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Coupling urban cellular automata with ant colony optimization
for zoning protected natural areas under a changing landscape

Xia Li*, Chunhua Lao, Xiaoping Liu and Yimin Chen

School of Geography and Planning, Sun Yat-sen University, Guangzhou, PR China

(Received 6 December 2009; final version received 24 March 2010)

Optimal zoning of protected natural areas is important for conserving ecosystems. It is an
NP-hard problem which is difficult to solve by using common geographic information
system (GIS) functions. Another problem is that existing optimization methods ignore
potential land-use dynamics in formulating optimal patterns. This article has developed a
new method for solving complicated zoning problems by using ant colony optimization
(ACO) techniques. Significant modifications have been made, so that traditional ACO
can be extended to the solution of area optimization problems. Two strategies, the single-
year coupling strategy and the merging-year coupling strategy, have been proposed to
couple urban cellular automata with ACO for zoning protected natural areas under a
changing landscape. This proposed method has been tested in the metropolitan region of
Guangzhou, China, by using Geographical Simulation and Optimization System
(GeoSOS) software. The experiments indicate that the modified ACO can effectively
solve this optimization problem without getting stuck in local optima. This method has
better performances compared to other traditional methods, such as simulated annealing
(SA), iterative relaxation (IR), and density slicing (DS). The use of the best coupling
strategy can improve the accumulative utility value of the zoning by 4.3%.Moreover, it is
also found that the adoption of the best protection pattern could significantly promote the
compactness of future urban forms in the study area.

Keywords: cellular automata; ant colony optimization; area optimization; natural
protection; GeoSOS

1. Introduction

The establishment of protected areas can serve the purposes of conservation of species and
ecosystem diversity, preservation of ecological processes, and promotion of scientific
activities and recreation (Snyder et al. 2004, Verdiell et al. 2005). The zoning can be started
by selecting, for each protection level, the units with the highest suitability up to the
fulfillment of the land demand (Geneletti and van Duren 2008). However, the zoning
based on the ranking of suitability values without the contiguity constraint will result in
the fragmentation of land-use patterns. The importance of spatial patterns for ecological
protection and management has been widely discussed in the literature of ecological studies
(Fahrig 1998). Reducing site fragmentation may aid the likelihood of successful species
dispersal, mitigate the effects of human impact, and facilitate reserve management (Pulliam
et al. 1992, Matisziw and Murray 2006).
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Land-use allocationmay involve efficient distribution of activities over feasible sites in order
to create the maximum benefits and least costs. These optimization problems involve shape or
contiguity constraints as well as site attributes (suitability of each cell). Optimal patch design is a
hard geometric problem with a huge complex search space and therefore requires efficient
optimization methods (Brookes 1998). Heuristics should be adopted since exact enumeration
methods cannot be used to solve such hard combinatorial optimization problems. A common
heuristic for solving these zoning problems is based on the well-known simulated annealing
(SA) paradigm (Bos 1993, Verdiell et al. 2005). For example, Verdiell et al. (2005) propose an
SAmethod for creating a protected natural area for ecological purposes. However, thesemethods
are usually applied to the spatial data of coarse resolutions with a limited number of cells. For
example, a grid of 900 cells is used for the optimization (Verdiell et al. 2005).

Most spatial assessments of environmental features, potential habitats, and conservation
management areas incorporate implicitly static ecological and geographic relationships
(Halpin 1997). Selecting protected areas based on fixed landscape conditions may be
problematic without considering land-use changes. Zoning of natural areas for protection
is a challenging task in the regions of rapid growing economy and fast urban expansion.

In China, strict mandates for protecting important ecological land areas have to be
implemented for specific regions, such as Dongguan and Shenzhen (Environmental
Department of Shenzhen 2008). A major problem is to balance the trade-off between natural
protection and economic growth. Urban expansion is an inevitable phenomenon because
land consumption is crucial for sustaining economic growth in China. Empirical studies
have shown that urban land expands by 3% when the economy, measured by gross domestic
product, grows by 10% in China (Deng et al. 2008). Land consumption is required to
accommodate the growing population shifted from rural to urban and the expanding
economic activities (Kuznets 1966). It is impractical to restrict urban development by
implementing strict protection plans in these fast-growing regions. Under this situation,
zoning should reconcile multiple conflicting interests as rationally and transparently as
possible (Carsjens and Van der Knaap 2002, Sante-Riveira 2008).

