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ABSTRACT

Semiparametric Estimation of the

Survival Function in the Presence of Covariates

by

Madlen Gebauer

The University of Wisconsin-Milwaukee, 2015
Under the Supervision of Professor Jugal K. Ghorai

The main interest of survival analysis is to estimate the distribution function of the

survival time based on observations of a random sample. In this thesis, a semipara-

metric estimator is used not only to estimate the survival probability, but also to

consider the influence of explanatory variables within the estimation. Therefore,

the weighted maximum likelihood estimator of the conditional survival function is

derived and a corresponding pointwise likelihood ratio confidence band is developed.

Subsequently, the established estimator is compared to a similar estimator which

was proposed by Iglesias-Pérez and de Uña-Álvarez [8]. Since the idea of this paper

arose in cooperation with an automotive company, the focus is on the application

of this model in context of the automotive industry.

A method to select covariates which seem to have the most impact on the failure

behavior is derived, using the proposed estimate. Furthermore, the strength of the

impact is identified and a profile of the effect is established.
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Introduction

By analyzing survival data we are interested in the time that passes until a certain

event occurs. In contrast to classical statistics, these studies are more complicated

due to fragmented data and the fact that a variety of additional characteristics in-

fluence the time to failure. There are many data sets that display these features,

thus, the application of survival analysis is vital. The methods are usually applied in

the medical sector, but are also implemented in the fields of engineering, economics

and sociology. The explanatory variables have a decisive influence on the results

of the analyses. For example, time independent quantities such as gender, age, or

medication, as well as time dependent quantities like blood pressure or location can

affect the survival time of a subject.

Often, we are not able to observe the whole information of the failure development.

A study might be terminated before all of the subjects reach completion due to

time or cost considerations. These diverse influences of explanatory variables and

censored data on the survival behavior must be considered within the application

of statistical models.

One of the most popular nonparametric estimators of survival functions is the

Kaplan-Meier estimator. The semiparametric Cox proportional hazards model ad-

ditionally takes the influence of external information into account and provides the

opportunity to compare these effects through the relationship of their correspond-

ing regression coefficients. However, the assumption of proportional hazards in this

model is a major restriction, and therefore may not provide accurate results for

many practical situations. Thus, Dikta [5] proposed an alternative semiparametric
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estimator for the survival function where weaker assumptions are required. This

thesis explores an extension of Dikta’s semiparametric estimator which considers

covariates to estimate the survival function.

The main purpose of this thesis is to assess the effect of several covariates on the sur-

vival time. More precisely, which of the additional factors seem to have the largest

impact on the failure of an object.

This concern arose within an automotive environment where additional information

on failure behavior is available but is not actually used. Covariates such as average

speed, engine performance or torque are potential reasons for car failure. Thus, the

impact of each explanatory variable on failure and the use of this information in

order to improve the particular vehicle parts, relative to the expenses, is of high

interest.

A method to analyze this issue is developed in this paper. First, the semiparametric

likelihood estimator of the conditional survival function is characterized and point-

wise confidence bands based on the likelihood ratio test statistic are provided. Next,

all covariates except one are fixed in order to observe their particular effects on the

survival probability and a conclusion is drawn on how strong the impact of each

variable is on failure.

Finally, the theoretical results are illustrated in an applied framework using an au-

thentic data set provided by an automotive company. The basic steps were to reduce

the numbers of covariates before estimating the conditional probability that an au-

tomobile does not fail until a certain time point, taking into account the additional

information. Therefore, the established semiparametric estimator is used and likeli-

hood ratio confidence bands are provided. Lastly, this estimator is compared to the

semiparametric estimator proposed by Iglesias-Pérez and Uña-Álvarez [8].

This thesis is divided into four Chapters. The first Chapter introduces the reader to

the data set and preliminaries of survival analysis. The semiparametric estimator of

the conditional survival function in the presence of covariates is derived in Chapter

2. Moreover, the maximum likelihood property is shown and a confidence band is
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developed before the established method is applied to a practical example and the

effects of several covariates are assessed in Chapter 3. A summary and future plans

in Chapter 4 conclude this thesis.
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Chapter 1

Preliminaries

In this chapter, the fundamentals and relations in survival analysis that are necessary

to follow this paper are explained.

1.1 Motivation

First, let us analyze the data set we are working with which was provided from an

automotive company.

The whole data set includes around 17, 500 cars. Within this fleet, events on about

500 cars were observed from which we therefore have complete information. For

the remaining 17, 000 cars only fragmentary data is provided due to no observed

failure before the study ended. Any events after the endpoint of the data collection

are unknown. The data set deals with three different types of engines, thus, one

particular type is considered to begin with and the remaining two sets are used for

validation.

To begin, we investigate a car fleet which consists of around 8, 900 cars where 265

failures are observed. For each car, observations of the mileage, an indicator if

an event occurred for that specific car, and 12 variables that contain additional

information such as average fuel consumption, average speed, engine performance

or torque are observed.

In this study, the preliminary variable of interest is the mileage of a car which is in

this case understood as the survival time. Since 12 variables is a lot compared to the
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265 observed failures, and additionally some of the variables are highly correlated,

such as average speed and torque, we have to select those variables which are actually

influencing the failure time of a car.

First of all, the most important methods of descriptive analysis on the data set are

applied to obtain an initial impression and feeling for better understanding. Since

we focus on the observed survival time, the sample (z1, . . . , zn) is considered to be

realizations of the statistical model (Z1, . . . , Zn), where Z1, . . . , Zn are independent

and identically distributed positive random variables with distribution function H.

This sample has a mean of 39, 910, a median of 29, 740 and a standard deviation of

35, 313. A histogram of the data is found in Figure 1.1.

Observed Survival Time

Sample

F
re

qu
en

cy

0 50000 150000 250000 350000

0
50

0
10

00
15

00

Figure 1.1: Histogram of the observed survival time.

We observe an unimodal distribution with positive skew and a very flat right tail.

In conventional statistics we would now determine the empirical distribution func-

tion in order to estimate the actual distribution function. Since the examined data

set is censored, we need to apply modified methods which are introduced in the

following sections.
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1.2 Basic Quantities

In survival analysis, the most important variable is the survival time that describes

the time Y until a certain event occurs.

We understand Y to be a nonnegative random variable which can be interpreted as

the time until an event occurs, or the time until decease. Note that this variable

does not have to be a time-based quantity. It can also represent the mileage until

the engine breaks down which is the case in this study.

Our goal is to analyze Y , thus, we are interested in the survival function S(t) of Y :

S(t) = P[Y > t] = 1− F (t), (t ≥ 0) (1.1)

where F denotes the distribution function of Y .

Besides the survival function, the cumulative hazard function Λ : [0,∞] → [0,∞]

corresponding to F with

Λ(t) = −
∫ t

0

1

S(v−)
dS(v) =

∫ t

0

1

S(v−)
dF (v) (1.2)

is another term for describing the survival time. This result can be derived from

the idea of the corresponding density function, the hazard rate, which is explored

in the following:

One is interested in the chance that an event occurs within the next time step ∆t,

given that one survived t units of time:

P[t < Y ≤ t+4t|Y ≥ t]

4t
=

P[t < Y ≤ t+4t]
4t P[Y ≥ t]

= −S(t+4t)− S(t)

4t
· 1

S(t−)
−→
4t→0

− dS(t)

S(t−)
.

If F is an absolute continuous distribution function, then Λ has a density function

λ which we call the hazard rate corresponding to F and denote it by

λ(t) =
f(t)

S(t)
, (t ≥ 0).
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Here, we define 0
0

= 0.

Therefore,

Λ(t) =

∫ t

0

f(v)

S(v)
dv, (t ≥ 0),

if F is absolute continuous. Note that Λ(0) = 0 and Λ is monotone increasing but

not necessarily bounded and therefore not a distribution function.

Remark 1.2.1. In the continuous case, one can observe the following relation be-

tween the survival function S and the cumulative hazard function Λ, for all t ≥ 0:

S(t) = e−Λ(t) (1.3)

Λ(t) = − ln(S(t)) (1.4)

1.3 Censoring

When events are narrowed down to a particular time frame, we are talking about

censored data. The chosen censoring times may vary from subject to subject. Cen-

sored data occurs in real-life studies where the study might be terminated before all

of the participating subjects realized their events due to time or cost considerations.

There are three different types of censoring: right censoring, left censoring and in-

terval censoring. We focus on right censoring, since the introduced data set only

contains observations from the registration of a car until warranty time expires.

Figure 1.2 provides an example for six cars. The square and the subsequent mileage

Ci denote that the car’s life length was not completely observed, since no event oc-

curred within this certain period of time. We do know that car i did not experience

an event until time Ci but we were not able to observe what happened after this

time point. However, the arrow denotes that we observe an event for car i at time Yi

in the given time horizon. This means that cars 2 and 4 failed within the warranty

time whereas events for cars 1, 3, 5 and 6 have not been observed.

Although, this is an exaggerated representation of failures within a car fleet, it

provides a helpful illustration of the term censoring.
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Figure 1.2: Right censoring.

1.4 Estimating the Survival Function

First, let us introduce some notation:

Let Y1, . . . , Yn be n independent and identical distributed positive random variables

defined on some probability space (Ω,F ,P) with unknown continuous distribution

function F . We consider the random censorship model where these quantities are

censored on the right and we only observe the random variables Z1, . . . , Zn with

distribution function H, where Zi = min {Yi, Ci} denotes the minimum of the sur-

vival time Yi and the censoring time Ci with distribution function G. The censoring

indicator δi = 1{Yi≤Ci} indicates whether Zi is censored (δi = 0) or not (δi = 1).

Furthermore, let Xi be a p-dimensional covariate vector. We assume the censoring

times to be independent of the survival times.

1.4.1 The Kaplan-Meier Estimator

The Kaplan-Meier estimator proposed by Kaplan and Meier [9] is a consistent non-

parametric estimator of the survival function, in case of independent censoring. It

is a modification of the empirical distribution function in case of censored data.
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Moreover, if data is not censored, the estimator reduces to the empirical distribu-

tion function.

The Kaplan-Meier estimator is denoted by

ŜKM(t) =

{
1, 0 ≤ t < t1∏

j:tj≤t

(
1− dj

nj

)
, otherwise

, (1.5)

where dj denotes the number of events at time tj and nj the number of individuals

at risk at time tj−.

In the following, we assume that there is at the most one failure at each time tj and

therefore dj = 1. Rewriting the number of individuals at risk shortly before tj yields

nj = n−Rj + 1,

where Rj denotes the rank of Zj within the Z-sample. This is a consequence of

considering the number of objects for which an event occurred at time tj− to be

equal to Rj − 1. Since the observation time tj is related to the occurrence of events

Zj, we can substitute the tj’s by the Zj’s regarding the product boundaries.

