τ1η2 − τ2η1)

4πǫ∞(τ2 − τ1)
,

and

lim
|r−ri|→0

u1,i(r) =
αzi

4πǫ∞(τ2 − τ1)

(

τ1τ2(η2 − η1) −
τ2 − τ1

λ

)

. (3.4.8)

This shows that the singular points ri for i = 1, 2, . . . , n of Ψ and u1 are removable.
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Chapter 4

Nonlocal Linearized

Poisson-Boltzmann Equations

As introduced in Chapter 2, Poisson-Boltzmann equation can be used to predict the electro-

static potential distributions in a dielectric system in which a biomolecule is immersed in an

electrolyte. However, the classic PB theory ignores all interactions among solvent molecules,

and may cause a significant inaccuracy in the area that is exposed to a strong electrostatic

field. In this chapter, we will investigate several electrostatics dielectric models that com-

bine the PB theory and the nonlocal dielectric modeling scheme, as well as linearization

techniques.

4.1 A nonlocal nonlinear Poisson-Boltzmann equation

First, we derive a nonlocal linear Poisson-Boltzmann equation based on the traditional lin-

earization approach.

Here, we use the same setting as the one for PBE, as given in section 2.2. That is, the

whole space R
3 is composed of two open domains Dp, Ds and their interface Γ.

R
3 = Dp ∪Ds ∪ Γ, (4.1.1)

such that Dp is surrounded by Ds.

The solute domain Dp is supposed to hold a protein composed of np atoms as fixed point

charges. The j-th atom centers at rj and carries zjec charge quantities. Besides, Dp and is

regarded as a uniform dielectric material with dielectric constant ǫp. In Dp, the electrostatic
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potential Φ satisfies the Poisson equation:

− ǫp∆Φ(r) =
e2c

ǫ0kBT

np
∑

j=1

zjδrj , r ∈ Dp. (4.1.2)

On the other hand, there are n species of ions dissolved in the solvent domain Ds. The

electrostatic potential Φ satisfies the following nonlocal Poisson equation:

−∇ ·
(

ǫ∞∇Φ(r) + (ǫs − ǫ∞)∇
∫

R3

e−|r−r
′|/λ

4πλ2|r− r′|Φ(r′)dr′
)

=
e2c

ǫ0kBT

n
∑

i=1

ZiMie
−ZiΦ(r), r ∈ Ds.

(4.1.3)

Similar to the case of PBE, the interface conditions of the above equation can be induced

due to the fact that the electrostatic potential Φ and the flux of the displacement field D

are continuous across Γ.

lim
µ→0+

Φ(s− µn(s)) = lim
µ→0+

Φ(s + µn(s)), s ∈ Γ, (4.1.4)

and

lim
µ→0+

D(s− µn(s)) · n(s) = lim
µ→0+

D(s + µn(s)) · n(s), s ∈ Γ, (4.1.5)

where n(s) is the outward unit normal vector at s on the interface Γ.

Note that

lim
µ→0+

D(s− µn(s)) · n(s) = lim
µ→0+

ǫp∇Φ(s− µn(s)) · n(s), (4.1.6)

and

lim
µ→0+

D(s + µn(s)) · n(s)

= lim
µ→0+

(

ǫ∞∇Φ(s + µn(s)) + (ǫs − ǫ∞)∇
∫

R3

e−|s+µn(s)−r
′|/λ

4πλ2|s + µn(s) − r′|Φ(r′)dr′
)

· n(s).
(4.1.7)

Hence, by (4.1.5), the nonlocal flux continuity condition can be obtained as follows:

ǫp
∂Φ(s−)

∂n(s)
= ǫ∞

∂Φ(s+)

∂n(s)
+ (ǫs − ǫ∞)

∂(Φ ∗Qλ)(s+)

∂n(s)
. (4.1.8)

Here, the convolution kernel Qλ is defined in (3.2.2).
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For clarity, we now write the nonlocal nonlinear Poisson-Boltzmann equation as the

following interface problem:






































































−ǫp∆Φ(r) =
e2c

ǫ0kBT

np
∑

j=1

zjδrj , r ∈ Dp,

−∇ ·
(

ǫ∞∇Φ(r) + (ǫs − ǫ∞)∇(Qλ ∗ Φ)(r)
)

− e2c
ǫ0kBT

n
∑

i=1

ZiMie
−ZiΦ(r) = 0, r ∈ Ds,

Φ(s−) = Φ(s+), s ∈ Γ,

ǫp
∂Φ(s−)

∂n(s)
= ǫ∞

∂Φ(s+)

∂n(s)
+ (ǫs − ǫ∞)

∂(Φ ∗Qλ)(s+)

∂n(s)
, s ∈ Γ,

Φ(r) → 0 as |r| → ∞.

(4.1.9)

In particular, for the typical 1:1 symmetric ionic solution case (n = 2,M1 = M2 =

M, z1 = 1 and z2 = −1), the second equation of (4.1.9) for the solvent domain Ds can be

simplified into

−∇ ·
(

ǫ∞∇Φ(r) + (ǫs − ǫ∞)∇(Qλ ∗ Φ)(r)
)

+
2Me2c
ǫ0kBT

sinh(Φ(r)) = 0 r ∈ Ds. (4.1.10)

As the traditional local PBE, we can also apply a decomposition scheme to split the

solution of the nonlocal PBE into three components. In fact, we have the following theorem

(see [33]):

Theorem 4.1.1. The solutions Φ and u of the nonlocal Poisson Boltzmann model (4.1.9)

have the following splitting formulas:

Φ(r) = Φ̃(r) + Ψ(r) + G(r), (4.1.11)

where G is defined by

G(r) =
e2c

4πǫ0ǫpkBT

np
∑

j=1

zj
|r− rj|

, r ∈ R
3, (4.1.12)