This study aims to develop a dynamic optimization model for zoning the protected areas
under a fast-changing landscape. This kind of optimization may arise in many application
areas, such as selecting biological reserves (Cova and Church 2000), hazardous waste sites
(Van Zee and Lee 1989), and landfill (Minor and Jacobs 1994). First, conventional ant
colony optimization (ACO) will be modified so that it can be suited to the solution of area
optimization problems. A utility function is incorporated in this area optimization ACO by
addressing the factors of ecological suitability and compactness simultaneously. Then this
ACO model will be coupled with an urban cellular automaton (CA) for exploring the
protection scenarios under rapid land-use dynamics. The coupling is based on two strategies:
the single-year coupling strategy and the merging-year coupling strategy. This proposed
method will be tested in Guangzhou, the largest city in south China by using Geographical
Simulation and Optimization System (GeoSOS) software.

2. Methodology

2.1. Basic ACO algorithm

The ACO algorithm, which was first proposed by Dorigo et al. (1991), has the capability of
solving various optimization problems by simulating the behavior of ants in seeking foods.
ACO was initially used to solve the classical traveling salesman problem (TSP) (Dorigo
et al. 1996). In the optimization, an artificial ant selects a city to visit with a probability that is
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related to the amount of pheromone trail tuvðtÞ on the path and the travel distance. This
transition probability from city u to city v for the kth ant at time t is defined as follows
(Dorigo et al. 1996):

pkuvðtÞ ¼
tuvðtÞ½ �a �uvðtÞ½ �bP

x2 allowed k

tuxðtÞ½ �a �uxðtÞ½ �b
; if v 2 allowedk

0 otherwise

8>><
>>: (1)

where tuvðtÞ is the amount of pheromone trail on edge (u,v) and �uvðtÞ is a heuristic function
related to the visibility (distance). The set allowedk ¼ fC - tabukg represents the cities that
can be visited next time without repetition. The parameters of a and b control the relative
importance of trail versus visibility (distance).

The heuristic function �uvðtÞ is calculated as the inverse of the distance between cities u
and v (Dorigo et al. 1996):

�uvðtÞ ¼
1

duv
(2)

where duv is the distance between city u and city v.
At each iteration t, the trail density is updated according to the following formula (Dorigo

et al. 1996):

tuvðt þ 1Þ ¼ ð1� rÞ tuvðtÞ þ�tuvðtÞ (3)

�tuvðtÞ ¼
Xm
k¼1

�tk
uv
ðtÞ (4)

where r is a coefficient such that (1 – r) represents the evaporation of trail between t and
t + n. �tk

uv
ðtÞ is the quantity per unit of length of trail substance laid on path (u,v) by the kth

ant between time t and t + n.
�tk

uv
ðtÞ is calculated by using the following equation (Dorigo et al. 1996):

�tk
uv
ðtÞ ¼

Q
Lk
; if the kth ant visits ðu; vÞ

0; otherwise

(
(5)

where Q is a constant and Lk is the tour length of a solution for the kth ant.

2.2. Modified ACO for area optimization

Recently, Li et al. (2009a, 2009b) have proposed the methods of modifying ACO so that the
ant algorithm can be used to solve complex optimal facility-sitting and path-finding pro-
blems. In this study, ACO is further extended to the solution of area optimization problems.
This type of optimization applications (e.g. optimal zoning for natural protection) usually
requires maximizing the compactness as well as the total suitability of a formulated pattern
(Brookes 2001). The formation of such pattern can be tackled by using the pheromone
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feedback of ants. In forming a natural protection area, an artificial ant will visit a cell and lay
down pheromone on the cell. The amount of deposited pheromone is related to the utility of
the formulated protected area. The larger the amount of pheromone, the more the ants will be
attracted to select this cell. Amore amount of pheromone is in turn deposited on this cell. The
communication between ants based on the pheromone feedback plays a key role in forming
an optimal zoning pattern which can generate the maximum utility. The detailed modifica-
tions of ACO for solving this hard zoning problem are discussed in the following sections.

First, the probability that a cell will be selected for forming the natural protected areas by
the kth ant at time t is modified according to Equation (1):

pki ðtÞ ¼
tiðtÞ½ �a �iðtÞ½ �bP

x2allowedk
txðtÞ½ �a �xðtÞ½ �b

; if i 2 allowedk

0 otherwise

8>><
>>: (6)

where i is a cell to be selected for formulating the protected natural area by the kth ant. The tabu list
(allowedk) is defined to mask out the selected cells which should not be visited again by an ant.

