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ABSTRACT
MULTI-PERIODIC CLIMATE DYNAMICS: SPECTRAL ANALYSIS OF INSTRUMENTAL,
SHORT-LEGNTH PROXY TEMPERATURE RECORDS, AND LONG-LENGTH PROXY
TEMPERATURE RECORDS
by
Michael David Madsen

The University of Wisconsin-Milwaukee, 2014
Under the Supervision of Professor Anastasios Tsonis

Analyzing 26 short-length (less than 3000 years) instrumental and proxy
temperature records and five long-length (greater than 3000 years) proxy
temperature records using Discrete Fourier Transform has shown that as the length
of significant periods increase in the time domain then so does the power at which
the period is observed. A t-test verifies that a positive correlation exist between the
length of the significant periods and the power with a confidence level of & > 0.05.
Significant frequencies with period greater than 30 years are confirmed using
Monte Carlo simulations, which were created using a nonlinear approach known as
fractional Brownian motion (FBM). While completing the spectral analysis it was
observed in the spectral analysis is an absence of significant periods between about
1000 years and 20 000 years. Also, wavelet analysis of all short-length temperature

records turned up no significant findings.
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I. Introduction

Spectral analysis of multi-periodic climate dynamics have been completed in past.
However, only a handful of temperature records have been analyzed at one time in
previous studies, as in a publication by H. ]. Liidecke et al. (Liidecke et al., 2013).
Here H. ]. Liidecke et al. only looked six “long-term” instrumental and one proxy
temperature record for their analysis. Their goal was to show that the climate
dynamics are governed at present by periodic oscillations. While their goals were
reached, their sample size for the spectral analysis was limited to only two
temperature records, one of which was an mean of the six “long-term” instrumental
temperature records and the other being used as only as a comparison, not for
actual analysis. In order to complete a better view of multi-periodic climate
dynamics, more temperature records need to be analyzed. For this study the same
six instrumental temperature records and the one proxy temperature record where
reanalyzed as well as 19 other short-length (less than 3000 years) and 5 long-length
(greater than 3000 years) proxy temperature records where analyzed to determine
if the hypothesis, that as the period length increase in climate dynamics than so does
the power at which that period exist, is found valid. Also, each temperature record
was analyzed using wavelet analysis to discover if there were any characteristics of
the Feigenbaum universal scenario of transition to chaos by a cascade of
subharmonics, for nonlinear, dissipative systems with energy input (Feigenbaum,

1978, 1983).



II. Data

Twenty different reconstructed short-length proxy temperature records and six
instrumental temperature records as well as five long-length proxy temperature
records, four of which are ice-core reconstructed temperature records and the other
reconstructed temperature record being from marine benthic oxygen isotopes, were
analyzed in this study. The reconstructed proxy temperature records range in
length, location, and methods including sediment thickness and pigment, tree-ring
thickness, varve thickness, stalagmite thickness and isotopes, documentary data, ice
core samples, marine benthic oxygen isotopes, and multi-proxy reconstruction
while the instrumental temperature records were all located in central Europe and
only ranged from 231 year-long temperature records to 247 year-long temperature
records and are monthly means records. The length in all the temperature records
range from the longest being a 1,069,900 years (-1,067,900-2000 AD) marine
benthic oxygen isotopes reconstruction to the shortest being a 231 year (1781-2011
AD) instrumental record from Munich, Germany. All short-length temperature
records were converted to yearly means and all long-length temperature records
were converted to 50 years, 100 years, or 500 years for the application of discrete
Fourier transform. This dictates that the six instrumental records were converted
from monthly means to yearly means and that two short-length temperature
records (Iceberg, Alaska and Spannagel Cave, Europe) and three of the long-length
temperature records (EPICA Dome C, Antarctica; GISP2 ice core, central Greenland;
and Vostok, Antarctica) were interpolated to fill in missing yearly means or to create

a fixed yearly/multi-yearly interval. The details of the records used in this paper are