Ψ satisfies















∆Ψ(r) = 0, r ∈ Dp,

−∇ ·
(

ǫ∞∇Ψ(r) + (ǫs − ǫ∞)∇(Qλ ∗ Ψ)(r)
)

= (ǫ∞ − ǫs)∆(Qλ ∗G)(r), r ∈ Ds,

(4.1.13)
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with boundary conditions

Ψ(r) → 0 as |r| → ∞, (4.1.14)

and interface conditions






















Ψ(s−) = Ψ(s+), s ∈ Γ,

ǫp
∂Ψ(s−)

∂n(s)
= ǫ∞

∂Ψ(s+)

∂n(s)
+ (ǫs − ǫ∞)

∂(Qλ ∗ Ψ)(s)

∂n(s)

+(ǫs − ǫ∞)
∂(Qλ ∗G)(s)

∂n(s)
+ (ǫ∞ − ǫp)

∂G(s)

∂n(s)
, s ∈ Γ,

(4.1.15)

and Φ̃ satisfies the following nonlinear equation






















∆Φ̃(r) = 0, r ∈ Dp,

−∇ ·
(

ǫ∞∇Φ̃(r) + (ǫs − ǫ∞)∇(Qλ ∗ Φ̃)(r)
)

=
e2c

ǫ0kBT

n
∑

i=1

ziMie
−βeczi[Φ̃(r)+Ψ(r)+G(r)], r ∈ Ds,

(4.1.16)

with boundary conditions

Φ̃(r) → 0 as |r| → ∞, (4.1.17)

and interface conditions










Φ̃(s−) = Φ̃(s+), s ∈ Γ,

ǫp
∂Φ̃(s−)

∂n(s)
= ǫ∞

∂Φ̃(s+)

∂n(s)
+ (ǫs − ǫ∞)

∂(Qλ ∗ Φ̃)(s)

∂n(s)
, s ∈ Γ.

(4.1.18)

4.2 Linearizations

The highly nonlinear Boltzmann term
∑n

i=1 Mie
−ZiΦ(r) for ionic concentrations has been

used to construct several dielectric continuum models including PBE, our nonlinear Debye-

Hückel equation, and our nonlocal PBE, but it induces difficulties in numerical calculations

and theoretical analysis. Due to this reason, it is often linearized to yield simplified linear

models.

4.2.1 Traditional approach

Traditionally, the Boltzmann term is linearized by using the taylor expansion of exponential

function f(x) = ex, at x = 0:

ex = 1 + x +
x2

2!
+ · · · +

xn

n!
+ · · ·
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If the magnitude |x| is sufficiently small, ex can be approximated as

ex ≈ 1 + x for |x| ≪ 1. (4.2.1)

Note that ZiΦ(r) is a real number at each position r ∈ Ds. If |ZiΦ(r)| ≪ 1, then by

(4.2.1), the Boltzmann term has the linearization approximation

n
∑

i=1

ZiMie
−ZiΦ(r)

≈
n
∑

i=1

ZiMi(1 − ZiΦ(r))

=
n
∑

i=1

ZiMi −
n
∑

i=1

Z2
i MiΦ(r)

= −
n
∑

i=1

Z2
i MiΦ(r).

(4.2.2)

Here we have assumed that the ionic solution is electroneutral:

n
∑

i=1

ZiMi = 0. (4.2.3)

In particular, for the symmetric 1 : 1 ionic solution, we have M1 = M2 = M , Z1 = 1 and

Z2 = −1, the linearization can be performed as

2
∑

i=1

ZiMe−ZiΦ(r) = 2M sinh(Φ(r)) ≈ 2MΦ(r). (4.2.4)

Applying (4.2.2) to the second equation of (4.1.9), we can get a nonlocal linearized

Poisson-Boltzmann equation as follows:























−ǫp∆Φ(r) =
e2c

ǫ0kBT

np
∑

j=1

zjδrj , r ∈ Dp,

−∇ ·
(

ǫ∞∇Φ(r) + (ǫs − ǫ∞)∇(Qλ ∗ Φ)(r)
)

+
e2c

ǫ0kBT

n
∑

i=1

Z2
i MiΦ(r) = 0, r ∈ Ds.

(4.2.5)

The above equation satisfies the interface conditions and the boundary conditions in the

same form of (4.1.9).
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Inevitably, this linearization will introduce errors in searching for the electrostatic po-

tential Φ. To keep an acceptable accuracy, the potential magnitude |Φ(r)| must be small

enough for all r in the solvent domain Ds. In practice, this usually indicates that the ionic

strength of solution is low enough.

4.2.2 A new linearization scheme

To improve the accuracy of the linear model (4.2.5), in this section, we introduce a new linear

model using the solution splitting formula given in Theorem 4.1.1. According to this solution

decomposition, we can first calculate G by using formula (4.1.12), and find Ψ by solving a

linear problem (4.1.13). We then can use G and Ψ as given functions when we calculate Φ̃

by solving the nonlinear problem (4.1.16). Hence, instead of linearizing the Boltzmann term

with respect to Φ, we can linearize (4.1.16) with respect to the component Φ̃. This solution

decomposition scheme motivates us to propose a new strategy for linearizing the nonlocal

PBE.

Proposition 4.2.1. In the same settings as Theorem (4.1.1), suppose G and Ψ are pre-

calculated, and |Φ̃| is small enough, the Boltzmann term can be linearized by

n
∑

i=1

ZiMie
−ZiΦ(r) ≈ A1(r) + B1(r)Φ̃(r) r ∈ Ds, (4.2.6)

where function A1 and B1 are defined by

A1(r) =
n
∑

i=1

ZiMie
−Zi[G(r)+Ψ(r)] (4.2.7)

and

B1(r) =
n
∑

i=1

−Z2
i Mie

−Zi[G(r)+Ψ(r)] (4.2.8)
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Proof. The proof is straight forward. By Φ = G + Ψ + Φ̃, we have
n
∑

i=1

ZiMie
−ZiΦ(r)

=
n
∑

i=1

ZiMie
−Zi[G(r)+Ψ(r)+Φ̃(r)]

=
n
∑

i=1

ZiMie
−Zi[G(r)+Ψ(r)]e−ZiΦ̃(r).