Second, the heuristic function �iðtÞ in Equation (2) should be significantly revised to
incorporate the ecological suitability at cell i for guiding the walking of ants. An artificial ant
is more likely to move toward (select) the cells of higher suitability value so that plausible
protection patterns can be formed. This heuristic function is represented by using the
following equation:

�i ¼
SeiP
x
Sex

· 10 (7)

where Sei is the ecological suitability at cell i, and
P
x
Sex is the sum of the suitability for all

the cells in the study area.
Third, a crucial part of the modification is to incorporate a utility (goal) function in ACO

so that the protected area can be formulated. The variable, Lk, in Equation (5) can represent
the tour length or the total cost of a site visited by the kth ant. The term 1/Lk can then be
replaced by the utility of the natural protection. Therefore, Equation (5) should be revised by
incorporating the utility function:

�tki ðtÞ ¼
QUgoal

dðxÞ þ 1
; if x falls within 5 · 5 window of cell i at time t

0; otherwise

8<
: (8)

whereUgoal is the utility of the protected pattern, and d(x) is the distance from the central cell i.
The variable of d(x) is used to address the neighborhood influences in site selection. A

site should have a higher probability to be selected if its neighbors have already been
included in the protected area. The window size is related to the neighborhood influences
of CA. It is rather common to use 3 · 3 or 5 · 5 window size to address these neighboring
influences in many CA studies (Wu 2002, Li and Yeh 2002). In this study, the window size
for a number of indicators will be set to 5 · 5 in the following sections.

According to the criteria of natural protection, the utility (Ugoal) of a protected pattern
consists of two parts: (1) the average total ecological suitability of all the selected cells and
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(2) the compactness of the pattern. It is expected that the optimal protected pattern should
yield the highest values for the average total ecological suitability and the compactness. This
utility is defined as follows:

Ugoal ¼ weSe þ wcPc (9)

where Ugoal is the utility, Se is the average total ecological suitability, and Pc is the
compactness index of a protected pattern. The parameters we and wc are the weights for
the total ecological suitability and the compactness, respectively.

Suitability analysis is carried out to estimate the average total ecological suitability in
Equation (9). Each site is evaluated according to its significance (ecological suitability) for
nature conservation. Ecological suitability can be estimated from a series of spatial variables
which are retrieved from remote sensing and GIS data (Eastman et al. 1998, Malczewski
1999). These spatial variables include the following:

(1) Normalized difference vegetation index (NDVI)
Many studies indicate that vegetation indices are well correlated with various
vegetation properties including green leaf area, biomass, percent of green cover,
productivity, and photosynthetic activity (Huete 1988). NDVI can be used as an
important indicator for the suitability analysis. This index is calculated according to
the following equation (Tucker 1979):

NDVI ¼ TM4 � TM3

TM4 þ TM3
(10)

(2) Standard deviation of normalized difference vegetation index (NDVIstd)The stan-
dard deviation of NDVI should be a good indicator for representing the biodiversity
of vegetation. This indicator is obtained by using a moving 5 · 5 window:

NDVIstd ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
i
ðNDVIi � NDVIÞ2

5 · 5

vuut
(11)

(3) Modified normalized difference water index (MNDWI)
The aquatic natural areas which are critical to water quality and supply should be
included in the protection. Identification of aquatic natural areas is the most impor-
tant step for such protection. MNDWI can be used to identify aquatic natural areas
effectively (Xu 2006). MNDWI is calculated as follows:

MNDWI ¼ TM2 � TM5

TM2 þ TM5
(12)

(4) Relief amplitude (DEMamp)
Topography is a major factor for natural protection. Areas of high topographic
heterogeneity should be included in the protection zone for maximizing local
variation in climatic, edaphic, and hydrologic habitat features (Halpin 1997).
Relief amplitude (DEMamp), which can be used to represent this topographic
heterogeneity, is calculated by using a moving 5 · 5 window:
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DEMamp ¼ maxðDEMiÞ �minðDEMiÞ (13)

(5) Human-disturbance factors (Hdisturb)

The factors related to human-disturbance dynamics are considered in the selection of
protection areas. Natural habitats could be subject to stress from the activities of
adjacent human-dominated landscapes. There are negative effects if a site is close to a
series of disturbance centers (e.g. urban centers, town centers, roads, and express-
ways), or it has a large amount of urban development in the neighborhood. Therefore,
two spatial variables, proximity disturbance and development intensity disturbance,
are defined to represent these human disturbances for ecological conservation.

The negative factor of proximity disturbance is estimated by using a series of proximity
variables:

Pdisturb ¼ b1DMainCenter þ b2DDistrictCenters þ b3DLTownCenters þ b4DSTownCenters

þ b5DRailways þ b6DSubways þ b7DExpressways þ b8DRoads
(14)

whereDMainCenter is the distance to the main center,DDistrictCenters is the distance to the district
centers,DLTownCenters is the distance to the large town centers,DSTownCenters is the distance to
the small town centers,DRailways is the distance to the railways,DSubways is the distance to the
subways, DExpressways is the distance to the expressways, and DRoads is the distance to the
roads; bm (m = 1, 2, . . ., 8) is the weight of each variable.

