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ABSTRACT

Domain Decomposition Based Hybrid Methods of

finite element and finite difference

and applications in biomolecule simulations

by

Jinyong Ying

The University of Wisconsin-Milwaukee, 2016
Under the Supervision of Professor Dexuan Xie

The dielectric continuum models, such as Poisson Boltzmann equation (PBE), size modi-

fied PBE (SMPBE), and nonlocal modified PBE (NMPBE), are important models in predict-

ing the electrostatics of a biomolecule in an ionic solvent. To solve these dielectric continuum

models efficiently, in this dissertation, new finite element and finite difference hybrid methods

are constructed by Schwartz domain decomposition techniques based on a special seven-box

partition of a cubic domain. As one important part of these methods, a finite difference

optimal solver — the preconditioned conjugate gradient method using a multigrid V-cycle

preconditioner — is described in details and proved to have a convergence rate independent

of mesh size in solving a symmetric positive definite linear system. These new hybrid al-

gorithms are programmed in Fortran, C, and Python based on the efficient finite element

library DOLFIN from the FEniCS project, and are well validated by test models with known

analytical solutions. Comparison numerical tests between the new hybrid solvers and the

corresponding finite element solvers are done to show the improvement in efficiency. Finally,

as applications, solvation free energy and binding free energy calculations are done and then

compared to the experiment data.
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Chapter 1

Introduction

1.1 Motivation and current research

The understanding of molecular interactions is significant for insights into the biological

systems at the molecular scale [4, 5, 6]. Among the various components of molecular inter-

actions, electrostatics of a biomolecule in an ionic solvent (as illustrated in Figure 1.1) is

particularly important due to the long-range nature and influence on charged molecules. Un-

derstanding of its properties is a key in investigating many biomolecular processes, including

protein structural stability, enzyme catalysis, biomolecular recognition, ligand binding, and

protein folding problems [4, 7, 8].

Figure 1.1: A protein with PDB ID 2LZX immersed in an ionic solvent. Here the yellow
dots are the mobile ions in a solvent. The figure is generated using VMD.
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To study the important electrostatic properties of a biomolecule, there are two commonly-

used approaches, which mainly differ in the treatment of solution around the biomolecule.

As the first one, the explicit solvent approach treats the water solvent in full molecular detail

and accounts for all the degrees of freedom of water molecules. This class of methods can

offer the detailed insight into the biomolecular interaction properties we are interested in. It

has been widely adopted to the molecular dynamics for studying the physical movements of

molecules [9]. However, the huge number of water molecules results in a high computational

cost and thus limits the ability of these methods to calculate thermodynamic quantities for

large biomolecular systems. To overcome these difficulties, the other one — the implicit sol-

vent approach — had been well studied. Under this approach, the biomolecule is described

in details with atomic partial charges on the positions of atoms, whereas the solvent, i.e.,

the water solution, and the solute domain that hosts the biomolecule are both treated as

the dielectric continuum media with different dielectric constants, respectively. An interface

between the solute and solvent regions is modeled by one commonly-used molecular sur-

face (e.g., Gaussian surface, Solvent–excluded surface, or Solvent–accessible surface). This

implicit solvent treatment turns out to greatly reduce the computational cost of the tradi-

tional explicit solvent approach, and has been applied to the studies of protein-protein or

protein-ligand binding, scoring of protein conformations in the structure prediction, protein

folding/unfolding, and ion channels [10, 11, 12, 13]. As the flagship of the implicit solvent

approach, Poisson-Boltzmann equation (PBE) has become a well-established and popular

dielectric continuum model in predictions of electrostatics of a biomolecule in numerous ap-

plications, including calculating and predicting the solvation free energy, the binding free

energy, the pKa value, and the electrostatic force [5, 6, 14, 15, 16, 17].

Many work has been done in the development of the numerical PBE solvers. In the

current popular PBE program packages, such as APBS [18], PBEQ [19, 20], DelPhi [21, 22],

and UHBD [23], PBE was treated as a second-order jump-coefficient elliptic boundary value

problem without considering any interface condition. It was mainly solved by the finite

difference method based on a uniform Cartesian grid. The geometric multigrid techniques

were then used to solve the finite difference linear systems optimally in the sense that the total

number of floating-point operations is proportional to the number of unknowns. However, by

ignoring the interface conditions, such a finite difference algorithm suffers serious problems

2



of solution accuracy and numerical stability [24, 25]. To overcome these problems, new

finite difference schemes on uniform meshes with improved solution accuracy were developed

in the last few decades, including the immersed boundary method [26, 27], the immersed

interface method [28, 29, 30], the virtual node method [31], and the matched interface and

boundary method [32]. The immersed interface method and the matched interface and

boundary method have been used to solve PBE as an interface problem and develop the

new PBE solvers, which are called PBSA [33] and MIBPB [34], respectively. Furthermore,

the boundary element method, which recasts the linear partial differential equations into a

boundary integral equation using a kernel function, also has been used to solve the linearized

PBE [35]. Recently, the boundary element method has been generalized to the case where

the kernel function is not known, which is called the kernel free boundary integral method

[36], and it also has been applied to solve the nonlinear PBE [37].

Compared to the finite difference method and the boundary element method, the finite

element method [38] can not only naturally incorporate the interface conditions into the

formulation of a weak form, but also provide more flexibility for handling nonlinear equations.

However, it was quite rare to apply the finite element method to solve PBE due to some

difficulties of implementing this method. Unlike the finite difference method on a uniform

mesh, an unstructured interface-fitted tetrahedral mesh is required to implement the finite

element method in an effective way. Meanwhile, in order to assemble the stiffness matrix,

it requires a large amount of memory and CPU time to initialize a mesh, including storing

mesh data and computing the connectivity between vertex and cell and between facet and

cell. Because of these technical issues, there were only a few groups working on developing

finite element PBE solvers. Fortunately, in the last decade, an efficient finite element library

DOLFIN from the FEniCS project was developed [39, 40]. Meanwhile, an efficient and powerful

tetrahedral mesh generator Tetgen [41], written in C++, was released, whose implementation

simply requires a surface triangulation as an input. Based on this progress, the finite element

method became relatively easy to solve interface problems. Currently, Prof. Xie’s group

at UWM not only established a new simplified PBE mathematical theory [42], but also

developed an efficient finite element PBE solver [43].

However, despite the variety of the numerous methods and PBE solvers, solving PBE

is still too expensive in terms of computer memory and CPU time, especially for a large

3



molecular structure. In recent years, the domain decomposition method was a popular

technique to compute the numerical solutions of partial differential equations (PDEs) on

a large domain to obtain a satisfactory efficiency. The technique was firstly introduced

by H. A. Schwartz [44, 45] in the nineteenth century to establish the solution’s existence

and uniqueness of a Poisson equation on an irregular domain due to the limitation of the

Fourier transform method. With the rapid development of parallel computer architectures in

1980s, the domain decomposition method was re-visited and studied from the computational

point of view [46, 47, 48, 49] to develop the parallel algorithms in scientific computing

[50, 51, 52]. Currently, due to the flexibility in the treatment of complex geometries and

the attractive performance on parallel computer architectures, many domain decomposition

algorithms, such as the Schwarz, the Neumann-Neumann/FETI (Finite Element Tearing

and Interconnection) and the Optimized Schwarz, have been developed and mathematically

analyzed for linear systems [51, 53]. Meanwhile, the domain decomposition method also has

been used to solve nonlinear problems (see [54, 55] and references therein). Using the domain

decomposition method as a bridge, we recently combined finite element and finite difference

methods together [1] to yield a new hybrid PBE solver. In this new hybrid method, a special

seven overlapped box partition of a cubic domain was constructed so that the central box

covers the interface and is surrounded by six neighboring boxes. The the finite element

method is then used to deal with the interface problem within the central box while the

finite difference method, which is enhanced by the use of the mesh free, the matrix free,

and geometric multigrid techniques, is applied to each neighboring box to solve a boundary

value problem efficiently. Due to the high efficiency of the new hybrid PBE solver, it is

currently set as the default solver of a new released web-server SDPBS [56] for solving

PBE. Using the same seven box partition, we developed another PBE hybrid model [57]

constructed by combining nonlinear PBE finite element solver with a finite difference scheme

for solving a linearized PBE, which provides another way to develop the efficient PBE solver.

Furthermore, under this framework, it would be easy to develop a parallel PBE solver to

compute the electrostatics for large microtubule and ribosome structures.

PBE has been proven to be an important dielectric continuum model in biophysics,

biochemistry and structural biology. Nonetheless, PBE had some limitations [2, 58, 59, 60,

61, 62, 63, 64], mainly due to ignore the ion sizes and water polarization correlations. In PBE,
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ions are treated as points without any volume; thus the ions with different sizes but equal

valencies are treated to be identical. One well-known consequence of this simple treatment

is that ion concentrations may exceed their maximally allowed values near highly charged

biomolecular surfaces, such as those near enzyme active sites. Therefore, it is essential

to consider these effects to develop more realistic models. To include the ion size effects,

several attempts have been taken to modify PBE under assumptions that the water molecules

and the mobile ions have different sizes by using different mechanics, such as the stern

layers [65, 66], the Monte Carlo or mean field approach [67, 68, 69], the density functional

theory [70], the generalized Poisson-Fermi distribution [71], and a simple statistical mechanics

principle [72]. In literature, these models are all called size modified PBE (SMPBE). By the

lattice gas formulation, Borukhov et.al. [58] proposed a size modified PDE in terms of a

uniform ion size parameter, and Chu et.al. [59] generalized the case to allow two different

ionic species to have different ion sizes. Furthermore, as the generalization of PBE case

[42, 73], the solution existence and uniqueness of SMPBE were analyzed in [62] for the case

of nonuniform ion sizes.

To numerically solve SMPBE, APBS [18] incorporated the solver reported in [59], which

was constructed by a traditional finite difference method based on a uniform mesh for the

case of two different ionic sizes. However, this solver also suffered the problems of solution

accuracy and numerical stability [24, 25]. By the formulation from [58], a finite element

solver using a two-term solution decomposition scheme was developed in [63], where the so-

lution decomposition was used to treat the singularity of SMPBE caused by the Dirac Delta

distributions, but numerical tests were done only on the simplest Born ion case. An aug-

mented Lagrange multiplier method was used in [74] to solve SMPBE with the nonuniform

ion sizes. However, it did not consider any interface condition. To develop a more effective

and more reliable numerical SMPBE solver, a finite element program package for solving

SMPBE [2] was developed in the Prof. Xie’s group recently by using a new three-term solu-

tion decomposition scheme and was well tested numerically for both test models and protein

cases with different net charges.

Besides the steric effect, how to reflect water molecules hydrogen bond network in a

dielectric continuum model is also important especially for protein docking [75]. In the

1970s, it was firstly studied in Dogonadze et.al.’s nonlocal electrostatics. See paper [76] for

5



an overview of this nonlocal electrostatic study, [77] for applications in a primarily biological

perspective, and [78] in the computational modeling perspective. Instead of modeling the

solvent as a dielectric medium with a permittivity constant (like what is done in PBE and

SMPBE), a convolution function is used to reflect the permittivity changes over the whole

space and the spatial-frequency dependence of the dielectric function. As a result, the

equation in the solvent region becomes an integro-differntial term, which is difficult to solve

and thus the development of its numerical solvers is a key to explore its applications. Due

to this difficulty, the early work mainly considered the simple Lorentz nonlocal model for

the water solvent with charges near a half space or a dielectric sphere containing one central

charge or multiple charges [77, 79]. This situation was changed by Hildebrandt et.al.’ work

in 2004 [80], which made it possible to numerically solve a nonlocal dielectric continuum

model for a protein in water. Thereafter, numerous efforts were done to develop the solvers

of the nonlocal dielectric continuum model for the pure water case by using the finite element,

the finite difference, and the boundary element approaches [81, 82, 83, 84]. Furthermore,

Prof. Xie from UWM proposed a nonlocal Poisson dielectric model for a protein in an ionic

solvent [85] and a nonlocal modified Poisson-Boltzmann equation (NMPBE) [3], which is

the first nonlinear nonlocal dielectric continuum model for computing electrostatics of an

ionic solvated biomolecule. Moreover, in [3], an efficient NMPBE solver was developed by

using the finite element method and a solution decomposition scheme. Prof. Xie used novel

reformulation techniques that are different from the ones by Hildebrandt et.al. to solve

NMPBE without involving any direct calculation of convolution.

1.2 Outline

As the continuation work of [1], in this dissertation, we develop new hybrid algorithms for

efficiently solving both SMPBE and NMPBE. These new algorithms are the modifications of

the corresponding finite element solvers proposed in [2] and [3] based on the hybrid techniques

proposed in [1]. We then have programmed these two new hybrid algorithms in C, Fortran

and Python, and numerically shown that the new hybrid algorithms can sharply improve the

performance of their corresponding finite element solvers in terms of both computer CPU

time and memory usage. The remaining parts of the dissertation are organized as follows:

In Chapter 2, we present the finite element and finite difference hybrid method for solving

6



a class of linear interface problems based on a special seven overlapped box partition. Then a

mesh generation and domain partition scheme is given to automatically generate the domain

partition, the uniform finite difference mesh, and the finite element mesh. Furthermore, an

optimal finite difference solver using a multigrid preconditioner for the conjugate gradient

method is constructed. A test example is given to show that the new hybrid method has a

second-order convergence rate.

In Chapter 3, the dimensionless formulation of SMPBE is firstly given and then the new

hybrid method is constructed to solve SMPBE. Numerical experiments are given to verify

the new SMPBE program package, and to show the improvement of SMPBE from PBE using

a dipole test in the prediction of the ion concentrations. Numerical tests demonstrate the

high efficiency as well as the numerical stability of the new hybrid SMPBE solver. Moreover,

a brief discussion of the differences and similarities between SMPBE and PBE are discussed

from the numerical point of view.

In Chapter 4, the new hybrid method is constructed to solve the NMPBE model. For

completeness, the reformulation of NMPBE into a system of coupled equations is presented.

Then the reformulation of the system of equations on each neighboring box of the special

seven box partition is given so that each discretized linear system is symmetric positive

definite (SPD) in order to use the optimal finite difference solver — the preconditioned

conjugate gradient method using a multigrid preconditioner. Numerical experiments are

given to verify the new program package and to show the performance improvement compared

to the finite element NMPBE solver. The binding free energy of a complex molecule (PDB

ID 1d86) is calculated by the new hybrid solver to show that NMPBE can better match the

experiment data than PBE.

The conclusions and some future work are given in the last chapter.
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Chapter 2

Domain decomposition method for
interface problems

In this chapter, a new finite element and finite difference hybrid method based on a special

seven box partition will be constructed to solve a class of second-order linear interface elliptic

boundary value problems. A scheme will be presented to automatically generate the domain

partition, the uniform finite difference mesh, and the finite element mesh for an input.

Meanwhile, a finite element solver and an optimal finite difference solver will be constructed.

Lastly a test example will be given to show that the constructed hybrid method has a

second-order convergence rate.

2.1 A class of linear interface elliptic problems

In this section, for a sufficiently large cubic domain Ω such that

Ω = Dp ∪Ds ∪ Γ,

we consider a class of second-order linear interface elliptic boundary value problems having

the following form:
−εp∆w(r) = fp(r), r ∈ Dp,
−εs∆w(r) + β(r)w(r) = fs(r), r ∈ Ds,

w(s+) = w(s−), εs
∂w(s+)

∂n(s)
= εp

∂w(s−)

∂n(s)
+ ζ(s), s ∈ Γ,

w(s) = g(s), s ∈ ∂Ω,

(2.1)
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where εp and εs are two given positive constants, region Dp is surrounded by region Ds while

Γ is the interface between them, ∂Ω denotes the boundary of Ω, fp, fs, β, ζ, and g are given

continuous functions, and we further assume that β is nonnegative.

Due to the interface conditions, the nature choice to solve problem (2.1) would be the

finite element method, provided an interface-fitted tetrahedra mesh. However, using an

unstructured mesh, not only it needs extra CPU time to initialize a mesh for the computation

purpose, including generating a mesh and computing the connectivity (between facet and

cell, between vertex and cell, etc), but also it requires a large amount of memory to store

the mesh data and the nonzero entries of each involved coefficient matrix. Meanwhile, it

also causes the efficient geometric multigrid techniques no longer to work to make the finite

element method less attractive than the finite difference method in real applications. To

partially overcome the disadvantage of the finite element method, in this chapter, we will

construct a new box iterative method using the Schwartz alternating method based on a

special seven-box partition of a cubic domain and then propose a new finite element and

finite difference hybrid method to efficiently solve the linear interface problem (2.1).

2.2 Overlapped box iterative method

In this section, we firstly present a special partition of a given cubic domain Ω. For a given

region Dp, we select another cubic box D in Ω, and then divide Ω into seven overlapped

boxes Ωi for i = 1, 2, · · · , 7 with Ω7 being the central box satisfying

Dp ⊂ D ⊂ Ω7 and Ω \D = ∪6
j=1Ωj.

The position and ordering index of each box are illustrated in Figure 2.1. Clearly, the cubic

domain Ω was decomposed into seven overlapped boxes, in which one central box contains the

solute region Dp and is surrounded by six neighboring boxes; Furthermore, Ω7 \D gives the

overlapped part of Ω7 with its six neighboring boxes. Here the cubic domain is decomposed

into seven boxes in order to avoid the domain singularity (reentrant corner), which would

reduce the convergence rate of the multigrid method on uniform meshes [86], and meanwhile

it is easier to implement the multigrid method in a rectangular box. Therefore, seven is the

minimal partition number we can have for domain Ω to guarantee the rapid convergence of

the domain decomposition method.
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(a) Ordering of seven boxes (b) Left view of the box (c) Cross-section view

Figure 2.1: The special partition of domain Ω into seven overlapped boxes Ωi for i = 1 to 7.
Plot (a) illustrates the positions and ordering numbers of the seven boxes. Plots (b) displays
a view of the box partition from the left hand side. Plot (c) gives a view of the central box
Ω7 and its neighboring boxes on the cross-section generated by the half cutting of Plot (b).
Here the overlapping parts are not exposed in Plots (b) and (c) for clarity. These figures are
from [1].