(4.2.9)

If |Φ̃(r)| ≪ 1 for all r ∈ Ds, then for each i, we can approximate e−ZiΦ̃(r) by

e−ZiΦ̃(r) ≈
(

1 − ZiΦ̃(r)
)

. (4.2.10)

Accordingly,
n
∑

i=1

ZiMie
−Zi[G(r)+Ψ(r)]e−ZiΦ̃(r)

≈
n
∑

i=1

ZiMie
−Zi[G(r)+Ψ(r)]

(

1 − ZiΦ̃(r)
)

=
n
∑

i=1

(

ZiMie
−Zi[G(r)+Ψ(r)]

)

−
n
∑

i=1

(

Z2
i Mie

−Zi[G(r)+Ψ(r)]
)

Φ̃(r)

=A1(r) + B1(r)Φ̃(r).

(4.2.11)

This proves the proposition.

Remark 4.2.2. For the symmetric 1:1 symmetric ionic solution, the linearization can be

performed as

sinh(Φ(r))

= sinh(G(r) + Ψ(r) + Φ̃(r))

≈ sinh(G(r) + Ψ(r)) + cosh(G(r) + Ψ(r))Φ̃(r), ∀r ∈ Ds.

(4.2.12)

Applying (4.2.6) into the second equation of (4.1.16), we get a new linear nonlocal

Poisson-Boltzmann equation defined via solution solution decomposition Φ = G + Ψ + Φ̃,

where G is defined in (4.1.12), Ψ is the solution of (4.1.13), and Φ̃ is a solution of the linear

problem


















−ǫp∆Φ̃(r) = 0, r ∈ Dp,

−∇ ·
(

ǫ∞∇Φ̃(r) + (ǫs − ǫ∞)∇(Qλ ∗ Φ̃)(r)
)

− e2c
ǫ0kBT

B1(r)Φ̃(r) =
e2c

ǫ0kBT
A1(r), r ∈ Ds,

(4.2.13)
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subject to the interface conditions

Φ̃(s−) = Φ̃(s+), s ∈ Γ,

ǫp
∂Φ̃(s−)

∂n(s)
= ǫ∞

∂Φ̃(s+)

∂n(s)
+ (ǫs − ǫ∞)

∂(Φ̃ ∗Qλ)(s+)

∂n(s)
, s ∈ Γ,

(4.2.14)

and the boundary conditions

Φ̃(r) → 0 as |r| → ∞. (4.2.15)

In the above new linear model, to ensure the linearization would not introduce significant

disturbance to the original nonlinear equation, the magnitude |Φ̃| needs to be sufficiently

close to zero in the solvent domain Ds everywhere. Unfortunately, this condition may still

not be satisfied in most real applications when the ionic strength is not weak enough. On

the other hand, Proposition 4.2.1 reveals a fundamental principle: A linearization can only

apply to a (component of a) function whose magnitude is close enough to zero. To improve

Scheme A, we propose another linearization scheme as follows.

Proposition 4.2.3. Suppose G and Ψ are pre-calculated. If there exists a given function

W such that |Φ̃(r) − W (r)| is sufficiently close to zero, then the Boltzmann term can be

linearized by
n
∑

i=1

ZiMie
−ZiΦ(r)

≈ A2(r) − B2(r)Φ̃(r)

(4.2.16)

where

A2(r) =
n
∑

i=1

(

1 + ZiW (r)
)

ZiMie
−Zi[G(r)+Ψ(r)+W (r)], (4.2.17)

and

B2(r) =
n
∑

i=1

−Z2
i Mie

−Zi[G(r)+Ψ(r)+W (r)]. (4.2.18)

Proof. The proof is similar as the one of Proposition 4.2.1, the linearization was applied at
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the third step in the following derivations

n
∑

i=1

ZiMie
−ZiΦ(r)

=
n
∑

i=1

ZiMie
−Zi[G(r)+Ψ(r)+W (r)−W (r)+Φ̃(r)]

=
n
∑

i=1

ZiMie
−Zi[G(r)+Ψ(r)+W (r)]e−Zi(Φ̃(r)−W (r))

≈
n
∑

i=1

ZiMie
−Zi[G(r)+Ψ(r)+W (r)]

(

1 − Zi(Φ̃(r) −W (r))
)

=
n
∑

i=1

(

(

1 + ZiW (r)
)

ZiMie
−Zi[G(r)+Ψ(r)+W (r)]

− Z2
i Mie

−Zi[G(r)+Ψ(r)+W (r)]Φ̃(r)
)

=A2(r) + B2(r)Φ̃(r) ∀r ∈ Ds.

(4.2.19)

Remark 4.2.4. For the 1:1 ionic solution, the linearization can be performed as

sinh(Φ(r))

= sinh(G(r) + Ψ(r) + W (r) −W (r) + Φ̃(r))

= sinh((G(r) + Ψ(r) + W (r)) + (Φ̃(r) −W (r)))

≈ sinh(G(r) + Ψ(r) + W (r)) + cosh(G(r) + Ψ(r) + W (r))(Φ̃(r) −W (r))

= sinh(G(r) + Ψ(r) + W (r)) − cosh(G(r) + Ψ(r) + W (r))W (r)

+ cosh(G(r) + Ψ(r) + W (r))Φ̃(r), ∀r ∈ Ds.