The negative factor of development intensity disturbance in the neighborhood is esti-
mated according to the following equation:

Ddisturb ¼

P
x
Dx

5 · 5
Dx ¼ 1; if the cell is developed in the neighborhood
Dx ¼ 0; otherwise

�
(15)

where Ddisturb represents the negative factor of development intensity disturbance, and Dx is
a binary variable indicating if a cell is developed or not in the 5 · 5 neighborhood of cell i.

The multicriteria evaluation (MCE) method is used to estimate the ecological suitability
according to the above spatial variables (Eastman et al. 1998). These spatial variables should
be standardized within the range of [0, 1] before the estimation. The suitability surface is
created by a liner weighted combination of all these spatial variables:

Sei ¼ w1NDVI
0
i þ w2MNDWI0i þ w3ð1� P0disturbÞ

þ w4ð1� D0disturbÞ þ w5DEM
0
ampi þ w6NDVI

0
stdi

(16)

where NDVI0i is the standardized normalized difference vegetation index, MNDWI
0

i is the
standardizedmodified normalized difference water index,P

0

disturb is the standardized proximity
disturbance, D

0

disturb is the standardized development intensity disturbance, DEM0ampi is the
standardized relief amplitude, NDVI0stdi is the standardized standard deviation of normalized
difference vegetation index, and wm ðm ¼ 1; . . . ; 6Þ is the weight for each variable.

The selection of above spatial variables is subject to data availability. If other ecological
data possibly available in the future are included, the suitability surface and optimization
results may be different to some extent. However, the applicability of the proposed method
remains unchanged.
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The average total ecological suitability of a pattern in Equation (9) is then calculated
according to the following equation:

Se ¼

P
i2�

Sei

A
(17)

where � is the cells falling within the protected area, and A is the total area of the protection.
The compactness index in Equation (9) is used to avoid the fragmentation of land-use

patterns. It is calculated according to the total area and its perimeter of a protected scenario
which is composed of all the selected cells. This index is defined according to the following
ratio function:

Pc ¼
ffiffiffi
A
p

L
(18)

where L is the perimeter of a protected scenario.

2.3. Dynamic optimization for zoning protected natural areas

An important feature of this proposed method is to couple CA with the modified ACO, so
that the effects of land-use dynamics can be considered in formulating protected natural
areas. Economic growth and urbanization has resulted in the change of landscape patterns
which can be simulated and predicted by CA models. In the past two decades, a number of
CA models have been developed to solve complex spatial simulation problems related to
urban dynamics and land-use changes. These commonly used models may include
SLEUTH-CA (Clarke et al. 1997), MCE-CA (Wu and Webster 1998), logistic-CA (Wu
2002, Li et al. 2008), ANN-CA (Li and Yeh 2002), and decision-tree CA (Li and Yeh
2004b). Most of these CA models can be calibrated by using empirical information since
they have well-defined structures. More importantly, CA models have the advantages of
simulating large-scale regions within a feasible computation time (Li et al. 2008). These are
the main reasons why CA models, instead of agent-based models, are chosen for the
coupling with optimization models.

In this study, the landscape dynamic, which provide the background conditions (suit-
ability surfaces) for generating the optimal zoning patterns, will be simulated according to
the logistic CA (Wu 2002, Li et al. 2008). The development probability, which is the core of
urban CA, is estimated by incorporating a stochastic factor, a logistic component, a local
interaction factor, and a series of physical constraints (Li et al. 2008):

pt
i
¼ ð1þ ð� ln �ÞaÞ 1

1þ expð�zt
i
Þ f ð�

t
iÞxi (19)

where � is a stochastic factor ranging from 0 to 1, a is a parameter to control the stochastic
degree, z is the global suitability score for urban development, f ð�t

iÞ is the local interaction
factor (development intensity in the neighborhood of �i), and xi is the total constraint score
of cell i.

The global suitability score for urban development in Equation (19) is estimated
according to a linear combination of various proximity variables (Wu 2002):
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zti ¼ b0 þ b1DMainCenter þ b2DDistrictCenters þ b3DLTownCenters þ b4DSTownCenters

þ b5DRailways þ b6DSubways þ b7DExpressways þ b8DRoads
(20)

A coupling paradigm is adopted by integrating urban CA with spatial optimization for
the zoning of protected natural areas. An optimal zoning pattern can be generated based on
the existing land-use pattern or the predicted one in the future years. There are various
optimal patterns subject to the simulated land-use dynamics at different years. The effects of
each optimal pattern can be assessed according to the accumulative utility by considering the
land-use dynamics. If a protection zone is implemented, its effects should not be just
evaluated by the current situations. The benefits of a protection zone should be calculated
under a dynamic environment within a planning period. The accumulative utility value
(Uaccum) is thus defined to address these effects by using the following equation:

Uaccum ¼
X
t

Ugoal ¼
X
t

we

P
i2�

Sei

A
þ wcPc

0
@

1
A (21)

where t is the planning period (e.g. 2008, 2013, 2018, 2023, 2028, 2033, 2038, and 2043).
The coupling of the simulation model with the optimization model is implemented by

using the following procedures:

(1) Establishing a calibrated urban CA model to simulate regional development accord-
ing to logistic regression (Wu 2002, Li et al. 2008)

(2) Running the calibrated CAmodel to predict possible land-use changes which will be
incorporated in the optimization

(3) Obtaining the suitability surface in Equation (16) and the utility function in Equation
(9) for natural protection according to the updates of urban simulation

(4) Creating the optimal patterns by using two strategies of coupling:

l A single-year coupling strategy: The layers of simulated urban areas in the future
years are used to create the suitability surfaces according to Equation (16). The
ACO model is then used to generate optimal patterns based on these suitability
surfaces.

l Amerging-year coupling strategy: All these suitability surfaces are summed up to
create a single merged suitability layer. The ACO model is then used to create the
optimal pattern by directly searching on this merged surface.

For the single-year coupling strategy, there are various optimal patterns with the inputs of the
existing land-use pattern or the predicted one in the future years (e.g. 2008, 2013, 2018,
2023, 2028, 2033, 2038, and 2043). The most optimal zoning pattern is identified according
to the maximum accumulative utility value as described by Equation (21).

3. Model implementation and application results

3.1. Study area and spatial data

The study area covers the metropolitan region of Guangzhou, which has an area of
7434.4 km2. Guangzhou is located at the center of the Pearl River Delta in Guangdong.
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The landscape has been experiencing significant changes because of rapid urban expansion
and population growth in this metropolitan region (Li and Yeh 2004a).

Guangzhou Landsat TM images (Scene No. 122–44 in China Remote Sensing Ground
Station reference system) in 2003 and 2008 were classified to obtain the information about
land-use changes. The classified urban areas in 2003 and 2008 reveal a fast urban expansion
in this period, and provide empirical information for training the CA model. This calibrated
CA model was used to simulate future distributions of urban areas. Urban dynamics is
related to a number of independent variables, such as the distance to the main center, distance
to the district centers, distance to the large town centers, distance to the small town centers,
distance to the railways, distance to the subways, distance to the expressways, and distance
to the roads (Wu and Webster 1998, Li et al. 2008). Figure 1 presents these proximity
variables created by using common GIS functions.

The ACO optimization model involves a number of spatial variables which determine
the suitability of natural protection. The suitability analysis was accomplished by using
remote sensing and GIS data (Eastman et al. 1998, Malczewski 1999). Figure 2 shows the
spatial variables selected for the suitability analysis.

All these spatial variables were converted into a raster format for implementing the
proposed model. The computation is quite intensive because the study region is as large as
7434.4 km2. The resample function of ArcGIS was used to reduce the data burden according

Figure 1. Various proximity variables related to urban dynamics: (a) distance to the main center, (b)
distance to the district centers, (c) distance to the large town centers, (d) distance to the small town
centers, (e) distance to the railways, (f) distance to the subways, (g) distance to the expressways, and (h)
distance to the roads.
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to the cubic convolution sampling method. All these data were resampled to the layers of
90 m grid-cell size with 1698 · 1244 cells for urban simulation. However, the computation
of the area optimization is much more intensive than that of the urban simulation. These
original spatial data were further resampled to the layers of 800 m grid-cell size with
191 · 140 cells for spatial optimization.

3.2. Model implementation and results

The optimal zoning of protected natural areas under a changing landscape was accomplished
by using a GeoSOS. GeoSOS is equipped with a number of urban simulation and optimiza-
tion modules which can be used to simulate urban dynamics and optimize natural protection
patterns. The software can be downloaded at http://www.geosimulation.cn.

3.2.1. Simulation of landscape changes

First, the module of logistic CA in GeoSOS was used to simulate the urban dynamics in the
study area. It is important to calibrate CA models so that future urban development can be
predicted in a more realistic way. GeoSOS provides useful tools for calibrating urban CAs.
The parameters (weights) of CAwill be automatically obtained after the empirical data about
urban development and independent spatial variables (e.g. proximity variables) have been
defined. Table 1 lists the weights of the calibrated urban CA for Equation (20) by using the
calibration procedures of GeoSOS.

Figure 2. Spatial variables for suitability analysis using remote sensing and GIS data: (a) NDVI, (b)
NDVIstd, (c) MNDWI, and (d) DEMamp.