in table 1 and as follows: Laguna Aculeo, Chile, summer mean sediment pigments,
data in figures 1 & 2 (856-1997 AD) (Von Gunten et al., 2009); Baffin Island, Canada,
summer mean sediment thickness, data in figures 3 & 4 (752-1992 AD) (Moore et
al, 2003); Canadian Rockies, Canada, summer mea tree-ring thickness, data in
figures 5 & 6 (950-1994 AD) (Luckman et al., 2006); Firth, Alaska, summer mean
tree-ring thickness, data in figures 7 & 8 (1073-2002 AD) (Anchukaitia et al., 2013);
Iceberg Lake, Alaska, annually varve thickness, data in figures 9 & 10 (442-1998
AD) (Loso, 2008); Gulf of Alaska, summer mean tree-ring thickness, data in figures
11 & 12 (724-1999 AD) (Wilson et al., 2007); Idaho, USA, annually July mean tree-
ring thickness, data in figures 13 & 14 (1135-1992 AD) (Biondi et al,, 2006); North
Andes, South America, annual mean tree-ring thickness, data in figures 15 & 16
(1640-1987 AD), South Andes, South America, annual mean tree-ring thickness,
data in figures 17 & 18 (1640-1993 AD) (Villalba et al, 2006); Beijing, China,
summer mean stalagmite thickness, data in figures 19 & 20 (-665-1985 AD) (Tan et
al., 2003); Central Europe, annual mean documentary data, data in figures 21 & 22
(1005-2001 AD) (Glaser and Riemann, 2009); China, annual multi-proxy
reconstruction, data in figures 23 & 24 (1000-1950 AD) (Shi et al., 2012); Cold Air
Cave, South Africa, 5-year smoothed annual stalagmite isotope, data in figures 25 &
26 (1635-1993 AD) (Sundqvist et al., 2013); European Alps, summer mean tree-ring
and sediment thickness, data in figures 27 & 28 (1053-1996 AD) (Trachsel et al,,
2012); Lake Silvaplana, Switzerland, summer mean visible reflectance spectroscopy
of lake sediment, data in figures 29 & 30 (1175-1949 AD) (Trachsel et al., 2010);

Slovakia, Europe, summer mean tree-ring, data in figures 31 & 32 (1040-2011 AD)



(Biintgen et al. 2013); Sweden, Europe, summer mean tree-ring, data in figures 33 &
34 (1107-2007 AD) (Gunnarson et al.,, 2011); Tornetrask, Sweden, annual tree-ring,
data in figures 35 & 36 (500-2004 AD) (Grudd, 2008); West Qinling Mts., China,
annual tree-ring, data in figures 37 & 38 (1500-1995 AD) (Yang et al,, 2013); Paris,
France, monthly mean instrumental, data in figures 39 & 40 (1764-2000 AD)
(Météo France, 2012); Hohenpeisenenberg, Germany, monthly mean instrumental,
data in figures 41 & 42 (1781-2013 AD) (CRU, 2012); Kremsmunster, Austria,
monthly mean instrumental, data in figures 43 & 44 (1767-2013 AD) (Auer et al,
2007); Munich, Germany, monthly mean instrumental, data in figures 45 & 46
(1781-2011 AD) (DWD, 2012); Prague, Czech Republicc monthly mean
instrumental, data in figures 47 & 48 (1771-2013 AD) (CHMI, 2012); Vienna,
Austria, monthly mean instrumental, data in figures 49 & 50 (1775-2013 AD) (CRU,
2012); Spannagel Cave, Europe, stalagmite thickness, data in figures 51 & 52 (-9-
1935 AD) (Mangini et al., 2005); Dome Fuji, Antarctica, Ice Core, data in figures 55 &
56 (-339500-750 AD) (Kawamura et al., 2007); EPICA Dome C, Antarctica, Ice Core,
data in figures 57 & 58 (-800,000-1900 AD) (Jouzel et al., 2007); GISP2 ice core,
central Greenland, Ice core, data in figures 59 & 60 (-48000-1850 AD) (Alley, 2004);
Global 1Ma Temperature, marine benthic oxygen isotopes, data in figures 61 & 62 (-
1067900-2000 AD) (Bintanja et al., 2005); Vostok, Antarctica, Ice Core, data in

figures 63 & 64 (-470766-2000 AD) (Petit et al,, 1999).



II1. Method

In this study, we used the simple method of discrete Fourier transform (DFT) as our
method for spectral analysis. DFT converts finite, equal spaced time domain
samples, temperature records, into a finite combination of complex sinusoids
ordered by their frequencies. In principle, unequal time steps for DFT is not
applicable, so each temperature records with unequal time steps is converted to
have a discrete time step of one year, for all short-length temperature records, and
either 50 years, 100 years, or 500 years for all long-length temperature records by
either monthly averaging or interpolating. The six instrumental temperature
records were all monthly averages, so each month in the calendar year was
averaged to give us our yearly time step. The two short-length temperature records
and three long-length temperature records that have unequal time steps and
missing yearly data were all interpolated using a piecewise cubic spline
interpolation function in Matlab® (interp1) (Matlab®, 2012b). However,
interpolating can result in enhancing lower frequencies and reducing higher
frequency components (Schulz and Mudelsee, 2002). To verify that our
interpolation have little to no effect on the frequency components, our interpolated
temperature records’ DFT spectral analysis are compared to the spectral analysis
using the Lomb-Scargle periodogram method. For Iceberg Lake, Alaska, 20 missing
yearly data points were interpolated in and as an outcome no significant difference
in peak frequency or intensity were observed. As for Spannagel Cave, Europe, the
uneven time increments were interpolated to have a yearly time step and as an