(4.2.20)

According to Proposition 4.2.3, we get the following linear equation for solving Φ̃:



















−ǫp∆Φ̃(r) = 0, r ∈ Dp,

−∇ ·
(

ǫ∞∇Φ̃(r) + (ǫs − ǫ∞)∇(Qλ ∗ Φ̃)(r)
)

− e2c
ǫ0kBT

B2(r)Φ̃(r) = A2(r), r ∈ Ds,

(4.2.21)

with the same interface conditions (4.2.14) and boundary conditions (4.2.15) as in Proposi-

tion 4.2.1.
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Remark 4.2.5. To ensure that Proposition 4.2.3 would work, a pre-determined function W

is needed, which is expected to be an good approximation to Φ̃ in the solvent domain. Al-

though this looks an extravagant demand at the first glance, this scheme may still be valuable

in many biomolecular dielectric application problems, in which cases a good approximation

W may be constructed by some other simpler model results or from experimental data.

The above arguments provide an outline to solve the linearized nonlocal PBEs by new

linearization schemes, we conclude it as the following algorithm.

Algorithm 4.2.6. Solve linearized nonlocal PBE by new linearization schemes

1. Calculate G by (4.1.12).

2. Solve Ψ by (4.1.13), where G is used as a known function.

3. Solve Φ̃ by (4.2.13) or by (4.2.21), where G and Ψ are used as two known functions.

4. Obtain Φ = G + Ψ + Φ̃.

4.3 Numerical algorithms

In this section, we propose a numerical algorithm to solve the new linear nonlocal PBE by

using the finite element method, and discuss some technique details in developing a program

software package. Traditionally, the Poisson-Boltzmann equation is usually solved by using

the finite difference method or its variants, due to its high efficiency. Two main reasons for

us to choose the finite element method here are

1. The nonlocal PBE and its linearizations have strong singularities induced by the point

charge terms. In Mathematics, these equations are only well-defined in their varia-

tional forms, and the finite element method is naturally designed to solve variational

problems.

2. In many application problems involving PBE and nonlocal PBE, the object is one or

multiple biomolecules with very a complicated three-dimensional geometrical shape.

The classic finite different method usually ignores the interface condition defined on

the biomolecular surface, which may introduce a significant error. On the other hand,
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the finite element method does not have this difficulty. Because all interface conditions

can be naturally included if the finite element space is chosen appropriately.

4.3.1 Reformulation into PDE systems

First, notice that if we program directly according to Algorithm (4.2.6) by the standard

finite element method, the convolution terms Qλ ∗Ψ and Qλ ∗ Φ̃ would induce dense stiffness

matrices. This may make the programming implementation very hard and increase the com-

putation cost drastically. Therefore, similar as solving the nonlocal Debye-Hückel equation

in Chapter 3, we apply the reformulation technique to reformulate these integral-differential

equations into pure PDE systems, such that the convolution terms can be removed. In par-

ticular, we regard the convolutions of G, Ψ, and Φ̃ with kernel function Qλ as three auxiliary

functions, respectively. For the convolution of G, its analytical formula can be found, while

for the other two, two equations can be built and coupled with (4.1.13) and (4.2.13) (or

(4.2.21)) to form two systems of pure partial differential equations. In fact, we have the

following algorithm.

Algorithm 4.3.1. Denoting u0 = Qλ ∗G, u1 = Qλ ∗ Ψ, and u2 = Qλ ∗ Φ̃, the solution Φ of

the new linear nonlocal PBE (4.1.9) according to Proposition 4.2.1 can be obtained by:

1. Calculate G by

G(r) =
e2c

4πǫ0ǫpkBT

np
∑

j=1

zj
|r− rj|

, (4.3.1)

and u0 by

u0(r) =
e2c

4πǫ0ǫpkBT

np
∑

j=1

zj(1 − e−|r|/λ)

|r| . (4.3.2)

2. Solve Ψ and u1 from the following system














∆Ψ(r) = 0, r ∈ Dp,

−ǫ∞∆Ψ(r) +
ǫs − ǫ∞

λ2

(

Ψ(r) − u1(r)
)

=
ǫ∞ − ǫs

λ2

(

G(r) − u0(r)
)

, r ∈ Ds,

−λ2∆u1(r) + u1(r) − Ψ(r) = 0, r ∈ R
3,

(4.3.3)

with boundary conditions

u1(r) → 0, Ψ(r) → 0 as |r| → ∞, (4.3.4)
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and interface conditions






















Ψ(s−) = Ψ(s+), s ∈ Γ,

ǫp
∂Ψ(s−)

∂n(s)
= ǫ∞

∂Ψ(s+)

∂n(s)
+ (ǫs − ǫ∞)

∂u1(s)

∂n(s)

+(ǫs − ǫ∞)
∂u0(s)

∂n(s)
+ (ǫ∞ − ǫp)

∂G(s)

∂n(s)
, s ∈ Γ.

(4.3.5)

3. Solve Φ̃ and u2 from the following system


































∆Φ̃(r) = 0, r ∈ Dp,

−ǫ∞∆Φ̃(r) +
ǫs − ǫ∞

λ2

(

Φ̃(r) − u2(r)
)

+
e2c

ǫ0kBT
Z2

i Mie
−Zi[G(r)+Ψ(r)]Φ̃(r) =

n
∑

i=1

ZiMie
−Zi[G(r)+Ψ(r)], r ∈ Ds,

−λ2∆u2(r) + u2(r) − Φ̃(r) = 0, r ∈ R
3,

(4.3.6)

with boundary conditions

u2(r) → 0, Φ̃(r) → 0 as |r| → ∞, (4.3.7)

and interface conditions










Φ̃(s−) = Φ̃(s+), s ∈ Γ,

ǫp
∂Φ̃(s−)

∂n(s)
= ǫ∞

∂Φ̃(s+)

∂n(s)
+ (ǫs − ǫ∞)

∂u2(s)

∂n(s)
, s ∈ Γ.