Table 1. Parameters of the calibrated urban CA for the study area by using GeoSOS.

Weights Constant DMainCenter DDistrictCenters DLTownCenters DSTownCenters

1.570 -3.812 -1.314 -0.338 0.184
Weights DRailways DSubways DExpressways DRoads

-3.110 1.152 1.954 -3.397
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This calibrated CAwas then used to simulate the distribution of urban areas in 2008, 2013,
2018, 2023, 2028, 2033, 2038, and 2043 respectively. Figure 3 just shows the simulated
patterns of 2008, 2018, 2028, and 2038. The simulated urban areas in 2008 can be compared
with the actual urban areas classified from the 2008 TM image for validating this simulation
model. A cell-by-cell overlay indicates that the total simulation accuracy is 88.7%.

3.2.2. Optimizing protected areas under a changing landscape

The modified ACO was used to search for the optimal pattern for the protected natural area.
The required area for the protection is assumed to be 3840 km2 with reference to the strategic
planning of Guangzhou. This optimization model involves some parameters which could
have impacts on the optimization results. These parameters can be determined according to
previous studies (Dorigo et al. 1996, Li et al. 2009a, 2009b). Table 2 lists the detailed
parameters for implementing this area optimization ACO.

Suitability analysis involves a number of spatial variables. The weights for each variable
should be decided according to expert experiences and domain knowledge. Table 3 provides
these weights for Equations (14) and (16) based on Saaty’s pairwise comparison method
(Eastman 1998).

The weights in the utility function of Equation (9) may have different combinations. The
sensitivity of these combinations on optimization effects can be analyzed by varying these
weights. The experiments were based on four typical combinations of these weights: (1)
we = 1 and wc = 0; (2) we = 0.7 and wc = 0.3; (3) we = 0.3 and wc = 0.7; and (4) we = 0 and
wc = 1. Figure 4a shows the optimization patterns by using these four settings of weights,
based on the existing urban areas in 2008. It is clear that the compactness factor has an

Figure 3. Simulated urban areas in (a) 2008, (b) 2018, (c) 2028, and (d) 2038.

Table 2. Parameters used in this area optimization ACO.

Iteration a b r Q

1000 5 1 0.01 0.1
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important role for deriving a feasible protection zone. The first combination is an extreme
case which does not consider the compactness factor (wc = 0). As a result, the optimal pattern
(Figure 4a) is too fragmented to be implemented as a practical protection plan. Actually, the
compactness is a high priority factor for ecological conservation (Matisziw and Murray
2006). However, the increase in compactness is at the cost of ecological suitability (Table 4).
An appropriate choice of these weights is important for generating plausible zoning solu-
tions. It is found that the second set of weights (we = 0.7 and wc = 0.3) can produce a very

Table 3. Weights for calculating ecological suitability.

(a) Weights for calculating Equation (14)

Weights DMainCenter DDistrictCenters DLTownCenters DSTowCenters

0.109 0.137 0.153 0.184
Weights DRailways DSubways DExpressways DRoads

0.192 0.029 0.171 0.025

(b) Weights for calculating Equation (16)

NDVI
0

i MNDWI
0

i 1� P
0
disturb 1� D

0
disturb DEM0ampi NDVI0stdi

Weights 0.064 0.214 0.150 0.237 0.058 0.267

Figure 4. Sensitivity analysis (a) and various optimal protected patterns based on urban simulations (b).
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satisfactory compact pattern for natural protection according to the visual interpretation and
the comparison of the trade-off (Table 4). Therefore, the second set of weights was used to
define the utility function of ACO for further analyses.

The optimal pattern for natural area protection can be created according to the existing
urban areas in 2008 (Figure 4b). However, such optimization cannot yield the maximum
accumulative utility under a dynamic landscape. Instead, the optimization model should use
all the land-use patterns in the planning period as inputs. For this purpose, the simulated
urban areas in 2013, 2018, 2023, 2028, 2033, 2038, and 2043 were used to calculate the
negative factor of development intensity disturbance (D

0
disturb). Various suitability surfaces

were then obtained with regard to these simulated scenarios. Two strategies of coupling were
adopted for the implementation of this dynamic optimization. For the single-year coupling
strategy, the suitability surfaces were created based on the simulated urban areas in 2013,
2018, 2023, 2028, 2033, 2038, and 2043 (SIM2013, SIM2018, SIM2023, SIM2028,
SIM2033, SIM2038, and SIM2043). The ACO model was then used to generate each
optimal pattern for these single-year inputs (suitability surfaces) respectively (Figure 4b).
The best optimal pattern was identified among these patterns based on the accumulative
utility value as described in Equation (21). For the merging-year coupling strategy, all these
suitability surfaces related to SIM2013, SIM2018, SIM2023, SIM2028, SIM2033,
SIM2038, and SIM2043 were summed up to create a single merged suitability layer. The
optimal pattern was generated by directly searching on this merged surface.