Finally, the Kaplan-Meier estimator can be rewritten as

ŜKM(t) =


1, if 0 ≤ t < Z1:n∏

j:Zj≤t

(
n−Rj

n−Rj + 1

)δj
, otherwise ,

(1.6)

where Z1:n denotes the first order statistic of the Z-sample.

Note that the Kaplan-Meier estimator is a monotonic non-increasing step function

with ŜKM(0) = 1, but not necessarily equal to zero for ŜKM(t) as t→∞.

1.4.2 The Nelson-Aalen Estimator

Because of the relationship of the survival function and the cumulative hazard func-

tion which was pointed out in Remark 1.2.1, we can also estimate the latter one in

order to achieve information about the survival function:
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First define H1(x) := P[δ = 1, Z ≤ x] which can be rewritten as:

H1(x) =

∫ x

0

P[δ = 1|Z = z]dH(z). (1.7)

Using equation(1.2) and applying (1.7) leads to

Λ(t) =

∫ t

0

1

1− F (x−)
dF (x) =

∫ t

0

1

1−H(x−)
dH1(x). (1.8)

A consistent estimator for the cumulative hazard function is given by the Nelson-

Aalen estimator [1].

Let Hn(x) = 1
n

∑n
i=1 1{Zi≤x} denote the empirical distribution function of the Z-

sample with Hn(x−) = lim
z↑x

Hn(z) and H̄n(x) = 1
n

∑n
i=1 1{Zi≤x}δi.

Then, the Nelson-Aalen Estimator is defined by

Λ̂NA(t) =

∫ t

0

1

1−Hn(v−)
dH̄n(v) =

∑
i:Zi≤t

δi
n−Ri + 1

. (1.9)

Using Remark 1.2.1 and the approximation exp(−x) ≈ 1 − x for small x, one can

derive

e−Λ̂NA(t) ≈ ŜKM(t) (1.10)

considering

e−Λ̂NA(t) = exp

{∑
i:Zi≤t

− δi
n−Ri + 1

}
=
∏
i:Zi≤t

exp

{
− δi
n−Ri + 1

}

=
∏
i:Zi≤t

exp

{
− 1

n−Ri + 1

}δi
≈
∏
i:Zi≤t

(
1− 1

n−Ri + 1

)δi
= ŜKM(t).

1.4.3 The Semiparametric Estimator

In order to introduce the semiparametric estimator which was proposed by Dikta

[5], the integrand of H1 is defined by m(x) := P[δ = 1|Z = x] = E[δ|Z = x]. That
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is the conditional expectation of the censoring indicator δ, given Z = x.

Using equation (1.2) and applying the above result (1.8) leads to

Λ(t) =

∫ t

0

1

1−H(x−)
dH1(x) =

∫ t

0

m(x)

1−H(x−)
dH(x). (1.11)

Furthermore, since F is a continuous distribution function we can write:

Λ(t) =

∫ t

0

m(x)

1−H(x)
dH(x) =

∫ t

0

m(x)h(x)

1−H(x)
dx.

Based on equation (1.11), a variety of estimators can be derived simply by specifying

the function m in an appropriate way. Dikta [4] used this possibility and estimated

m parametrically:

Therefore, it is assumed that m(x; θ) belongs to a parametric family {m(x; θ) : θ ∈
Θ}, where the continuous function m(·; ·) is known. Here, θ = (θ1, . . . , θk) ∈ Θ is

the k-dimensional parameter vector and Θ ⊂ Rk denotes the parameter space. The

unknown parameter vector θ is estimated using the sample data (z1, . . . , zn). The

resulting point estimator is then denoted by θ̂ : Rn → Rk.

Estimating θ yields a semiparametric estimator of the cumulative hazard function

(1.11)

Λ̂SP (t) =

∫ t

0

m(x; θ̂)

1−Hn(x−)
dHn(x) =

∑
i:Zi:n≤t

(
m(Zi:n; θ̂)

n− i+ 1

)
, (1.12)

where Z1:n ≤ . . . ≤ Zn:n denote the order statistics of the Z-values.

Applying the same steps we used in order to obtain the approximation in (1.10) to

the semiparametric estimator for the cumulative hazard function (1.12) finally leads

to the semeiparametric estimator which has been proposed by Dikta [5]:

ŜSP (t) =
∏

i:Zi:n≤t

(
1− m(Zi:n; θ̂)

n− i+ 1

)
. (1.13)

Note that this estimator assigns mass to every observation, whereas in case of the

Kaplan-Meier estimator (1.6) only uncensored data points are considered. Basically,

the censoring indicator δi is substituted by the function m(Zi:n, θ̂) for every i.
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Interesting properties of the introduced estimator, such as consistency and asymp-

totic normality, the central limit theorem for the process
√
n(Λ̂SP (t) − Λ(t)) and

weak convergence of the process
√
n((1− ŜSP )− F ) to a centred Gaussian process

were shown by Dikta [4]. The importance of this semiparametric estimator is due to

its superiority to the Kaplan-Meier estimator with respect to asymptotic variance.

Moreover, an extended version of the estimator can simply be applied when using

covariates, as we see in the following section.

1.5 Estimating the Survival Function in the Pres-

ence of Covariates

Since our data set contains additional information which might have an impact

on the occurrence of certain events, we want to incorporate these covariates in

our estimations. Hence, a modification of the semiparametric estimator which was

introduced in Section 1.4.3 is considered to estimate the survival probability in the

presence of covariates. According to Külheim, Dikta and Ghorai [11] the covariates

can simply be included in the function m from the semiparametric estimator (1.13)

in order to derive the desired estimator

ŜCV (t) =
∏

i:Zi:n≤t

(
1−

m(Zi:n, X[i:n]; θ̂)

n− i+ 1

)
, (1.14)

where Z1:n ≤ . . . ≤ Zn:n denote the order statistics of the Z-values and X[i:n] is the

concomitant of the i-th order statistic. In other words, if Zi:n = Zj then X[i:n] = Xj.

Moreover,

m(z, x; θ) = P[δ = 1|Z = z,X = x] = E[δ|Z = z,X = X]

and m(z, x; θ̂) denotes the estimated function m which is derived in the following.

First, we want to state the following remark:

Remark 1.5.1. (ref.[11] Remark 1.1)

The choice of the parametric form of m(z, x; θ) is very important because ŜCV con-
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verges to the survival function provided the assumed form of m(x, z; θ) is the correct

one.

Since m(z, x; θ) = P[δ = 1|Z = z,X = x] = E[δ|Z = z,X = x] it is reasonable to fit

the multiple logistic regression model in order to find an estimator for the unknown

parameter θ of m(z, x; θ).

1.5.1 The Multiple Logistic Regression Model1

Regression methods are a popular technique for data analysis which are concerned

with describing the relationship between an outcome variable and a set of explana-

tory variables.

In our case we want to describe the relationship between the censoring indica-

tor δ, i.e. the ability of observing an event, and the survival time with corre-

sponding covariates. Since the outcome of δ is either 0, in case the data is cen-

sored, or 1 if we observed the actual survival time, the linear regression model

m(z, x; θ) = β0 + β′1x + β2z, where θ = (β1, β2, β3), seems inappropriate due to the

domain of m, which would not necessarily be bounded between 0 and 1.

Therefore, we apply the logit transformation on m(z, x; θ) = E[δ|X = x, Z = z]:

π(z, x; θ) = ln

(
m(z, x; θ)

1−m(z, x; θ)

)
= β0 + β′1x+ β2z. (1.15)

Solving for m(x, z; θ) leads to

m(z, x; θ) =
π(z, x; θ)

1 + π(z, x; θ)
=

exp(β0 + β′1x+ β2z)

1 + exp(β0 + β′1x+ β2z)
(1.16)

for arbitrary parameter β0 ∈ R, β1 ∈ Rp, β2 ∈ R and θ = (β1, β2, β3).

To estimate these regression coefficients, we use the maximum likelihood approach.

In order to construct the likelihood function we consider the following:

δ is either 1 or 0 and m(z, x; θ) describes the vector of conditional probabilities

P[δ = 1|X = x, Z = z]. The probability of the complementary event is then

1This Section is based on the concepts in [7].



14

denoted by P[δ = 0|X = x, Z = z] = 1−m(z, x; θ).

Consider now the n independent observations (Zi, δi, Xi).

Since the likelihood function represents the probability of the observed data as a

function of the unknown parameter, the contribution if δi = 1 is m(Zi, Xi; θ). For

triples with δi = 0, the contribution to the likelihood function is 1−m(Zi, Xi; θ).

As the observations are independent, the likelihood function equals

L(θ) =
n∏
i=1

m(Zi, Xi; θ)
δi(1−m(Zi, Xi; θ))

1−δi . (1.17)

In order to maximize L, we consider the log likelihood function `(θ) := ln (L(θ)):

`(θ) =
n∑
i=1

δi lnm(Zi, Xi; θ) + (1− δi) ln (1−m(Zi, Xi; θ)) . (1.18)

The values β̂0, β̂1 and β̂2 which maximize the log likelihood function make up the

maximum likelihood estimator. Then, m̂(z, x; θ̂) with θ̂ = (β̂0, β̂1, β̂2) is the estima-

tor of the conditional probability that the data is censored, provided that x and z

are known.

There are various possibilities testing for the significance of the logistic model. Se-

lected methods, for instance the Wald test, are discussed within the context of

application in Chapter 3.
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Chapter 2

Estimating the Conditional
Survival Function

At this point, an estimator for the survival function is achieved where additional

information from covariates is incorporated. In order to predict probabilities of

survival for arbitrary values of covariates, the conditional survival function

S(z|x) = P[Z > z|X1 = x1, . . . , Xp = xp].

is considered.

To determine this quantity we propose an estimator S̃(z|x). In order to give an

idea how we came up with the proposal of the weighted semiparametric maximum

likelihood estimator, we first derive the general nonparametric maximum likelihood

estimator for the conditional survival function. Then we introduce a modification of

this estimator, which was suggested by Inglesias-Pérez and Uña-Álvarez [8], before

we show the maximum likelihood property of our proposed estimator.

Finally, a pointwise Likelihood Ratio confidence band is derived in a similar way it

was proposed in Li and Van Keilegom [12] and we conclude this chapter illustrating

properties and modifications of S̃.
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2.1 The Semiparametric Maximum Likelihood Es-

timator for the Conditional Survival Function

First, the nonparametric estimator for the conditional survival function which forms

the basis for the later derivation is motivated.

To begin with, the nonparametric kernel estimate of the conditional mean µ(x) =

E[Z|X = x] is explained by means of the following simple example:

Example 2.1.1 (Motivating the nonparametric kernel estimator).

