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ABSTRACT
RANDOM ITERATION OF RATIONAL MAPS

by
Jesse Feller

The University of Wisconsin-Milwaukee, 2015
Under the Supervision of Professor Suzanne Boyd

Random and non-autonomous iteration has been a subject of interest in Mathe-

matics that has received some attention in the last few decades. The earliest paper on

random iteration in the complex setting was written by Fornæss and Sibony. They have

shown that given a family of functions {fc}c∈W where W is a small open set, for almost

every z the random iteration is stable on a subset of WN of full probability measure.

Later, Hiroki Sumi further extended these results to a more general situation using ratio-

nal semigroups. We will show that the results of Fornaess and Sibony can be extended

using the concept of non-generic points. Then we describe the connection between Sumi’s

kernel Julia set and non-generic points.

In the third chapter, we will look at seed iteration. This is where a function f(w, z)

is composed in the second variable to get a function fn(w, z) and then we set z = w to

get a sequence of functions Fn(w). We will study the properties of the corresponding

Julia and Fatou sets of the sequence Fn(w). Furthermore, we will look at evidence that

there may be basins of attraction and sub-invariant domains contained inside the space

of analytic functions over a domain U , similar to what we see in classical iteration theory.
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CHAPTER 1

Introduction

1. Content Overview

We begin with a polynomial function f(c, z) where c ∈ W ⊂ C and z ∈ C, that is

a function of the form

(1) f(c, z) =
m∑
i=0

αi(c)z
i,

where αi(c) (i=0,1,...,m) are polynomials in c and at least one is nonconstant. A rational

function in two variables is a function of the form

(2) f(c, z) =

m1∑
i=0

αi(c)z
i

m2∑
j=0

βj(c)z
j

where at least one of the polynomial expressions αi(c), βj(c)(i = 0, 1, ...,m1; j = 0, 1, ...,m2)

is nonconstant. The set W is an open or finite set. We assume αm1 , βm2 6≡ 0. The max-

imum of m1,m2 is called the degree of f which we define only when the polynomials in

the numerator and denominator of (2) have no common factors. For a fixed c ∈ W , we

denote by fc(z) the function z 7→ f(c, z), and the function c 7→ f(c, z) by f(c)z.

We define a rational function in one variable to be a function of the form R(z) =

P (z)
Q(z)

where P and Q are polynomials with no common factors. Thus a rational function

R is a function defined on the entire Riemann sphere C and R(z) = ∞ when Q(z) = 0.

In the case where W is open, we require that the function f : W × C → C defined by

(2) be holomorphic in both variables, and fc(z) be a rational function for each c ∈ W .

Thus we must choose the set W so that for each c ∈ W , fc(z) is defined for all z ∈ C .

We demonstrate this with an example.
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Let f(c, z) = z(z+1)(z−2)
z+c

. Then fc(z) is defined except when c = 0, 1,−2. So in this

example we must require W to be a subset of C− {0, 1,−2}.

The expressions defined in (2) or (1) gives rise to a family of rational functions

{fc(z)}c∈W where W ⊂ C is open. We also examine the case where the family {fc}c∈W

is finite. In this case we index the family by the natural numbers as opposed to the

parameters, hence W = {0, 1, ..., n− 1}.

Definition 1.1. Let c ∈ WN where W ⊂ C. The sequence fnc (z) = fn(c, z) =

fcn ◦ fcn−1 ◦ ... ◦ fc1(z) is called a non-autonomous iteration. In the case where c is a

sequence of random variables, we refer to fnc (z) as a random iteration.

Definition 1.2. z ∈ C is c-stable if fnc (z) has a subsequence that converges uni-

formly in a neighborhood of z.

Now define the Fatou set (F) and Julia set (J ) as follows.

F(c) = {z : fnc (z) has a subsequence that converges locally uniformly at z}

J (c) = C−F(c)

This matches with the definition of Julia and Fatou set in classical iteration theory (where

c is a constant sequence). If ∞ ∈ F(c) and fc(z) is a polynomial function as defined in

(1), we define the filled Julia set by the following.