(4.3.8)

4. Obtain the solution by

Φ(r) = Φ̃(r) + Ψ(r) + G(r). (4.3.9)

The solution of (4.2.21) according to Proposition 4.2.3 can be obtained by the same

procedure, only except for replacing (4.3.6) by the following equation when for solving Φ̃:










































∆Φ̃(r) = 0, r ∈ Dp,

−∇ ·
(

ǫ∞∇Φ̃(r) + (ǫs − ǫ∞)∇u2(r)
)

+
e2c

ǫ0kBT

n
∑

i=1

Z2
i Mie

−Zi[G(r)+Ψ(r)+W (r)]Φ̃(r)

=
n
∑

i=1

(1 + ZiW (r))Mie
−Zi[G(r)+Ψ(r)+W (r)], r ∈ Ds,

−λ2∆u2(r) + u2(r) − Φ̃(r) = 0, r ∈ R
3,

(4.3.10)

where W is a pre-determined function that is expected to be a good approximation of Φ̃ in

the solvent domain Ds.
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4.3.2 Variational forms

Here, we restrict our discussion to a bounded domain Ω which is large enough to hold Dp,

such that

Ω = Dp ∪Ds ∪ Γ.

The variational form of a partial differential equation can be obtained by multiplying a

test function on both sides the equation, then taking integrals on Ω and applying Green’s

identities. We denote U and V as trial function spaces defined on Ω, and U0 = {u|u ∈
U, u|∂Ω = 0}, V0 = {v|v ∈ V, v|∂Ω = 0} as the test function spaces.

Proposition 4.3.2. (The variational problem for solving Ψ) Provided G and u0 defined by

(4.3.1) and (4.3.2) respectively, find (Ψ, u1) in the product space U × V , such that

ǫp

∫

Dp

∇Ψ(r) · ∇v1(r)dr + ǫ∞

∫

Ds

∇Ψ(r) · ∇v1(r)dr + (ǫs − ǫ∞)

∫

Ds

∇u1(r) · ∇v1(r)dr

+λ2

∫

Ω

∇u1(r) · ∇v2(r)dr +

∫

Ω

(

u1(r) − Ψ(r)
)

v2(r)dr

= (ǫ∞ − ǫs)

∫

Ds

∇u0(r) · ∇v1(r)dr + (ǫp − ǫ∞)

∫

Ds

∇G(r) · ∇v1(r)dr,

(4.3.11)

for any v1 ∈ U0 and any v2 ∈ V0.

Proposition 4.3.3. (The variational problems for solving Φ̃ by Proposition 4.2.1) Provided

G and u0 defined by (4.3.1) and (4.3.2) respectively, and suppose Ψ has been solved previously

from (4.3.11). Find (Φ̃, u2) in U × V , such that

ǫp

∫

Dp

∇Φ̃(r) · ∇v1(r)dr+ǫ∞

∫

Ds

∇Φ̃(r) · ∇v(r)dr

+(ǫs − ǫ∞)

∫

Ds

∇u2(r) · ∇v1(r)dr+
e2c

ǫ0kBT

n
∑

i=1

Z2
i Mi

∫

Ds

e−Zi[G(r)+Ψ(r)]Φ̃(r)v1(r)dr

+λ2

∫

Ω

∇u2(r) · ∇v2(r)dr+

∫

Ω

(

u2(r) − Φ̃(r)
)

v2(r)dr

=
n
∑

i=1

ZiMi

∫

Ds

e−Zi[G(r)+Ψ(r)]v1(r)dr

(4.3.12)

for any v1 ∈ U0 and any v2 ∈ V0.
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Proposition 4.3.4. (The variational problems for solving Φ̃ by Proposition 4.2.3) Provided

G and u0 defined by (4.3.1) and (4.3.2) respectively, and suppose Ψ has been solved previously

from variational problem (4.3.11). Find (Φ̃, u2) in U × V , such that

ǫp

∫

Dp

∇Φ̃(r) · ∇v1(r)dr+ǫ∞

∫

Ds

∇Φ̃(r) · ∇v(r)dr

+(ǫs − ǫ∞)

∫

Ds

∇u2(r) · ∇v1(r)dr+
e2c

ǫ0kBT

n
∑

i=1

Z2
i Mi

∫

Ds

e−Zi[G(r)+Ψ(r)+W (r)]Φ̃(r)v1(r)dr

+λ2

∫

Ω

∇u2(r) · ∇v2(r)dr+

∫

Ω

(

u2(r) − Φ̃(r)
)

v2(r)dr

=
n
∑

i=1

ZiMi

∫

Ds

e−Zi[G(r)+Ψ(r)]v1(r)dr

(4.3.13)

for any v1 ∈ U0 and any v2 ∈ V0.
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Chapter 5

Program Package and Numerical

Results

Software is the realization of numerical theory and algorithm. As an implementation of our

nonlocal Debye-Hückel equations and nonlocal Poisson-Boltzmann equations, we developed

a software program package to solve these equations. We validated this program package on

some model problems whose analytical solutions are viable. We then use it to solve some

simple applications, which exhibits its potential to be valuable in more practical problems.

All these tests were completed on a Mac Pro workstation with one 3.7 GHz Intel Xeon E5

processor and 64 GB memory.

5.1 Software program package development

According to the numerical algorithms described in Chapter 3 and Chapter 4, we developed

a finite element program package to solve the nonlocal Debye-Hückel equations and the new

linear nonlocal Poisson-Boltzmann equations. This package is programmed in a combination

of Python, C/C++ and Fortran programming languages. Particularly, it is built based on

the popular finite element library DOLFIN from the FEniCS project [77, 78], which contains

many finite element bases, fast linear solvers and useful technical tools. It provides a platform

for programming PDE variational problems in a concise way, in the mean time, keeps high

efficiency on underlying numerical calculations. To solve biomolecular cases, we created a

mesh generator based on two three-dimensional mesh structure packages: GAMer [79] and

Tetgen [80]. This mesh generator can be easily used, as users only need to prepare a
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protein data bank (PDB) file for a protein structure [81, 82], and input several mesh control

parameters. The generator will automatically identify the protein surface, either according

to an analytic expression or by using a probe rolling ball, and then generate a triangular

mesh that preserves the geometry of the protein surface. This surface mesh will be passed

to Tetgen for filling in cells to create a complete tetrahedral mesh that can be used in finite

element calculations. The whole mesh generation process has been observed being very

efficient and robust when appropriate mesh parameters are chosen. Besides, we programmed

several Fortran subroutines for efficiently calculating G, ∇G and their convolutions according

to analytical formulas. At last, we wrote all main driver files in Python scripts to provide a

user-friendly interface of our package on the top level. All other language packages have been

converted into Python modules by using SWIG [83] (for C/C++) or F2PY [84] (for Fortran)

such that they can be easily invoked in the driver files.