Consider n randomly selected cars of the same type with similar engines.

Suppose Z1, Z2, . . . , Zn denote the survival time of the engine and let X be the av-

erage fuel consumption in liter per 100 kilometer.

Furthermore, assume that every car of the sample consumes 8 liter per 100 kilo-

meter. Based on this setup, a nonparametric estimator of µ(8) = E[Z|X = 8] is

obtained by

µ̂(8) =
1

n

n∑
i=1

Zi =
n∑
i=1

WiZi,

where Wi := 1
n

.

In other words, each Zi contributes to µ̂(8) by the same amount.

Since not every car consumes exactly the same amount of fuel, we need to adjust

our estimator.

Therefore, we now assume that the cars do not have the same average fuel con-

sumption. Furthermore, suppose only the first car in the sample has an average fuel

consumption of 8 liter per 100 kilometer. If only data from cars which hit exactly

8 liter per 100 kilometer is used, the estimator looks like the following: µ̂(8) = Z1.

However, an estimated sample mean based on only one observation can not be very

reliable.

Another approach is to assign more weight to the observations Zi which have similar

average fuel consumption and less weight than those where the average fuel consump-

tion deviates more.
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Thus, let K(v) be a nonnegative kernel function and hn denotes the bandwidth.

Then, we define the weights by

Wi(x;hn) =
K(x−Xi

hn
)∑n

j=1 K(
x−Xj

hn
)

and hence, a more appropriate nonparametric estimator of the conditional sample

mean µ(x) based on all observations Z1, . . . , Zn is

µ̂(x) =
n∑
i=1

Wi(x;hn)Zi.

The same principle can be applied to derive a nonparametric estimator of the con-

ditional survival function S(z|x) based on the observations (Zi, Xi), when not all

covariates Xi = x.

Let Z1:n < Z2:n < · · · < Zn:n denote the ordered values of Z1, . . . , Zn and Zn+1:n :=

∞. If the value of the covariate is the same for every observed survival time Zi, that

is Xi = x for all i = 1, . . . , n, then the conditional survival function S(z|x) can be

estimated by the sample proportion

Ŝ(z|x) =

∑n
i=1 1{Zi>z}∑n
i=1 1{Zi>0}

=

(∑n
i=1 1{Zi>Z1:n}∑n
i=1 1{Zi>0}

)(∑n
i=1 1{Zi>Z2:n}∑n
i=1 1{Zi>Z1:n}

)
· · ·
(∑n

i=1 1{Zi>Zr−1:n}∑n
i=1 1{Zi>Zr−2:n}

)( ∑n
i=1 1{Zi>Zr:n}∑n
i=1 1{Zi>Zr−1:n}

)

=

(
1−

∑n
i=1 1{Zi=Z1:n}∑n
i=1 1{Zi>0}

)(
1−

∑n
i=1 1{Zi=Z2:n}∑n
i=1 1{Zi>Z1:n}

)
· · ·

(
1−

∑n
i=1 1{Zi=Zr−1:n}∑n
i=1 1{Zi>Zr−2:n}

)(
1−

∑n
i=1 1{Zi=Zr:n}∑n
i=1 1{Zi>Zr−1:n}

)
(2.1)

for Zr:n ≤ z < Zr+1:n.

From equation (2.1) it is obvious that each Zi contributes equally to the estimation

of S(z|x).
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A more reasonable situation is that the covariates differ in their values. That means

that the Xi’s are not all equal to x. Therefore, we weight the terms 1{Zi=Zj:n} by

Wi(x) := Wi(x;hn) for i, j = 1, . . . , n. Then Ŝ(z|x) can be expressed by

Ŝ(z|x) =

(
1−

∑n
i=1Wi(x)1{Zi=Z1:n}∑n
i=1Wi(x)1{Zi>0}

)(
1−

∑n
i=1 Wi(x)1{Zi=Z2:n}∑n
i=1 Wi(x)1{Zi>Z1:n}

)
· · ·

(
1−

∑n
i=1Wi(x)1{Zi=Zr−1:n}∑n
i=1Wi(x)1{Zi>Zr−2:n}

)(
1−

∑n
i=1Wi(x)1{Zi=Zr:n}∑n
i=1 Wi(x)1{Zi>Zr−1:n}

)

=

(
1−

∑n
i=1Wi(x)1{Zi=Z1:n}∑n
i=1Wi(x)1{Zi≥Z1:n}

)(
1−

∑n
i=1 Wi(x)1{Zi=Z2:n}∑n
i=1 Wi(x)1{Zi≥Z2:n}

)
· · ·

(
1−

∑n
i=1Wi(x)1{Zi=Zr−1:n}∑n
i=1Wi(x)1{Zi≥Zr−1:n}

)(
1−

∑n
i=1Wi(x)1{Zi=Zr:n}∑n
i=1 Wi(x)1{Zi≥Zr:n}

)
.

(2.2)

Note that the last factor in (2.2) equals zero for z ≥ Zn:n.

Since at most one term in the numerator of (2.2) is nonzero, Ŝ(z|x) can be rewritten

as

Ŝ(z|x) =
∏
i:Zi≤z

(
1− Wi(x)∑n

j=1 Wj(x)1{Zj≥Zi}

)
. (2.3)

As we consider p covariates in our model, we choose K(·) to be a multidimensional

nonnegative kernel function and determine the weights as shown in the example

above by Wi(x) =
K(x−Xi

hn
)∑n

j=1 K(
x−Xj

hn
)

for i = 1, . . . , n, where hn represents the vector

of the corresponding bandwidth.

2.1.1 Estimator of the Conditional Survival Function by
Virtue of Kaplan and Meier

The basis of nonparametric estimation from incomplete data was first introduced

by Kaplan and Meier [9]. Since we pick up this idea to derive the weighted semi-

parametric conditional estimator, we first give an overview of the derivation of the
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general nonparametric maximum likelihood estimate.

The aim is to locally maximize the weighted likelihood function L(S(·|x)|(Zi, δi, Xi)).

In the following derivation we allow ties and therefore introduce some additional

notations in order to avoid any confusion:

Let 0 < T1 < T2 < · · · < Tk < Tk+1 := ∞ represent k distinct event times among

the Z-sample and let cj denote the number of censored observations in the interval

[Tj, Tj+1). Further, let nj represent the number of uncensored observations at Tj.

Then, the total number of observations adds up to n = c0+c1+· · ·+ck+n1+· · ·+nk.
An illustration of the notation is given in Figure 2.1.

Figure 2.1: Distinct event times for the interval [0, Tk] including the number of
observations.

Moreover, let C
(i)
j be the j-th censored observation in the interval [Ti, Ti+1) for

i = 0, . . . , k and j = 1, . . . , ci and X
(i)
j denote the corresponding value for X. For the

weights which are associated with the censored observations (C
(i)
j , X

(i)
j ) we use the

notation W (x;C
(i)
j , X

(i)
j , hn) where i = 0, 1, . . . , k and j = 1, . . . , ci and similarly for

the weights corresponding to the uncensored data (Ti, X
(i)
j ) we use W (x;Ti, X

(i)
j , hn)

for i = 1, . . . , k and j = 1, . . . , ni.

We first analyze the influence of the uncensored observations in order to derive the

associated likelihood function.

The weighted contribution of the j-th uncensored observation at time Ti is

(S(Ti − |x)− S(Ti|x))W (x;Ti,X
(i)
j ,hn).

Therefore, the total contribution of all uncensored observations at time Ti is

(S(Ti − |x)− S(Ti|x))
∑ni

j=1 W (x;Ti,X
(i)
j ,hn)
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and the total contribution from all uncensored observations at time points T1, . . . , Tk

is finally

k∏
i=1

(S(Ti − |x)− S(Ti|x))
∑ni

j=1 W (x;Ti,X
(i)
j ,hn) (2.4)

and note that S(0|x) = 1.

Let us now consider the influence of the censored observations:

The contribution of the censored observations (C
(i)
j , X

(i)
j ) in the time interval [Ti, Ti+1)

is given by (
S(C

(i)
j |x)

)W (x;C
(i)
j ,X

(i)
j ,hn)

.

Then, the total input of all censored observations in [Ti, Ti+1) is

ci∏
j=1

(
S(C

(i)
j |x)

)W (x;C
(i)
j ,X

(i)
j ,hn)

and hence the total contribution of all censored observations can be expressed by

k∏
i=0

ci∏
j=1

(
S(C

(i)
j |x)

)W (x;C
(i)
j ,X

(i)
j ,hn)

. (2.5)

Finally, the weighted likelihood function based on all censored and uncensored ob-

servations is given by the composition of equations (2.4) and (2.5)

L(S(·|x)|(Zi, δi, Xi)) =
k∏
i=1

(S(Ti − |x)− S(Ti|x))
∑ni

j=1 W (x;Ti,X
(i)
j ,hn)×

k∏
i=0

ci∏
j=1

(
S(C

(i)
j |x)

)W (x;C
(i)
j ,X

(i)
j ,hn)

. (2.6)

It was shown by Kaplan and Meier [9] that the likelihood function is maximized at a

survival function that is a step function with jumps at the uncensored observations.

Therefore, we only consider those S(·|x) which are constant on the interval [Ti, Ti+1)
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where i = 0, . . . , k in order to maximize the weighted likelihood function in (2.6).

Choosing an S(·|x) which is constant on [Ti, Ti+1) can be done by setting

S(C
(i)
j |x)W (x;C

(i)
j ,X

(i)
j ,hn) = S(Ti|x)W (x;C

(i)
j ,X

(i)
j ,hn).

Therefore, the likelihood function (2.6) reduces to

L(S(·|x)|(Zi, δi, Xi)) =
k∏
i=1

(S(Ti − |x)− S(Ti|x))
∑ni

j=1 W (x;Ti,X
(i)
j ,hn)×

k∏
i=0

(
S(Ti|x)

)∑ci
j=1 W (x;C

(i)
j ,X

(i)
j ,hn)

. (2.7)

Define p0 = 1 and

pi :=
S(Ti|x)

S(Ti − |x)
=

S(Ti|x)

S(Ti−1|x)

for i = 1, . . . , k.