For the single-year coupling strategy, the highest accumulative utility value (5.0998) of
the optimization is obtained if it is based on the simulated land use in 2028 (Figure 5). The
non-coupling optimization based on the static (existing) land use in 2008 only yields the

Table 4. Sensitivity analysis of this area optimization ACO.

Weights Ecological suitability Compactness

we = 1 and wc = 0 0.4700 0.8606
we = 0.7 and wc = 0.3 0.4625 0.9622
we = 0.3 and wc = 0.7 0.4615 0.9628
we = 0 and wc = 1 0.4511 0.9712

Figure 5. Comparison of the accumulative utility values between the single-year coupling strategy
and the merging-year coupling strategy.
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accumulative utility value of 4.8889. Therefore, the best pattern from the single-year
coupling strategy has a utility improvement of 4.3%, compared to the non-coupling optimi-
zation. For the merging-year coupling strategy, the accumulative utility value (5.1015) is
slightly higher than that of the best pattern from the single-year coupling strategy (5.0998).
Therefore, the performances of the spatial optimization can be significantly improved by
using the proposed single-year coupling strategy or merging-year coupling strategy.

The above analysis has demonstrated that urban dynamics have significant impacts on
spatial optimization. However, optimization patterns should also affect urban dynamics if
these zoning patterns are implemented. The proposed coupling method provides a conve-
nient way for exploring such mutual influences. In this experiment, the zoning patterns are
regarded as a constraint factor for the CA model according to Equation (19). By inputting
different zoning patterns, the CA model will generate different scenarios of urban develop-
ment. Figure 6 clearly shows that the compactness of urban forms is related to the zoning of
natural protected areas. It is found that the future urban forms could be more fragmented if
the optimal zoning is based on the static land use in 2008 (non-coupling). However, the
urban development will become more compact if the zoning is based on the single-year
coupling strategy or merging-year coupling strategy. Therefore, the adoption of proper
zoning for natural protection is also important for creating a more reasonable urban form
in this fast-growing region.

3.2.3 Model validation

There is a question if the proposed ACO model will be trapped at local optima during the
search for optimal zoning patterns. However, it is difficult to know if heuristic models can
reach global optima for high-dimensional data because the optima are unknown. A practical
way is to use well-structured hypothetical data with known optima to validate this ACO
model. Figure 7 shows such a hypothetical suitability surface with multiple peaks, which has
a peak of the highest suitability value at the center and four minor peaks at four corners. The
peak at the center is designed to be large enough to accommodate all the selected cells. It is
obvious that the known optimum is a compact circle at the center. This special design can
help to examine if the proposed model will stop at some local optima (the four minor ‘hills’)

Figure 6. Compactness of future urban forms affected by various optimization schemes.
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(Figure 8). At the beginning, artificial ants are randomly located in the raster suitability
space. These ants will explore the space and try to identify the best locations for forming an
optimal pattern. At the early stage (e.g. 50 iterations), some of these ants did occupy these
local optima (the four minor ‘hills’). However, these ants can quickly get out of these traps
because of the cooperation between ants. Actually, these ants have almost occupied the best
locations for forming the protection zone after 200 iterations. The overlay of the final
formulated pattern with the known optimum pattern reveals a very good fit between them
(Figure 8). This suggests that the proposed model can find the near optimum for area
optimization by using the bottom-up approach of ant intelligence.

Figure 7. Hypothetical suitability surface with multiple peaks.

t = 0(a)

(b) t = 1000(final) Overlay of  the final
and the known

Known optimum

t = 50 t = 200

Figure 8. Model validation using the hypothetical data: (a) escaping from local optimums by ants;
(b) overlay of the modeling optimum and the known optimum.
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As the comparison, the zoning of protected natural areas was also implemented by using
three common methods: (1) SA (Aerts and Heuvelink 2002); (2) the iterative relaxation (IR)
(Eastman et al. 1995); and (3) the density slicing (DS) (Li and Yeh 2001). These methods are
applied to the same data set by using the same utility function so that their performances for
the optimal zoning can be compared with that of the modified ACO. The optimization was
just based on the existing land use in 2008 without considering the coupling effects for
simplicity.