K(c) = {z : fnc (z) is bounded}

An example of a filled Julia set is seen in Figure 1.1. We use computers to draw pictures

of the filled Julia set K which are colored black in all of our figures. Other colors represent

z values in the complex plane where the sequence of iterations is unbounded. Each color

is determined by the amount of time it takes the sequence to end up in a predetermined

neighborhood of ∞.
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Figure 1.1. Filled Julia sets K(c) for two non-autonomous iterations
fnc (z) where f0 = z2− 1 and f1(z) = (z− 1/10)2− 1 + 1/10. Top and bot-
tom represent two different sequences c generated according to a Bernoulli
distribution where P(ci = 0) = 1/2.

Random iteration has been studied in the case where z is a real number. For more

information on this, see [BM07]. The first authors to write about random iteration in the

complex setting were John Fornæss and Nessim Sibony [FS91], and their contribution

is the main inspiration behind Chapter 2. Hiroki Sumi later extended their results to a

more general setting. Several other authors have written about non-autonomous iteration

in the complex setting [Brü00], [Büg98], [Büg97], [Com06], many of which focus on

the properties of the Julia set J (c).

The following is an overview of the content of this paper. Chapter 2 covers random

and non-autonomous iteration. In Section 1, we study the concept of a sub-invariant

set, which is a set V such that fc(V ) ⊂ V for all c ∈ W . Then in Section 2, we

examine random iteration; thus c is replaced by a sequence of independent and identically

distributed random variables C(ω). Suppose V is an invariant domain. Let E(z, V ) =

{c : fnc (z) ∈ V for all sufficiently large n} and suppose P is a probability measure on
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Figure 1.2. Pictorial representation of g(z) from Proposition 2.5. Here
f(c, z) = z2 + c and W = {c : |c − (−1)| < .075} where cn is chosen
uniformly and is independent and identically distributed.

WN. We denote the characteristic function of E(z, V ) by χE(z,V )(c). Then by the strong

law of large numbers, the following holds.

Proposition (2.5). Let Sn(z) = 1
n

n∑
k=1

χE(z,V )(C(ω)k) where z ∈ C is fixed. Then

the sequence of averages Sn(z) converges to g(z) := P(E(z, V )) with probability one.

Figure 1.2 contains a pictorial representation of the function g(z) from the previous

proposition.

In Section 3, we study the function g(z) := P(E(z, V )). Let c0 ∈ W . Define

Ω = {z : c 7→ f(c, z) is constant}

Ω∞ = {z : c 7→ fn(c, z) is constant for all n}

Ω′∞(c0) = {z : z ∈ Ω∞ and z is part of a nonattracting cycle of fc0}

If Ω∞(c0) = ∅, then we have the following result which is an extension of a theorem in

[FS91].
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Theorem (2.8). Suppose W ⊂ B(c0, δ). Let V1, V2, ..., Vd be sub-invariant neigh-

borhoods of the attracting cycles γ1, γ2, ..., γd of fc0 contained inside their respective at-

tracting basins such that ∂Vj
⋂
f(W ,Ω) = ∅ for all j. Then there exists δ0 > 0 such that

for all δ < δ0 there are functions g1, g2, ..., gd continuous on C such that

1. The functions {gj(z)}dj=1 form a partition of unity, and

2. For z ∈ C there exists disjoint open sets Ej(z) ⊂ WN such that P(Ej(z)) = gj(z)

and for every c ∈ Ej(z), fn(c, z) ∈ Vj for all sufficiently large n.

Thus for every z ∈ C, we have that fn(c, z) ∈ Vj for some j with probability one, that

is z is c-stable with probabiltiy one. It follows that the Julia set of fnc (z) is a set of

Lebesgue measure zero for almost every c ∈ WN.