Further, let T0 = 0 and S(0|x) = 1. Observe that for every fixed 1 ≤ i ≤ k the

unknown conditional survival function which is to be estimated equals

S(Ti|x) =

(
S(Ti|x)

S(Ti−1|x)

)(
S(Ti−1|x)

S(Ti−2|x)

)
· · ·
(
S(T2|x)

S(T1|x)

)(
S(T1|x)

S(T0|x)

)
= pipi−1 · · · p1. (2.8)

Using these results leads to the following simplification for the censored contribution

in equation (2.5):

k∏
i=0

(
S(Ti|x)

)∑ci
j=1W (x;C

(i)
j ,X

(i)
j ,hn)

=
k∏
i=0

(
p1p2 . . . pi

)∑ci
j=1 W (x;C

(i)
j ,X

(i)
j ,hn)

= p
∑k

i=1

∑ci
j=1W (x;C

(i)
j ,X

(i)
j ,hn)

1 × p
∑k

i=2

∑ci
j=1 W (x;C

(i)
j ,X

(i)
j ,hn)

2

× p
∑k

i=k−1

∑ci
j=1W (x;C

(i)
j ,X

(i)
j ,hn)

k−1 × p
∑ck

j=1W (x;C
(k)
j ,X

(k)
j ,hn)

k
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=
k∏
l=1

p
∑k

i=l

∑ci
j=1 W (x;C

(i)
j ,X

(i)
j ,hn)

l . (2.9)

In order to rewrite the uncensored contribution in equation (2.4) we consider

S(Ti − |x)− S(Ti|x) = S(Ti−1|x)− S(Ti|x)

= S(Ti−1|x)

(
1− S(Ti|x)

S(Ti−1|x)

)
= p1p2 · · · pi−1(1− pi)

for 2 ≤ i ≤ k, where the last equality holds because of equation (2.8) and

S(T1 − |x)− S(T1|x) = 1− p1.

Substituting this result in (2.4) we obtain

k∏
i=1

(S(Ti − |x)− S(Ti|x))
∑ni

j=1 W (x;Ti,X
(i)
j ,hn)

=
k∏
i=1

((p1p2 . . . pi−1)(1− pi))
∑ni

j=1 W (x;Ti,X
(i)
j ,hn)

=

(
k∏
i=1

(1− pi)
∑ni

j=1W (x;Ti,X
(i)
j ,hn)

)(
k∏
i=2

(p1p2 . . . pi−1)
∑ni

j=1W (x;Ti,X
(i)
j ,hn)

)

=

(
k∏
i=1

(1− pi)
∑ni

j=1W (x;Ti,X
(i)
j ,hn)

)(
p
∑k

i=2

∑ni
j=1 W (x;Ti,X

(i)
j ,hn)

1 p
∑k

i=3

∑ni
j=1 W (x;Ti,X

(i)
j ,hn)

2 ×

· · · × p
∑k

i=k−1

∑ni
j=1W (x;Ti,X

(i)
j ,hn)

k−2 p
∑nk

j=1W (x;Tk,X
(k)
j ,hn)

k−1

)

=

(
k∏
i=1

(1− pi)
∑ni

j=1W (x;Ti,X
(i)
j ,hn)

)(
k−1∏
l=1

p
∑k

i=l+1

∑ni
j=1 W (x;Ti,X

(i)
j ,hn)

l

)
(2.10)

Replacing these two quantities from (2.9) and (2.10) in equation (2.7) yields the
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weighted likelihood function

L(S(·|x)|(Zi, δi, Xi)) =

(
k∏
l=1

p
∑k

i=l

∑ci
j=1 W (x;C

(i)
j ,X

(i)
j ,hn)+

∑k
i=l+1

∑ni
j=1W (x;Ti,X

(i)
j ,hn)

l

)

×

(
k∏
i=1

(1− pi)
∑ni

j=1 W (x;Ti,X
(i)
j ,hn)

)
(2.11)

Then, the maximum likelihood estimates of p1, . . . , pk are obtained by solving the

equations
∂ lnL(S(·|x)|(Zi, δi, Xi))

∂pl
= 0,

for l = 1, . . . , k.

We obtain

p̂l =(
1−

∑nl

j=1W (x;Tl, X
(l)
j , hn)∑k

i=l

∑ci
j=1W (x;C

(i)
j , X

(i)
j , hn) +

∑k
l+1

∑ni

j=1W (x;Ti, X
(i)
j , hn) +

∑nl

j=1 W (x;Tl, X
(l)
j , hn)

)
(2.12)

and for l = k this expression reduces to

p̂k =

(
1−

∑nk

j=1W (X;Tk, X
(k)
j , hn)∑ck

j=1W (x;C
(k)
j , X

(k)
j , hn) +

∑nk

j=1W (x;Tk, X
(k)
j , hn)

)
.

Hence, from equation (2.8), it follows that the nonparametric maximum likelihood

estimator of S(z|x) based on the data {(Zi, δi, Xi), i = 1, . . . , n} is given by

Ŝ(z|x) =

{
1, if 0 ≤ z < T1∏i

j=1 p̂j, if Ti ≤ z < Ti+1,
(2.13)

for 1 ≤ i ≤ k.

Note that if there is no censored observation after or at time Tk, the last time point

where a failure is observed, then

p̂k = 1−
∑nk

j=1W (x;Tk, X
(k)
j , hn)∑nk

j=1W (x;Tk, X
(k)
j , hn)

= 0.
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In this case, Ŝ(z|x) is a proper survival function, since Ŝ(z|x) = 0 for all z ∈ [Tk,∞).

However, if there is at least one censored observation which is greater than or equal

to the largest uncensored observation Tk, then ck > 0 and p̂k > 0 and therefore,

Ŝ(z|x) = p̂1p̂2 . . . p̂k > 0 for all z ∈ [Tk,∞). Hence, Ŝ(z|x) is not a proper survival

function.

Note that in the absence of ties among the uncensored observations, that is if all

failures are distinct, and weight is only given to uncensored data, Ŝ(z|x) reduces to

an estimator which was proposed by Dabrowska [3]

Ŝ(z|x) =
∏

i:Zi≤z;δi=1

(
1− Wi(x;hn)∑n

j=1 1{Zj≥Zi}Wj(x;hn)

)

=
∏
i:Zi≤z

(
1− δiWi(x;hn)∑n

j=1 1{Zj≥Zi}Wj(x;hn)

)

=
∏
i:Zi≤z

(
1− Wi(x;hn)∑n

j=1 1{Zj≥Zi}Wj(x;hn)

)δi

(2.14)

Comparing this Kernel Conditional Kaplan-Meier Estimate to the estimator in (2.3),

weight is given only to those observations which are uncensored.

As a consequence we observe great variance in estimation in the presence of moderate

to heavy censoring which motivates a search for alternative estimators.

Inspired by the results of Dikta [4] which were introduced in Section 1.4.3 and

Dabrowska [3], Inglesias-Pérez and de Uña-Álvarez [8] derived the following semi-

parametric estimator for the conditional cumulative hazard function

Λ̂(z|x) =
∑
i:Zi≤z

m(Zi, x; θ̂)Wi(x;hn)∑n
j=1 1{Zj≥Zi}Wj(x;hn)

, (2.15)

where the function m appears because of the considered semiparametric conditional

censorship model which was already introduced in Section 1.4.3. The estimator for

the conditional survival function is then given by:
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Ŝ(z|x) =
∏
i:Zi≤z

(
1− m(Zi, x; θ̂)Wi(x;hn)∑n

j=1 1{Zj≥Zi}Wj(x;hn)

)
. (2.16)

The same idea that was observed in Dikta’s derivation of the semiparametric uncon-

ditional estimator in Section 1.4.3 is applied: Censoring indicators δi are substituted

by m(Zi, x; θ̂). Note that this estimator reduces to Dikta’s estimator (1.13) in the

absence of covariates.

Iglesias-Pérez and de Uña-Álvarez [8] established an asymptotic representation and

showed asymptotic normality of the estimator in (2.16).

In contrast to the estimator in (2.14), this estimator has jumps not only on all

uncensored observations, but on all observations; however, it fails to be a proper

survival function, in the sense that for t → ∞, S(t|x) 9 0 in general, where x is

fixed. Furthermore, when the last observation in the study is very volatile such that

Wj(x;hn) = 0 for these observations, the denominator eventually equals zero and

therefore, the estimator results in an undefined term. Let us consider the following

example: Let K
(x−X[n:n]

hn

)
= 0. It follows that W[n:n](x;hn) =

K
(x−X[n:n]

hn

)∑n
j=1K

(x−Xj

hn

) =

0 and thus,
∑n−1

i=1 W[i:n](x;hn) = 1. In the denominator of (2.16) one obtains∑n
j=1 1{Zj:n≥Zn:n}W[j:n](x;hn) = W[n:n](x;hn) = 0 for the very last multiplicand.

Note that Z1:n ≤ · · · ≤ Zn:n are the order statistics of Z1, . . . Zn and X[i:n],W[i:n] are

the concomitants of the i-th order statistic. That is, if Zi:n = Zj then X[i:n] = Xj

and W[i:n](x;hn) =
K
(x−X[i:n]

hn

)∑n
l=1K

(
x−Xl

hn

) .

Because of these drawbacks, we propose the following estimator S̃(z|x) which fulfills

all the required properties (see Section 2.3) and where problems regarding dividing

by zero are avoided due to modification regarding standardization and weights.

Let us first introduce the modified cumulative conditional hazard rate

Λ̃(z|x) =
∑
i:Zi≤z

m̃(Zi, x; θ̂)Wi(x;hn)∑n
j=1 1{Zj≥Zi}m̃(Zj, x; θ̂)Wj(x;hn)

(2.17)
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and the corresponding estimator for the conditional survival function is given by

S̃(z|x) =


1, if 0 ≤ z < Z1:n∏

i:Zi≤z

(
1− m̃(Zi, x; θ̂)Wi(x;hn)∑n

j=1 1{Zj≥Zi}m̃(Zj, x; θ̂)Wj(x;hn)

)
, if Zi:n ≤ z < Zi+1:n

(2.18)

which can be derived in the same way, as it was shown in the unconditional frame-

work for equation (1.10).

Define the expression m̃(Zi, x; θ̂) := δim(Zi, x; θ̂)+(1−δi)(1−m(Zi, x; θ̂)) such that

we distinguish between censored and uncensored data regarding the weights, but

nevertheless weight all of the observations.

This is meaningful, since the contribution for the likelihood function for uncensored

data is m(Zi, x : θ̂) and for censored observations 1−m(Zi, x : θ̂) respectively, as it

was elaborated in Section 1.5.1.

In the following section it is shown that this newly proposed estimator S̃(z|x) is the

semiparametric maximum likelihood estimator.

2.1.2 The Maximum Likelihood Property

Below, the maximum likelihood estimator for the weighted likelihood function is

derived by considering similar steps as in Section 2.1.1.

However, there is a significant difference between the mass which is given to the

observed data. As stated above, in this approach every observation, regardless of

being censored or uncensored, contributes to the weighted semiparametric likelihood

function.