Based on the special domain partition proposed above and following the Schwartz domain

decomposition scheme [87], in this section, we define an overlapped box iterative method for

solving (2.1) by

w
(k)
i = (1− ω)w

(k−1)
i + ωw̄i on Ωi for i = 1, 2, · · · , 7, (2.2)

where k = 1, 2, · · · , w(0)
i is an initial iterate, ω ∈ (1, 2) is the over-relaxation parameter, w̄i

with i = 1 to 6 denotes a solution of the elliptic boundary value problem:
−εs∆w(r) + β(r)w = fs(r) in Ωi,

w(s) = w
(k−1)
j (s) on ∂Ωi ∩ Ωj if ∂Ωi ∩ Ωj 6= ∅ for j = i+ 1 to 7,

w(s) = w
(k)
j (s) on ∂Ωi ∩ Ωj if ∂Ωi ∩ Ωj 6= ∅ for j = 1 to i− 1,

w(s) = g(s) on ∂Ωi ∩ ∂Ω,

(2.3)

and w̄7 is a solution of the elliptic interface boundary value problem:
−εp∆w(r) = fp(r) in Dp,
−εs∆w(r) + β(r)w = fs(r) in Ω7 ∩Ds,

w(s+) = w(s−), εs
∂w(s+)

∂n(s)
= εp

∂w(s−)

∂n(s)
+ ζ(s) on Γ,

w(s) = w
(k)
j (s) on ∂Ω7 ∩ Ωj for j = 1 to 6,

(2.4)

where ∂Ωi denotes the boundary of Ωi. Here we order the central box Ω7 as the last one so

that the updates w
(k)
i from the six neighboring boxes can be employed in the construction
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of boundary condition on ∂Ω7 to yield a good boundary value problem for the sake of

speeding up solving the interface problem and the convergence of the box iterative method.

From the standard Schwartz domain decomposition theory [88, 89], it can be known that

the overlapped domain decomposition scheme has a fixed convergence rate for a fixed value

of the over-relaxation parameter ω. Therefore, for a specific problem in form of (2.1),

we could determine the “optimal” relaxation parameter ω empirically. Meanwhile, in the

implementation, the new iterative method stops as long as the following condition holds:√√√√ 7∑
i=1

||w(k)
i − w

(k−1)
i ||2 ≤ ε, (2.5)

where || · || is the Euclidean norm, and ε is set to 10−7 by default.

2.3 Finite element and finite difference hybrid solver

Applying the new box iterative method to solve (2.1), in principle, we could apply different

methods in different boxes to solve problems (2.3) and (2.4). Specially, due to the construc-

tion of the central box Ω7, we prefer to use the finite element method to naturally deal

with the interface conditions; while the problem on each neighboring box is just the regu-

lar second-order elliptic problem, we use the finite difference method on uniform meshes to

efficiently solve it. Therefore, this leads to a new finite element and finite difference hybrid

method to solve (2.1).

In the following subsections, we will firstly present a scheme and a program for generating

the domain Ω, the seven overlapped boxes {Ωi}7
i=1, a special interface-fitted tetrahedral mesh

of Ω7, and a uniform finite difference mesh of Ωi for i = 1 to 6. Then we will construct an

efficient finite element scheme for solving the interface boundary value problem (2.4) and an

optimal finite difference scheme for solving the boundary value problem (2.3) to guarantee

the constructed hybrid method has better efficiency than the finite element method.

2.3.1 Mesh generation scheme and program

To apply the new finite element and finite difference hybrid method to solve the problem,

now we present the scheme to automatically generate the meshes as well as the domain

partition. To do that, let a cubic region D be given in the form D =
∏3

i=1(ai, bi) with
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each length bi − ai = L for i = 1, 2, 3. We then define the mesh size h and two other mesh

parameters τ and η satisfying τ < η by

h = L/2n, τ = 2mh, η = µL/2, (2.6)

where n, m, and µ are positive integers to be input by a user (n = 3, m = 2, and µ = 4

by default) according to the memory limit of a computer and a demanded accuracy of the

numerical solution. Using them, we construct a cubic domain Ω and the seven partitioned

boxes Ωi, i = 1, 2, · · · , 7, indicated in Figure 2.1, as follows:

Ω =
3∏
i=1

(ai − η, bi + η), Ω7 =
3∏
i=1

(ai − τ, bi + τ),

Ω1 = (a1 − η, b1 + η)× (a2 − η, b2 + η)× (a3 − η, a3),

Ω2 = (a1 − η, b1 + η)× (a2 − η, a2)× (a3 − τ, b3 + τ),

Ω3 = (a1 − η, a1)× (a2 − τ, b2 + τ)× (a3 − τ, b3 + τ),

Ω4 = (b1, b1 + η)× (a2 − η, b2 + τ)× (a3 − τ, b3 + τ),

Ω5 = (a1 − η, b1 + η)× (b2, b2 + η)× (a3 − τ, b3 + τ),

Ω6 = (a1 − η, b1 + η)× (a2 − η, b2 + η)× (b3, b3 + η),

from which we can see that these two parameters τ and µ determine the overlapped parts

among the seven boxes. We then also construct a uniform finite difference mesh of Ω \ D
with mesh nodes (xi, yj, zk) being defined as

xi = a1 − η + ih, yj = a2 − η + jh, zk = a3 − η + kh,

from which a uniform finite difference mesh of each box Ωi with i = 1 to 6 is defined.

Furthermore, we construct a hybrid mesh of Ω7 — an unstructured tetrahedral mesh on D

to well approximate the interface Γ and a uniform tetrahedral mesh on the overlapped part

Ω7 \D with the six neighboring boxes. For simplicity, the uniform mesh is simply made from

the uniform finite difference mesh located on the overlapped part Ω7 \D of the central box

Ω7 through cutting each cubic grid cell into six tetrahedra. Clearly, any two neighboring

boxes have been set to share the same mesh nodes on their overlapped parts. Upon this

fact, the data exchange between them in the box iterative method can be done easily and
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Figure 2.2: A cross section of a special tetrahedral mesh of Ω7 on the xy-coordinate plane
for a protein with PDB ID 2LZX. Dp is colored in red, and the overlapped part Ω7 \ D in
blue. This figure is from [1].

efficiently. We programmed the above mesh generation scheme in C. For clarity, the scheme

to generate the seven-box partition, the finite difference uniform mesh on each neighboring

box, and the finite element mesh on the central box is summarized as follows:

• Mesh scheme to generate domain partition and meshes

— Generate a surface triangulation mesh of the boundary Γ of the domain Dp;

— Generate a surface triangulation mesh of ∂D;

— Combine the surface triangulation meshes of Γ and ∂D to be a closed piecewise

linear complex as the input for Tetgen;

— Call Tetgen to generate a tetrahedral mesh for the cubic domain D;

— Input the values of three parameters n, m, and µ to determine a cubic domain Ω

and a uniform step size h, thus determining the uniform finite difference mesh on

each neighboring box;

— “Add” the uniform mesh on the overlapped part Ω7 \D to the unstructured mesh

of D to generate the finite element mesh on Ω7.

In this program, the domain Dp will be an input (In application of electrostatic potential

calculations, a PQR file of a biomolecule is required as an input file, which spedifies the Dp
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domain. It can be generated from a PDB file of a biomolecule, which can be downloaded from

the Protein Data Bank (PDB) ( http://www.rcsb.org/), by the program tool PDB2PQR [90]).

The surface triangulation mesh of the interface Γ is generated from the molecular surface

and volumetric mesh generation program package GAMer [91], which uses an isosurface of a

Gaussian function to approximate the molecular surface Γ of a biomolecule and then applies

the Marching Cube method [92] to extract the surface triangulation. Then a function written

in C is developed to generate the surface triangulation of ∂D. After combining these two

surface triangulations and calling the Tetgen to generate a 3D mesh of the domain D, we

next “add” the uniform meshes on the overlapped part Ω7\D and “cut” each grid to 6

tetrahedra to generate a special 3D finite element mesh on Ω7. See Figure 2.2 for a mesh of

Ω7 generated from this program.

2.3.2 Finite element solver

To solve the linear interface boundary value problem on the central box Ω7, we will use

the classic finite element method. Let M7 ⊂ H1(Ω7) be a linear Lagrange finite element

function space based on a tetrahedral mesh of Ω7. We reformulate the interface boundary

value problem (2.4) into the following equivalent variational problem:

Find a w̄7 ∈M7 with w̄7 = w
(k)
i on ∂Ω7 ∩ Ωi for i = 1 to 6 such that

b(w̄7, v) = l(v) ∀v ∈M7,0, (2.7)

where M7,0 = {v ∈ M7 | v = 0 on ∂Ω7}, b(w, v) is a symmetric bilinear functional defined

by

b(w, v) = εp

∫
Dp

∇w · ∇vdr + εs

∫
Ds∩Ω7

∇w · ∇vdr +

∫
Ds∩Ω7

β(r)w(r)v(r)dr,

and l(v) is a linear functional defined by

l(v) =

∫
Γ

ζ(s)v(s)ds +

∫
Ds∩Ω7

fs(r)v(r)dr +

∫
Dp

fp(r)v(r)dr.

We implement this finite element program in Python based on the efficient finite element

library DOLFIN [93] from the FEniCS project. Here each assembled SPD linear finite element

system is solved by calling the linear solver – the preconditioned conjugate gradient method

using the incomplete LU preconditioning (PCG-ILU) – from the scientific computing library
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PETSc [94], and by default both the relative and the absolute residue error parameters are

set to 10−8. Another option of the preconditioner for the PCG algorithm would be the

algebraic multigird method. Numerical tests showed the latter is not as efficient as PCG-

ILU, although it has the convergence rate independent of mesh sizes. Thus, in the following,

we will use PCG-ILU to solve the finite element linear systems on the central box. When

the finite element system is not SPD in the nonlocal case, then we will call GMRES-ILU

from PETSc to solve the corresponding linear system.

2.3.3 Finite difference solver

To solve the regular second-order elliptic boundary value problem on each neighboring box,

we adopt the finite difference method on uniform meshes. More specifically, we use the

seven-point finite difference stencil to discretize the corresponding problem. That is, the

equation on each neighboring box will be approximated by the following linear system: for

i = 1 to Nν,1 − 1, j = 1 to Nν,2 − 1, and k = 1 to Nν,3 − 1,

εs
h2

(6wi,j,k − wi+1,j,k − wi−1,j,k − wi,j+1,k − wi,j−1,k − wi,j,k+1 − wi,j,k−1) (2.8)

+βi,j,kwi,j,k = fs,i,j,k,

where ν = 1, 2, · · · , 6, Nν,1, Nν,2, and Nν,3 denote the numbers of partitions on the x, y, z-

axes, respectively, wi,j,k denotes a numerical value of w at the mesh node (xi, yj, zk), fs,i,j,k =

fs(xi, yj, zk), βi,j,k = β(xi, yj, zk), and the boundary values are set at i = 0, Nν,1; j = 0, Nν,2;

or k = 0, Nν,3. The finite difference system (2.8) is clearly SPD. Then we will construct an

optimal solver to solve this SPD linear system.

Here we try to construct a preconditioned conjugate gradient method using the multigrid

method as a preconditioner (PCG-MG). The scheme of PCG for solving a linear system in

the matrix form AU = F is well known (see page 297 in [87] for example). It is presented in

Algorithm 1 for clarity.
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Algorithm 1: the Preconditioned Conjugate Gra-
dient method
r0 = F − Ax0

d0 = z0 = Br0 // preconditioning
For k = 1, 2, · · · · · · (until convergence):

if ‖(dk−1, dk−1)A‖ ≤ 10−20 :
return iteration xk−1;

αk = (zk−1, rk−1)/(dk−1, dk−1)A
xk = xk−1 + αkdk−1

rk = rk−1 − αkAdk−1

zk = Brk // preconditioning
βk = (zk, rk)/(zk−1, rk−1)
dk = zk + βkdk

In Algorithm 1, A denotes a SPD coefficient matrix and (x, y)A = xTAy. From this al-

gorithm, it is easy to see that the two most time-consuming parts are the calculations of

the matrix-vector product Ad and the solution of the preconditioning equation B−1z = r

with B being a preconditioner (a matrix approximating A−1 in some sense). Meanwhile, the

efficiency of the algorithm highly depends on the choice of the preconditioner B.

Multigird is a very popular numerical technique by a global correction of the fine grid

solution approximation from solving the problem on a coarse mesh. And it has been well

known that it is efficient to solve Poisson equations on uniform meshes. Meanwhile, it

is also popular to use multigrid techniques to do the preconditioner, main advantage of

which versus a pure multigrid solver is particularly clear for nonlinear problems, e.g., the

eigenvalue problems. Here, to construct the preconditioner of the CG method, we use the

standard multigrid V-cycle method. More specifically, in the multigrid V-cycle method, the

pre and post smoothers are defined by one forward and one backward Gauss-Seidel iteration,

respectively, the prolongation operator is the trilinear interpolation, and its adjoint is set

as the restriction operator (i.e., the standard full weight operator [86]). With the standard

coarsening scheme, the coarsening of a mesh is stopped once one direction has only one

interior point or an odd partition number. On each neighboring box Ων , the following gives

the detailed descriptions of functions in the programming.

[PCG-MG Algorithm] PCG-MG(Ufd,ν , Ffd,ν , ε): Aν denotes the discretized matrix of

the problem on the ν-th neighboring box, Ufd,ν is the solution vector, Ffd,ν is the

corresponding right-hand side vector (RHSV), and ε is the given termination criterion.
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1. Compute the norm of Ffd,ν and set ε0 = ε‖Ffd,ν‖;

2. Call MVP(Ufd,ν) and return the vector AνUfd,ν ;

3. Compute the residue vector rν = Ffd,ν − AνUfd,ν ;

4. Call Pre-MG(rν) and return zν ;

5. Set dν = zν , and τ1 = (rν , zν);

6. Call MVP(dν), return Aνdfd,ν , and then calculate η = (dν , Aνdfd,ν);

7. [Singularity check] If η ≤ 10−20, exit and return the solution Ufd,ν ;

8. Set α = τ1/η, update Ufd,ν = Ufd,ν + αdν and rν = rν − αAνdfd,ν ;

9. [Convergence test] If ‖rν‖ ≤ ε0, exit and return the solution Ufd,ν ;

10. Call Pre-MG(rν) and return zν ;

11. Set τ2 = τ1, τ1 = (rν , zν), and β = τ1/τ2;

12. Update dν = zν + βdν and go back to step 6;

[Matrix-Vector-Product] MVP(u): For i = 1 to Nν,1−1, j = 1 to Nν,2−1, and k = 1

to Nν,3 − 1,

(Aνu)i,j,k =
εs
h2

(6ui,j,k−ui+1,j,k−ui−1,j,k−ui,j+1,k−ui,j−1,k−ui,j,k+1−ui,j,k−1)+βi,j,kui,j,k

with ui,j,k being zero if the point (xi, yj, zk) is on the boundary of the neighboring box

Ων .

[Multigrid V-cycle Preconditioning] Pre-MG(r): Here we use one step multigrid

V-cycle method as a preconditioner of the CG method to construct the preconditioned

equation zν = MKrν on the neighboring box Ων , where K denotes the number of levels

of uniform meshes with uniform mesh sizes h1 = 2h2 = · · · = 2K−1hK on Ων . Let bl,

zl, and rl denote the RHSV, the solution vector, and the residue vector on l-th level

mesh, respectively. For this function, the initial guess is always taken to be zero (i.e.,

zL = 0).
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• For l = K, · · · , 2:

Pre-smooth(zl, bl, rl);

Restriction(bl−1, rl);

• Coarsest Solver(z1, b1);

• For l=1, K − 1:

Interpolation(zl+1, zl);

Post-smooth(zl+1, bl+1);

• Return the solution vector zK ;

where

• Pre-smooth: given a RHSV bl, we use one step Forward Gauss-Seidel iteration as

the pre-smoother to update zl with the zero initial guess. That is,

zl = (Dl − Ll)−1bl,

where the discretized matrix on the l-th level uniform mesh Al = Dl−Ll−Ul with

Dl, Ll, and Ul being the diagonal part, the negative lower part, and the negative

upper part of the coefficient matrix Al, respectively. Then the residue vector rl is

computed by

rl = bl − Alzl;

• Post-smooth: given a RHSV bl, we use one step Backward Gauss-Seidel iteration

to update the solution zl as follows:

zl = zl + (Dl − Ul)−1(bl − Alzl);

• Restriction: given a residue vector rl on the l-th level mesh, we construct the

new RHSV bl−1 for the (l-1)-th level mesh with the 3D full weight method, which

has the following stencil notation:

1

64

1 2 1
2 4 2
1 2 1

2 4 2
4 8 4
2 4 2

1 2 1
2 4 2
1 2 1

 ;

18



In the implementation, we have the following pseudo-code to do the restriction

for a point (xi, yj, zk) of the (l-1)-th level mesh, which is from a 3d array rl on the

l-th level mesh to update a 3d array bl−1 on the (l-1)-th level mesh :

On the plane z = z2k,

b1 =8rl,2i,2j,2k + 4(rl,2i−1,2j,2k + rl,2i+1,2j,2k + rl,2i,2j−1,2k + rl,2i,2j+1,2k)

+ 2(rl,2i−1,2j−1,2k + rl,2i−1,2j+1,2k + rl,2i+1,2j−1,2k + rl,2i+1,2j+1,2k);

On the plane z = z2k+1,

b2 =4rl,2i,2j,2k+1 + 2(rl,2i−1,2j,2k+1 + rl,2i,2j−1,2k+1 + rl,2i,2j+1,2k+1 + rl,2i+1,2j,2k+1)

+ rl,2i−1,2j−1,2k+1 + rl,2i−1,2j+1,2k+1 + rl,2i+1,2j−1,2k+1 + rl,2i+1,2j+1,2k+1;

On the plane z = z2k−1,

b3 =4rl,2i,2j,2k−1 + 2(rl,2i−1,2j,2k−1 + rl,2i,2j−1,2k−1 + rl,2i,2j+1,2k−1 + rl,2i+1,2j,2k−1)

+ rl,2i−1,2j−1,2k−1 + rl,2i−1,2j+1,2k−1 + rl,2i+1,2j−1,2k−1 + rl,2i+1,2j+1,2k−1.