5.2 Validations on the nonlocal Debye-Hückel equation

5.2.1 A center point charge case

We first test the nonlocal Debye-Hückel equation (3.4.1) for one single charge locateing at

the origin, i.e., np = 1, z1 = z. In this case, (3.4.1) reduces to























−ǫ∞∆Φ(r) + (ǫs − ǫ∞)∇ ·
∫

R3

Qλ(r− r′)∇Φ(r′)dr′

+
2Me2

ǫ0kBT
Φ(r) =

e2czδ

ǫ0kBT
, r ∈ Ω,

Φ(s) = 0, s ∈ ∂Ω.

(5.2.1)

Using the solution decomposition and reformulation techniques, we will solve Ψ and u1

as the solution of (3.4.6) with G and u0 defined by

G(r) =
e2cz

4πǫ0ǫpkBT
and u0(r) =

e2cz

4πǫ0ǫpkBT
. (5.2.2)

Denote Ψ and u1 as the analytic solutions and Ψh and u1,h as numerical solution. We

define the relative error by

‖Ψ − Ψh‖
‖Ψ‖ =

√

∫

Ω
|Ψ(r) − Ψh(r)|2dr
∫

Ω
|Ψ(r)|2dr , (5.2.3)
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and an average relative error, Erel(v) by

Erel(v) =
1

N

√

√

√

√

N
∑

j=1

(

v(rj) − vh(rj)

v(rj)

)2

, (5.2.4)

where vh denotes a finite element approximation to v on a mesh with N nodes (degrees of

freedom) and rj being the jth node.

In the test, we set domain Ω = {r||r| < 10[Å]}, z = 1, ǫ∞ = 1.8, ǫs = 78.54, T =

298.15[K], λ = 15[Å], and Is = 0.1[mol/L]. A tetrahedral mesh of Ω used in this test has

2,955 vertices. A cross-section view of the mesh is shown in Figure 5.1:

Figure 5.1: A cross-section view of the tetrahedral mesh used in the validation test for one
charge case.

We repeat the tests for the finite element product space Uh × Vh, with Uh and Vh being

the linear, quadratic, and cubic Lagrangian polynomial function spaces, respectively. The

errors of numerical solutions for each case are reported in Table 5.1.

5.2.2 Multiple charges

We also test this model for the case of multiple charges that are extracted from real protein

atomic structures. To avoid the singularity induced by Green’s function G as the right hand

side of (3.4.6) in the assembling process, we use meshes only defining on an exterior domain

Ω which excluding all protein atoms, thus there are one interior and one exterior boundary
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Uh × Vh Degree ‖Ψ−Ψh‖
‖Ψ‖

‖u1−u1,h‖

‖u1‖
Erel(Ψ) Erel(u1)

order of freedoms

(1, 1) 2955 × 2 6.83E−1 2.37E−2 3.86E−2 2.06E−3

(2, 2) 23522 × 2 1.37E−1 5.71E−3 2.94E−3 1.75E−4

(3, 3) 79059 × 2 6.73E−2 2.79E−3 7.85E−4 4.66E−5

Table 5.1: Numeric errors of Ψ and u1 by using linear, quadratic and cubic finite element
function spaces for one central charge.

of Ω, both of which are applied the true solution boundary conditions in the calculation. All

the model parameters and constants are set the same as the previous case.

We tested three sets of charges from three protein molecules with PDB ID: 2LZX, 1UCS,

and 1AQ5 respectively, Box-Clip views of the meshes used for the tests are shown in Figure

5.2.

(a) 2LZX (b) 1UCS (c) 1AQ5

Figure 5.2: Box-Clip views of the three tetrahedral meshes used for numerical validations
for multiple charge cases.

Similar to the one-point charge case, we did tests using the linear, quadratic and cubic

finite element methods. The relative error in the L2 norm and the average relative error

Erel. The test results are collected in Table 5.2:
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PDB Uh × Vh Degree of ‖Ψ−Ψh‖L2

‖Ψ‖L2

‖u1−u1,h‖L2

‖u1‖L2
Erel(Ψ) Erel(u1)

(#atoms) order freedoms

2LZX (1, 1) 33658 × 2 1.50E−3 1.49E−3 5.86E−6 4.57E−6

(488) (2, 2) 180271 × 2 1.58E−4 6.55E−5 1.67E−7 3.37E−8

(3, 3) 819626 × 2 1.83E−5 6.19E−6 8.54E−9 1.26E−9

1UCS (1, 1) 48648 × 2 6.23E−3 1.38E−2 1.86E−2 2.06E−3

(997) (2, 2) 360542 × 2 7.89E−4 6.74E−4 1.10E−4 6.42E−4

(3, 3) 1179153 × 2 1.04E−4 6.95E−5 6.22E−6 1.44E−5

1AQ5 (1, 1) 47557 × 2 2.14E−3 3.01E−3 2.26E−3 6.03E−6

(2292) (2, 2) 355628 × 2 2.59E−4 1.96E−4 2.05E−4 8.11E−8

(3, 3) 1166522 × 2 3.59E−5 2.05E−5 1.70E−5 3.54E−9

Table 5.2: Numeric errors of finite element solutions Ψh and u1,h spaces for the three sets
of charges from three proteins (PDB ID: 2LZX, 1UCS, and 1AQ5), respectively.