In the following elaboration, we do not allow ties and therefore, let Z1 < · · · < Zn <

Zn+1 :=∞ denote the ordered values of the Z-sample.
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These thoughts result in the semiparametric weighted likelihood function

L(S(·|x)|(Zi, δi, Xi)) =
n∏
i=1

(f(Zi|x))m̃(Zi,x;θ̂)Wi(x;hn)

=
n∏
i=1

(S(Zi − |x)− S(Zi|x))(δim(Zi,x;θ̂)+(1−δi)(1−m(Zi,x;θ̂))Wi(x;hn). (2.19)

Recall that in order to maximize L only those functions S(·|x) which are constant

on the intervals [Zi, Zi+1) for i = 0, 1, . . . , n need to be considered.

From equation (2.8), we obtain that for every fixed 1 ≤ i ≤ n the unknown condi-

tional survival function, which is to be estimated, equals

S(Zi|x) = pipi−1 · · · p1, (2.20)

and Z0 = 0 and S(0|x) = 1.

Using this result leads to

S(Zi − |x)− S(Zi|x) = p1p2 · · · pi−1(1− pi)

for 2 ≤ i ≤ n and S(Z1 − |x)− S(Z1|x) = 1− p1.

And finally, replacing these two quantities in (2.19) yields

L(S(·|x)|(Zi, δi, Xi)) =
n∏
i=1

((p1p2 · · · pi−1)(1− pi))m̃(Zi,x;θ̂)Wi(x;hn)

=

(
n∏
i=1

(1− pi)m̃(Zi,x;θ̂)Wi(x;hn)

)
·

(
n∏
i=2

(p1p2 · · · pi−1)m̃(Zi,x;θ̂)Wi(x;hn)

)

=

(
n∏
i=1

(1− pi)m̃(Zi,x;θ̂)Wi(x;hn)

)
·

(
n−1∏
i=1

p
∑n

j=i+1 m̃(Zj ,x;θ̂)Wj(x;hn)

i

)
. (2.21)

In order to obtain the maximum likelihood estimates p̂1, . . . , p̂n for p1, . . . , pn, we

solve the equations
∂ lnL(S(·|x)|(Zi, δi, Xi))

∂pl
= 0
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for l = 1, . . . , n which results in

p̂l =

(
1− (δim(Zi, x; θ̂) + (1− δi)(1−m(Zi, x; θ̂))Wi(x;hn)∑n

j=i(δjm(Zj, x; θ̂) + (1− δj)(1−m(Zj, x; θ̂))Wj(x;hn)

)
.

Note that this quantity reduces to p̂n = 0 for l = n.

Replacing the pi’s in equation (2.20) by those estimates, the semiparametric maxi-

mum likelihood estimator of S(z|x) based on the data {(Zi, δi, Xi), i = 1, . . . , n} is

given by

S̃(z|x) =


1, if 0 ≤ z < Z1:n∏

i:Zi≤z

(
1− m̃(Zi, x; θ̂)Wi(x;hn)∑n

j=1 1{Zj≥Zi}m̃(Zj, x; θ̂)Wj(x;hn)

)
, if Zi:n ≤ z < Zi+1:n

(2.22)

and 2 ≤ i ≤ n.

2.2 Likelihood Ratio Confidence Bands for the

Newly Proposed Estimator

In order to get an idea how accurately the estimator S̃(z|x) works, we derive a con-

fidence interval for the conditional survival function S(z|x) for a fixed time point z.

Pasting together an appropriate set of confidence intervals for different values of z

leads to the pointwise confidence band.

Confidence intervals and confidence bands can be obtained based on normal approx-

imations, see Li and Van Keilegom [12]. However, this method has some drawbacks.

First, these confidence intervals do not provide values exclusively from the interval

[0, 1], in general. Second, for small sample sizes, normal confidence intervals are

somewhat misleading.

A nonparametric Likelihood Ratio method was proposed by Thomas and Grunke-

meier [16] in the absence of covariates. Based on a Likelihood Ratio test statistic

R, all values of p, for which the null hypothesis H0 : S(a) = p is not rejected, are
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included in the confidence interval. Using this method, confidence intervals with

values in [0, 1] exclusively are obtained as well as better small sample performance

than confidence intervals based on the normal approximations do achieve.

Li and Van Keilegom [12] extended this method in order to derive confidence bands

for the nonparametric estimator from equation (2.14)

Ŝ(z|x) =
∏
i:Zi≤z

(
1− δiWi(x;hn)∑n

j=1 1{Zj≥Zi}Wj(x;hn)

)
based on right censored data.

In the following, we derive confidence bands for the proposed estimator S̃(z|x) from

equation (2.18) applying the Likelihood Ratio method in a similar way.

The Likelihood Ratio confidence interval is based on a pivotal quantity derived from

the Likelihood Ratio test statistic which is used for testing the null hypothesis

H0 : S(t|x) = p.

Let S be the class of all survival functions supported on (0,∞) and

S0 = {S(·|x)|S(t|x) = p, S(·|x) ∈ S }

denote the class of survival functions such that S(t|x) = p.

Furthermore, let L(S(·|x)|(Zi, δi, Xi)) be the weighted likelihood function based on

the given sample. Then, the Likelihood Ratio test statistic is represented by

R(p, t|x) =
supS(·|x)∈S0

L(S(·|x)|(Zi, δi, Xi))

supS(·|x)∈S L(S(·|x)|(Zi, δi, Xi))
. (2.23)

In order to obtain supS(·|x)∈S0
L(S(·|x)|(Zi, δi, Xi)) we need to maximize the likeli-

hood function in (2.21) under the constraint S(t|x) = p. Therefore, let D(t) denote

the number of all events that occurred in the interval (0, t] (D(∞) = D). We assume

that there is at least one failure in the interval (0, t], such that D(t) ≥ 1. In Section

2.1.2 we discussed that the maximum of the likelihood function is obtained at some

S(·|x) which is constant on each interval [Zi, Zi+1). Hence, without loss of generality

we assume that S(t|x) = S(ZD(t)|x).
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From equation (2.20) it follows that the null hypothesis can be rewritten in the

following way:

H0 : S(t|x) = p ≡ H0 :

D(t)∏
j=1

pj = p.

The constrained maximum likelihood estimates can be calculated by applying the

Lagrange multiplier method to the constrained weighted logarithmic likelihood func-

tion

lnLS0(p1, . . . , pn, λ) =
n∑
i=1

(di ln pi + ei ln(1− pi)) + λ

D(t)∑
i=1

ln pi − ln p

 ,

where ei = m̃(Zi, x; θ̂)Wi(x;hn) = δim(Zi, x; θ̂) + (1 − δi)(1 −m(Zi, x; θ̂))Wi(x;hn)

for i = 1, . . . , n and di =
∑n

j=i+1 ej, for i = 1, . . . , n− 1 and dn = 0.

Solving

(
∂ lnLS0(p1, . . . , pn, λ)

∂pi

)
= 0 yields the restricted maximum likelihood es-

timates

p̃i =

1− ei
di + ei + λ

for i = 1, . . . , D(t)

1− ei
di + ei

for i = D(t) + 1, . . . , n.

Obviously, p̃i = p̂i, for i = D(t) + 1, . . . , n, where the p̂i’s denote the maximum

likelihood estimates of the usual weighted maximum likelihood function, see Section

2.1.2.

Using equation (2.21) it follows that

sup
S(·|x)∈S0

L(S(·|x)|(Zi, δi, Xi)) = sup
p1,...,pn:

∏D(t)
i=1 pi=p

L(p1, . . . , pn|(Zi, δi, Xi))

=

D(t)∏
i=1

p̃i
di(1− p̃i)ei

 n∏
i=D(t)+1

p̂i
di(1− p̂i)ei

 . (2.24)

After this preliminary work, the Likelihood Ratio test statistic can be represented

by:

R(p, t, λ|x) =
supS(·|x)∈S0

L(S(·|x)|(Zi, δi, Xi))

supS(·|x)∈S L(S(·|x)|(Zi, δi, Xi))
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=

(∏D(t)
i=1 p̃i

di(1− p̃i)ei
)(∏n

i=D(t)+1 p̂i
di(1− p̂i)ei

)
∏n

i=1 p̂i
di(1− p̂i)ei

=

D(t)∏
i=1

(
p̃i
p̂i

)di (1− p̃i
1− p̂i

)ei
. (2.25)

In order to determine the confidence intervals, we investigate this test statistic.

More precisely, we are interested in the behavior of R by varying values of λ. For

simplicity, we investigate the logarithmic Likelihood Ratio test statistic

lnR(p, t, λ|x) =

D(t)∑
i=1

di ln

(
p̃i
p̂i

)
+ ei ln

(
1− p̃i
1− p̂i

)

=

D(t)∑
i=1

di ln

((
di + ei
di

)(
di + λ

di + ei + λ

))
+

D(t)∑
i=1

ei ln

(
di + ei

di + ei + λ

)
.

In order to observe the manner of this function when changing λ, we derive the

partial derivative

∂ lnR(p, t, λ|x)

∂λ
=

D(t)∑
i=1

− eiλ

(di + λ)(ei + di + λ)
.

Note that the partial derivative equals zero, if λ = 0.

Furthermore, the second derivative of the logarithmic test statistic is less than zero

for λ = 0, since

∂2 lnR(p, t, λ|x)

∂λ2
= −

n∑
i=1

ei(d
2
i + eidi − λ2)

(di + λ)2(di + ei + λ)2

and ei > 0 for all i = 1, . . . , n.

Therefore, lnR and hence R has a maximum at λ = 0. Obviously, the function

−2nhn
f̂X(x)∫
K2(u)du

lnR(p, t, λ|x) has a minimum at λ = 0, where fX denotes the

density of the covariates X and K the nonnegative kernel function as introduced

before. We claim that similar to Li and Van Keilegom [12] it can be shown that

−2nhn
f̂X(x)∫
K2(u)du

lnR(p, t, λ|x)
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is asymptotically chi-squared distributed with one degree of freedom.

Then, the asymptotic Likelihood Ratio confidence set of level α for the parameter

λ is given by

{λ : −2nhn
f̂X(x)∫
K2(u)du

lnR(p, t, λ|x) ≤ χ2
1,1−α}

for α ∈ (0, 1), where χ2
1,1−α denotes the (1−α) chi-squared quantile with one degree

of freedom.

In Appendix A.1 we proved that there is a λL < 0 and λU > 0 such that

P[{λ(p)|λL ≤ λ(p) ≤ λU}] = 1− α,

where λL and λU are obtained by solving

−2nhn
f̂X(x)∫
K2(u)du

lnR(p, t, λ|x) ≤ χ2
1,1−α,

if 0 < S̃(t|x) < 1.

The interval boundaries of the closed interval [λL, λU ] are 0 = λL < λU , if S̃(t|x) = 0.