outcome no significant difference in peak frequency occurred but a difference in



peak intensities occurred between the two methods. Because the largest time steps
for Spannagel Cave, Europe lies between 90 BC and 500 AD, this section of the
temperature record is omitted and the comparison is carried out again. As a result,
we find that both peak frequency and intensity are comparable between the two
methods using this shortened interpolated Spannagel Cave, Europe time series. The
three interpolated long-length proxy temperature records, EPICA Dome C,
Antarctica; GISP2 ice core, central Greenland; and Vostok, Antarctica, also
underwent the same comparison, and as a result it is fond that both peak frequency
and intensity are comparable between the two methods.

Each temperature record used in this study was first detrended using the
Matlab® function (detrend), then in order to obtain more frequency steps in the DFT
spectral analysis, zero padding was applied to both ends the temperature records to
create temperature records of equal length of N=10000 time steps. Each
temperature records were centered within the zero padding. Each temperature
records then underwent the discrete Fourier transform using the fast Fourier
transform function in Matlab® (fft). The output of this function was a combination of
complex sinusoids in the form A + Bi, where A and B are a pair of harmonic

predictors which can be found using:

N
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where At is the time interval, y,, = y(t;) n=1n, andT = NAt. To find the variance
associated with a given pair of harmonic predictors (Cy):

A’ + B
ke 2

Cy gives us the power values for the power spectrum. The power values for each
spectrum were then normalized by dividing by the area comprised by the whole
spectrum. For this to happen it first must be pointed out that by using this method
only half of the spectrum is retrieved as the second half is just a mirror image of the
first half, so in order to be able to normalize each spectrum by dividing by the area
of the whole spectrum we must double the area of the first half of the spectrum. And
as the focus of this study is on climate periodicity, each graph only has a frequency
limit of 0.04 year! or 25 years.

In order to obtain significant peaks within the DFT power spectra, a 95%
confidence level is applied to the spectra. For this study a 95% confidence level was
established by using 1000 Monte Carlo synthetic runs using fractional Brownian
motion (FBM). FBM is a nonlinear approach to create Brownian motion with a given
Hurst exponent. Similar to the regression coefficients used in the red noise method,
the Hurst Exponent is used as a measure of long-term memory of a temperature

records (persistence). The Hurst Exponent can vary between 0 and 1, with the range



between 0.5-1 indicates persistence behavior while range between 0-0.5 indicates
anti-persistence behavior. A Hurst Exponent of §=0.90 (which if found in the
Spannagel Cave, Europe time series) represents high persistence within a time
series. First, in order to use FBM, each temperature records must be examined to
verify that they are fractal. For this verification, we used the rescaling range analysis
(method listed below in equations) (Feder, 1988). As the graph for each
temperature record shows, all of the temperature records used in this study are
fractals. Once each temperature record is found to be fractal, the Hurst exponent is
calculated. To calculate the Hurst exponent of a time series:
Yo = ¥(tn)

where:

| =

_y NN
n= ) )4F6F"'

with the last term in n being greater than two. First, find the mean of the time series:

Then calculate the deviations from the mean:

X, =y, — M,y
Xp =Y, — My
Xn = Yo — M,

Next, calculate the cumulative sums:



N
I
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R

Compute the range:
R, = max[Z,] — min [Z,,]

Compute the standard deviation:

n
1
Sp = EZ(yi _Mn)z
i=1

The rescaling range ? can be calculated over all partial time series of length n. It is
n

then used to estimate the Hurst exponent (H).

Where Cis a constant. From here:
Ry
log (S_) = log(C) + H log (n)
n

So, by finding the “line of best fit” (slope) between log (?) vs log (n) we can

calculate the Hurst exponent H, which is the slope.