In the SA method, initial locations for n sites which are composed of the protected area
were randomly generated and the initial utility, Ugoal(0), was obtained. A small perturbation
was used to move these initial locations and a new utility value Ugoal(1) was calculated. The
acceptance of such move at each iteration was subject to the following rules (Aerts and
Heuvelink 2002):

If Ugoal(t + 1) . Ugoal(t)

Then, the move is accepted, and
If Ugoal(t + 1) , Ugoal(t) and exp(Ugoal(t + 1) – Ugoal(t))/TC(t). Random[0,1]

then the move is also accepted.
TC(t) is the freezing parameter which is gradually deceasing by using a multiple formula,

TCðt þ 1Þ ¼ �TCðtÞ (22)

where � is a cooling constant (0 , � , 1).
Typical values for this cooling constant are between 0.80 and 0.98 (Laarhoven 1987).

The initial value of temperature (TC(0)) and the cooling constant were set to 100 and 0.98,
respectively. As a result, TC(t + 1) decreases at each step by multiplying the cooling constant.
In this way, the acceptance probability of the worse solution becomes smaller for reaching
the global optimal solution.

The IR program was executed according to the following steps (Eastman et al. 1995): (1)
cells with the utility value greater than a predefined threshold are selected; (2) after removing
those spatially discontinuous areas, the rest of them become candidates; (3) a further
selection is performed, based on the condition that the area of a candidate region should
be greater than the threshold; and (4) the above process is continued until the utility
improvement becomes stabilized.

The DS method, which is unable to include the compactness factor, is very simple to
implement. The zoning is only based on the suitability value by slicing the density of
suitability score. Cells of higher suitability values were selected for formulating the pro-
tected area.

Figures 9 and 10 show the effects of these methods for generating the optimal protected
natural area. ACO can generate the maximum utility value with a very plausible pattern
(Figure 9a). SA seems to be the second best in terms of the total utility value and the pattern
(Figure 9b). However, the computation time of SA is much longer than that of ACO
according to the experiments. The computation times are 41 and 11 min for SA and ACO
respectively, by using a computer with Pentium D 3.4GhZ CPU.

The IR method generally has the capability of deriving the most suitable and continuous
area (Figure 9c). However, its compactness is much poorer than that of ACO and SA. Its total
utility value is also ranked at the third position. The DSmethod has the poorest performances
although it is the simplest one for computation. This method will result in a fragmented
pattern, which can hardly be implemented for practical applications (Figure 9d). In sum-
mary, ACO has the improvement of the compactness over SA, IR, and DS by 4.81%, 7.59%,
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and 21.23%, respectively. ACO also has the improvement of the total utility over SA, IR, and
DS by 1.33%, 3.21%, and 6.71%, respectively (Figure 10). Therefore, the proposed mod-
ified ACO seems to be very attractive for area optimization.

4. Conclusion

This study has demonstrated that ACO can be used to solve the natural-area protection
problems effectively. However, three important steps of modifications are required for
extending ACO to the solution of area optimization problems. These modifications include:
(1) revising the transition probability; (2) defining a heuristic function by encouraging ants
to select the cells of higher suitability values; and (3) incorporating a utility (goal) function
by addressing the criteria of natural protection.

This proposed model has much better performances than other common conventional
models. The comparison between ACO and other common methods, such as SA, IR, and

Figure 9. Zoning of protected natural areas using (a) ACO, (b) SA, (c) IR, and (d) DS methods.

Figure 10. Total utility values for the zoning of protected natural areas using ACO, SA, IR, and DS
methods.
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DS, indicates that ant intelligence has advantages for solving complex spatial optimization
problems. ACO has the improvement of the compactness over SA, IR, and DS by 4.81%,
7.59%, and 21.23%, respectively. ACO also has the improvement of the total utility over SA,
IR, and DS by 1.33%, 3.21%, and 6.71% respectively. Although SA may have close
optimization results with ACO, the computation time of SA is much longer than that of
ACO.

Existing static optimization methods have limitations without considering future land-
use changes in the landscape. This study suggests that this coupling simulation-optimization
model may have contributions for the advances in spatial optimization that can help to
formulate the plans for protecting ecosystems. The coupling is based on two strategies: the
single-year coupling strategy and the merging-year coupling strategy. There is a utility
improvement of 4.3% by using the single-year coupling strategy. The merging-year coupling
strategy can also have a slightly higher value of the accumulative utility value than the
single-year coupling strategy. It is also found that the optimization patterns can further affect
the future development patterns. The compactness of urban forms can be improved if the
best optimization pattern for natural conservation is adopted in the study area.

This area optimization ACO is validated by using hypothetical data in which the optimal
solutions are known. It is expected that a sound optimization model should identify the best
location for site selection after sufficient iterations of simulation. The experiments by using
the hypothetical suitability surface with multiple peaks have indicated that this proposed
model will not be trapped at the local optima. It can reach the global optimum after several
hundreds of iterations.
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