5.3 Solving new linear nonlocal Poisson-Boltzmann equa-

tions

5.3.1 A nonlocal Born model

To verify our finite element program for solving the new linearized nonlocal Poisson-Boltzmann

equation, we first consider a model problem whose analytical solution is available. Suppose

Dp is a ball centering at the origin with radius a, which represents the solute domain. At the

origin, there is one single point charge with charge quantity z. Thus, under these settings,

we get a specific case of the nonlocal Poisson equation (2.4.11) for ρ = zδ. For clarity, we

write this model in (5.3.1) and call it the nonlocal Born ball model. Note that it has been

reformulated in a system of PDEs.











































−ǫp∆Φ(r) = αzδ, |r| < a,

−ǫ∞∆Φ(r) + α1

(

Φ(r) − (Φ ∗Qλ)(r)
)

= 0, |r| > a,

Φ(s−) = Φ(s+), |s| = a,

ǫp
∂Φ(s−)

∂n(s)
= ǫ∞

∂Φ(s+)

∂n(s)
+ (ǫs − ǫ∞)

∂(Φ ∗Qλ)(s)

∂n(s)
, |s| = a,

Φ(r) → 0 as |r| → ∞.

(5.3.1)
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It has been proved that the solution of the above equation has the following analytical form

[85]:

Φ(r) =











αz

4πaǫpǫs

(

aǫs
|r| + ǫp − ǫs − (ǫ∞ − ǫs)b1

)

r ∈ Dp,

αz

4πǫpǫs|r|
(

ǫp − (ǫ∞ − ǫs)b1e
µ(a−|r|)

)

r ∈ Ds,
(5.3.2)

where the constants b1, b2, and µ are defined as

µ =
1

λ

√

ǫs
ǫ∞

, (5.3.3)

b1 =
aǫs + λ(ǫp − ǫs) sinh a

λ

[a
√
ǫ∞ǫs + λ sinh a

λ
] + aǫs cosh a

λ

, (5.3.4)

and

b2 =
[a
√
ǫ∞ǫs + λ(ǫ∞ − ǫs) − aǫs]e

− a
λ + λ(ǫs − ǫp)

[a
√
ǫ∞ǫs + λ(ǫ∞ − ǫs)] sinh a

λ
+ aǫs cosh a

λ

. (5.3.5)

In the test, we use Ω as the unit ball centering at the origin, and set a = 0.1, ǫp =

2, ǫs = 78.54, and λ = 15, all other parameters are evaluate by their real physical values.

Besides, We use the same mesh as the one used in Section 5.2.1. We also repeat the tests

for Uh × Vh set as the product of the linear, quadratic, and cubic Lagrangian polynomial

function spaces, respectively. For each case, we report the absolute and relative L2 errors

of numerical solutions for each case are reported in Table 5.3. Here, the absolute error of a

numerical solution Φh for the true solution Φ is defined as

‖Φh − Φ‖ =

∫

Ω

[

Φh(r) − Φ(r)
]2

dr, (5.3.6)

and the relative error is defined as ‖Φh − Φ‖/‖Φ‖.

The numerical results shows that as the finite element order raises from 1 to 3, the relative

error of the numerical solution reduces from the order of 10−4 to 10−6. It validates that our

finite element software is accurate.

5.3.2 Proteins in electrolytes

Here, we solve the new linear nonlocal PBE (by Proposition 4.2.1) for a series of proteins

(identified by their PDB IDs) immerse in ionic solution. For each case, the calculating

domain Ω is set as a ball with the protein locating at its center. The radius of Ω is three

times large as the one of the circumsphere of protein. In the test, the ionic solution contains
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FEM Error

Order k ‖Φ − Φh‖ ‖Φ − Φh‖/‖Φ‖
1 5.849E−4 4.611E−3

2 4.760E−5 3.752E−4

3 8.250E−6 6.503E−5

Table 5.3: Errors of the numerical solutions of the nonlocal Born model (5.3.1) by using
our finite element software package. The equation is solved in the linear,
quadratic and cubic Lagrangian finite element space, with 2955, 23522 and
79059 unknowns, respectively.

two monovalent ions carrying opposite charges (e.g. NaCl), with the ionic strength set as

0.1 mol/L, the nonlocal correlation length λ is set to be 15 Å, all other parameters are set

as their real physical values as shown in Table 2.1 and Table 2.2. We collected the central

processor unit (CPU) times for each step in the solution process in Table 5.4.

As we can see from Table 5.4, Ψ and Φ̃ can be solved very quickly by our finite element

package, as they can be found in 10 seconds for most cases. On the other hand, mesh

generation and/or calculating function G and its gradient are the two most time costly steps

in the solution process. This test shows that our finite element package is very efficient, but

also suggests the further improvement on mesh generations to reduce the total calculation

cost.

We also compared the solutions of the local linearized PBE, the traditional linearized

nonlocal PBE and the new linearized nonlocal PBE, respectively. We plotted the electro-

static potential on the surface of a protein in Figure 5.3, and on one cross-section plane of

Ω in Figure 5.4, respectively. These figures are plotted by VMD [3], and ParaView [86],

respectively. Color at each point is determined by the value of the electrostatic potential Φ,

which is measured in the dimensionless form (i.e., under the unit kBT/ec). To get a better

visualization experience, Φ’s value were truncated to −50 ∼ 50 (surface potential view) and

−5 ∼ 5 (cross section potential view) as the lower and upper bounds of the coloring scheme,

respectively. In this comparison test, all experimental settings are the same as the previous

one.
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Protein Mesh CPU time (seconds) and percentage