After calculating the Hurst exponent for each time series, we can create the
1000 Monte Carlo synthetic runs using the synthesize fractional Brownian motion
function in Matlab® (wfbm). However, the synthesize fractional Brownian motion
function only returns the fractional Brownian motion signal, so the differences in
the signal’s individual points must be found to get back to the fractional Brownian

motion. This is done 1000 times to create the 1000 Monte Carlo synthetic runs for
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each time series. These 1000 synthetic temperature records undergo the same DFT
as the original temperature records and a 95% confidence level is found from the

power spectrum of these synthetic DFT using the 95 percentile of the outcomes.
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IV. Results

The results of the DFT analysis for the temperature records are shown in the power
spectrum along with the 95% confidence level for each time series (figures 2,4,6...
52). Significant peaks occur whenever the spectral analysis is greater than the 95%
confidence level. Of the 26 short-length temperature records that were analyzed in
this study, all but five (Hohenpeisenberg, Germany; Kremsmunster, Austria; Munich,
Germany; Prague, Czech Republic; Vienna, Austria) experienced at least one
significant peak with 122 significant peaks in total. Again, because we are interested
in climate dynamics, the minimum period length for this study was set at 30 years
and no maximum period, however the maximum period length able to be resolved is
that of the length of the temperature record itself. Significant peaks of short-length
temperature records range from 30 years to 910 years, with a majority being
between 30 and 100 years (about 56%).

The results of the significant peaks for all short-length temperature records
are all plotted on the same graph verse the power at which the peak experienced.
The results are in figure 53 along with the line of best fit. As it can be seen there is a
positive correlation with the length of period and the power at which those periods
occur. This would imply that longer periods would display a higher power.
However, it must be tested to verify that there is a positive relationship. For this, we
conducted a linear regression t-test to determine whether the slope of the
regression line differs significantly from zero or in other words to determent if there
is a positive correlation between period length and power level. First we state our

null hypothesis and alternative hypothesis:
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Hy:M =0

H,;:M >0
where M is the slope of the linear regression line. For this analysis, the significance
level is @ = 0.05. To apply the linear regression t-test, we need to calculate the
standard error of the slope, the slope of the regression line, the degrees of freedom,
the t-score test statistic, and the P-value of the test statistic. The standard error of

the slope can be calculated by:

1 "
oo 1= 5 2i=1 (Vi = 91)?

Z?=1(xi — X)?

In this case the standard error of the slope is SE = 0.010951. The slope of the
regression line:
y = 0.18912x + 7.1484
In this case is M = 0.18912. The degrees of freedom are:
DF =n—-2
Since n = 122, the degrees of freedom is DF = 120. The t-score can be found by:

M
"~ SE

t
Which gives us a t-score of t = 17.05. From here we can find that the p-value is
p > 0.00001. This result is significant at a confidence level of « > 0.05. This mean
that we reject the null hypothesis and that there is a positive relationship between
the period length and the power intensity of the spectrums.

What this means is that if we look at the long-length temperature records we

would expect to see high power among the significant peaks. By looking at figure 54
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(which include all significant peaks from all temperature records) we find that a
linear model hold true for increased length of period. This implies that there is an
increase in power density as the length of periodicity is increased.

An interesting find from this study is that there appears to be a gap in the
periodicity in which no significant peaks occur between about 1,000 years and
20,000 years. While very few of the short-length temperature records have lengths
longer than 1000 years, the long-length temperature records have more that enough
data points to be able to resolve this area covered by the gap, yet none of them have
any significant peaks within this gap. This is most apparent in the spectral analysis
of GISP2 ice core, central Greenland (figure 60). The significant peak on the left side
of the spectrum has a period of about 40000 years while the significant peak on the
right is about 1000 years. Note that there exist no significant peaks within this range
for this graph. This is what appears on all long-length temperature record spectral
analysis done in this study. This would suggest that there is nothing that has a
significant effect on the dynamics of the climate between the 1000 years oscillations,
which indications point that these oscillations are due to intrinsic dynamics of the
Earth yet external causes for periodic dynamics can’t be ruled out (Liidecke et al,,
2013), and the known 20 000 year, 40 000 year, and 100 000 year climate periods

that are due to astronomical forcings.
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V. Wavelet Analysis