Section 4 begins with a summary of a few results by Hiroki Sumi who has indepen-

dently studied the probability that z is c-stable using semigroups. His result (Therorem

2.12) also generalizes a result by Fornæss and Sibony. Let 〈fc〉c∈W be the semigroup

generated by {fc}c∈W . Define the kernel Julia set by

Jker〈fc〉c∈W :=
⋂

g∈〈fc〉

g−1(J 〈fc〉).

We prove the following characterization of Sumi’s kernel Julia set.

Theorem (2.13). Let {fc}c∈W be a holomorphic family of rational maps where

W ⊂ B(c0, δ) is open where c0 ∈ C. Then there exists a δ such that either

1. Jker〈fc〉c∈W = C which implies that J 〈fc〉c∈W = C or

2. Jker〈fc〉c∈W ⊂ Ω′∞(c0).

In Chapter 3, the reader examines iteration of polynomial maps f : C2 → C where

the composition takes place in the second variable. We refer to this as seed iteration,

which is a concept of the author’s own invention. More precisely, we define

fn(w, z) = f(w, f(w, ...f(w, f(w, z))...)) (n times)

Fn(w) = fn(w,w) (i.e. set z = w in the previous line).
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Figure 1.3. K[fn(w,−iw)] (left) and K[fn(iw, w)] (right) where
f(w, z) = z2 + w .

Now we define the Fatou set (F), Julia set (J ) and filled Julia set (K) for seed iteration

by the following.

F(Fn) = {w : Fn(w) has a subsequence that converges locally uniformly at w}

J (Fn) = C−F(Fn)

K(Fn) = {w : Fn(w) is bounded}

(3)

Section 1 is an introduction to the seed iteration concept. In Section 2, we show

that under certain assumptions J (Fn) 6= ∅ and ∞ ∈ F(Fn). Section 3 is about affine

properties of seed iteration. Recall that an affine function is a function of the form

h(z) = az + b where a, b ∈ C. Readers will learn about the following (the image of A

under h is denoted hA in this proposition).

Proposition (3.4). Suppose h(z) is an affine function. Then hF [fn(h(w), w)] =

F [fn(w, h−1(w))] and hJ [fn(h(w), w)] = J [fn(w, h−1(w))].

Figure 1.3 contains an example of an application of this proposition.

In Section 4 we use holomorphic motions to show that J (Fn) has empty interior.

In Section 5, we discuss some conjectures for seed iteration where the function f(w, z) is
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allowed to change at each step of the iteration process according to a sequence of zeros

and ones. Thus these conjectures blend the ideas of seed iteration with non-autonomous

iteration. Our conjecture states that there may be basins of attraction and sub-invariant

domains contained inside spaces of analytic functions which correspond to the analogous

concepts found in classical and non-autonomous iteration theory.

Throughout this paper, we denote open balls by Bd(z, δ) = {z′ : d(z′, z) < δ} or

B(z, δ) when the metric d is clear. Unless otherwise stated, we use is the chordal metric

σ on C. We have the following notation for the neighborhood of a set A: Bd(A, ε) = {z :

d(z, A) < ε}. The boundary is denoted ∂A while the closure is A. A neighborhood U is

always an open set whose boundary has Lebesgue measure zero (this is used a few times

in Section 3). λ always denotes Lebesgue measure on C, and ∂f
∂z

is what we use to denote

the partial derivative with respect to z. The word domain always means an open and

connected set.

2. Background

Much of what is stated here can be found in many texts on holomorphic dynamics

or iteration theory (see [Bea91] or [Mil06]). Let f : C → C be a rational map. We

define the degree of f(z) to be the maximum of the polynomial degrees of the numerator

and denominator. It is standard practice in (holomorphic) classical dynamics to assume

the degree of f is always greater than one. Consider the family of maps {fn}n∈N where

fn(z) = f ◦f ◦...◦f(z) (n times). In classical iteration theory, we often study the behavior

of the sequence (fn(z))n∈N in terms of local uniform convergence of its subsequences. The

sequence (fn(z))n∈N is called the orbit of z. z is called the seed value.