In order to obtain a confidence interval [pL, pU ] for p, we recall the function

D(t)∏
i=1

p̃i(λ) =

D(t)∏
i=1

di + λ

di + ei + λ
= p.

As shown in Appendix A.2, this function is increasing in λ and therefore, the cor-

responding interval for S(t|x) = p is also a closed interval of the form [pL, pU ] with

0 < pL < pU < 1, if S̃(t|x) ∈ (0, 1), and 0 = pL < pU < 1, if S̃(t|x) = 0. Hence, the

piecewise constant interval boundaries pL and pU are given by

pL =

D(t)∏
i=1

di + λL
di + ei + λL

and pU =

D(t)∏
i=1

di + λU
di + ei + λU

.

To achieve pointwise confidence bands, we calculate the confidence interval which

was established above for appropriate times t.
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2.3 Properties and Modifications of the Estab-

lished Estimator

2.3.1 Properties

Note that the estimator which was introduced in (2.18) represents a proper survival

function with S̃(0|x) = 1 and S̃(z|x) = 0 for any z ≥ Zn:n.

S̃(t|x) =
n∏
i=1

(
1−

1{Zi≤t}m̃(Zi, x; θ̂)Wi(x;hn)∑n
j=1 1{Zj≥Zi}m̃(Zj, x; θ̂)Wj(x;hn)

)

−→
t→∞

n∏
i=1

(
1− m̃(Zi, x; θ̂)Wi(x;hn)∑n

j=1 1{Zj≥Zi}m̃(Zj, x; θ̂)Wj(x;hn)

)

=
∏

i:Zi<Zn:n

(
1− m̃(Zi, x; θ̂)Wi(x;hn)∑n

j=1 1{Zj≥Zi}m̃(Zj, x; θ̂)Wj(x;hn)

)

×

(
1−

m̃(Zn:n, x; θ̂)W[n:n](x;hn)∑n
j=1 1{Zj≥Zn:n}m̃(Zj, x; θ̂)Wj(x;hn)

)

= 0

Furthermore, S̃ is monotonically decreasing in the range from 0 to 1.

The estimator has jumps at all observed data points and maximizes a locally weighted

likelihood function among all survival functions which have jumps at the observed

data points. Moreover, Likelihood Ratio confidence intervals with lower and upper

bounds that have values between zero and one exclusively can be constructed. And

last but not least, the newly proposed estimator incorporates covariates through

the terms m̃i and Wi respectively. In order to obtain appropriate weights Wi, the

distance to the “neighbours” of each covariate is taken into account.
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2.3.2 Modifications

In the following paragraph, a modification of S̃ which arose while developing this

estimator is addressed.

Having a closer look at the weights Wi one might observe that it is reasonable to

weight the terms in the likelihood function (2.21) by 1
Wi

instead of Wi. Note that

both the values of probabilities being weighted and the weights themselves range

from zero to one. Since observations which include covariates closer to x should

gain more influence than observations whose covariates differ greatly from x on the

estimation, the former should be weighted by the bigger weight which is 1
Wi

for the

considered range of numbers. Since the reciprocal of the weights does not sum up

to one, we standardize the values in the following way:

Bi(x;hn) :=

1

Wi(x;hn)∑n
j=1

1
Wj(x;hn)

Applications of this modification and comparisons to the derived estimator are pro-

vided in the following chapter.
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Chapter 3

Application - Analyzing Data from
an Automotive Company

In this chapter, the semiparametric estimators are applied and illustrated on the

data set from an automotive environment which was introduced in Chapter 1. Fur-

thermore, a corresponding Likelihood Ratio confidence band is derived and modifi-

cations of the estimator as well as comparisons to the other illustrated estimators

are demonstrated.

Recall that the data set consists of 8, 879 cars. For each of those cars there are

observations of mileage, which is considered as the survival time, censoring times and

explanatory variables such as average fuel consumption or average speed: (Zi, δi, Xi)

All of the considered covariates are one dimensional, but some of them contain

information which is divided in several classes, for instance engine revolutions. This

covariate is separated in four different classes. In this example the current state of

the vehicle is measured with a frequency. We know how much time a vehicle spent

in each of the specific classes: 0− 500 rotations, 500− 1500 rotations, 1500− 3000

rotations and the number of rotations that exceed 3000. For simplicity, these classes

are combined. In the example above we then end up with two remaining classes:

engine revolutions between 0 and 1500 rotations and number of rotations higher

than 1500. Only one of these two classes has to be considered in the following

evaluation, since it contains already all needed information.
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3.1 The Semiparametric Estimator in Compari-

son to the Kaplan-Meier Estimator

Since the examined data set is censored, we first apply the nonparametric Kaplan-

Meier Estimator (1.6) to the observations (Zi, δi). Figure 3.1 displays a plot of the

resulting estimated survival curve.
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Figure 3.1: Estimated survival function using the Kaplan-Meier estimator ŜKM .

Moreover, Dikta’s semiparametric estimator (1.13) is applied to the data. A compar-

ison of the Kaplan-Meier Estimator and this semiparametric estimator is illustrated

in Figure 3.2.

One observes that in the beginning, these two estimators are similar, whereas with

increasing mileage they diverge. This behavior is reasonable, since the Kaplan-Meier

estimator gives mass only to uncensored data, whereas with Dikta’s semiparametric

estimator, all observations are considered and reasonably weighted. Nevertheless,

both estimators do not show the properties we expect from a survival function. More

precisely, the functions equal one at mileage zero, but lack the property of being
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Figure 3.2: Estimated survival function: Dikta’s semiparametric estimator ŜSP ( )
and the Kaplan-Meier estimator ŜKM ( ) in comparison.

equal to zero for a mileage greater or equal than the last observation Zn:n.

Besides the observed survival time and the censoring indicator, the data set contains

further information in form of covariates. The application of Dikta’s semiparametric

estimator in the presence of covariates (1.14) is illustrated in Figure 3.3.

Noticeable is the stagnation already at 250, 000 km which is reasonable due to the

influence of additional information which decreases the survival probability. Also,

more jumps in less time are plausible by considering all observations instead of just

the uncensored ones.

3.2 Variable Selection

Indeed, we wish to include all available information that has an impact on the oc-

currence of an event in our model in order to estimate the reliability as closely

as possible. On the other hand, including much additional information leads to a
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Figure 3.3: Semiparametric estimator ŜCV in the presence of covariates.

higher variance in the estimation. To find a way achieving the greatest possible

compromise out of those two conflicting objectives, we have to select some of the

information which has an essential effect on the occurrence of events. In the follow-

ing, we find an appropriate subset of regressors for the model by variable selection.

The additional information in the data set consists of more than 10 different cat-

egories and some of them are highly correlated. Including correlated regressors in

the model is unnecessary, since they have the same effect on reliability. Therefore,

all but one variable of this related additional information can be neglected.

First, let us have a look at the correlation between the covariates. The correlation

matrix can be found in Table B.2, Appendix B. An illustration of the correlation of

the data is given in the associated correlogram in Figure 3.4, where pies and shades

indicate the strength of the correlation respectively and the color blue indicates

positive correlation, whereas red indicates the negative correlated variables .

We observe, X1 and X4 are highly negatively correlated with X7 and X9, respec-

tively. Moreover, X6 with X7, X8 and X9 and especially X7 with X9 show some
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Figure 3.4: Correlation of the covariates.

positive correlation.

Another important observation is the correlation of X11 with Z. Due to this high

correlation of 0.98 we can already state that X11 is definitely one of the variables

which seem to have a crucial effect on the occurrence of events.

But let us consult some alternative sources to obtain additional information before

drawing the final conclusion.

Considering the Wald test performing the logistic regression for the full model, the

covariates X4, X5, X11 and X12 are highly significant, whereas X1, X6, X8, X9 and

X10 can be neglected.

Next, we want to compute the All Possible Subset Method.

3.2.1 All Possible Subset Method1

Let p denote the number of covariates x1, . . . , xp containing the additional informa-

tion and xi ∈ Rn, where n > p. That is, for each car i, there exist observations on

1This section is based on the concepts in Montgomery, Peck and Vinning [13].
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each of the covariates.

Then, the full model is defined by

zi = β0 +

p∑
j=1

βjxij + ε, (3.1)

where i = 1, . . . , n.

In order to find the “best” subset of variables, it is natural to compare different

combinations of regressors and select the most significant one. Therefore, we delete

little by little regressors from the full model.

Let r denote the number of regressors that are deleted from equation (3.1). Rewrit-

ing the model with only p− r covariates leads to the following equation:

zi = β0 +

p−r∑
j=1

β̃jx̃ij + ε, (3.2)

for i = 1, . . . , n and where x̃ represents a vector containing all the remaining p− r
regressors and β̃ the corresponding coefficients.

In the All Possible Subset Method, all possible regression equations are considered,

starting with one regressor, two regressors, until concluding with the full model. For

the selection of the final model one consults criteria as the coefficient of determina-

tion R2 or the quadratic mean squared error.

We assume the intercept term β0 to be an inherent component of each model such

that there are p candidate regressors to choose. Note that this model becomes more

and more complex by increasing the number of candidates, since there are 2p − 1

linear equations to be estimated and investigated.

Many numerical computations are proposed by now. For an example, see Furnival

and Wilson [6]. If this model becomes too complex due to a high amount of possible

candidates, there are several alternative models such as Stepwise Regression Models

available.

For our purpose, we apply the All Possible Subset Method. An extract of the top
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three R2-values for every subset size is displayed in Table B.1 in Appendix B. Let

us have a look at the corresponding plot of the R2-values in Figure 3.5.
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Figure 3.5: Selected R2-values of the All Possible Subset Method.

It is natural that increasing the variables in the model leads to an increase in the

value R2. In order to find the “best” subset we have to consider the biggest subset

for which the increase of the R2-value is significant and keeping another covariate is

worthwhile. For instance, consider the variable X11. When the model only contains

X11, the corresponding R2-value is 0.9685. Additionally including the covariate X3

in the model leads to a R2-value of 0.9687.

The value for X11 is very high compared to the other subset size one values. Thus,

it should be enough to just keep this one covariate in the subset model.

Notice that this case is more of an extraordinary nature. Moreover, we are interested

in illustrating our whole developed model by considering various covariates which

seems to be the more usual case.

Taking some subjective opinions as well as the regression analysis into account, we
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decide to include the covariates X3, X5 and X11 in the final model.

In the following we continue our application on this subset which is denoted by

X̃ = (X3, X5, X11).

3.3 Thinned Data Set

After the main components of the data set are selected, we finally get to the crucial

issue which of the remaining covariates of the sample X̃ seems to have the most

influence in the occurrence of an event.