And then we have

bl−1,i,j,k =
1

64
[b1 + b2 + b3].

• Interpolation: we use the trilinear interpolation method [86, Page 72] to get the

values of grid nodes on the fine mesh from the coarse mesh; In the implementation,

to do the interpolation from a 3d array zl to a 3d array zl+1, we do the following

steps to avoid the if-else sentence: (here we assume the starting index is zero (like

C and Python) and use Ni, i = 1, 2, 3, to denote the partition number in x, y, z

direction of l-th level mesh, respectively)

1. For i = 2 to N1 − 1 with increment

2, j = 2 to N2−1 with increment 2,

and k = 2 to N3−1 with increment

2,

zl+1,i,j,k = zl,i/2,j/2,k/2;

2. For i = 1 to N1 − 1 with increment

2, j = 2 to N2−1 with increment 2,

and k = 2 to N3−1 with increment

2,

zl+1,i,j,k =
1

2
(zl+1,i−1,j,k+zl+1,i+1,j,k);

3. For i = 2 to N1 − 1 with increment
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2, j = 1 to N2−1 with increment 2,

and k = 2 to N3−1 with increment

2,

zl+1,i,j,k =
1

2
(zl+1,i,j−1,k+zl+1,i,j+1,k);

4. For i = 2 to N1 − 1 with increment

2, j = 2 to N2−1 with increment 2,

and k = 1 to N3−1 with increment

2,

zl+1,i,j,k =
1

2
(zl+1,i,j,k−1+zl+1,i,j,k+1);

5. For i = 2 to N1 − 1 with increment

2, j = 1 to N2−1 with increment 2,

and k = 1 to N3−1 with increment

2,

zl+1,i,j,k =
1

2
(zl+1,i,j−1,k+zl+1,i,j+1,k);

6. For i = 1 to N1 − 1 with increment

2, j = 2 to N2−1 with increment 2,

and k = 1 to N3−1 with increment

2,

zl+1,i,j,k =
1

2
(zl+1,i,j,k−1+zl+1,i,j,k+1);

7. For i = 1 to N1 − 1 with increment

2, j = 1 to N2−1 with increment 2,

and k = 2 to N3−1 with increment

2,

zl+1,i,j,k =
1

2
(zl+1,i−1,j,k+zl+1,i+1,j,k);

8. For i = 1 to N1 − 1 with increment

2, j = 1 to N2−1 with increment 2,

and k = 1 to N3−1 with increment

2,

zl+1,i,j,k =
1

2
(zl+1,i−1,j,k+zl+1,i+1,j,k).

• Coarsest Solver: given a RHSV b1 and an initial guess z1, we use the successive

over-relaxation (SOR) method with the relaxation parameter w = 1.7 to solve

the linear system on the coarsest uniform mesh. Here we stop SOR iterations

whenever the residue vector has the norm value less than or equal to 10−10. With

the setup of domains Ω, Ω7, D, and the uniform step-size h, we have symmetrically

1. For the boxes Ω1 and Ω6, lengths of the edges in x, y, z directions are (L +

2η), (L + 2η), η, and the partition numbers are (µ + 1)2n, (µ + 1)2n, µ2n−1,

respectively;

2. For the boxes Ω2 and Ω5, lengths of the edges in x, y, z directions are (L +

2η), η, (L + 2τ), and the partition numbers are (µ + 1)2n, µ2n−1, 2n + 2m+1,

respectively;

3. For the boxes Ω3 and Ω4, lengths of the edges in x, y, z directions are η, (L+
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2τ), (L + 2τ), and the partition numbers are µ2n−1, 2n + 2m+1, 2n + 2m+1,

respectively;

Thus, if we set µ to be an even integer, for example, n = 4,m = 2 and µ = 4, then

for the top and bottom boxes, the front and rear ones, the left and right ones,

we have K = 5, 4, 4, respectively, and on the coarsest mesh, only linear systems

with sizes of 4× 4× 1, 9× 3× 2 or 3× 2× 2 need to be solved. Obviously, these

linear systems could be solved efficiently by the SOR method.

In the program, the PCG-MG iteration does not stop until the relative residual norm

of the finite difference system (2.8) is less than or equal to 10−8 (i.e., ε = 10−8) by default.

As expected, it turned out this PCG-MG linear solver is more efficient than the multigrid

method to solve the Poisson-like equation (2.3). In the following, we give some theoretical

results to guarantee the PCG-MG linear solver works and indeed is an optimal linear solver

for solving (2.8) as we claimed.

Firstly, we present the following theorem to prove that one step multigrid V-cycle method

as a preconditioner is SPD and it indeed works for the PCG algorithm.

Theorem 2.3.1. The preconditioner MK is SPD.

Proof. For the equation on box Ων , ν ∈ {1, · · · , 6}, Al is the discretized matrix on the l-

th level uniform mesh. Then Al is obviously SPD. Since the multigird V-cycle method is

just the nested two-level-grid iteration, we have the following recursion of the matrix Ml,

l = 1, · · · , L, as a preconditioner (i.e., initial guess is zero):

M1 = A−1
1 ,

Ml = H l
postR

l
pre +Rl

post +H l
postI

l
l−1Ml−1I

l−1
l (Il − AlRl

pre), l = 2, · · · , K,

where I ll−1 is the prolongation operator, and I l−1
l is the restriction operator, Rl

pre = (Dl −
Ll)
−1, Rl

post = (Dl − Ul)
−1, H l

post = (Dl − Ul)
−1Ll, I

l
l−1 = 8 ∗ (I l−1

l )T , and Il denotes the

identity matrix on the l-th level uniform mesh.

Hence, we have

H l
postR

l
pre +Rl

post = (Dl − Ul)−1Ll(Dl − Ll)−1 + (Dl − Ul)−1

= (Dl − Ul)−1(Ll +Dl − Ll)(Dl − Ll)−1

= (Dl − Ul)−1Dl(Dl − Ll)−1,
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which is obviously SPD.

Furthermore, we obtain

Il − AlRl
pre = Il − (Dl − Ll − Ul)(Dl − Ll)−1

= Il − Il + Ul(Dl − Ll)−1

= Ul(Dl − Ll)−1,

which implies that

H l
postI

l
l−1Ml−1I

l−1
l (Il − AlRl

pred) = (Dl − Ul)−1LlI
l
l−1Ml−1I

l−1
l Ul(Dl − Ll)−1,

and again this is SPD if the matrix Mk−1 is. Since M1 is SPD, then by the mathematical

induction, we know the matrix MK is SPD. This completes the proof.

Remark 2.3.2. In [95], the author proved a more general theorem that the multigrid method

could be a preconditioner for the CG method. There it assumed the pre- and post-smoothing

methods are the same and the numbers of smoothing steps are even. Here we just present

a simpler proof to show the matrix generated by the one-step multigrid V-cycle method is

SPD, which indeed works for the PCG algorithm. Furthermore, the author also showed

numerically this kind of PCG-MG methods are more efficient than both the incomplete

cholesky conjugate gradient method and the multigrid method, which is consistent with

ours.

Theorem 2.3.1 theoretically guarantees that the constructed PCG-MG indeed works for

linear SPD problem. Next, we prove that the PCG-MG solver is an optimal one in the sense

that the convergence rate is independent of mesh size.

Theorem 2.3.3. To solve a linear SPD system AU = F with the defined multigrid precon-

ditioner MK, we have

||rk||MK
≤ 2Ck||r0||MK

for some constant C ∈ (0, 1) independent of the mesh size h. Here rk denotes the residue

vector at the k-th iterate, i.e., rk = F−AUk. That is, the convergence rate of the constructed

PCG-MG solver is independent of mesh size.
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Proof. From Theorem 2.3.1, we already know the preconditioner MK using the multigrid

V-cycle technique is SPD. By [87, Page 297], we then have exact the same algorithm as the

one described in Algorithm 1 to solve the following preconditioned system MKAx = MKb

under the A-norm instead of the usual l2 norm. Indeed,

(MKAx, y)A = (AMKAx, y) = (x,AMKAy) = (x,MKAy)A,

and

(MKAx, x)A ≥ 0 for ∀x.

Therefore, from the standard convergence theory of the CG algorithm [87], we have the

following convergence result

||rk||MK
≤ 2

[√
cond(MKA)− 1√
cond(MKA) + 1

]k
||r0||MK

,

where the condition number is defined by

cond(MKA) =
λmax(MKA)

λmin(MKA)

under the A-norm.

To explore the upbound of this condition number, we firstly observed that for the multi-

grid V-cycle method,

Uj+1 = Uj +MK(b− AUj)

= (I −MKA)Uj +MKb.

From the multigrid analysis [96], we know the method is convergent independent of mesh

size and thus we have

ρ(I −MKA) < 1,

where

ρ(I −MKA) = sup
v 6=0

‖((I −MKA)v, v)A‖
(v, v)A

,

from which it implies there exist α0, α1 ∈ (0, 1), both of which are independent of the mesh

size h, such that

−α0 ≤
((I −MKA)v, v)A

(v, v)A
≤ α1
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and thus

1− α1 ≤
(MKAv, v)A

(v, v)A
≤ 1 + α0.

Therefore, since MKA is SPD respect to the A-inner product, according to the property

of the Rayleigh quotient, we have

λmax(MKA) ≤ sup
v 6=0

(MKAv, v)A
(v, v)A

≤ 1 + α0,

and

λmin(MKA) ≥ inf
v 6=0

(MKAv, v)A
(v, v)A

≥ 1− α1.

Thus, we obtain

cond(MKA) =
λmax(MKA)

λmin(MKA)
≤ 1 + α0

1− α1

≡ C ′

and

||rk||MK
≤ 2Ck||r0||MK

with C ≡
√
C ′ − 1√
C ′ + 1

.

This completes the proof.

Due to these two theorems, the constructed finite difference solver can optimally solve

each elliptic boundary value problem on each neighboring box, which makes it possible to

significantly improve the efficiency compared to the finite element method. Furthermore,

to maximize the efficiency of the solver, we programmed the PCG-MG solver in Fortran

without storing the mesh data or the coefficient matrix A of linear system (2.8), and pre-

allocated all the necessary temporary memories required in the PCG or the multigrid V-cycle

algorithm, which would be shared and repeatedly used in the box iterative method on the

six neighboring boxes.

2.4 Validation tests for the hybrid method

We programmed the new hybrid method for solving the class of interface problems (2.1) in

Fortran. Before we move to the application of this new method, we firstly consider the

following linear interface boundary value problem with available analytical solution reported
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in [24] for the verification purpose:
∆Ψ(r) = 0 inDp,
−εs∆Ψ(r) = fs(r) inDs,

Ψ(s−) = Ψ(s+), εp
∂Ψ(s−)

∂n
= εs

∂Ψ(s+)

∂n
+ (εs − εp)

∂G(s)

∂n
on Γ,

Ψ(s) = U(s) on ∂Ω,

(2.9)

where

Dp = {r | ‖r‖ < a},

Γ = {r | ‖r‖ = a},

Ω = (−A,A)3 is a cubic domain, Ds = Ω−Dp − Γ, G is given by

G(r) =
α

4πεp

np∑
j=1

zj
|r− rj|

, (2.10)

and
∂G(s)

∂n(s)
= ∇G · n

with ∇G being given by

∇G(r) = − α

4πεp

np∑
j=1

zj
r− rj
|r− rj|3

. (2.11)

Furthermore, fs is given by

fs(r) =
α(εp − εs)

4πa2εp

np∑
j=1

zj

[(
7|r|2 − 5r · rj
|r− rj|3

− 6
(|r|2 − r · rj)2

|r− rj|5

)
cos

(
|r|2 − a2

a2

)
− 2|r|2(|r|2 − r · rj)

a2|r− rj|3
sin

(
|r|2 − a2

a2

)]
,

and U is given by

U(r) =
α(εs − εp)

8πεpεs
sin

(
|r|2 − a2

a2

) np∑
j=1

zj
(r− rj) · r
|r− rj|3

.

For this test model, it is easy to see that the analytical solution is Ψ(r) = 0 for r ∈ Dp and

Ψ(r) = U(r) for r ∈ Ds.

In numerical tests, we set εp = 2.0, εs = 80.0, α = 1.0, a = 1, and A = 3. The charge

number zj and the atomic position rj were obtained from a PQR file of a protein with PDB
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(a) Ω7,h1
with 3,933 vertices (b) Ω7,h2

with 30,839 vertices (c) Ω7,h3
with 243,069 vertices

Figure 2.3: Cross sections of three nested tetrahedral meshes Ω7,hj for j = 1, 2, 3 of the
central box Ω7. Here the spherical protein region Dp is colored in red.

ID 2LZX, which has 488 atoms (i.e., np = 488). Here we divided each atomic position rj by

17 to rescale it into the unit spherical region Dp without modifying the protein structure.

Furthermore, we set D = (−1.5, 1.5)3, τ = 0.375, and η = 1.5, from which we obtained

the seven overlapped boxes Ωi for i = 1 to 7. Next, we generated three nested meshes of Ω,

denoted by Ωhj for j = 1, 2, 3, whose total numbers of mesh nodes were found to be 7515,

57515, 448773, respectively. For these nested meshes, the corresponding three unstructured

tetrahedral meshes of Ω7, denoted by Ω7,hj for j = 1, 2, 3, were found to have 3933, 30839,

and 243069 vertices, respectively. Meanwhile, we got the mesh sizes of these three uniform

meshes on Ω \D and the finite element meshes on Ω7, which are

h1 = 0.375, h2 = h1/2 = 0.1875, and h3 = h2/2 = 0.09375,

and

h7,1 = 0.7389, h7,2 = 0.4058, and h7,3 = 0.2307,

respectively. Here the mesh size h7,j of the unstructured mesh on Ω7,hj is defined as the

largest edge length among all tetrahedra. Figure 2.3 displays the cross section views of

these nested tetrahedral meshes. The numerical results were reported in Table 2.1. Here the

absolute error Ea between the analytical solution Ψ and the numerical solution Ψh is defined
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Mesh of Number of Absolute Error Order of
Ω Mesh Nodes Ea of (2.12) Convergence

Ωh1 7,515 0.3248
Ωh2 57,515 0.0791 2.037
Ωh3 448,773 0.0199 1.991

Table 2.1: Errors of the new hybrid method on three nested meshes for solving the test
model (2.9).

as follows

Ea(Ψ) =

√√√√∫
Ω7

|Ψ(r)−Ψh(r)|2dr +
∑

rj∈(Ω−Ω7)h

h3[Ψ(rj)−Ψh(rj)]2, (2.12)

where rj denotes the jth mesh node of a uniform finite difference mesh on Ω \ Ω7.

From Table 2.1 it can be seen that the absolute error Ea of the constructed overlapped

box iterative method on the special seven box partition was reduced about three fourths

when the mesh size h was reduced approximately by half, due to use the seven-point finite

difference stencil and linear Lagrange finite element space in the hybrid method, resulting in

a second order convergence rate approximately and well matching the mathematical theory.

This well validated the program of the new hybrid method. As for the properties that the

convergence rates of both the new box iterative method and the optimal finite difference

solver are independent of mesh size, they will be verified using the SMPBE and NMPBE

test models in the following chapters.
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Chapter 3

Size modified Poisson Boltzmann
equation

It has been well known that PBE has some drawbacks in applications due to ignore the ion

sizes and the polarization correlations of water molecules. In this chapter, we will consider the

new dielectric continuum model incorporating the steric effects. Then the new hybrid method

will be applied to solve SMPBE for the uniform ion size case. Numerical results will be given

to show the improvement of SMPBE in predicting the ion concentrations. Meanwhile, the

comparison results on six proteins with different net charges and atom numbers will be done

to show the significant efficiency improvement of the new hybrid solver. For the nonuniform

ion size case, there is no explicit PDE form available and instead a PDE-constrained problem

must be solved. The development of its numerical solver will be considered to be future work.

3.1 Review of the finite element SMPBE solver

Recently, a finite element SMPBE program package using a new three-term solution de-

composition scheme has been proposed in [2], which turned out to work efficiently for both

test models and proteins with different net charges. Although this finite element solver has

shown sharp improvements in terms of efficiency and accuracy compared to other SMPBE

program packages, we intent to develop a new hybrid SMPBE solver to further improve the

efficiency using the new hybrid method. In this section, we will firstly give the dimensionless

formulation of SMPBE and then give a short review of the important techniques used in the

finite element solver.
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Under the SI system with the length unit of angstrom (Å), when we measure the elec-

trostatic potentials u in units kBT/ec, the dimensionless SMPBE is given as follows [2, 62]:

−εp∆u(r) = α

np∑
j=1

zjδrj , r ∈ Dp,

−εs∆u(r) +
κ2 sinh(u)

1 + 2MΛ3 cosh(u)
= 0, r ∈ Ds,

u(s+) = u(s−), εs
∂u(s+)

∂n(s)
= εp

∂u(s−)

∂n(s)
, s ∈ Γ,

u(s) = g(s), s ∈ ∂Ω,

(3.1)

where rj and zj are the position and charge number of the jth atom, respectively, g is a

boundary function (SMPBE is a second-order jump interface elliptic problem on R3 and

equation (3.1) is a boundary value problem after truncating the computational domain to

Ω. Therefore, it is critical to choose the appropriate boundary value function g in order

to reduce the “truncation” error. The common way is to set the function g to zero or the

size modified Multiple Debye-Hückel (MDH) function for a sufficiently large domain Ω), ∂Ω

denotes the boundary of Ω, δrj is the Dirac Delta distribution at the point rj, n(s) is the

unit outward normal vector of Dp, Λ3 denotes the uniform ion sizes, and the constants α, κ,

and M are defined by

α =
1010e2

c

ε0kBT
, κ2 = 2Is

10−17NAe
2
c

ε0kBT
, and M = 10−27NAIs

with NA and Is being the Avogadro number and the ionic strength in mole/liter, respectively.