Each short-length temperature records also underwent a wavelet analysis to
determine if any shift in the dominant period occurred within the time series. The
main goal of this was to determine if shifts of the subharmonic are characteristics of
the transition from periodic to chaotic oscillations of a dynamic system through
period doubling like that found in the wavelet analysis of Spannagel Cave, Europe
(Figure 84). By looking at all 26 wavelet analyses (figures 65-90), only three
temperature records experience subharmonic shifting characteristics that would
suggest transition from periodic to chaotic oscillations including Spannagel Cave,
Europe (the other two being Laguna Aculeo, Chile, figure 76 and Slovakia, Europe,
figure 80). With no commonality amongst a majority of the wavelet analysis it can
be determine that there is no global shifts of the subharmonic leading to chaotic
oscillations. There does not appear to be any commonality present amounts a

majority of the wavelet analysis that seams significant.
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VI. Conclusion

Analyses of more temperature records are needed to further examine multi-periodic
climate dynamics through the use of spectral analysis. This study only looked at 26
short-length temperature records and only five long-length temperature records.
With the more temperature records used for analysis, the more defined the
relationship between increase period length and increased power should become.
With more long-length temperature records, the more defined the gap between
about 1000 years and 20 000 year periods should become. Also, it still needs to be
examined to what are the causes of all of these significant periods within the climate
dynamics. While some causes are know, like variations in the Earths orbit, not all

known periods have a known cause and need to be studied further.
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VII. Figures
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Fig. 1. Top panel: Laguna Aculeo, Chile proxy temperature record. Bottom panel:
log(R/S) versus log(n) rescaling range analysis show temperature records is fractal.
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Fig. 2. Power spectrum analysis using DFT of Laguna Aculeo, Chile proxy
temperature record (blue) with the 95% confidence level using 1000 Monte Carlo

simulations (black).
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Fig. 3. Top panel: Baffin Island, Canada proxy temperature record. Bottom panel:
log(R/S) versus log(n) rescaling range analysis show temperature records is fractal.
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Fig. 4. Power spectrum analysis using DFT of Baffin Island, Canada proxy
temperature record (blue) with the 95% confidence level using 1000 Monte Carlo
simulations (black).
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Fig. 5. Top panel: Canadian Rockies proxy temperature record. Bottom panel:
log(R/S) versus log(n) rescaling range analysis show temperature records is fractal.
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Fig. 7. Top panel: Firth, Alaska proxy temperature record. Bottom panel: log(R/S)
versus log(n) rescaling range analysis show temperature records is fractal.
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Fig. 9. Top panel: Iceberg, Alaska proxy temperature record. Bottom panel: log(R/S)
versus log(n) rescaling range analysis show temperature records is fractal.
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Fig. 10. Power spectrum analysis using DFT Iceberg, Alaska proxy temperature
record (blue) with the 95% confidence level using 1000 Monte Carlo simulations
(black).
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Fig. 11. Top panel: Gulf of Alaska, USA proxy temperature record. Bottom panel:
log(R/S) versus log(n) rescaling range analysis show temperature records is fractal.
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Fig. 12. Power spectrum analysis using DFT Gulf of Alaska, USA proxy temperature
record (blue) with the 95% confidence level using 1000 Monte Carlo simulations
(black).
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Fig. 13. Top panel: Idaho, USA proxy temperature record. Bottom panel: log(R/S)
versus log(n) rescaling range analysis show temperature records is fractal.
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Fig. 14. Power spectrum analysis using DFT of Idaho, USA proxy temperature
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Fig. 15. Top panel: Northern Andes, South America proxy temperature record.
Bottom panel: log(R/S) versus log(n) rescaling range analysis show temperature

records is fractal.
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Fig. 16. Power spectrum analysis using DFT of Northern Andes, South America
proxy temperature record (blue) with the 95% confidence level using 1000 Monte

Carlo simulations (black).
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Fig. 17. Top panel: Southern Andes, South America proxy temperature record.
Bottom panel: log(R/S) versus log(n) rescaling range analysis show temperature

records is fractal.
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Fig. 18. Power spectrum analysis using DFT of Southern Andes, South America
proxy temperature record (blue) with the 95% confidence level using 1000 Monte

Carlo simulations (black).
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Fig. 19. Top panel: Beijing, China proxy temperature record. Bottom panel: log(R/S)

versus log(n) rescaling range analysis show temperature records is fractal.
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Fig. 20. Power spectrum analysis using DFT of Beijing, China proxy temperature
record (blue) with the 95% confidence level using 1000 Monte Carlo simulations
(black).
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Fig. 21. Top panel: Central Europe proxy temperature record. Bottom panel:
log(R/S) versus log(n) rescaling range analysis show temperature records is fractal.
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Fig. 22. Power spectrum analysis using DFT of Central Europe proxy temperature
record (blue) with the 95% confidence level using 1000 Monte Carlo simulations
(black).
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Fig. 23. Top panel: China proxy temperature record. Bottom panel: log(R/S) versus