It is sometimes the case that the orbit of z repeats certain values as n → ∞, and

hence we have the following definition.

Definition 1.3. An finite set γ = {z1, z2, ..., zn} ⊂ C is called a periodic cycle if

fn(zi) = zi for each i = 1, 2, ..., n. The period of the cycle is the minimum integer n such

that fn(zi) = zi. An element z is pre-periodic if fn(z) is periodic for some n > 1, but z

itself is not periodic.
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If {z1, z2, ..., zn} is a periodic cycle, it follows that f(z1) = z2, f(z2) = z3, ..., f(zn) = z1.

Definition 1.4. A periodic cycle is

1. attracting if |(fn)′(z1)| < 1

2. repelling if |(fn)′(z1)| > 1

3. neutral if |(fn)′(z1)| = 1.

(observe that from the chain rule (fn)′(z1) = (fn)′(z2) = ... = (fn)′(zn))

It is known that every attracting cycle of period n has a neighborhood where f jn(z)→ zi

for some i as j →∞ and this convergence occurs locally uniformly.

The term “chaos” is used when small changes in the seed value z cause dramatic

changes in the long term behavior of the sequence fn(z). The set of points where this

chaotic behavior occurs is called the Julia set. Formally, the Fatou set (F) and Julia set

(J ) are defined as stated below.

Definition 1.5. Let f : C→ C be a rational function.

F(f) = {z : fn(z) has a subsequence which converges locally uniformly at z}

J (f) = C−F(f)

Recall that a family of functions is normal on U if every sequence of functions has a

subsequence which converges uniformly on U . A set A is completely invariant if f(A) = A

and f−1(A) = A. Both J (f) and F(f) are completely invariant under the image of f .

Notice every element of an attracting cycle γ is contained inside an open subset of F(f).

We also know that the repelling periodic cycles are dense in J (f). When f(z) is a

polynomial, we define the filled Julia set by K(f) = {z : fn(z) is a bounded sequence}.

It is well known that ∂K(f) = J (f).

These sets have generated great interest to mathematicians for decades due to the

beautiful fractal images they produce. With the help of computers, we can generate

pictorial approximations of K. Computers have allowed mathematicians studying holo-

morphic dynamics to make conjectures and visually demonstrate the properties of K.

Figure 1.4 contains a few examples of filled Julia sets.

A common endeavor in holomorphic dynamics is to explore the properties of the

sets J ,F , and K. For example, in most cases we know that J is a set of Lebesgue
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Figure 1.4. Filled Julia sets of the functions z 7→ z2 − .1 + .75i (left,
“rabbit”) and z 7→ z2 − 1 (right, “basilica”).

Figure 1.5. The Mandelbrot set.

measure zero, and is self-similar. Furthermore, J is always nonempty and either J = C

or J has empty interior. The most common examples in holomorphic dynamics come

from the quadratic family of polynomials fc(z) = z2 + c where c ∈ C is a parameter. The

Mandelbrot set (see Figure 1.5) is the set of all c ∈ C where the corresponding Julia set

of z2 + c is connected. It is well known that the Mandelbrot set is the same as the set

{c : fnc (0) is bounded}.

Now a set A is forward invariant if fn(A) = A for some n. It can be shown that

each forward invariant connected component of F(f) can be classified into four categories

which are defined as follows.
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Definition 1.6. Let B be a forward invariant connected component of F(f).

1. B is an attracting component if B contains an element of an attracting cycle.

2. B is an parabolic component if for each z ∈ B, fn(z)→ z0 ∈ ∂B as n→∞.

3. B is a Siegel disk if f : B → B is analytically conjugate to an irrational rotation

of the unit disk.

4. B is a Herman ring if f : B → B is analytically conjugate to an irrational

rotation of an annulus.