For T = 298.15 and Is = 0.1, α, κ, and M can be estimated by

α ≈ 7042.94, κ2 ≈ 0.848272, and M ≈ 6.022× 10−5, (3.2)

which will be used in the numerical tests.

According to [2], a solution decomposition scheme is used to isolate the singularities

caused by the Dirac Delta distributions, which splits the solution u of equation (3.1) into

three components as follows

u = G+ Ψ + Φ̃, (3.3)

whereG is a function given by (2.10), Ψ is a solution of the following linear interface boundary
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value problem
∆Ψ(r) = 0, r ∈ Dp ∪Ds,
Ψ(s+) = Ψ(s−), s ∈ Γ,

εs
∂Ψ(s+)

∂n(s)
= εp

∂Ψ(s−)

∂n(s)
+ (εp − εs)

∂G(s)

∂n(s)
, s ∈ Γ,

Ψ(s) = g −G(s), s ∈ ∂Ω,

(3.4)

and Φ̃ is a solution of the following nonlinear interface boundary value problem

∆Φ̃(r) = 0, r ∈ Dp,

−εs∆Φ̃(r) +
κ2 sinh(G+ Ψ + Φ̃)

1 + 2MΛ3 cosh(G+ Ψ + Φ̃)
= 0, r ∈ Ds,

Φ̃(s+) = Φ̃(s−), εs
∂Φ̃(s+)

∂n(s)
= εp

∂Φ̃(s−)

∂n(s)
, s ∈ Γ,

Φ̃(s) = 0, s ∈ ∂Ω.

(3.5)

Here
∂G(s)

∂n(s)
= ∇G ·n with ∇G being given by (2.11). Hence, to get a numerical solution u,

we only need to solve (3.4) for Ψ and then (3.5) for Φ̃. An effective finite element scheme

has been given in [2, Algorithms 1 and 2]. For completeness, we give it a short review.

In the finite element scheme, we denote byM a finite element space of the usual Sobolev

function space H1(Ω). A finite element solution Ψ of (3.4) is firstly found by solving the

following equivalent linear variational problem:

Find a Ψ ∈M with Ψ|∂Ω = g −G such that

a(Ψ, v) = (εp − εs)
∫
Ds

∇G(r) · ∇v(r)dr ∀v ∈M0, (3.6)

where a(u, v) is a bilinear form defined by

a(u, v) = εp

∫
Dp

∇u(r) · ∇v(r)dr + εs

∫
Ds

∇u(r) · ∇v(r)dr, (3.7)

whereM0 = {v ∈M | v = 0 on ∂Ω}, a subspace of the Sobolev function space H1
0 (Ω). And

the nonlinear equation (3.5) is then reformulated as the equivalent minimization problem:

J(Φ̃) = min
v∈M0

J(v), (3.8)

with J being defined by

J(v) =
1

2
a(v, v) +

κ2

2MΛ3

∫
Ds

ln(1 + 2MΛ3 cosh(U + v))dr,
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where U = G+ Ψ, which has been pre-calculated. The above minimization problem is then

solved by the Newton iterative method:

Φ̃(k+1) = Φ̃(k) + λkpk, k = 0, 1, 2, . . . ,

where Φ̃(k) denotes the k-th iterate of the Newton minimization method, Φ̃(0) is an initial

guess, λk is a step length, and pk is a search direction generated from the Newton equation

in the variational form: Find a pk ∈M0 such that

J ′′(Φ̃(k))(pk, v) = −J ′(Φ̃(k))v ∀v ∈M0, (3.9)

where J ′(Φ̃) is the first Fréchet-derivative of J at Φ̃, which is a linear continuous functional

on H1
0 (Ω) defined by

J ′(Φ̃)v = a(Φ̃, v) + κ2

∫
Ds

sinh(U + Φ̃)

1 + 2MΛ3 cosh(U + Φ̃)
vdr ∀v ∈ H1

0 (Ω),

and J ′′(Φ̃) is the second Fréchet-derivative of J at Φ̃, which is a bilinear continuous functional

on H1
0 (Ω) defined by

J ′′(Φ̃)(p, v) = a(p, v) + κ2

∫
Ds

2MΛ3 + cosh(U + Φ̃)

(1 + 2MΛ3 cosh(U + Φ̃))2
pvdr ∀p, v ∈ H1

0 (Ω).

Similar to the finite element PBE program package, in the implementation, the initial

iterate Φ̃(0) can be selected as zero or a solution of a linearized equation of (3.5). Meanwhile,

to deal with the strong nonlinearity, an upper bound of 85 is set by default for truncating

the value of the sum Ψ +G+ Φ̃(k) to avoid the possible overflow problems of the hyperbolic

terms. Each Newton equation of (3.9) is solved numerically by PCG-ILU with the absolute

and the relative residue errors less than a given tolerance (10−10 by default).

3.2 Reformulation of the Newton equation

As the key step to apply the hybrid method, we firstly have the following theorem to get a

PDE reformulation of the Newton equation (3.9).
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Theorem 3.2.1. If p ∈ V , where V = H1
0 (Ω)∩H2(Dp)∩H2(Ds), then the variation problem

(3.9) is equivalent to the following boundary value problem

−∆p(r) = ∆Φ̃(r), r ∈ Dp, (3.10a)

−εs∆p(r) + κ2 2MΛ3 + cosh(U + Φ̃)

(1 + 2MΛ3 cosh(U + Φ̃))2
p =

εs∆Φ̃− κ2 sinh(U + Φ̃)

1 + 2MΛ3 cosh(U + Φ̃)
, r ∈ Ds, (3.10b)

p(s+) = p(s−), εs
∂p(s+)

∂n(s)
− εp

∂p(s−)

∂n(s)
= εp

∂Φ̃(s−)

∂n(s)
− εs

∂Φ̃(s+)

∂n(s)
, s ∈ Γ, (3.10c)

p(s) = 0, s ∈ ∂Ω, (3.10d)

where Φ̃ is a given function of V , Ψ is a given solution of (3.4) and function G is defined

in (2.10).

Proof. We only show the derivation of (3.10) from the variational form (3.9) since the proof

of the converse is easy. For any v ∈ H1
0 (Ω) satisfying v = 0 on Ds and v ∈ C∞0 (Dp), from

(3.9) we can get ∫
Dp

(∆p+ ∆Φ̃)vdr = 0 ∀v ∈ C∞0 (Dp),

from which it implies equation (3.10a).

Next, for any v ∈ H1
0 (Ω) satisfying v = 0 on Dp and v ∈ C∞0 (Ds), (3.9) can be reduced

to the form

εs

∫
Ds

∇p · ∇vdr + κ2

∫
Ds

2MΛ3 + cosh(U + Φ̃)

(1 + 2MΛ3 cosh(U + Φ̃))2
pvdr

=− εs
∫
Ds

∇Φ̃ · ∇vdr− κ2

∫
Ds

sinh(U + Φ̃)

1 + 2MΛ3 cosh(U + Φ̃)
vdr.

By the Green’s identity, the above equality can be reformulated as

− εs
∫
Ds

∆pvdr + κ2

∫
Ds

2MΛ3 + cosh(U + Φ̃)

(1 + 2MΛ3 cosh(U + Φ̃))2
pvdr

=εs

∫
Ds

∆Φ̃vdr− κ2

∫
Ds

sinh(U + Φ̃)

1 + 2MΛ3 cosh(U + Φ̃)
vdr,

from which we can obtain equation (3.10b).
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Furthermore, applying the Green’s identity to the two terms of a(·, ·) for v ∈ H1
0 (Ω) in

Dp and Ds, respectively, we can reformulate (3.9) as∫
Γ

[
εp
∂p(s−)

∂n
− εs

∂p(s+)

∂n

]
vds− εp

∫
Dp

∆pvdr−∫
Ds

[
εs∆p− κ2 2MΛ3 + cosh(U + Φ̃)

(1 + 2MΛ3 cosh(U + Φ̃))2
p

]
vdr

=

∫
Γ

[
εs
∂Φ̃(s+)

∂n
− εp

∂Φ̃(s−)

∂n

]
vds + εp

∫
Dp

∆Φ̃vdr+

∫
Ds

[
εs∆Φ̃− κ2

∫
Ds

sinh(U + Φ̃)

1 + 2MΛ3 cosh(U + Φ̃)

]
vdr.

Applying (3.10a) and (3.10b) to the above identity leads to the interface condition (3.10c).

The boundary (3.10d) condition is natural because of p ∈ V . This completes the proof.

3.3 New hybrid solver for SMPBE

Applying the hybrid method to solve the linear interface problem (3.4) for Ψ and (3.10) for

the search direction pk, we can modify the Algorithms in [2] to solve SMPBE. For clarity,

the new algorithm to efficiently solve SMPBE is given as follows:
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Algorithm for Solving SMPBE. Let the special overlapped box iterative
method be defined in (2.2) with the PCG-MG algorithm for solving a finite
difference system of (2.3) on a uniform mesh of the box Ωi for i = 1 to 6
and the PCG-ILU algorithm for solving a finite element system of (2.4) on an
interface-fitted tetrahedral mesh of the central box Ω7. A numerical solution
u of equation (3.1) is calculated approximately in the following five steps:

Step 1. Construct an interface-matched tetrahedral mesh for the central box
Ω7 and a uniform mesh for each neighboring box Ωi for i 6= 7 with a mesh
size h > 0.

Step 2. Calculate G on each box and ∇G on Ω7 according to (2.10) and
(2.11), respectively.

Step 3. Calculate Ψ of (3.4) by the overlapped box iterative method.

Step 4. Calculate Φ̃ by the modified Newton method in the following steps:

(a) Set k = 0 and Φ̃(0) = 0 (by default).

(b) Calculate the search direction pk by the overlapped box iterative
method.

(c) Find the steplength λk by a line search algorithm (starting with
λk = 1).

(d) Define the modified Newton iterate Φ̃(k+1) by Φ̃(k+1) = Φ̃(k) + λkpk.

(e) Check the convergence: If ‖Φ̃(k+1)− Φ̃(k)‖ ≤ 10−7 (by default), then
Φ̃(k+1) is set as a solution Φ̃ of the nonlinear interface problem (3.5);
otherwise, increase k by 1 and go back to (b).

Step 5. Construct a numerical solution u of SMPBE by the solution decom-
position u = G+ Ψ + Φ̃.

We programmed the new algorithm for solving SMPBE in C, Fortran, and Python as a

software package. Similar to the finite element SMPBE solver, the main program of the

software was written in Python based on the state-of-the-art finite element library DOLFIN

from the FEniCS project [39, 40]. Each finite element equation is produced by DOLFIN, and

solved by PCG-ILU from the PETSc library [97]. The input of the program is a PQR file

of a biomolecule, which contains the positions rj, the charge numbers zj, and the radii of

atoms as well as the related hydrogen atoms. We further wrote a Fortran subroutine to

speed up the calculations of the values of functions G and ∇G at each mesh point. All
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Fortran subroutines and C programs were converted to the Python external modules by

the Fortran-to-Python interface generator f2py (http://cens.ioc.ee/projects/f2py2e/)

and SWIG (http://www.swig.org), respectively. Thus, they can be directly called by the

Python main program.

3.4 Numerical results

In this section, we report the numerical experiments we made using the new Python pro-

gram. For simplicity, we set εp = 2.0, εs = 80.0, Λ = 3.11, T = 298.15, Is = 0.1, and

all the numerical tests were done by using the default values of the parameters (except the

parameters m,n, µ of (2.6)) on one processor of a Mac Pro Workstation with the 3.7 GHZ

Quad-Core Intel Xeon E5 and 64 GB memory.

3.4.1 Validation tests

Using the superposition principle and the rotational symmetry, we have obtained the ana-

lytical solution, a simple series expression in terms of Legendre polynomials, of a Poisson

equation with a spherical solute domain containing arbitrary number of changes [57]. Using

this analytical solution U , we artificially construct the following SMPBE test model:

−εp∆u(r) = α

np∑
n=1

zjδrj in Dp,

−εs∆u(r) +
κ2 sinh(u)

1 + 2MΛ3 cosh(u)
= Fs(r) in Ds,

u(s+) = u(s−), εs
∂u(s+)

∂n
= εp

∂u(s−)

∂n
on Γ,

u(r) = U(r) on ∂Ω,

(3.11)

where Dp = {r | ‖r‖ < a} with a > 0, Γ = {r | ‖r‖ = a}, Ω is a cubic domain, Ds =

Ω −Dp − Γ is nonempty, and Fs(r) = κ2 sinh(U(r))[1 + 2MΛ3 cosh(U(r))]−1, which can be

understood as an excess charge density function. For this SMPBE test model, clearly, U(r)

is still the analytical solution of (3.11).

In numerical tests, we set a = 1, Ω = (−6, 6)3, and constructed an overlapped box

partition of Ω using D = (−2, 2)3, τ = 1, and η = 4, which gave Ω7 = (−3, 3)3. The

over-relaxation parameter ω of the overlapped box iterative method was set to 1.275 and
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1.225 in solving (3.4) for Ψ and (3.10) for pk, respectively. Three nested meshes with the

uniform mesh sizes h = 0.25, h/2 (0.125), and h/4 (0.0625) were constructed for testing

the convergence behavior of the hybrid solver. Their numbers of mesh points were found to

be 120887, 940247, and 7412989, respectively, including the numbers of mesh points from

the finite element meshes of the central box Ω7, which were 18863, 145223, and 1136605,

respectively.

Table 3.1 reports the numerical results for two validation tests. In the first case, the unit

ball region Dp has only one central charge (np = 1). Such a test model is often referred to as

a Born ball test model. Its analytical solution u can be given in the closed form as follows

u(r) =


α

4π
(

1

εs
− 1

εp
) +

α

4πεp|r|
in Dp,

α

4πεs|r|
in Ds.

(3.12)

In the second case (np = 488), we assign the 488 atomic charges of a protein molecule (PDB

ID: 2LZX) to the unit ball region Dp through dividing each atomic position rj by 19. The

structure of the protein is preserved in the unit ball. In Table 3.1, for those two cases, the

numbers of iterations for PCG-MG, PCG-ILU, and the overlapped box iterative method

were their averages defined as total iteration numbers over the total number of the linear

systems solved.

Mesh Error PCG-MG Iter. PCG-ILU Hybrid Box Newton

size h
‖u− uh‖l2(Ω)

‖u‖l2Ω

on Ωi (i = 1 to 6) Iter. on Ω7 Iter. on Ω Iter. Order

Case 1: The region Dp containing one central charge only
0.25 5.77× 10−2 8.54 ≈ 9 7.89 ≈ 8 11.8 ≈ 12 5 -

0.25/2 1.56× 10−2 8.13 ≈ 8 13.74 ≈ 14 11.4 ≈ 11 10 1.89
0.25/4 3.62× 10−3 8.28 ≈ 8 22.98 ≈ 23 11.0 ≈ 11 11 2.11

Case 2: The region Dp containing 488 point charges from a protein (2LZX)
0.25 9.10× 10−2 8.94 ≈ 9 7.97 ≈ 8 11.7 ≈ 12 5 -

0.25/2 2.34× 10−2 8.95 ≈ 9 13.36 ≈ 13 12.2 ≈ 12 5 1.96
0.25/4 5.31× 10−3 9.61 ≈ 10 25.11 ≈ 25 11.0 ≈ 11 5 2.14

Table 3.1: Performance of the hybrid SMPBE solver for the SMPBE test model (3.11) in
relative solution errors and average iteration numbers (Iter.).

From Table 3.1 it can be seen that the errors were reduced almost by three fourths as the

mesh size h was decreased approximately by half, indicating that the convergence order of
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the hybrid SMPBE solver is around 2. The number of Newton iterations was only up to 11,

indicating the new hybrid modified Newton iterative algorithm for computing Φ̃ retained a

fast convergence rate of the modified Newton method. The average numbers of PCG-MG

iterations were about 9 for these three different mesh sizes, numerically confirming that the

PCG-MG solver has a convergence rate independent of the mesh size h. Furthermore, the

average numbers of the box iterations were around 11, showing it also has a convergence

rate independent of mesh size.

In these tests, the numbers of PCG-ILU iterations were small, showing the efficiency of

PCG-ILU for solving each finite element linear system on the central box Ω7. Although

it increased with the reduction of the mesh size, PCG-ILU was found to take much less

CPU runtime than a PCG using an algebraic multigrid preconditioner, called amg hypre,

from PETSc. The test problem sizes might not be large enough to take the advantage of an

algebraic multigrid preconditioner.

3.4.2 Ion concentrations of a dipole test model

The SMPBE/PBE test model with Dp being a unit ball only containing a central charge is

a common test model to demonstrate that SMPBE is a better dielectric continuum model

than PBE in prediction of the ion concentrations. We did tests on it using the hybrid solver

and got the same results as the ones reported in [2]. Furthermore, we did tests on a more

interesting dipole model, in which Dp consists of two overlapped balls with the same radius

r and two opposite central charges.

From the derivations of PBE [42] and SMPBE [62], for a salt solution consisting of sodium

(Na+) and chloride (Cl−) ions, the concentrations CNa and Ccl of sodium (Na+) and chloride

(Cl−) ions are estimated (in mole per liter) by:

CNa =

 Ise
−u

1 + 2MΛ3 coshu
for SMPBE,

Ise
−u for PBE,

Ccl =


Ise

u

1 + 2MΛ3 coshu
for SMPBE,

Ise
u for PBE,

(3.13)

where Is is a ionic strength in mole/liter, and constant M is given in (3.2). In the numerical

tests, we set r = 1.5 Å, a positive charge of +3ec at the center (1, 0, 0), and a negative
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charge of −3ec at (−1, 0, 0). We then constructed an overlapped box partition and meshes

with D = (−4, 4)3, µ = 2, n = 5 and m = 2 according to the formulas given in Section 2.3 to

get Ω = (−12, 12)3 and Ω7 = (−5, 5)3. The meshes of Ω and Ω7 had 900740 and 56988 mesh

points, respectively. A cross-section view of the finite element mesh of Ω7 on the xy-plane is

given in Figure 3.1. The boundary value function g was set to zero here.

Figure 3.1: A cross section on the xy plane of the mesh on Ω7 for the dipole test case.