log(n) rescaling range analysis show temperature records is fractal.
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Fig. 24. Power spectrum analysis using DFT China proxy temperature record (blue)

with the 95% confidence level using 1000 Monte Carlo simulations (black).
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Fig. 25. Top panel: Cold Air Cave, South Africa proxy temperature record. Bottom
panel: log(R/S) versus log(n) rescaling range analysis show temperature records is

fractal.
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Fig. 26. Power spectrum analysis using DFT of Cold Air Cave, South Africa proxy
temperature record (blue) with the 95% confidence level using 1000 Monte Carlo

simulations (black).
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Fig. 27. Top panel: Eastern Alps, Europe proxy temperature record. Bottom panel:
log(R/S) versus log(n) rescaling range analysis show temperature records is fractal.
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Fig. 29. Top panel: Lake Silvaplana, Switzerland proxy temperature record. Bottom
panel: log(R/S) versus log(n) rescaling range analysis show temperature records is
fractal.
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Fig. 30. Power spectrum analysis using DFT of Lake Silvaplana, Switzerland proxy
temperature record (blue) with the 95% confidence level using 1000 Monte Carlo
simulations (black).
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Slowvakia, Europe
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Fig. 31. Top panel: Slovakia, Europe proxy temperature record. Bottom panel:
log(R/S) versus log(n) rescaling range analysis show temperature records is fractal.
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Fig. 32. Power spectrum analysis using DFT of Slovakia, Europe proxy temperature
record (blue) with the 95% confidence level using 1000 Monte Carlo simulations
(black).
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Fig. 33. Top panel: Sweden, Europe proxy temperature record. Bottom panel:
log(R/S) versus log(n) rescaling range analysis show temperature records is fractal.
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Fig. 34. Power spectrum analysis using DFT of Sweden, Europe proxy temperature
record (blue) with the 95% confidence level using 1000 Monte Carlo simulations
(black).
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Fig. 35. Top panel: Tornetrask, Sweden proxy temperature record. Bottom panel:
log(R/S) versus log(n) rescaling range analysis show temperature records is fractal.
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Fig. 36. Power spectrum analysis using DFT of Tornetrask, Sweden proxy
temperature record (blue) with the 95% confidence level using 1000 Monte Carlo
simulations (black).
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Fig. 37. Top panel: West Qinling Mts, China proxy temperature record. Bottom
panel: log(R/S) versus log(n) rescaling range analysis show temperature records is

fractal.
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Fig. 38. Power spectrum analysis using DFT of West Qinling Mts, China proxy
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Fig. 39. Top panel: Paris, France instrumental temperature record. Bottom panel:
log(R/S) versus log(n) rescaling range analysis show temperature records is fractal.
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Fig. 40. Power spectrum analysis using DFT of Paris, France instrumental
temperature record (blue) with the 95% confidence level using 1000 Monte Carlo

simulations (black).
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Fig. 41. Top panel: Hohenpeisenberg, Germany instrumental temperature record.
Bottom panel: log(R/S) versus log(n) rescaling range analysis show temperature
records is fractal.
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Fig. 42. Power spectrum analysis using DFT of Hohenpeisenberg, Germany
instrumental temperature record (blue) with the 95% confidence level using 1000
Monte Carlo simulations (black).
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Fig. 43. Top panel: Kremamunster, Austria instrumental temperature record.
Bottom panel: log(R/S) versus log(n) rescaling range analysis show temperature

records is fractal.
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Fig. 44. Power spectrum analysis using DFT of Kremamunster, Austria instrumental
proxy temperature record (blue) with the 95% confidence level using 1000 Monte

Carlo simulations (black).
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Fig. 45. Top panel: Munich, Germany instrumental temperature record. Bottom
panel: log(R/S) versus log(n) rescaling range analysis show temperature records is

fractal.
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Fig. 46. Power spectrum analysis using DFT of Munich, Germany instrumental
temperature record (blue) with the 95% confidence level using 1000 Monte Carlo

simulations (black).
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Fig. 47. Top panel: Prague, Austria instrumental temperature record. Bottom panel:
log(R/S) versus log(n) rescaling range analysis show temperature records is fractal.
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Fig. 48. Power spectrum analysis using DFT of Prague, Austria instrumental
temperature record (blue) with the 95% confidence level using 1000 Monte Carlo
simulations (black).
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Fig. 49. Top panel Vienna, Austria instrumental temperature record. Bottom panel:
log(R/S) versus log(n) rescaling range analysis show temperature records is fractal.
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Fig. 50. Power spectrum analysis using DFT of Vienna, Austria instrumental
temperature record (blue) with the 95% confidence level using 1000 Monte Carlo