To give a short outline of this section, we first estimate the function m. Thereafter,

Dikta’s semiparametric estimator for the thinned model is applied which gives an

impression about the marginal survival function. In order to obtain an estimator for

the conditional survival function the newly proposed estimator S̃(z|x) of the survival

time for every arbitrary value of z and (x1, . . . , xp) is provided. Subsequently, all

the contributing variables except one are fixed in order to investigate the effect of

this specific quantity on the survival behavior. In conclusion, a characterization of

the particular effect is presented.

3.3.1 Application of the Semiparametric Estimator

In order to determine the semiparametric estimator ŜCV which was introduced in

Section 1.5, we estimate m(x, z; θ).

Using the multiple regression model (see Section 1.5.1) we obtain the following

maximum likelihood estimates

β̂0 = −2.395

β̂1 = (2.946, −3.235, 0.0004962)

β̂2 = −0.0002706, (3.3)

where θ̂ = (β̂0, β̂1, β̂2).

Note that all p-values associated with the Wald test statistic for the null hypothesis
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H0 : βk = 0 of the regressors X̃ are highly significant. That means, by analyzing

the conditional probability of uncensoring, the covariates X3, X5 and X11 should be

kept in the model.

Using those maximum likelihood estimators leads to an estimator of the conditional

probability P[δ = 1|Z = z,X3 = x3, X5 = x5, X11 = x11]:

m(z, x; θ̂) =
exp(β̂0 + β̂′1x+ β̂2z)

1 + exp(β̂0 + β̂′1x+ β̂2z)
.

Figure 3.6 represents the function m for different values of x. The function behaves

as expected. First note, it appears logical that m, the probability of being not

censored, decreases with the mileage. Second, it is reasonable that a higher amount

of engine starts, cold starts and mileage per year is associated with a lower proportion

of uncensoring which leads to poor survival conditions.
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Figure 3.6: Logistic estimation curves of the proportion of no censoring for different
values of x.

Inserting the estimates θ̂ from equation (3.3) in equation (1.14) yields the semipara-
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metric estimator in the presence of covariates

ŜCV (z) =


1, if 0 < z < Z1:n∏n

i=1

(
1−

m(Zi:n, X̃[i:n]; θ̂)

n− i+ 1

)1{Zi:n≤z}

, otherwise.

The plot of this estimate applied to the data example is shown in Figure 3.7.
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Figure 3.7: The semiparametric estimator in the presence of covariates for the
thinned model.

So far, the analysis represents the marginal survival function and gives us some

idea of the data set. In order to gain deeper knowledge and more influence on the

selection of covariate values, the conditional survival function

P[Z > z|X3 = x3, X5 = x5, X11 = x11]

is investigated in the following.

3.3.2 Application of the Estimator of the Conditional Sur-
vival Function

In order to estimate the conditional survival function we apply the estimator S̃

which was proposed in equation (2.18) in Chapter 2.
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Using the maximum likelihood estimator for θ̂ from equation (3.3), the weights Wi

must yet be determined.

For the multidimensional kernel function K(u) we use a multiplicative truncated

Cauchy kernel

K(u) = K1(u1) ·K2(u2) ·K3(u3).

Then, Wi(x;hn) =
K(x−Xi

hn
)∑n

j=1 K(
x−Xj

hn
)

for i = 1, . . . , n.

An outstanding issue is to determine the bandwidth hn = (h1n, h2n, h3n). To get

some idea about the behavior of the kernel function for different values of hn, kernel

functions for several bandwidths are illustrated in Figure 3.8.

0 2000 6000

0.
02

0
0.

02
6

0.
03

2

Index

ke
rn

el
 fu

nc
tio

n

h=( 5 , 2 , 180000 )

0 2000 6000

0.
02

4
0.

02
8

0.
03

2

Index

ke
rn

el
 fu

nc
tio

n
h=( 10 , 4 , 260000 )

0 2000 6000

0.
03

00
0.

03
15

Index

ke
rn

el
 fu

nc
tio

n

h=( 20 , 8 , 520000 )

0 2000 6000

0.
03

16
0.

03
19

0.
03

22

Index

ke
rn

el
 fu

nc
tio

n

h=( 30 , 12 , 1040000 )

Figure 3.8: Kernel function for a variety of bandwidths.

As expected, the kernel function has less fluctuation for higher values of hn.

Note that there are several ways to determine the optimal bandwidth. For our pur-

pose, we choose hn = (10, 4, 260000) to be the bandwidth we are working with in

the following.
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Eventually, the estimated conditional survival function from Section 2.1 can be

computed by

S̃(z|x) =


1, if 0 < z < Z1:n∏

i:Zi≤z

(
1− m̃(Zi, x; θ̂)Wi(x;hn)∑n

j=1 1{Zj≥Zi}m̃(Zj, x; θ̂)Wj(x;hn)

)
, otherwise

and is shown in Figure 3.9.
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Figure 3.9: Estimated conditional survival function S̃(z|x) ( ) with pointwise con-
fidence band ( ).

The corresponding confidence intervals are computed by solving the non-linear equa-

tion

−4π
n∑
i=1

K

(
x−Xi

hn

)
lnR(p, t, λ|x) = χ2

1,1−0.05

for λ numerically. As introduced in Section 2.2 the resulting two roots λL and λU
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have to be inserted in the equation respectively

pl =

D(t)∏
i=1

di + λl
di + ei + λl

, l ∈ {L,U}

in order to achieve boundaries [pL, pU ] for the Likelihood Ratio confidence interval.

Repeating this procedure for various values of t leads to the Likelihood Ratio con-

fidence band which is displayed in Figure 3.9.

3.3.3 Most Influential Covariate

Let us analyze the particular effect on the survival probability of each single co-

variate by considering some illustrations. For a better comparison all covariates

are standardized. Figure 3.10 displays plots of the estimated survival probabilities

S̃(z|x) for different values of x. Based on the standardized vector x = (0, 0, 0) ( )

one of these three entries is varied, and the remaining two covariate values are han-

dled as constants. For instance, the first picture shows estimated survival functions

for the values x = (−1, 0, 0) ( ), x = (0, 0, 0) ( ), x = (5, 0, 0) ( ) and x = (8, 0, 0)

( ) demonstrating the influence of covariate X3 on the survival function. The re-

maining two pictures display a similar variation in x for the covariates X5 and X11

respectively. Note that the influence of X11 causes the most fluctuation in all of the

three pictures.

For a better comparison, all x-values which were varied by the same amount for

each considered covariate are shown in Figure 3.11. In the first picture the esti-

mated survival function for the covariate vectors x = (−1, 0, 0) ( ), x = (0,−1, 0)

( ) and x = (0, 0,−1) ( ) , that is all orange functions ( ) from Figure 3.10, are

illustrated and compared to the standardized version with x = (0, 0, 0) ( ).

Obviously, the most fluctuation from the standardized black curve is observed for

covariate X11 in picture three.

In order to provide a more precise evidence, the area between the standardized curve

S̃(z|(0, 0, 0)) and the survival function with a varied covariate vector x̃∫
|S̃(z|x̃)− S̃(z|(0, 0, 0))|dz
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is illustrated in Table 3.1.

Covariate vector x L1 norm
(0,0,0) 0
(-1,0,0) 9.828
(0,-1,0) 29.994
(0,0,-1) 237.493
(5,0,0) 53.097
(0,5,0) 117.795
(0,0,5) 11074.210
(8,0,0) 88.121
(0,8,0) 165.251
(0,0,8) 5414.472

Table 3.1: Area between the standardized survival function and the survival prob-
ability considering diverse covariates over the time horizon [0, Zn:n].

As expected, the influence of covariate X11 in these calculations is outstanding.

Another interesting point of view is given by the plots of survival functions in terms

of covariates for a fixed time point z. The corresponding plot of S̃(50, 000|x) where

x varies from −1 to 9 for each covariate respectively is found in Figure 3.12. It

characterizes the effect of X3, X5 and X11 on the survival function for a fixed time

point.

As assumed from considering the above illustrations, the covariate X11 is the most

fluctuating one considering the plots and additionally shows the largest L1 norm for

every considered value.

Obviously, the more deviation in the survival probability the more influential the

covariate. In this case the variation of the survival probability is the largest for

covariate X11. The corresponding effect is shown in Figure 3.12.

Note that this result is consistent with the outcomes from the All Possible Subset

method in Section 3.2.1.

This result is also reasonable from a practical point of view. The third picture in

Figure 3.10 shows the estimated survival function for different values of X11 where
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Figure 3.10: Effect of one particular covariate on the estimated survival function.

the values of X11 = −1, X11 = 5 and X11 = 8 lead to lower survival probabilities

than for the case X11 = 0 if mileage is less than 60, 000 km. After this particular

time point, the probabilities which belong to X11 = 5 exceed the probabilities that

are countered along the standardized ones. With increasing mileage, the remaining

two functions exceed the standardized probabilities as well.

Keeping in mind that the covariate X11 represents the influence of mileage per year,
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Figure 3.11: Variation of covariate values.

the observed effect is reasonable: An automobile with lower mileage per year tends to

have a higher probability of failure than a vehicle with higher mileage. Considering a

value for the variable X11 which is close to the maximal observed value on the other

hand, yields to higher probability of failure as well. A vehicle with high mileage per

year corresponds to a driving style on highways, whereas lower mileage is associated

with city drivers. Note that driving in cities burdens certain engine components

heavier, than rides on highways. Furthermore, it is obvious that almost maximal
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Figure 3.12: Survival probabilities for a fixed time point but different covariate
values for X3 ( ), X5 ( ) and X11 ( ).

burden leads to early failure.

3.3.4 Comparison and Modifications

Modifying the weights Wi through Bi as mentioned in Section 2.3.2 yields the step

functions in Figure 3.13. A slight change in the estimation can merely be identified

but does not really affect the estimation as a whole.

Comparing the derived estimator S̃(z|x) to the estimator which was proposed by

Iglesias-Pérez and Uña-Álvarez [8], it is conspicuous that S̃ shows a higher survival

probability within the first 50, 000 km, whereas the function tends to zero and finally

gets close to zero at a mileage of around 200, 000 km. The compared estimator stays

constant on a survival probability of about 0.75 from 60, 000 km which is not rea-

sonable for high values of z. The covariate vector was set at x = (0.03, 0.35, 21800)

which indicates a certain manner of driving that matches with the behavior of the

estimated survival function S̃.
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Figure 3.13: Comparison of the estimated survival functions Ŝ with usual ( ) and
modified weights ( ) and S̃ with usual weights ( ) and modified weights ( ).
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Chapter 4

Conclusion

The goal of this thesis was to select the covariate which seems to have the most

impact on survival probability. A method for estimating the conditional survival

function was developed, and thereafter the potential factors were varied in order to

observe the corresponding change in the survival function.