Figure 3.2 displays the electrostatic field E on the xy coordinate plane, which we calcu-

lated by the formula E = −∇u using a numerical solution u produced by the hybrid SMPBE

solver. From Figure 3.2 it can be seen that the electrostatic field lines emanated from the

positive charged sphere and extended radially toward the negative charged sphere. Since the

two balls have an identical quantity of charge, their abilities to alter the space surrounding

them are the same. Hence, the electrostatic field around them should occur in a symmetric

pattern. As shown in the figure, these basic features of the electrostatic field lines were well

captured by the numerical solution, which partially validated the SMPBE program package.

Figure 3.3 displays the two concentrations CNa and Ccl predicted by the hybrid SMPBE

solver on the xy coordinate plane according to the formulas given in (3.13). From the figure,

we can see they have reasonably reached the saturation value, 55.2, claimed in Physics (i.e.,

1027/(NAΛ3) ≈ 55.2). Meanwhile, the predicted values of CNa and Ccl were distributed

symmetrically around the surface of these two balls, well matching the law of electrostatic

attraction.
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Figure 3.2: The electrostatic field E = −∇u calculated by the numerical solution u of the
new hybrid SMPBE solver.
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(a) Concentration Ccl of anions Cl−
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(b) Concentration CNa of cations Na+

Figure 3.3: The concentrations of anions (Cl−) and cations (Na+) predicted by the hybrid
SMPBE solver for the dipole model on the xy-plane.

We also repeated the above tests using Λ = 0, i.e., PBE case, to compare the obtained

results. Due to ignore the ion sizes, unreasonable amount of ions were cumulated near the

surface of the dipole and the concentrations CNa and Ccl were found to be unreasonably

large (over 1000, which exceeds the physical maximal number already) around the spherical

surfaces. From this test case, we can easily see the improvement of SMPBE in terms of

predicting the ion concentrations.
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3.4.3 Performance tests on proteins

We made numerical experiments on the six proteins tested in [2] to show that the hybrid

SMPBE program package can improve the performance of the finite element program package

significantly. These six proteins have PDB ID 1CBN, 1SVR, 4PTI, 1AZQ, 1D3X and 1TC3,

respectively, which can be downloaded from the Protein Data Bank. Their PDB files were

then converted to the PQR files by PDB2PQR [90]. These six protein molecules have 642,

1433, 892, 1603, 756, and 2124 atoms, and 0ec, −2ec, +6ec, −8ec, −21ec, and −35ec net

charges, respectively. Meanwhile, for these six proteins, the boxes of D produced from the

mesh generation program are listed as follows:

D = (−9.5, 28.1)× (−9.1, 28.5)× (−11.7, 25.9) for 1CBN,

D = (−24.8, 27.3)× (−30.4, 21.7)× (−24.5, 27.6) for 1SVR,

D = (−7.8, 38.4)× (−2.3, 43.9)× (−18.6, 27.6) for 4PTI,

D = (−20.9, 40.3)× (−19.6, 41.6)× (−19.2, 42.0) for 1AZQ,

D = (−21.1, 20.7)× (−21.6, 20.2)× (−20.4, 21.4) for 1D3X,

D = (−30.3, 51.0)× (91.4, 172.7)× (−8.1, 73.2) for 1TC3.

In numerical tests, we used µ = 4, m = 2, and n = 3 to construct a cubic domain of Ω

and an overlapped box partition of Ω according to (2.6) for each protein. The over-relaxation

parameter ω was set to 1.225 and 1.015 in solving (3.4) for Ψ and (3.10) for pk, respectively.

The boundary value function g was set to zero, and the initial iterate Φ̃(0) as a numerical

solution of the linearized SMPBE reported in [2].

Because the convergence rate of the PCG-MG solver is independent of the mesh size h,

the hybrid solver particularly works well on a finer mesh. To demonstrate this feature, we

used m = 3 and n = 4 to refine the meshes, and then repeated all the tests on these proteins.

Furthermore, we repeated all the tests by the finite element SMPBE program package.

Here each tetrahedral mesh of Ω was produced from the corresponding mesh of each protein

used by the hybrid solver. That is, each gird of the uniform finite difference mesh was divided

into six tetrahedra, making the mesh for the finite element solver have the same number of

mesh points on Ω as the mesh used in the hybrid solver.

Table 3.2 reports these numerical results. In the case of the hybrid solver, the construction

of a finite element mesh and the calculation of ∇G were done on Ω7 only. Hence, they took
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Number of Find G & ∇G Find Ψ Find Φ̃ Total Time
mesh points Hybrid FE Hybrid FE Hybrid FE Hybrid FE

Protein with PDB ID 1CBN (642 atoms and 0ec net charge)
77,969 0.42 0.76 0.91 1.99 2.32 8.02 4.17 11.33
537,953 2.63 5.23 4.71 14.97 8.31 50.21 17.81 74.09

Protein with PDB ID 1SVR (1433 atoms and −2ec net charge)
89,850 1.40 2.37 1.77 2.53 5.05 10.71 9.14 16.25
550,170 6.96 14.49 5.96 15.46 11.40 60.10 27.02 93.84

Protein with PDB ID 4PTI (892 atoms and +6ec net charge)
81,356 0.74 1.33 1.20 2.12 3.35 9.47 5.92 13.54
541,329 4.19 8.84 5.47 14.96 10.21 50.45 22.30 77.97

Protein with PDB ID 1AZQ (1603 atoms and −8ec net charge)
89,089 1.54 2.62 1.69 2.40 4.73 10.54 8.87 16.20
549,279 7.75 16.14 5.94 15.27 13.21 57.29 29.76 92.49

Protein with PDB ID 1D3X (756 atoms and −21ec net charge)
82,897 0.64 1.15 1.32 2.15 4.14 10.65 6.77 14.54
542,878 3.58 7.54 5.86 14.76 12.78 57.48 24.59 83.53

Protein with PDB ID 1TC3 (2124 atoms and −35ec net charge)
101,944 2.54 3.99 2.90 2.91 10.05 16.81 16.90 24.45
564,871 10.88 21.98 7.58 15.65 23.50 85.29 45.45 126.82

Table 3.2: A comparison of the performance in CPU time (in seconds) of the hybrid solver
(Hybrid) with that of the finite element solver (FE) reported in [2] in the calculation of
component functions G, Ψ and Φ̃ of SMPBE solution u, including the total CPU time
(exclusion of the time for finite element mesh generation).

less CPU time than the ones from the finite element solver. Due to the efficiency of the

overlapped box iterative method, we can see that the hybrid solver reduced the total CPU

runtime of the finite element SMPBE solver from 31% to 63% on the coarse meshes and

64% to 76% on the fine meshes, showing that the hybrid solver can significantly improve

the performance of the finite element one, especially in the case of fine meshes. Here for

solving the nonlinear problem Ψ, the newton iterations for each protein are at most one step

difference for those two solvers.

3.4.4 Electrostatic solvation free energy calculations

As a variant of PBE, one important application of SMPBE is to predict the electrostatic

solvation free energy of a biomolecule in an ionic solvent, which measures the energy changes
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of a biomolecule from a vacuum state to a solvated state. This quantity is commonly used

in the community to measure the “quality” of a developed solver by comparing either to

the available experiment data or the analytical values of some test models (i.e., the Born

Ball model (http://www.poissonboltzmann.org/examples/The_Born_ion/)). Since it is

the energy difference in two different states, as did in APBS [18], in order to “carlibrate”

this term, we need compute the numerical solution twice corresponding to the vacuum state

and the solvated state, respectively, and then obtain the difference. However, according to

the solution decomposition (3.3), without computing the numerical solutions twice, we can

directly estimate the electrostatic solvation energy E by the formula

E =
NA

4184
· kBT

2

np∑
j=1

zj

(
Ψ(rj) + Φ̃(rj)

)
kilocalorie per mole (kcal/mol), (3.14)

which reflects another advantage of the solution decomposition scheme to solve SMPBE.

To compute this quantity, the numerical solutions Ψh and Φ̃h are found from solving (3.4)

and (3.5) to obtain an approximation Eh of E based on a mesh Ωh of Ω. Therefore, a

convergent and numerically stable SMPBE solver is expected to yield a sequence of Eh that

may vary around E but in a small range as h→ 0. To verify the solver’s numerical stability,

we calculated 4E by the formula (3.14) for a set of 216 biomolecules with atom numbers

varying from 506 to 69711 (including proteins, protein-protein complexes, and nucleic acids)

downloaded from Prof. Ray Luo’s website

http://rayl0.bio.uci.edu/rayl/.

To do the tests, each domain Ω was selected to be 2 times larger than the box D (i.e., µ = 2),

and the zero boundary condition was used. For each biomolecule, we calculated 4E using

six successively refined meshes. The averages of the mesh point numbers over the 216 meshes

of the whole domain Ω were found to be 49979, 74946, 99081, 170005, 443704, and 981550

for the six sets of meshes, respectively. Since the analytical value of 4E is unknown, we

took the numerical value of 4E calculated from the finest mesh as the reference to calculate

a relative error of 4Eh. To simplify the display of the numerical results, we calculated

the average of the 216 relative errors for each set of meshes, which were reported in Figure

3.4. From Figure 3.4 we can see that the relative errors were changed less than 0.004 only,

implying that this new solver has satisfied performance in the numerical stability and the

convergence behavior in calculations of the electrostatic solvation free energy.
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Figure 3.4: Numerical behaviors of the new SMPBE solver on the six sets of meshes in
calculations of electrostatic solvation free energies for the 216 biomolecules.

3.4.5 Binding free energy calculations

Similar to the classic PBE [98, 99], SMPBE can also be used to study the salt dependence

of the binding free energy for a complex molecule. Many experiment data are available from

the literature, which make them extremely valuable for the validation of a dielectric model

and related numerical solvers. In this section, we will use the application of SMPBE in the

bind free energy calculation to further validate the new program package.

For a complex C consisting of molecule components A and B, the binding free energy

Eb(Is) is defined by

Eb(Is) = E(C, Is)− E(A, Is)− E(B, Is),

which measures the difference of electrostatic free energies before and after binding two

components together. Here E(X, Is) denotes an electrostatic free energy of a molecule X

in a solvent with an ionic strength Is. From the counterion condensation theory [100, 101],

instead of quantifying this binding energy, it is known that Eb can be transformed by the

variable change, ξ = ln Is, to a linear function of ξ as follows

Eb = mξ + b, (3.15)

where m and b are constants to be determined, and m can be determined experimentally.

Notice, some authors used slightly different term to characterize this linear relationship. For
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example, in [102], a scaled slope ms from the chemical point of view is further defined by

ms = −m/(NAkBT ).

To simulate the binding free energy calculations, we made tests on a DNA-drug complex

represented in PDB ID 1D86 using the PQR files from [100]. A chemical experimental value,

−1.51, of ms was given in [102, Table 3]. In these numerical tests, the electrostatic free

energy E(X, Is) was computed according to the formula (3.14).

To produce a numerical prediction of the scaled slope ms, we calculated the binding free

energy Eb using the following 11 different values of Is:

Is,j = eξj with ξj = −3 + 0.2j for j = 0, 1, 2, . . . , 9, 10,

and then produced the best-fitted line by a linear regression program, which is downloaded

from the APBS website

http://www.poissonboltzmann.org/examples/Protein-Rna_Tutorial/

to yield the predicted value of ms.

Mesh set Number of mesh points
index Mesh for complex Mesh for DNA Mesh for drug

1 85195 86435 73051
2 154705 155903 137797
3 259903 261512 233983
4 411583 413961 367030
5 613983 616328 542747
6 4252682 4255163 4163790

Table 3.3: Mesh data for the six sets of meshes used in the calculation of the binding free
energy for a DNA-drug complex represented in PDB ID 1D86.

Moreover, we constructed six different sets of meshes and repeated the above calculation

in order to study the sensitivity of the solver to the discretization error. Here each set

contains three meshes: the first one for the complex 1D86, the second one for its DNA

component, and the third one for its drug component. In each mesh, a domain of Ω was set

to be four times larger than the domain of D, i.e., µ = 4. The interface Γ produced from the

first mesh were shared by other five meshes to ensure the same interface problem was solved
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on each mesh. Here the boundary condition is set to zero for the sufficiently large domain

of each mesh set.
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Figure 3.5: The scaled slops ms of the six best-fitted lines calculated by the hybrid SMPBE
solver for a DNA-drug complex represented in PDB ID 1D86 based on the six sets of meshes
listed in Table 3.3.

From Figure 3.5 it can be seen that the numerical values of the scaled slop ms increased

from −1.6 to −1.39, as the mesh set index was changed from 1 to 6 (or a mesh became finer

and finer). The deviations from the best-fitted line calculations were all very small. These

tests showed that the hybrid solver behaved stably in the numerical calculation of the binding

free energy. Furthermore, from Figure 3.6, it can be seen that the predicted binding free

energies perfectly describe its linear relationship with the log function of the ionic strength

Is as claimed in theory. In Figure 3.7, we displayed the electrostatic free energy values of

E(X, Is) calculated by the hybrid solver using Is = e−2.2 ≈ 0.11, which showed a tendency

of convergence for X being the DNA-drug complex, DNA component, or drug component,

respectively. These important properties make it easy for us to produce a good predicted

value of ms on a properly constructed mesh set.

3.4.6 Comparisons between PBE and SMPBE

SMPBE is the variant of PBE by considering the steric effects. And from the numerical

results, we have clearly seen that the improvement of the new dielectric continuum model in
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Figure 3.6: The best-fitted line obtained on the second set of meshes.
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Figure 3.7: Electrostatic free energies (numbers on the top of each curve) of the complex
with PDB ID 1D86, its DNA component, and its drug part calculated by the hybrid solver
on the six mesh sets listed in Table 3.3 using Is ≈ 0.11.

terms of the ion concentrations (See Section 3.4.2). However, surprisingly, it was found out

that the numerical solutions of SMPBE and PBE are close to each other, and the differences

in the ion concentrations were caused by the different formulas of the ion concentration (i.e.,

one has upper bound and one has not, see (3.13)). Next we try to repeat the numerical
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simulation of the binding free energy calculation in previous subsection to further explore

the difference and the similarity between these two dielectric continuum models.

With the six sets of meshes, the same domain setup, and the same boundary value

function used in previous subsection, we carried out the binding free energy calculations using

the hybrid PBE solver reported in [1] and then compared to the results in last subsection.
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Figure 3.8: Comparisons of binding free energy calculations using SMPBE and PBE for the
complex with PDB ID 1D86.

From Figure 3.8, it can been seen that the best-fitted lines obtained from the hybrid

SMPBE and PBE solvers on different mesh sets are close. Meanwhile, the electrostatic free

energies for each component on the six sets of meshes are also very close. With these ob-

servations, it seems indeed the numerical solutions of SMPBE and PBE do not have much

differences. As the uniform ion sizes are introduced to result in a “bounded” Boltzmann

distribution, the SMPBE solver is much faster than the PBE one in solving the nonlinear

problem of Φ̃ due to the “less” nonlinearity of the Boltzmann distribution in SMPBE. There-

fore, it seems we can treat the uniform ion sizes Λ3 in SMPBE as a scale factor to reduce

the difficulty to solve PBE. In [60], Wang et.al. reported their comparison results using PBE

and nonuniform SMPBE as well as the molecular dynamics simulations for lipid bilayers, in

which they claimed:

“The SMPBE appears to reproduce the molecular dynamics simulation results better

than the PBE only under specific parameter sets, but in general, it performs no better than

the Stern layer correction of the PBE.”
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This is partially consistent with the above observations. Nonetheless, we will firstly

develop a accurate numerical solver by solving the nonuniform SMPBE, and then carry out

further comparisons before we can make any conclusion. This is considered to be future

work.
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Chapter 4

Nonlocal modified Poisson Boltzmann
equation

Besides the dielectric continuum model considering the steric effects, there are nonlocal

dielectric continuum models, which took the polarization correlations of water molecules

into account. This nonlocal theoretical framework was firstly studied in Dogonadze etc’s

nonlocal electrostatics. But due to the integro-differential term in the equation to reflect the

structural effects, for a long time developing a numerical solver for the nonlocal case had been

an intimidating work. Remarkably, Hildebrandt et.al. [80] proposed a novel reformulation

in 2004, making it possible to solve the improved continuum model numerically. Thereafter,

numerous efforts had been devoted to develop fast solvers of the nonlocal continuum model

for the pure water case using the finite element, the finite difference, and the boundary

element approaches [81, 82, 83, 84]. However, due to the complexity caused by the integro-

differential term, it is not trivial to develop the nonlocal dielectric continuum model for a

biomolecule in an ionic solvent. Currently, the only available nonlocal model for the ionic

solvent case, which is called nonlocal modified PBE (NMPBE), was proposed in paper [3].

In this chapter, following the formulation of NMPBE and the techniques used in the finite

element NMPBE solver, the new hybrid method will also be applied to solve this case.

Numerical results will show the efficiency improvement of the new solver and demonstrate

the improvement of the new nonlocal dielectric model.

49



4.1 Dimensionless formulation

Following the description in [3], for the case of a symmetric 1:1 electrolyte solution, when the

distance is measured in angstrom (Å), we have the following so-called dimensionless NMPBE

(i.e., the electrostatic potentials have units (kBT )/ec):

−εp∆u(r) = α

np∑
j=1

zjδrj , r ∈ Dp,

−ε∞∆u(r)− (εs − ε∞)∇ ·
∫
R3

Qλ(r− r′)∇u(r′)dr′ + κ2 sinh(u(r)) = 0, r ∈ Ds,

u(s+) = u(s−),

εp
∂u(s−)

∂n(s)
= ε∞

∂u(s+)

∂n(s)
+ (εs − ε∞)

∫
R3

Qλ(r− r′)∇u(r′)dr′ · n(s), s ∈ Γ,

u(r)→ 0, |r| → ∞,

(4.1)

where α and κ are two constants given in (3.2), and the kernel function Qλ is given by

Qλ(r) =
exp(−|r|/λ)

4πλ2|r|
.