simulations (black).
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Fig. 51. Top panel: Spannagel Cave, Europe proxy temperature record. Bottom
panel: log(R/S) versus log(n) rescaling range analysis show temperature records is
fractal.
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Fig. 52. Power spectrum analysis using DFT of Spannagel Cave, Europe proxy
temperature record (blue) with the 95% confidence level using 1000 Monte Carlo
simulations (black).
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Fig. 53. Log-log plot of periods versus power of all significant peaks from all short-

length temperature records. The line-of-best-fit with slope of M = 0.18912.
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Fig. 54. Log-log plot of periods versus power of all significant peaks from all short-

length temperature records (blue) and long-length temperature records (red).
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Fig. 55. Top panel: Dome Fuji, Antarctica ice core proxy temperature record. Bottom
panel: log(R/S) versus log(n) rescaling range analysis show temperature records is
fractal.
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Fig. 56. Power spectrum analysis using DFT of Dome Fuji, Antarctica ice core proxy
temperature record (blue) with the 95% confidence level using 1000 Monte Carlo
simulations (black).
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Fig. 57. Top panel: EPICA Dome C, Antarctica ice core proxy temperature record.
Bottom panel: log(R/S) versus log(n) rescaling range analysis show temperature
records is fractal.
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Fig. 58. Power spectrum analysis using DFT of EPICA Dome C, Antarctica ice core
proxy temperature record (blue) with the 95% confidence level using 1000 Monte
Carlo simulations (black).
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Fig. 59. Top panel: GISP2, Central Greenland ice core proxy temperature record.
Bottom panel: log(R/S) versus log(n) rescaling range analysis show temperature
records is fractal.
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Fig. 60. Power spectrum analysis using DFT of S GISP2, Central Greenland ice core
temperature record (blue) with the 95% confidence level using 1000 Monte Carlo
simulations (black).
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Fig. 61. Top panel: Global 1Ma proxy temperature record. Bottom panel: log(R/S)
versus log(n) rescaling range analysis show temperature records is fractal.
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Fig. 62. Power spectrum analysis using DFT of Global 1Ma proxy temperature
record (blue) with the 95% confidence level using 1000 Monte Carlo simulations
(black).
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Fig. 63. Top panel: Vostok, Antarctica, ice core proxy temperature record. Bottom
panel: log(R/S) versus log(n) rescaling range analysis show temperature records is
fractal.
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Fig. 64. Power spectrum analysis using DFT of Vostok, Antarctica, ice core proxy
temperature record (blue) with the 95% confidence level using 1000 Monte Carlo
simulations (black).
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Fig. 65. Wavelet analysis of Baffin Island, Canada proxy temperature record.
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Fig. 66. Wavelet analysis of I[daho, USA proxy temperature record.



49

Beijing, China  WaYELET AMaLY SIS

Perod [vear]

Time [year &00)

Fig. 67. Wavelet analysis of Beijing, China proxy temperature record.
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Fig. 68. Wavelet analysis of Cold Air Cave, South Africa proxy temperature record.



50

Caradian Rockies, Canada  WAVELET AMALY SIS

o
%)

Perod [vear]

-
Y

123 '

256

1000 1100 1200 1300 1400 1500 1600 1700 1§00 1900
Time [year &00)

Fig. 69. Wavelet analysis of Canadian Rockies proxy temperature record.
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Fig. 70. Wavelet analysis of Central Europe proxy temperature record.
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Fig. 71. Wavelet analysis of Chi, China proxy temperature record.

510

Easztem &lps, Europe 'WAYELET AMALY SIS

1B F -18
L 14
Y L1z
=
2
5 F -1
o
4 L los
128
256

= e |
1800

1400 1500 15 1700 1800
Tirne [year A00)