PDB ID atoms vertices Generate mesh G,∇G, etc. Solve Ψ SolveΦ̃ Total cpu time

2LZX 488 39658 12.6(52.8%) 2.5(10.5%) 3.1(13.0%) 2.8(11.8%) 21.1(100%)

1AJJ 513 55451 17.0(50.0%) 3.7(11.0%) 4.8(14.3%) 4.5(13.2%) 29.9(100%)

1FXD 811 58876 18.3(47.0%) 6.3(16.1%) 5.6(14.3%) 4.7(12.0%) 34.9(100%)

4PTI 892 67701 20.8(37.2%) 8.3(14.9%) 11.6(20.8%) 9.4(16.7%) 9.4(100%)

1CID 2783 32968 13.9(42.0%) 11.9(35.9%) 2.5(7.5%) 2.2(6.6%) 30.5(100%)

2AQ5 6024 62045 27.1(30.0%) 48.3(53.3%) 5.7(6.4%) 4.8(5.2%) 85.9(100%)

1HPT 852 22666 8.7(54.7%) 2.5(15.8%) 1.5(9.6%) 1.4(9.0%) 14.2(100%)

1SVR 1433 30654 11.4(47.7%) 5.7(24.0%) 2.3(9/6%) 2.0(8.5%) 21.3(100%)

1A63 2065 38287 16.0(46.0%) 10.3(29.5%) 3.1(8.8%) 2.6(7.5%) 32.0(100%)

1A7M 2803 34478 14.6(42.1%) 12.5(36.0%) 2.8(8.0%) 2.3(6.7%) 32.2(100%)

1F6W 8243 23923 21.6(41.6%) 25.6(49.2%) 1.7(3.2%) 1.4(2.7%) 50.2(100%)

1C4K 11439 32690 30.8(35.4%) 49.0(56.4%) 2.6(3.0%) 2.1(2.4%) 84.5(100%)

Table 5.4: CPU time for solving the new linear nonlocal PBE (Proposition 4.2.1) on twelve
proteins that have number of atoms range from 513 to 11439. Here, we list the
CPU time of each main step in the solution process and their percentages out of
the total time. For most of cases, all calculations including mesh generation can
be finished within one minute, this shows the high efficiency of our finite
element package.

57



(a) Linearized PBE (b) Traditional linearized
nonlocal PBE

(c) New linearized nonlocal PBE

Figure 5.3: Electrostatic potential distributions on the surface of a protein (PDB ID:
4PTI) as the solutions of linearized PBE, the traditional linearized nonlocal
PBE, and the new linearized nonlocal PBE (Proposition 4.2.1), respectively.
The figures are colored according to the value of Φ at each point on the protein
surface. Φ’s value were truncated at −50 and 50 as the lower and upper bounds
of the coloring scheme, as the dimensionless value (i.e., under the unit kBT/ec).
This figure is plotted by VMD.

(a) Linearized PBE (b) Traditional linearized
nonlocal PBE

(c) New linearized nonlocal PBE

Figure 5.4: A cross-section view of the electrostatic potential Φ in neighboring area around
a protein (PDB ID: 4PTI) surface in an ionic solution. The pictures are colored
according to the value of Φ at each point on the slice-cutting plane. In the
coloring scheme, Φ’s value were truncated at −5 and 5 as the lower and upper
bounds (under the unit kBT/ec). The green domain in the center represents the
protein area on this slice cut. This figure is plotted by ParaView.
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Chapter 6

Conclusions

In this dissertation, a numerical method for investigating electrostatic dielectric properties of

aqueous electrolytes was studied. This method is based on the continuum solvent approach,

and combines the classic Poisson-Boltzmann theory and the nonlocal dielectric modeling

scheme. In this way, a mathematical framework was built for nonlocal electrostatic models,

which is described in an integral-differential equation with respect to the unknown func-

tion Φ, the electrostatic potential. As two specific cases, this framework was studied in

two different contexts, one for a single solvent domain case and the other for multiple di-

electric domain case, respectively. Correspondingly, two specific nonlocal dielectric models

are proposed respectively: the Debye-Hückel equation and the nonlocal Poisson-Boltzmann

equation. Both these two equations consider the nonlocal dielectric effect as a convolution

term which describes the nonlocal response between the electric field and the displacement

field. They also assume that the concentration functions of dissolved ions satisfy the non-

linear Boltzmann distributions. To analyze and solve these models, a reformulation scheme

was applied to eliminate the convolution term, such that their are rewritten into a sys-

tem of partial differential equations from the original integral-differential form. Besides, to

overcome the difficulties induces by the Dirac delta singularity, a solution decomposition

technique was used to split the original solution into two or three components such that one

carries all singularities with explicit algebraic formula, and the others satisfy well defined

equations. The nonlocal Debye-Hückel equations are suitable for a pure solution domain

case, such as the electric double layer problems, which has a simpler mathematical form and

easier to analyze. Particularly, in this thesis, a linearized nonlocal Debye-Hückel equation
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was thoroughly studied and its analytical solution was found in algebraic form. This result

may be very useful in setting the boundary values for solving nonlinear problems. On the

other hand, the nonlocal Poisson-Boltzmann equations are more complicated due to multiple

domains are involved. But this characteristics makes them especially valuable in applications

involving multiple mediums, such as biomolecules immersed in electrolytes. In this thesis,

we proposed a linearized nonlocal Poisson-Boltzmann by using a new linearization scheme.

This new scheme was developed based on the solution decomposition technique as previously

mentioned. It carefully chooses the component of the unknown function to be linearized,

such that it is expected to induce less disturbance and achieve a better approximation to the

original nonlinear equation than the traditional scheme. It also provides a good initial guess

for solving the full nonlinear equation. As last, based on the theoretic analyses, numerical

algorithms and a finite element software package were developed to solve these models nu-

merically, as well as to validate the analytical solution. According to the data of numerical

tests, this software package is effective and efficient in solving partial differential equations

and finding solutions.
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