To numerically solve (4.1), it is difficult task due to the singularities from the Dirac

Delta distributions, the strong nonlinearity from the hyperbolic functions, and the integro-

differential term in the solvent region. To overcome the singularities, a solution decomposi-

tion scheme would be used. Same as in [1, 3, 42], we split the solution u of NMPBE into

a sum of three components: G with an explicit formula, a solution Ψ of a linear interface

problem, and a solution Φ̃ of a nonlinear interface problem. Thus, instead of solving u di-

rectly, we compute G and solve two interface problems of Ψ and Φ̃. Therefore, the efficiency

of the NMPBE solver would mainly depends on the solvers for solving Ψ and Φ̃, respec-

tively. Furthermore, since both equations of Ψ and Φ̃ contain the integro-differential terms,

another reformulation technique [3, 80] different from the one proposed by Hildebrandt et.al.

is applied to sharply reduce the computational cost. That is, set a new variable and a

new equation for the convolution term by the fact that the integro-differential term has a

Yukawa-type kernel. Therefore, in the end we need solve the systems of equations for both

Ψ and Φ̃ to obtain the numerical solution u of NMPBE, thus avoiding the assemble of the

dense matrix and sharply reduce the computational cost. And in order to deal with the

strong nonlinearity, as did in the PBE case, an upper bound will be provided to truncate the

input value of the hyperbolic functions. All of these techniques have been used in the finite
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element NMPBE solver proposed recently in [3]. For clarity, we give them a short review

firstly.

4.2 Finite element NMPBE solver

Here we make a review of the important techniques to make equation (4.1) numerically

solvable and the modified Newton scheme used to solve the nonlinear interface problem

proposed in the finite element NMPBE solver reported in [3], which computes the numerical

solution on a sufficient large domain

Ω = Ds ∪Dp ∪ Γ

with a prescribed boundary function g on the domain boundary ∂Ω.

Solving (4.1) directly would be a challenge due to the involvements of the integro-

differential part and the Dirac Delta distributions. To avoid computing the convolution

part, since the kernel Qλ is a Yukawa-type function satisfying the following equation [3, 80]:

− λ2∆Qλ(r) +Qλ(r) = δ(r), r ∈ R3, (4.2)

setting w(r) = (Qλ ∗ u)(r) =
∫
R3 Qλ(r − r′)u(r′)dr′ and according to the property of the

convolution, we have

Dk(Qλ ∗ u) = (DkQλ) ∗ u = Qλ ∗Dku,

where Dk denotes the multiple-index derivative. Therefore, doing the convolution on both

sides of (4.2) with the function u, we further have

−λ2(u ∗∆Qλ)(r) + (u ∗Qλ)(r) = u(r),

(u ∗∆Qλ)(r) =
1

λ2
[(u ∗Qλ)(r)− u(r)] ,

∇ · (∇u ∗Qλ)(r) =
1

λ2
[(u ∗Qλ)(r)− u(r)] ,

from which we have the following equation to characterize w(r):

− λ2∆w(r) + w(r)− u(r) = 0, r ∈ R3. (4.3)

51



Therefore, we can rewrite equation (4.1) to the following system of PDEs:

−εp∆u(r) = α

np∑
j=1

zjδrj , r ∈ Dp,

−ε∞∆u(r) +
εs − ε∞
λ2

[u(r)− w(r)] + κ2 sinh(u(r)) = 0, r ∈ Ds,

−λ2∆w(r) + w(r)− u(r) = 0, r ∈ Ω,

u(s+) = u(s−), εp
∂u(s−)

∂n(s)
= ε∞

∂u(s+)

∂n(s)
+ (εs − ε∞)

∂w(s)

∂n(s)
, s ∈ Γ,

u(s) = g(s), s ∈ ∂Ω,

(4.4)

where the boundary condition of function w(s) on ∂Ω will be discussed later.

Equation (4.4) make it possible to avoid the computation of the convolution parts, which

sharply reduces the complexity of the computations. Furthermore, to deal with the singu-

larities caused by the Dirac Delta distributions, according to [3], the solution (u(r), w(r)) of

system (4.4) is decomposed as follows:

u(r) = G(r) + Ψ(r) + Φ̃(r), w(r) = Gw(r) + Ψw(r) + Φ̃w(r), (4.5)

where

Gw(r) = (G ∗Qλ)(r),

Ψw(r) = (Ψ ∗Qλ)(r),

Φ̃w(r) = (Φ̃ ∗Qλ)(r),

G(r) and its convolution Gw(r) are given explicitly as follows

G(r) =
α

4πεp

np∑
j=1

zj
|r− rj|

,

Gw(r) =
α

4πεp

np∑
j=1

zj
1− exp(−|r− rj|/λ)

|r− rj|
, (4.6)

Ψ and Ψw are solutions of the linear interface boundary value problems

∆Ψ(r) = 0, r ∈ Dp,

−ε∞∆Ψ(r) +
εs − ε∞
λ2

[Ψ−Ψw] = −εs − ε∞
λ2

[G−Gw] , r ∈ Ds,

−λ2∆Ψw(r) + Ψw(r)−Ψ(r) = 0, r ∈ Ω,

Ψ(s+) = Ψ(s−), εp
∂Ψ(s−)

∂n(s)
− ε∞

∂Ψ(s+)

∂n(s)
= (εs − ε∞)

∂Ψw(s)

∂n(s)
+ gΓ(s), s ∈ Γ,

Ψ(s) = g(s)−G(s), s ∈ ∂Ω,

(4.7)
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and Φ̃ and Φ̃w are solutions of the nonlinear interface boundary value problems

∆Φ̃(r) = 0, r ∈ Dp,

−ε∞∆Φ̃(r) +
εs − ε∞
λ2

[
Φ̃− Φ̃w

]
+ κ2 sinh(Φ̃ + Ψ +G) = 0, r ∈ Ds,

−λ2∆Φ̃w(r) + Φ̃w(r)− Φ̃(r) = 0, r ∈ Ω,

Φ̃(s+) = Φ̃(s−), εp
∂Φ̃(s−)

∂n(s)
− ε∞

∂Φ̃(s+)

∂n(s)
= (εs − ε∞)

∂Φ̃w(s)

∂n(s)
, s ∈ Γ,

Φ̃(s) = 0, s ∈ ∂Ω.

(4.8)

Here
∂G(s)

∂n(s)
= ∇G · n

with ∇G being given by (2.11), ∇Gw is given by

∇Gw(r) = − α

4πεp

np∑
j=1

zj
1− exp(− |r−rj |

λ
)− |r−rj |

λ
exp(− |r−rj |

λ
)

|r− rj|3
· (r− rj), r ∈ Ω, (4.9)

and the function gΓ is defined as

gΓ(s) = (ε∞ − εp)
∂G(s)

∂n(s)
+ (εs − ε∞)

∂Gw(s)

∂n(s)
, s ∈ Γ. (4.10)

With the solution decomposition and the novel reformulations, the main difficult part is

how to solve the nonlinear equation for Φ̃. Here we make a review of the modified Newton

scheme used in [3] for solving (4.8). Let M denote a finite element function space as a

subspace of the usual Sobolev function space H1(Ω), and Ψ have been computed onM. To

get the solution (Φ̃(r), Φ̃w(r)) of (4.8), according to the modified Newton algorithm, we have

a sequence of iterates, {(Φ̃(k), Φ̃
(k)
w )}, as follows:

Φ̃(k+1) = Φ̃(k) + λkpk, Φ̃(k+1)
w = Φ̃(k)

w + λkqk k = 0, 1, 2, . . . , (4.11)

where (Φ̃(0), Φ̃
(0)
w ) is an initial guess pair, λk is a step length determined by a line search

algorithm, (pk, qk) is a pair of search directions satisfying the following equivalent variational

problem:

Find a (pk, qk) ∈M0 ×M0 such that

A((pk, qk), (v1, v2)) = L((v1, v2)) ∀(v1, v2) ∈M0 ×M0, (4.12)
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where M0 = {v ∈ M | v = 0 on ∂Ω}, the bilinear functional A on M0 ×M0 at current

iterate (Φ̃(k), Φ̃
(k)
w ) is defined by

A((pk, qk), (v1, v2)) =εp

∫
Dp

∇pk(r) · ∇v1(r)dr + ε∞

∫
Ds

∇pk(r) · ∇v1(r)dr

+ (εs − ε∞)

∫
Ds

∇qk(r) · ∇v1(r)dr + λ2

∫
Ω

∇qk(r) · ∇v2(r)dr

+

∫
Ω

(qk(r)− pk(r))v2(r)dr

+ κ2

∫
Ds

pk(r)v1(r) cosh(Φ̃(k) + Ψ +G)dr, (4.13)

and the linear functional L is given in the following

L((v1, v2)) =−
[
(εs − ε∞)

∫
Ds

∇Φ̃(k)
w (r) · ∇v1(r)dr

+ εp

∫
Dp

∇Φ̃(k)(r) · ∇v1(r)dr

+ ε∞

∫
Ds

∇Φ̃(k)(r) · ∇v1(r)dr

+ κ2

∫
Ds

v1(r) sinh(Φ̃(k) + Ψ +G)dr

]
. (4.14)

In the implementation, the initial iterate pair (Φ̃(0), Φ̃
(0)
w ) can be selected simply as zero

or a solution of a linearized equation. An upper bound of 85 is set as default for truncating

the value of the sum Ψ +G+ Φ̃(k) to avoid the possible overflow problem of the hyperbolic

terms. Each Newton equation of (4.12) is solved numerically by GMRES-ILU due to the

asymmetry of the assembled matrix from the PETSc library with the absolute and the relative

residue errors less than a given tolerance (10−8 by default). As for the boundary function g,

we will discuss it later for the nonlocal case.

4.3 Reformulation of the Newton equation

Same as SMPBE, as the key step to apply the finite element and finite difference hybrid

method, in this section, we present the Newton equation’ reformulation from the variational

form to the equivalent PDE form for the nonlocal case.
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Theorem 4.3.1. let V1 = H1
0 (Ω) ∩ H2(Dp) ∩ H2(Ds) and V2 = H1

0 (Ω) ∩ C2(Ω), then the

search direction pair (pk, qk) ∈ V1 × V2, k = 1, 2, 3, · · · , satisfies the following system of

PDEs:

−∆pk(r) = ∆Φ̃(k)(r), r ∈ Dp, (4.15a)

−ε∞∆pk(r) +
εs − ε∞
λ2

(pk(r)− qk(r)) + κ2 cosh(Φ̃(k) + Ψ +G)pk(r)

= ε∞∆Φ̃(k)(r) + (εs − ε∞)∆Φ̃(k)
w − κ2 sinh(Φ̃(k) + Ψ +G), r ∈ Ds, (4.15b)

−λ2∆qk(r) + qk(r)− pk(r) = 0, r ∈ Ω, (4.15c)

pk(s
+) = pk(s

−), qk(s
+) = qk(s

−), s ∈ Γ,

ε∞
∂Φ̃(k)(s+)

∂n
− εp

∂Φ̃(k)(s−)

∂n
+ (εs − ε∞)

∂Φ̃
(k)
w (s)

∂n(s)
, s ∈ Γ, (4.15d)

pk(s) = 0, qk(s) = 0, s ∈ ∂Ω, (4.15e)

where the current Newton iterates Φ̃(k) and Φ̃
(k)
w are the given functions of V1 and V2, respec-

tively, Ψ is a given solution of (4.7), and G is defined in (4.6).

Proof. For any v1 = 0 on Ω and any v2 ∈ C∞0 (Ω) ⊂ V2, from (4.12) we have

λ2

∫
Ω

∇qk(r) · ∇v2(r)dr +

∫
Ω

(qk(r)− pk(r))v2(r)dr = 0,

from which, according to the Green’s identity, we obtain

−λ2∆qk(r) + qk(r)− pk(r) = 0, r ∈ Ω,

which is (4.15c).

Now for any v2 = 0 on Ω and any v1 ∈ H1
0 (Ω) ⊂ V1 satisfying v1 = 0 on Ds and

v1 ∈ C∞0 (Dp), from (4.12) we can get∫
Dp

(∆pk + ∆Φ̃(k))v1dr = 0 ∀v1 ∈ C∞0 (Dp),

from which it implies equation (4.15a).

Next, for any v2 = 0 on Ω and any v1 ∈ H1
0 (Ω) satisfying v1 = 0 on Dp and v1 ∈ C∞0 (Ds),
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equation (4.12) is reduced to

ε∞

∫
Ds

∇pk(r) · ∇v1(r)dr + (εs − ε∞)

∫
Ds

∇qk(r) · ∇v1(r)dr

+ κ2

∫
Ds

pk(r)v1(r) cosh(Φ̃(k) + Ψ +G)dr =

−
[
(εs − ε∞)

∫
Ds

∇Φ̃(k)
w (r) · ∇v1(r)dr + ε∞

∫
Ds

∇Φ̃(k)(r) · ∇v1(r)dr

+ κ2

∫
Ds

v1(r) sinh(Φ̃(k) + Ψ +G)dr

]
.

By the Green’s identity, the above equality can be reformulated as

− ε∞
∫
Ds

∆pk(r)v1(r)dr− (εs − ε∞)

∫
Ds

∆qk(r)v1(r)dr

+ κ2

∫
Ds

pk(r)v1(r) cosh(Φ̃(k) + Ψ +G)dr =

(εs − ε∞)

∫
Ds

∆Φ̃(k)
w (r)v1(r)dr + ε∞

∫
Ds

∆Φ̃(k)(r)v1(r)dr

− κ2

∫
Ds

v1(r) sinh(Φ̃(k) + Ψ +G)dr,

from which we obtain

−ε∞∆pk(r)− (εs − ε∞)∆qk + κ2 cosh(Φ̃(k) + Ψ +G)pk(r) =

(εs − ε∞)∆Φ̃(k)
w (r) + ε∞∆Φ̃(k)(r)− κ2 sinh(Φ̃(k) + Ψ +G),

thus implying (4.15b) using (4.15c).

Furthermore, applying the Green’s identity to the bilinear form A for any (v1, v2) ∈ V1×V2

and the above obtained equalities, we additionally have∫
Γ

[
εp
∂pk(s

−)

∂n
− ε∞

∂pk(s
+)

∂n

]
v1(s)ds− (εs − ε∞)

∫
Γ

∂qk(s)

∂n(s)
v1(s)ds

=

∫
Γ

[
ε∞
∂Φ̃(k)(s+)

∂n
− εp

∂Φ̃(k)(s−)

∂n

]
v1(s)ds + (εs − ε∞)

∫
Γ

∂Φ̃
(k)
w (s)

∂n(s)
v1(s)ds,

which implies the interface condition (4.15d). The boundary condition (4.15e) is natural

because of (pk, qk) ∈ V1 × V2. This completes the proof.
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Remark 4.3.2. In this theorem, we not only reformulate the Newton equation from the

variational form into a system of PDEs, but also provide a new linearized NMPBE, which is

the generalization of the local case reported in [103]. With the solution decomposition, we

obtain the solution of the new linearized NMPBE after one iteration of the modified Newton

scheme with the zero initial guess. Therefore, in the modified Newton scheme, we can simply

set the initial guess to zero function.

4.4 New NMPBE solver

As mentioned in previous section, to get a numerical solution u of NMPBE, we essentially

only need to solve two systems of linear interface problems: (4.7) for Ψ and (4.15) for search

direction pk in order to solve Φ̃ with the modified Newton scheme. Based on the special box

partition defined in Chapter 2, we could similarly define the following box iterative method

for the nonlocal case to solve Ψ and pk, respectively.

To solve Ψ, we have the following iteration scheme: For m = 1, 2, 3, · · · ,

Ψ
(m)
i = (1− ω)Ψ

(m−1)
i + ωΨ̂i,

Ψ
(m)
w,i = (1− ω)Ψ

(m−1)
w,i + ωΨ̂w,i (4.16)

on Ωi for i = 1, 2, · · · , 7, where Ψ
(0)
i and Ψ

(0)
w,i are initial iterates, ω ∈ (1, 2) is the over-

relaxation parameter, Ψ̂i and Ψ̂w,i with i = 1 to 6 denote solutions of the system of the

following boundary value problems:

−ε∞∆Ψ(r) +
εs − ε∞
λ2

[Ψ−Ψw] = −εs − ε∞
λ2

[G−Gw] , r ∈ Ωi,

−λ2∆Ψw(r) + Ψw(r)−Ψ(r) = 0, r ∈ Ωi,

Ψ(s) = Ψ
(m−1)
j (s), Ψw(s) = Ψ

(m−1)
w,j (s)

on ∂Ωi ∩ Ωj if ∂Ωi ∩ Ωj 6= ∅ for j = i+ 1 to 7,

Ψ(s) = Ψ
(m)
j (s), Ψw(s) = Ψ

(m)
w,j (s)

on ∂Ωi ∩ Ωj if ∂Ωi ∩ Ωj 6= ∅ for j = 1 to i− 1,
Ψ(s) = g(s)−G(s), Ψw(s) = gw(s)−Gw(s) on ∂Ωi ∩ ∂Ω

(4.17)

with gw(r) = (g ∗Qλ)(r), and Ψ̂7 and Ψ̂w,7 are solutions of the system of the linear interface
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problems:

∆Ψ(r) = 0, r ∈ Dp,

−ε∞∆Ψ(r) +
εs − ε∞
λ2

[Ψ−Ψw] = −εs − ε∞
λ2

[G−Gw] , r ∈ Ds ∩ Ω7,

−λ2∆Ψw(r) + Ψw(r)−Ψ(r) = 0, r ∈ Ω7,
Ψ(s+) = Ψ(s−),

εp
∂Ψ(s−)

∂n(s)
− ε∞

∂Ψ(s+)

∂n(s)
= (εs − ε∞)

∂Ψw(s)

∂n(s)
+ gΓ(s), s ∈ Γ,

Ψ(s) = Ψ
(m)
j (s), Ψw(s) = Ψ

(m)
w,j (s) on ∂Ω7 ∩ Ωj, j = 1 to 6.