Fig. 72. Wavelet analysis of Eastern Alps, Europe proxy temperature record.
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Fig.73. Wavelet analysis of Firth, Alaska proxy temperature record.
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Fig. 74. Wavelet analysis of Gulf of Alaska proxy temperature record.
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Fig. 75. Wavelet analysis of Iceberg, Alaska proxy temperature record.
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Fig. 76. Wavelet analysis of Laguna Aculeo, Chile proxy temperature record.
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Fig. 77. Wavelet analysis of Lake Silvaplana, Switzerland proxy temperature record.
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Fig. 78. Wavelet analysis of Northern Andes, South America proxy temperature
record.
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Fig. 79. Wavelet analysis of Southern Andes, South America proxy temperature
record.
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Fig. 80. Wavelet analysis of Slovakia, Europe proxy temperature record.
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Fig. 81. Wavelet analysis of Sweden, Europe proxy temperature record.
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Fig. 82. Wavelet analysis of Tornetrask, Sweden proxy temperature record.
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Fig. 83. Wavelet analysis of West Qinling Mts, China proxy temperature record.
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Fig. 84. Wavelet analysis of Spannagel Cave, Europe proxy temperature record.
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Fig.85. Wavelet analysis of Vienna, Austria instrumental temperature record.
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Fig.86. Wavelet analysis of Prague, Czech Republic instrumental temperature
record.
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Fig.87. Wavelet analysis of Munich, Germany instrumental temperature record.
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Fig.88. Wavelet analysis of Kremsmunster, Austria instrumental temperature
record.
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Fig.89. Wavelet analysis of Hohenpeisenberg, Germany instrumental temperature
record.
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Fig.90. Wavelet analysis of Paris, France instrumental temperature record.
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VIII. Table

#  Location/Name Length Spacing  Type Hurst (H)

1  Laguna Aculeo, Chile 856-1997 AD Annually Sediment Pigments 0.9653

2 Baffin Island, Canada 752-1992 AD Annually Sediment Thickness 0.7261

3  Canadian Rockies 950-1994 AD Annually Tree-Ring Thickness 0.8428

4 Firth, Alaska 1073-2002 AD Annually Tree-Ring Thickness 0.9156

5 Iceberg, Alaska 442-1998 AD Annually Varve Thickness 0.6611

6  Gulf of Alaska 724-1999 AD Annually Tree-Ring Thickness 0.8278

7  Idaho, USA 1135-1992 AD Annually Tree-Ring Thickness 0.8300

8 Northern Andes, South 1640-1987 AD Annually Tree-Ring Thickness 0.8549
America

9  Southern Andes, South 1640-1993 AD Annually Tree-Ring Thickness 0.7972
America

10 Beijing, China -665-1985 AD Annually  Stalagmite Thickness 0.8551

11 Central Europe 1005-2001 AD Annually Documentary Data 0.8945

12 China 1000-1950 AD Annually  Multi-Proxy 0.9365

Reconstruction

13 Cold Air Cave, South 1635-1993 AD Annually  Stalagmite Isotope 0.9269
Africa

14 Eastern Alps, Europe 1053-1996 AD Annually Tree-Ring and 0.9775

Sediment Thickness

15 Lake Silvaplana, 1175-1949 AD Annually Spectroscopy of Lake 0.9197
Switzerland Sediment

16 Slovakia, Europe 1040-2011 AD Annually Tree-Ring Thickness 0.8675

17 Sweden, Europe 1107-2007 AD Annually Tree-Ring Thickness 0.9123

18 Tornetrask, Sweden 500-2004 AD Annually Tree-Ring Thickness 0.8774

19 West Qinling Mts., China  1500-1995 AD Annually Tree-Ring Thickness 0.7611

20 Paris, France 1764-2000 AD Monthly  Instrumental Records 0.8498

21 Hohenpeisenberg, 1781-2013 AD Monthly Instrumental Records 0.8570
Germany

22 Kremamunster, Austria 1767-2013 AD Monthly  Instrumental Records 0.8559

23  Munich, Germany 1781-2011 AD Monthly Instrumental Records 0.8701

24 Prague, Czech Republic 1771-2013 AD Monthly  Instrumental Records 0.8585

25 Vienna, Austria 1775-2013 AD Monthly Instrumental Records 0.8626

26 Spannagel Cave, Europe  -9-1935 AD Uneven  Stalagmite thickness 0.9908

27 Dome Fuji, Antarctica -339500-750 AD  500yrs. Ice Core Samples 0.8952

28 EPICA Dome C, -800,000-1900 Uneven Ice Core Samples 0.8243
Antarctica AD

29 GISP2, Central Greenland -48000-1850 AD Uneven  Ice Core Samples 0.9883

30 Global 1Ma, -1067900-2000 500yrs.  Marine Benthic Oxygen 0.8457

AD Isotopes
31 Vostok, Antarctica -470766-2000 Uneven Ice Core Samples 0.9338

AD

Table 1: Table of all Data used within this study including location/name, length,
time spacing and type of proxy/instrumental records.
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