We started using the conditional semiparametric estimator which was proposed by

Iglesia-Pérez and de Uña-Álvarez. During the development of the method, draw-

backs of this estimator, such as the lack of being a proper survival function or

being undefined for certain weights, were uncovered. Thus, a different estimator

was derived where mass is assigned to all observations but is distinguished between

censored or uncensored values. We proved that the new estimator not only repre-

sents the likelihood estimator but also performs like a proper survival function.

In the application on a real data set from an automotive company the estimator

performed as would be expected for a corresponding manner of driving. Also the se-

lected covariate is a reasonably assumption to have the greatest impact on failure out

of all considered covariates. For practical applications, another benefit, in contrast

to the ordinary applied Kaplan-Meier estimator, is the dependence on covariates

and survival time. The derived estimator can easily be applied to an automobile for

which a certain driving style is known and whose information is incorporated into

the covariates.

An interesting topic for future research would be to investigate the efficiency of
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this new estimator by comparing the coverage region to different semiparametric

estimators. Furthermore, Dikta, Dabrowska and Iglesia-Pérez and de Uña-Álvarez

showed the strong law as well as the central limit theorem for their estimators. It

would be interesting to prove similar results for the new estimator. The proof of

asymptotic normality will finally lead to the proof of the asymptotically chi-squared

distribution of the likelihood ratio confidence intervals. Additionally, some specifics

such as selecting the optimal bandwidths hn could be considered by applying a

procedure based on bootstrap similar to that shown in Gang Li and Van Keilegom

[12].

We accomplished our goal of developing a method which is imperative for estimating

the conditional survival function and thus, selecting proper influential covariates. An

application of this model will improve the reliability of the considered objects and

consequently is not only image enhancing, but also contributes to cost reduction.
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Appendix A

Mathematical Results

A.1 Interval Property of the LR Confidence Sets

First, we have to assure that p̃i = 1 − ei
di+ei+λ

and p̃i = 1 − ei
di+ei

are nonnegative.

This is the case for λ > −dD(t). Considering the partial derivative of lnR(p, t, ·|x)

from Section 2.2 leads to(
∂ lnR

∂λ

)
λ=λL

>

(
∂ lnR

∂λ

)
λ=0

= 0 >

(
∂ lnR

∂λ

)
λ=λU

,

where −dD(t) < λL < 0 < λU .

Note that D(t) = 0 and dn = 0 corresponds to S̃(t|x) = 0 and therefore λL = 0 in the

case where the estimated survival function equals zero. Furthermore, lnR −→ −∞
for λ→∞ and λ→ −dD(t).

A.2 Function p in dependency of λ

We consider the first derivative of ln p:

∂ ln p

∂λ
=

∂

∂λ
ln

(D(t)∏
i=1

p̃i(λ)

)
=

∂

∂λ

D(t)∑
i=1

ln(di + λ)− ln(di + ei + λ)



=

D(t)∑
i=1

1

di + λ
− 1

di + ei + λ
> 0,

since ei > 0 for i = 1, . . . , n and −dD(t) < λ. Therefore, p is increasing in λ.
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Appendix B

Some Informative Results

Size Regressors R2

1 X11 0.968595
1 X4 0.249402
1 X5 0.153269
2 X3, X11 0.968894
2 X7, X11 0.968685
2 X1, X11 0.968677
3 X3, X5, X11 0.968969
3 X3, X11, X12 0.968958
3 X3, X7, X11 0.968934
4 X3, X5, X11, X12 0.969084
4 X1, X3, X4, X11 0.969073
4 X3, X4, X10, X11 0.969067
5 X3, X4, X5, X11, X12 0.969130
5 X3, X5, X7, X11, X12 0.969114
5 X1, X3, X5, X11, X12 0.969111
6 X3, X4, X5, X10, X11, X12 0.969153
6 X3, X5, X7, X10, X11, X12 0.969136
6 X1, X3, X5, X10, X11, X12 0.969134
7 X3, X4, X5, X7, X10, X11, X12 0.969156
7 X2, X3, X4, X5, X10, X11, X12 0.969156
7 X3, X4, X5, X9, X10, X11, X12 0.969154
8 X3, X4, X5, X7, X9, X10, X11, X12 0.969171
8 X1, X3, X4, X5, X9, X10, X11, X12 0.969166
8 X1, X3, X5, X7, X9, X10, X11, X12 0.969159
9 X1, X3, X4, X5, X7, X9, X10, X11, X12 0.969173
9 X3, X4, X5, X7, X8, X9, X10, X11, X12 0.969171
9 X2, X3, X4, X5, X7, X9, X10, X11, X12 0.969171
Full model X1, X2, X3, X4, X5, X6, X7, X8, X9, X10, X11, X12 0.969178

Table B.1: Relevant results of the All Possible Subset Method.
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Table B.2: Correlation matrix of potential influential variables.
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Appendix C

Programm Code R

1 ## Estimator − Conditional Survival Function with Likelihood ...
Ratio Confidence Band

2 #===========================================================
3

4 #CB=1: Calculate Pointwise Confidence Band
5 S.tilde <− function(Z,∆,X,CB){
6 # sort dataset
7 sortdata<−data.frame(Z,∆,X)
8

9 sortdata<−sortdata[order(sortdata$Z), ]
10 Z.tilde <− sortdata$Z
11 ∆.tilde <− sortdata$∆

12 X.tilde <− sortdata[ ,3:dim(sortdata)[2]]
13

14 n <− length(Z.tilde)
15 R <− rank(Z.tilde)
16

17

18 ## Semi Parametric estimator (considering covariates)
19 #=====================================================
20 ## Estimation of m(Z i,t) using logistic regression
21 # Generalized linearregression (MULTIVARIATE) −> binomial ...

response variable ∆

22 logit.out <− glm(∆ ¬ Z + X[1] + X[2] + X[3], data = sortdata, ...
family = "binomial")

23 logitsummary <− summary(logit.out)
24

25 beta 0 <− logitsummary$coef[1,1]
26 beta 1 <− logitsummary$coef[3:dim(logitsummary$coef)[1],1]
27 beta 2 <− logitsummary$coef[2,1]
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28

29

30 ## Conditional Survival Function (Estimator)
31 #============================================
32 ## Estimation of S(y |x)
33

34 #general m
35 m.fun <− function(z,x){
36 return(exp(beta 0+beta 1%*%x+beta 2*z)/...
37 (1+exp(beta 0+beta 1%*%x+beta 2*z)))
38 }
39

40 # Multivariate truncated Cauchy kernel function
41 K.multi <− function(x){
42 K<−numeric(0)
43 for (i in 1:length(x)){
44 K[i] <− 1/(pi*(1+x[i]ˆ2))
45 }
46 return(prod(K))
47 }
48

49 boundary<−length(Z.tilde[Z.tilde≤y])
50

51 h <− c(10,4,260000) # Bandwidth
52 kern <− numeric(0)
53 for(j in 1:n){
54 kern[j] <−K.multi((x−X.tilde[j,])/h)
55 }
56

57 ## Weights
58 B <− numeric(0)
59 for(i in 1:n){
60 B[i] <− kern[i]/sum(kern) # Weights
61 }
62

63 ## Estimator
64 m.ges<−m.fun(Z.tilde,x)
65 m.mod<−∆.tilde*m.ges+(1−∆.tilde)*(1−m.ges)
66 ## modification in m
67 S tilde<−numeric(0)
68 S tilde[1]<−1
69 for (i in 1:n){
70 S tilde[i+1] <− ...

S tilde[i]*(1−(1*(Z.tilde[i]≤y)*m.mod[i]*B[i])/ ...
71 (sum(1*(Z.tilde≥Z.tilde[i])*B*m.mod)))
72 }
73

74 cat("S tilde(",y,"|x)= ", S tilde[boundary+1])
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75

76 if(CB==1){
77 ## Pointwise Confidence Band
78 #=============================
79 ## Significance niveau
80 alpha<−0.05
81

82 coef <− sum(kern)*(2*pi)
83

84 ## Bisection method
85 CI lambda bisec <− function(a,b){
86 fa <− f(a)
87 fb <− f(b)
88 eps<− 1e−6
89 i<−1
90 temp <−numeric(0)
91 while(abs(a−b)>2*eps){
92 m <− (a+b)/2
93 fm <− f(m)
94 if(fm==0){
95 return(m)
96 }else{
97 if(fa*fm<0){
98 b=m
99 fb=fm

100 }else{
101 a=m
102 fa=fm
103 }
104 }
105 temp[i]<−m
106 i<−i+1
107 }
108 return(temp)
109 }
110

111 ## Calculation of e i
112 e <− m.fun(Z.tilde,x)*B
113

114 ## Calculation of d i
115 d <− numeric(0)
116 for(i in 1:(n−1)){
117 d[i] <− sum(e[(i+1):n])
118 }
119 d[n] <− 0
120

121 ## Confidence Interval
122 pL<−numeric(0)
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123 pU<−numeric(0)
124 S.est<−numeric(0)
125

126 i<−1
127 for(D in 1:boundary){
128

129 f <−function(x){−2*coef*(sum(d[1:D]*log((d[1:D]+e[1:D])/...
130 d[1:D]*(d[1:D]+x)/(d[1:D]+e[1:D]+x)))+sum(e[1:D]*...
131 log((d[1:D]+e[1:D])/(d[1:D]+e[1:D]+x))))−qchisq(1−alpha,1)}
132

133 lambda temp <− CI lambda bisec(0,1000)
134 lambdaU <− lambda temp[length(lambda temp)]
135

136 lambda temp <− CI lambda bisec(−min(d[0:D])+10ˆ(−6),0)
137 lambdaL <− lambda temp[length(lambda temp)]
138

139 ## Calculation of CI
140 pL[i]<−prod((d[1:D]+lambdaL)/(d[1:D]+e[1:D]+lambdaL))
141 pU[i]<−prod((d[1:D]+lambdaU)/(d[1:D]+e[1:D]+lambdaU))
142 i<−i+1
143 }
144

145 par(mfrow=c(1,1))
146 plot(stepfun(Z.tilde[1:boundary],S tilde[1:(boundary+1)]),...
147 main="Conditional Survival Function",xlab="Mileage (in ...

km)",...
148 ylab="Estimator",lwd=2,xlim=c(0,40000))
149 lines(stepfun(Z.tilde[1:(boundary−2)],pL[1:(boundary−1)]),...
150 lty=2,col="red",lwd=1)
151 lines(stepfun(Z.tilde[1:(boundary−2)],pU[1:(boundary−1)]),...
152 lty=2,col="red",lwd=1)
153

154 }
155 }
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