(4.18)

After G, Ψ, Φ̃(m) and Φ̃
(m)
w are computed, we then construct another overlapped box

iterative method for computing the search direction pair (pk, qk) of problem (4.15): For

m = 1, 2, 3, · · · ,

p
(m)
i = (1− ω)p

(m−1)
i + ωp̂i,

q
(m)
i = (1− ω)q

(m−1)
i + ωq̂i (4.19)

on Ωi for i = 1, 2, · · · , 7, where p
(0)
i and q

(0)
i are initial iterates, ω ∈ (1, 2) is the over-

relaxation parameter, p̂i and q̂i with i = 1 to 6 denote solutions of the system of the following

boundary value problems:

−ε∞∆p(r) +
εs − ε∞
λ2

(p(r)− q(r)) + κ2 cosh(Φ̃(m) + Ψ +G)p(r)

= ε∞∆Φ̃(m)(r) + (εs − ε∞)∆Φ̃
(m)
w − κ2 sinh(Φ̃(m) + Ψ +G), r ∈ Ωi,

−λ2∆q(r) + q(r)− p(r) = 0, r ∈ Ωi,

p(s) = p
(m−1)
j (s), q(s) = q

(m−1)
j (s)

on ∂Ωi ∩ Ωj if ∂Ωi ∩ Ωj 6= ∅ for j = i+ 1 to 7,

ps) = p
(m)
j (s), q(s) = q

(m)
j (s)

on ∂Ωi ∩ Ωj if ∂Ωi ∩ Ωj 6= ∅ for j = 1 to i− 1,
p(s) = 0, q(s) = 0 on ∂Ωi ∩ ∂Ω,

(4.20)
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and p̂7 and q̂7 are solutions of the system of the following linear interface problems:

−∆p(r) = ∆Φ̃(m)(r), r ∈ Dp,

−ε∞∆p(r) +
εs − ε∞
λ2

(p(r)− q(r)) + κ2 cosh(Φ̃(m) + Ψ +G)p(r)

= ε∞∆Φ̃(m)(r) + (εs − ε∞)∆Φ̃
(m)
w − κ2 sinh(Φ̃(m) + Ψ +G), r ∈ Ds ∩ Ω7,

−λ2∆q(r) + q(r)− p(r) = 0, r ∈ Ω7,
p(s+) = p(s−), q(s+) = q(s−), s ∈ Γ,

εp
∂p(s−)

∂n
− ε∞

∂p(s+)

∂n
− (εs − ε∞)

∂q(s)

∂n(s)
=

ε∞
∂Φ̃(m)(s+)

∂n
− εp

∂Φ̃(m)(s−)

∂n
+ (εs − ε∞)

∂Φ̃
(k)
w (s)

∂n(s)
, s ∈ Γ,

p(s) = p
(m)
j (s), q(s) = q

(m)
j (s) on ∂Ω7 ∩ Ωj for j = 1 to 6.

(4.21)

In the implementation, we use the following as the termination rule of the overlapped

box iterative method:√√√√ 7∑
i=1

||Ψ(k)
i −Ψ

(k−1)
i ||2 +

7∑
i=1

||Ψ(k)
w,i −Ψ

(k−1)
w,i ||2 ≤ ε

for equation (4.16) and√√√√ 7∑
i=1

||p(k)
i − p

(k−1)
i ||2 +

7∑
i=1

||q(k)
i − q

(k−1)
i ||2 ≤ ε

for equation (4.19), here || · || is the Euclidean norm, and ε is set to 10−7 by default.

4.4.1 Finite element solver for the nonlocal case

To solve the interface problem (4.18) of Ψ on Ω7, we reformulate it as the following variational

problem:

Find a (Ψ,Ψw) ∈M×M satisfying

Ψ(s) = g(s)−G(s) and Ψw(s) = gw(s)−Gw(s) for all s ∈ ∂Ω such that

A1((Ψ,Ψw), (v1, v2)) = L1((v1, v2)) ∀(v1, v2) ∈M0 ×M0, (4.22)
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whereM is a finite element function space as a subspace of the usual Sobolev space H1(Ω7),

M0 = {v ∈M | v = 0 on ∂Ω7}, the bilinear form A1 is defined by

A1((Ψ,Ψw), (v1, v2)) = εp

∫
Dp

∇Ψ(r) · ∇v1(r)dr + ε∞

∫
Ds∩Ω7

∇Ψ(r) · ∇v1(r)dr

+(εs − ε∞)

∫
Ds∩Ω7

∇Ψw(r) · ∇v1(r)dr

+λ2

∫
Ω7

∇Ψw(r) · ∇v2(r)dr

+

∫
Ω7

(Ψw(r)−Ψ(r))v2(r)dr,

(4.23)

and the linear form L1 is given as follows

L1((v1, v2)) = (εs − ε∞)

∫
Ds∩Ω7

∇Gw(r) · ∇v1(r)dr

+(εp − ε∞)

∫
Ds∩Ω7

∇G(r) · ∇v1(r)dr.
(4.24)

While for the search direction pk of equation (4.21) on the central box Ω7, we also reformulate

it into the following variational problem:

Find a (pk, qk) ∈M0 ×M0 such that

A((pk, qk), (v1, v2)) = L((v1, v2)) ∀(v1, v2) ∈M0 ×M0, (4.25)

where the bilinear functional A and the linear functional L are given in (4.13) and (4.14) by

replacing Ω and Ds by Ω7 and Ω7 ∩Ds, respectively.

We programmed the finite element solver based on the efficient finite element library

DOLFIN [93] to solve the variation problems (4.22) and (4.25), and we call the GMRES-ILU

solver from the PETSc library [94] to solve each assembled finite element linear system due

to its asymmetry. Here both the relative and the absolute residue error parameters are set

to 10−8 by default.

4.4.2 Optimal finite difference solver for the nonlocal case

On each neighboring box Ωi, i = 1, 2, · · · , 6, same as the PBE and SMPBE cases, we use

the seven-point finite difference stencil to discretize and approximate the system of second-

order elliptic boundary value problems on a defined uniform mesh. We have the following

results about the reformulation of equations (4.17) of Ψ so that the constructed optimal finite

difference solver PCG-MG works for the discretized linear system in this nonlocal case.
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Theorem 4.4.1. For the following system of boundary value problems:

− λ2ε∞
εs − ε∞

∆Ψ(r) + Ψ−Ψw = Gw −G, r ∈ Ωi,

−λ2∆Ψw(r) + Ψw(r)−Ψ(r) = 0, r ∈ Ωi,

Ψ(s) = Ψ
(m−1)
j (s), Ψw(s) = Ψ

(m−1)
w,j (s)

on ∂Ωi ∩ Ωj if ∂Ωi ∩ Ωj 6= ∅ for j = i+ 1 to 7,

Ψ(s) = Ψ
(m)
j (s), Ψw(s) = Ψ

(m)
w,j (s)

on ∂Ωi ∩ Ωj if ∂Ωi ∩ Ωj 6= ∅ for j = 1 to i− 1,
Ψ(s) = g(s)−G(s), Ψw(s) = gw(s)−Gw(s) on ∂Ωi ∩ ∂Ω,

(4.26)

the discretized matrix M using the seven-point finite difference stencil on a uniform mesh of

each neighboring box Ωi, i = 1, 2, · · · , 6, is SPD.

Proof. Let (xi, yj, zk) be a mesh point of a uniform finite difference mesh defined on the

neighboring box Ωi. Suppose Ψ and Ψw are the solution vectors on the defined uniform

mesh, with the unknown ordering (Ψ,Ψw), we then have

M

[
Ψ

Ψw

]
=

[
M11 M12

M21 M22

] [
Ψ

Ψw

]
,

where M11 and M22 denote the corresponding discretized matrice of the first equation and

the second equation with respect to the unknowns Ψ and Ψw, respectively, and

M12 = M21 = −I

with I being the identity matrix.

Obviously, both M11 and M22 are symmetric because we use the centered finite difference

method to discretize the Laplace operator. Therefore, we know matrix M is symmetric. To

see M is positive definite, for the mesh point (xi, yj, zk), we have([
M11 M12

] [ Ψ
Ψw

])
i,j,k

=
λ2ε∞
εs − ε∞

[6Ψi,j,k −Ψi−1,j,k −Ψi+1,j,k −Ψi,j−1,k

−Ψi,j+1,k −Ψi,j,k−1 −Ψi,j,k+1] + Ψi,j,k −Ψw,i,j,k

or ([
M21 M22

] [ Ψ
Ψw

])
i,j,k

=λ2 [6Ψw,i,j,k −Ψw,i−1,j,k −Ψw,i+1,j,k −Ψw,i,j−1,k

−Ψw,i,j+1,k −Ψw,i,j,k−1 −Ψw,i,j,k+1] + Ψw,i,j,k −Ψi,j,k,
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where Ψi,j,k and Ψw,i,j,k denote the function values of Ψ and Ψw at the point (xi, yj, zk),

respectively. This implies that matrix M is diagonally dominant, where the strict diagonal

dominance occurs at the boundary points. Since the matrix M is obviously irreducible,

then we know M is nonsingular. Furthermore, since ε∞ < εs and M is symmetric, by the

Gershgorin circle theorem [87], all real eigenvalues of the matrix M are positive. Therefore,

M is SPD and we complete the proof.

Remark 4.4.2. This theorem provides the reformulation of the equations of Ψ on each

neighboring box so that the optimal solver PCG-MG can be applied to solve the discretized

linear system. Here we can also modify the second equation about Ψw by multiplying
εs − ε∞
λ2

on both sides of (4.17) to get another discretized matrix M , which is also SPD.

Similarly, for solving the search direction pk on the neighboring box Ωi, i = 1, 2, · · · , 6,

we also need do the reformation of equations (4.20) as follows

− λ2ε∞
εs − ε∞

∆p(r) + (p(r)− q(r)) +
λ2κ2

εs − ε∞
cosh(Φ̃(m) + Ψ +G)p(r)

=
λ2ε∞
εs − ε∞

∆Φ̃(m)(r) + λ2∆Φ̃(m)
w − λ2κ2

εs − ε∞
sinh(Φ̃(m) + Ψ +G), r ∈ Ωi,

−λ2∆q(r) + (q(r)− p(r)) = 0, r ∈ Ωi,

p(s) = p
(m−1)
j (s), q(s) = q

(m−1)
j (s)

on ∂Ωi ∩ Ωj if ∂Ωi ∩ Ωj 6= ∅ for j = i+ 1 to 7,

ps) = p
(m)
j (s), q(s) = q

(m)
j (s)

on ∂Ωi ∩ Ωj if ∂Ωi ∩ Ωj 6= ∅ for j = 1 to i− 1,
p(s) = 0, q(s) = 0 on ∂Ωi ∩ ∂Ω.

(4.27)

Based on the above reformulations, now we can apply the optimal finite difference solver

PCG-MG and the new hybrid method to modify the finite element NMPBE solver for the

improving-the-efficiency purpose. For clarity, the new algorithm using the hybrid method to

solve NMPBE is given in the following:
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Algorithm for Solving NMPBE. Let the special overlapped box iterative
method be defined in (4.16) and (4.19) with the PCG-MG algorithm for solving
the finite difference systems of (4.26) and (4.27) on a uniform mesh of the
box Ωi for i = 1 to 6 and the GMRES-ILU algorithm for solving the finite
element systems of (4.18) and (4.21) on an interface-fitted tetrahedral mesh of
the central box Ω7. A solution u of (4.4) is calculated approximately in the
following five steps:

Step 1. Construct an interface-matched tetrahedral mesh for the central box
Ω7 and a uniform mesh for each neighboring box Ωi for i 6= 7 with a mesh
size h > 0.

Step 2. Calculate G and Gw on each box, and compute ∇G and ∇Gw on Ω7

according to (4.6), (2.11) and (4.9), respectively.

Step 3. Calculate Ψ by the overlapped box iterative method (4.16). Here
(4.17) and (4.18) are approximated as the finite difference and the finite
element linear systems and then solved by PCG-MG and GMRES-ILU,
respectively, until the relative or the absolute residual norm less than
10−8.

Step 4. Calculate Φ̃ by the modified Newton method in the following steps:

(a) Set k = 0 and Φ̃(0) = 0 (by default).

(b) Calculate the search direction pair (pk, qk) by the overlapped box
iterative method (4.19). Here (4.20) and (4.21) are approximated
as the finite difference and the finite element linear systems and
then solved by PCG-MG and GMRES-ILU, respectively, until the
relative or the absolute residual norm less than 10−8.

(c) Find a steplength λk by a line search algorithm (starting with λk =
1).

(d) Define the modified Newton iterate Φ̃(k+1) and Φ̃
(k+1)
w by Φ̃(k+1) =

Φ̃(k) + λkpk and Φ̃
(k+1)
w = Φ̃

(k)
w + λkqk.

(e) Check the convergence test: If ‖Φ̃(k+1)− Φ̃(k)‖ ≤ 10−7 and ‖Φ̃(k+1)
w −

Φ̃
(k)
w ‖ ≤ 10−7 (by default), then Φ̃(k+1) is set to a solution Φ̃ of the

nonlinear interface problem (4.8); otherwise, increase k by 1 and go
back to (b).

Step 5. Construct a numerical solution u of SMPBE by the solution decom-
position u = G+ Ψ + Φ̃.
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We programmed above algorithm in C, Fortran, and Python as a software package.

Similar to the finite element program package, the main program of the software was written

in Python based on the state-of-the-art finite element library DOLFIN from the FEniCS project

[39, 40]. Each finite element equation is produced by DOLFIN, and solved by GMRE-ILU

from the PETSc library [97]. Also we wrote a Fortran subroutine for speeding up calculating

the function values of G and Gw at the mesh points of Ω, and the function values of ∇G and

∇Gw at the mesh points of the central box Ω7. All the Fortran subroutines and C programs

were converted to the Python external modules by f2py and SWIG, respectively. With these

modules, the hybrid solver were integrated as a Python program.

4.4.3 Selection of boundary value function

In this subsection, we address how to choose the boundary value functions g(s) and gw(s)

on ∂Ω, respectively. In cases of PBE and SMPBE, g is commonly approximated by zero

function or the analytical solution of the Debye-Hückel equation [104, 105] if the domain Ω

is sufficiently large, latter of which is called MDH boundary condition. For the nonlocal case,

we could also simply set g(s) = 0 and gw(s) = 0 similarly with a sufficiently large domain Ω.

Meanwhile, the local MDH function has been extended to the nonlocal case by considering

the generalized nonlocal Debye-Hückel equation, detailed of which will be reported in Yi

Jiang’s thesis, as follows:

−ε∞∆u(r) +
εs − ε∞
λ2

[u(r)− (u ∗Qλ)(r)] + κ2u(r) =
1010e2

c

ε0kBT

np∑
j=1

zjδrj , r ∈ R3,

with u(r) → 0 as |r| → ∞. Its solution u and convolution û = u ∗ Qλ have been found in

the analytical expressions: For all r 6= rj with j = 1, 2, . . . , np,

u(r) =
1010e2

c

4πε∞(τ2 − τ1)ε0kBT

np∑
j=1

zj
|r− rj|

(
τ2e
−η1|r−rj | − τ1e

−η2|r−rj |
)
,

û(r) =
1010e2

cτ1τ2

4πε∞(τ2 − τ1)ε0kBT

np∑
j=1

zj
|r− rj|

(
e−η1|r−rj | − e−η2|r−rj |

)
,

(4.28)
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where τ1, τ2, η1, and η2 are defined by

τ1 =
κ2λ2 + εs − 2ε∞ − ξ

2(εs − ε∞)
,

τ2 =
κ2λ2 + εs − 2ε∞ + ξ

2(εs − ε∞)
,

η1 =
1

λ

√
κ2λ2 + εs + ξ

2ε∞
,

η2 =
1

λ

√
κ2λ2 + εs − ξ

2ε∞
,

ξ =
√

(κ2λ2 + εs)2 − 4ε∞λ2κ2.

As ε∞ → εs, from (4.28) it can yield the local Debye-Hückel equation’s solution

u =
α

4πεs

np∑
j=1

zj
|r− rj|

e
−
κ
√
εs
|r− rj|

,

which shows the solution is the generalization of MDH and thus is called NMDH. Without

explicit statement, the boundary functions g(s) and gw(s) are always set to the NMDH in

the following numerical experiments.

4.5 Numerical results

In this section, we report the numerical experiments we made using the new Python program

package. For simplicity, we set εp = 2.0, εs = 80.0, ε∞ = 1.8, λ = 15.0, T = 298.15, Is = 0.1,

and all the numerical tests were done by using the default values of the parameters (except

the parameters m,n, µ of (2.6)) on one processor of a Mac Pro Workstation with the 3.7

GHZ Quad-Core Intel Xeon E5 and 64 GB memory.
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4.5.1 Validation test

Firstly, we made numerical experiments in an artificially-constructed test model:

−εp∆u(r) = α

np∑
j=1

zjδrj , r ∈ Dp,

−ε∞∆u(r) +
εs − ε∞
λ2

[u(r)− w(r)] + κ2 sinh(u(r)) = κ2 sinh(U(r)), r ∈ Ds,

−λ2∆w(r) + w(r)− u(r) = 0, r ∈ Ω,

u(s+) = u(s−), εp
∂u(s−)

∂n(s)
= ε∞

∂u(s+)

∂n(s)
+ (εs − ε∞)

∂w(s)

∂n(s)
, s ∈ Γ,

u(s) = U(s), w(s) = W (s), s ∈ ∂Ω,

(4.29)

where

Dp = {r ∈ R3 : ‖r‖ < a},

Γ = {r ∈ R3 : ‖r‖ = a},

Ω is a region containing Dp, Ds = Ω − Dp − Γ, and the functions U(r) and W (r) are the

analytical solutions in the simple series form in terms of Legendre polynomials and modified

spherical Bessel functions of the following nonlocal Poisson test model reported in [106]:

−εp∆U(r) = α

np∑
j=1

zjδrj , r ∈ Dp,

−ε∞∆U(r) +
εs − ε∞
λ2

[U(r)−W (r)] = 0, r ∈ R3 −Dp − Γ,

−λ2∆W (r) +W (r)− U(r) = 0, r ∈ R3,

U(s+) = U(s−), εp
∂U(s−)

∂n(s)
= ε∞

∂U(s+)

∂n(s)
+ (εs − ε∞)

∂W (s)

∂n(s)
, s ∈ Γ,

U(r)→ 0, W (r)→ 0 as r→∞.

To make the program package work for this test model, we only need to modify the system

of equations related to Φ̃. That is, after applying the solution decomposition, we only alter

the Φ̃ equation (4.8) by adding one right-hand side term κ2 sinh(U(r)) in the solvent domain.

Correspondingly, we add additional term

κ2

∫
Ds

sinh(U(r))v1(r)dr

in the linear form L of (4.14), and the term κ2 sinh(U(r)) on the right-hand size of equation

(4.15b) for the search direction pair (pk, qk). All of these changes are easy to make based on
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the Python program package of the algorithm. And obviously, the analytical solution u(r)

of (4.29) is just U(r). For details of the explicit formulas of the solutions U and W , please

see paper [106].

To carry out the computation and to avoid the crash of the program due to the overflow

problems from the hyperbolic functions in the equation, here we set α = 1.0 and a = 1.0.

The charge numbers zj and the atomic positions rj were obtained from a PQR file of a

protein with PDB ID 4PTI, which has 892 atoms (i.e., np = 892). Here we divided rj,

j = 1 to 892, by 54 to rescale it into the unit spherical region Dp with the preserved protein

structure within the unit ball. To setup the domain Ω and the finite difference uniform

meshes, we set D = (−2, 2)3, τ = 1, and η = 4, which gave Ω7 = (−3, 3)3 and Ω = (−6, 6)3.

In order to calculate the analytical solutions of U(r) and W (r) reported in [106], we truncate

both the series to the finite sum of N = 20 terms. The over-relaxation parameter ω of the

overlapped box iterative method were both set to 1.25 in solving (4.16) for (Ψ,Ψw) and

(4.19) for (pk, qk). Then four nested meshes with the finite difference mesh size h = 1.0, h/2

(0.5), h/4 (0.25), and h/8 (0.125), respectively, were constructed for testing the convergence

behavior of the new NMPBE solver. Here the numbers of mesh points of these four nested

meshes were 4124, 31145, 242017, and 1908033, respectively, including the numbers of mesh

points from the finite element meshes of the central box Ω7, which were 2270, 17717, 139993,

and 1113009, respectively. The numerical results are reported in the following Table.

Mesh Relative Error Convergence PCG-MG Iter. New Box

size h
‖u− uh‖l2(Ω)

‖u‖l2(Ω)

order on Ωi (i = 1 to 6) Iter. on Ω

0.1 6.18× 10−3 – 2.29 ≈ 2 10.0 ≈ 10
0.5 1.58× 10−3 1.97 3.07 ≈ 3 12.3 ≈ 12
0.25 3.98× 10−4 1.99 3.27 ≈ 3 11.3 ≈ 11
0.125 1.13× 10−4 1.82 3.22 ≈ 3 13.0 ≈ 13

Table 4.1: Performance of the new NMPBE solver for the test model (4.29) in the relative
error and the average number of iterations (Iter.) on the four nested meshes.

Notice the analytical solution of (4.29) is linearly proportional to α, the relative error

thus is independent of α, and the numerical results in Table 4.1 show the high accuracy of the

new solver for solving the test model. Meanwhile, from the relative errors, it is obtained that

the convergence order is approximately around 2, well matching the mathematical theory.
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Furthermore, with different mesh sizes, the average iterations of both PCG-MG and the box

iterative method almost kept the same, numerically confirming that PCG-MG and the box

iterative method have the convergence rates independent of mesh sizes as claimed in the

mathematical theory. All of these observations validated the new program package.

4.5.2 Performance tests on proteins

For clarity, we made numerical tests on the 12 proteins (varying atom numbers up to 11,439)

used in the PBE comparison tests from [1] to demonstrate the improved performance of the

new NMPBE solver in terms of CPU time in comparison with the finite element NMPBE

solver. Here the PDB files of these proteins were downloaded from the PDB website and

then converted to the PQR files by the tool PDB2PQR. The region D was generated for each

protein as listed in Tables 4.2 and 4.3.

Index PDB ID Cubic Region D = (a1, b1; a2, b2; a3, b3)

1 2LZX (−16.5, 17.0;−16.1, 17.4;−16.1, 17.4)

2 1AJJ (−8.8, 28.9;−11.4, 26.3;−15.7, 21.9)

3 1FXD (−12.5, 31.4;−24.8, 19.1;−13.6, 30.3)

4 1HPT (−14.8, 31.7;−13.7, 32.9;−5.7, 40.8)

5 4PTI (−7.8, 38.4;−2.3, 43.9;−18.6, 27.6)

6 1SVR (−24.8, 27.3;−30.4, 21.7;−24.5, 27.6)

7 1A63 (−29.9, 37.0;−34.3, 32.6;−33.9, 33.0)

8 1CID (−47.2, 27.9; 0.6, 75.8;−4.8, 70.3)

9 1A7M (−43.3, 40.0;−41.0, 42.3;−40.6, 42.8)

10 2AQ5 (−21.5, 50.6; 17.0, 89.1;−15.0, 57.1)

11 1F6W (−38.7, 47.7;−37.9, 48.5;−21.1, 65.3)

12 1C4K (19.2, 135.1;−26.9, 88.9;−16.5, 99.4)

Table 4.2: The ordering index and the region D produced by the hybrid solver package for
the 12 proteins.

We also then set µ = 4, m = 3 and n = 4 to get Ω, Ωi for i = 1 to 7, the uniform

finite difference mesh size h, the uniform finite difference mesh of Ω \D, and the interface-

fitted tetrahedral mesh of Ω7. Here, each interface Γ was generated by the molecular surface

and volumetric mesh generation program package GAMer based on the Gaussian blurring

approach [91]. It has been shown that the molecular surface generated from GAMer is close to

the commonly-used solvent-accessible surface (SAS) in [1]. Furthermore, according to recent
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Index PDB ID np NΩ7 NΩ Percentage ρ

1 2LZX 488 39896 535400 7.5%

2 1AJJ 513 42817 538321 8.0%

3 1FXD 811 45345 540849 8.4%

4 1HPT 852 47716 543220 8.8%

5 4PTI 892 45825 541329 8.5%

6 1SVR 1433 54666 550170 9.9%

7 1A63 2065 62506 558010 11.2%

8 1CID 2783 62870 558374 11.3%

9 1A7M 2803 68415 563919 12.1%

10 2AQ5 6024 82317 577821 14.2%

11 1F6W 8243 79182 574686 13.8%

12 1C4K 11439 77607 573111 13.5%

Table 4.3: Some basic information on the 12 proteins used for the numerical tests. Here,
NΩ7 and NΩ denote the numbers of mesh nodes on Ω7 and Ω, respectively, np is the number
of atoms, and ρ = 100NΩ7/NΩ%.

studies [107], the Gaussian surface could be similar to the solvent-excluded surface, SAS,

or the Van der Waals surface through properly setting the two controlling parameters (the

decay rate and the isosurface value) of the Gaussian function. Therefore it is enough to use

the Gaussian surface to do the comparison tests. Additionally, the over-relaxation parameter

ω of the overlapped box iterative method was set to 1.215 and 1.015 in solving (4.16) for

(Ψ,Ψw) and (4.19) for (pk, qk), respectively. The boundary value function g and the initial

iterate (Φ̃(0), Φ̃
(0)
w ) of the modified Newton scheme were set to the nonlocal Debye-Hückel

solution and the solution of local PBE, respectively. For the fair comparison purpose, we

used the finite element NMPBE solver to repeat all the calculations with the same boundary

condition, initial guess and the terminal criteria of the modified Newton scheme. Here, by

dividing each cubic grid cell in each neighboring box into 6 tetrahedra, we obtain the finite

element meshes with the exact the same mesh points on Ω. Meanwhile, we compare the

solutions obtained from these two solvers by the following formula:

Eh =
‖unew − ufe‖l2
‖ufe‖l2

, (4.30)

where unew is a numerical solution of the new NMPBE solver and ufe is the one obtained

from the finite element solver. Furthermore, we calculate the CPU time speedup Sp to

demonstrate the efficiency improvements. Here Sp was calculated as the ratio of the total
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CPU times spent by the finite element solver and the new one. All of these results are

reported in Table 4.4 and Figure 4.1.

PDB Find G & Gw Find Ψ Find Φ̃ Total Time Relative
ID New FE New FE New FE New FE error Eh

2LZX 7.32 22.44 11.54 30.51 80.95 414.17 100.76 471.55 3.4× 10−4

1AJJ 7.84 23.81 12.54 31.27 119.5 569.94 140.89 629.49 1.9× 10−4

1FXD 12.47 37.75 14.35 32.23 94.97 454.68 123.13 529.22 3.2× 10−4

1HPT 13.18 39.7 13.57 32.52 92.52 499.71 120.68 576.5 1.8× 10−5

4PTI 13.64 41.35 13.79 32.6 85.43 434.07 114.29 512.52 1.9× 10−4

1SVR 22.63 67.53 16.76 30.63 123.58 561.53 165.05 664.3 3.3× 10−5

1A63 33.49 98.57 20.67 33.87 183.82 694.7 240.85 831.82 3.0× 10−5

1CID 45.08 133.44 21.29 33.94 116.7 503.43 186.6 675.5 2.5× 10−5

1A7M 46.58 135.28 24.33 38.66 150.66 585.71 225.24 765.11 1.5× 10−5

2AQ5 104.81 297.77 32.38 40.86 242.35 743.41 386.61 1086.88 4.2× 10−5

1F6W 141.44 405.47 30.21 37.18 249.54 742.46 430.43 1189.91 2.5× 10−5

1C4K 194.81 562.92 30.62 37.66 285.71 988.71 523.56 1594.14 2.2× 10−5

Table 4.4: A comparison of the performance of the new NMPBE solver (New) with that of
the finite element NMPBE solver (FE) proposed in [3] in computer CPU runtime measured
in seconds.

Due to the restriction of the finite element method to the central box Ω7, we calculated the

gradient of G and its convolution Gw only on Ω7, explaining the less cost in computing these

function values. Meanwhile, the computational costs to solve for Ψ and Φ̃ were significantly

reduced because of the new box iterative method, resulting in the remarkable efficiency

improvement in terms of the total CPU time. The last column gave the relative errors Eh

of these 12 proteins to demonstrate that the new solver merely significantly improve the

efficiency without compromising the accuracy of the finite element solver. Furthermore,

Figure 4.1 presented the speedup Sp for these 12 test proteins. Same with PBE and SMPBE

cases, the speedup Sp varied with the percentage ρ listed in Table 4.3, which was reduced

from 4.8 to 2.8 for the total CPU time when ρ was increased from 7.5% to 14.2%. Finally, we

also noticed the Newton iteration numbers are all quite close for these two different solvers,

implying a fair efficiency comparison between these two solvers.
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Figure 4.1: The modified Newton iteration numbers of the new and the finite element (FE)
NMPBE solvers for the 12 test proteins and the CPU time speedup Sp produced by the new
NMPBE solver using the data of Table 4.4.

4.5.3 Electrostatic solvation free energy calculations

Same as PBE and SMPBE, one important application related to NMPBE is to predict the

electrostatic solvation free energy of a biomolecule. According to the solution decomposition

(4.5), we can estimate the electrostatic solvation energy E using the same formula in (3.14).

Here we again use this quantity to testify the numerical stability of the new solver. To do

so, we constructed five different meshes for each of the four selected proteins considered

in previous subsection. The numbers of mesh nodes of these five meshes are displayed in

Figure 4.2 as the labeling numbers of the x-axis for each protein. They have been arranged

in the increasing ordering from about 75,000 to 1,384,000. Each new mesh was constructed

by adding new mesh nodes/tetrahedra to the current mesh, and the triangular surface mesh

of the interface Γ was kept without any change to make sure the same interface problem was

solved. Here the triangular surface mesh was generated from the mesh generation program

with enough mesh nodes as a good approximation of the interface Γ. We calculated the

values of Eh using the new NMPBE solver and plotted them in Figure 4.2.

From Figure 4.2, with the increase of mesh points, which means the decrease of the

mesh size h, all calculated electrostatic solvation free energies Eh have small perturbations.

Particularly, for the 2LZX case, the values had only 0.4 kcal/mol difference from the coarsest
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Figure 4.2: Solvation free energies calculated by the new NMPBE solver. Here the numbers
on the x-axis are the numbers of mesh nodes used for calculations.

mesh to the finest one, resulting in only 0.2% deviation. These demonstrate the numerical

stability of the new solver, which guarantees the accuracy of the predicted electrostatic

solvation free energy.

4.5.4 Application in binding free energy calculations

Similar to the classic PBE [98, 99] and SMPBE, NMPBE can also be used to study the salt

dependence of the binding free energy for a complex molecule. The method to numerically

calculate the binding energy is given in Section 3.4.5. Here we will use the nonlocal dielectric

continuum model to compute the scaled slope of the case, a DNA-drug complex represented

in PDB ID 1D86, and then compare to the experiment data (ms = −1.51). To produce

a prediction to the scaled slope ms, we also calculate the binding free energy Eb using the

following 11 different values of Is:

Is,j = eξj with ξj = −3 + 0.2j for j = 0, 1, 2, . . . , 9, 10.
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We then use these binding free energies to generate a best-fitted line by the same linear

regression program used in SMPBE case to yield the predicted value of ms.

Moreover, we use the six different sets of meshes in section 3.4.5 to repeat the above

calculation in order to study the sensitivity of the new NMPBE solver to the discretization

error. Furthermore, to compare the difference between the local model and the nonlocal

model to see the improvements of the nonlocal continuum model, i.e., PBE and NMPBE,

using the above 6 sets of constructed meshes, we repeat the calculations by the hybrid PBE

solver in [1] to calculate ms again. All of these numerical results are reported in Figures 4.3

and 4.4.
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Calculated value by NMPBE

Figure 4.3: The scaled slopes ms of the six best-fitted lines calculated by the hybrid PBE
and NMPBE solvers for a DNA-drug complex represented in PDB ID 1D86 based on the six
sets of meshes listed in Table 3.3.

From these two figures, we can see that, with the same mesh sets, due to the consideration

of water molecule correlations (hydrogen bond network), the numerical results of NMPBE

is closer to the experiment data than those of PBE (See Figure 4.3). Meanwhile, it is

remarkably surprising to observe that the numerical results of NMPBE have the obvious

convergence behavior to the experiment data. Meanwhile, for case Is ≈ 0.11, Figure 4.4 also

demonstrates the numerical stability of the new NMPBE solver. Furthermore, using the first

mesh set, we mapped the calculated electrostatic potentials with units kBT/ec to the surfaces

of the drug, the DNA, and the complex, respectively, and compared the differences using

VMD (http://www.ks.uiuc.edu/Research/vmd/) before and after the binding process. As
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Figure 4.4: Electrostatic free energies (numbers on the top of each curve) of the complex,
the DNA, and the drug calculated by the NMPBE hybrid solver on the same six mesh sets
using Is ≈ 0.11.

illustrated in Figure 4.5, we can see that the DNA has negative electrostatic potentials at the

binding site while the drug provides the positive ones, and after the binding process, they

both are almost neutralized, which matched the physical energy theory and also validated

the new solver. All of these observations just further guarantee the stability and reliability

of the NMPBE solver in practical applications.
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Figure 4.5: The electrostatic potentials mapping on the DNA surface and the drug surface,
respectively, before and after binding for the complex with PDB ID 1D86. Here the unit of
the electrostatic energy is kBT/ec, the drug structure is represented in CPK in left plot, and
the ribbon represents the DNA structure in right plot.
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Chapter 5

Conclusions and future work

In this dissertation, combining the Schwartz domain decomposition, the finite element, the

finite difference, and the multigrid techniques, a new hybrid method based on a special

seven box partition was constructed and then was applied to solve SMPBE and NMPBE for

predicting the electrostatics of a biomolecule in an ionic solvent as the continuation work of

[1]. The following gives a summary of the main work I have done in this dissertation and in

my Ph.D period:

• A new box iterative method was constructed on a special seven box partition of a

cubic domain, from which a new finite element and finite difference hybrid method was

developed.

• Given a cubic domain, a scheme to automatically generate the seven box partition,

the finite element mesh, and the uniform finite difference mesh was proposed and

programmed in C; Meanwhile, a 3D mesh generator to produce the special finite element

mesh was implemented in C.

• A linear solver – the preconditioned conjugate gradient method with a multigrid V-

cycle preconditioner – was constructed and proved to be an optimal one to solve the

second order elliptic problems on each neighboring box; Meanwhile, it was programmed

in Fortran.

• Using the solution decomposition schemes, the reformulation techniques, and the mod-

ified Newton techniques, the new constructed method has been successfully applied

to solve the dielectric continuum models (PBE, SMPBE, and NMPBE), resulting in
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new hybrid solvers with improved efficiency; Furthermore, all new solvers have been

programmed in the mixed of C, Fortran, and Python by combining together the read-

ability of scripted language and the high efficiency of complied languages based on the

state-of-the-art finite element library DOLFIN from the FEniCS project and the scientific

computing toolkit PETSc; Numerous numerical experiments showed that new solvers

have better efficiency in terms of CPU time compared to the corresponding finite el-

ement solvers. Meanwhile, related applications of the dielectric continuum models

(solvation free energy and binding free energy calculations) were studied.

Based on the current work, the future work could include:

• For the uniform ion sizes, we have a PDE form similar to PBE. However, if the nonuni-

form ion sizes were considered, then we must solve a PDE-constrained minimization

problem. The iterative algorithm to solve a PDE-constrained problem would be very

different, and currently there is no published solver available. To fill in this gap, col-

leagues in our group and me will consider this nonuniform case and try to develop

an efficient and accurate solver to compute the electrostatics with different ion sizes.

Furthermore, the computed results with the nonuniform ion sizes will be compared to

the results of PBE to further study the differences and the similarities of these two

dielectric continuum models other than the improvements in the ion concentrations.

• One major advantage of the domain decomposition method is easy to parallel. To

further reduce the computational cost, with the MPI library, the parallelized versions

of those new hybrid solvers will be developed and released for publication.
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