Furthermore, every connected component of F(f) can be mapped onto a forward invari-

ant component of the Fatou set. Thus the previous definition completely describes the

behavior of the sequence fn(z) when z ∈ F(f). If γ is an attracting cycle of period n,

then the components of F(f) where fkn converges to an element of γ as k →∞ is called

the attracting basin of γ.
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CHAPTER 2

Random Iteration

1. Sub-invariant Neighborhoods

Definition 2.1. If Γ is an index set and {fγ}γ∈Γ is a family of functions, we say

that A is sub-invariant with respect to {fγ} if fγ(A) ⊂ A for all γ.

A family of degree m polynomials {fc}c∈W which have the form given in (1) is called a

class B family if the following holds.

1. For some a > 0, |αm(c)| ≥ a for all c ∈ W , and

2. for some A ≥ 0 we have |αj(c)| < A|αm(c)| for all j = 0, 1, ...,m and all c ∈ W .

The above definition is a subtle modification of the definition of a class B sequence of

functions found in [Büg97]. It can be shown that a class B family, has a sub-invariant

domain V at infinity and fnc (z) converges locally uniformly to ∞ on V for any c ∈ WN

[Büg97].

Our first result deals with sub-invariant domains in the case where W is finite.

Proposition 2.1. SupposeW is finite and for every c ∈ W, z0 is a finite attracting

fixed point of fc(z). Then for any sequence c ∈ WN, z0 is a fixed point of fnc (z). Fur-

thermore, there exists δ > 0 such that B(z0, δ) is sub-invariant with respect to {fc}c∈W ,

and for all z ∈ B(z0, δ), lim
n→∞

fnc (z) = z0.

Proof. The fact that z0 is a fixed point for fnc (z) is trivial. Let z ∈ B(z0, δ). Using

the Taylor expansion of fc about z0, we can choose for each c ∈ W a number αc < 1

such that |fc(z) − z0| < αc|z − z0| for some sufficiently small δ. Now choose a number

α such that max{αc} ≤ α < 1 where the maximum is taken over all c ∈ W . Then

|fc(z) − fc(z0)| < α|z − z0| < δ for every c ∈ W . Thus fc(B(z0, δ)) ⊂ B(z0, δ) for each

c ∈ W
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Figure 2.1. Filled Julia set of three non-autonomous iterations of f0(z) =
z2 and f1(z) = z4 − 2z2, that is three sequences c ∈ {0, 1}N.

Now assume |fn−1
c (z) − z0| < αn−1|z − z0|. Let w = fn−1

c (z). Then w ∈ B(z0, δ).

Therefore, |fnc (z)− z0| = |fcn(w)− fcn(z0)| < α|w− z0| < αn|z − z0|, and the conclusion

follows. �

Example 2.1. Let f0(z) = z2 and f1(z) = (z2 − 1)2 − 1 = z4 − 2z2. Notice 0

is an attracting fixed point for both maps. In fact it is eay to check that B(0, 1/4) is

sub-invariant. Figure 2.1 shows the filled Julia set for three different non-autonomous

iterations. The origin is located in the center of all three pictures. We can see that there

is clearly a neighborhood centered about 0 where the orbits are bounded, and in fact we

know form Proposition 2.1 that fnc (z) converges to 0 on B(0, 1/4) for any c ∈ {0, 1}N.

Sub-invariant domains will be very useful later as they act as a “trapping region”

for the orbit (fnc (z))∞n=1. Indeed, if z ∈ V where V is a sub-invariant domain, then

fnc (z) ∈ V for all n. Furthermore, for a sequence c ∈ WN, fnc (V ) ⊂ V for all n. It follows

from Montel’s theorem that (fnc ) is a normal family on V . Thus a sub-invariant domain

is always contained in the Fatou set for any given c.

The family {fc}c∈W is an analytic family if the function f(c, z) is a holomorphic

function in two variables.
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Theorem 2.2. [FS91] Suppose W = B(c0, δ) and let {fc(z)}c∈B(c0,δ) be an analytic

family of rational maps. Suppose that fc0(z) has an attracting cycle γ. Then for a

sufficiently small δ > 0, there exists a sub-invariant neighborhood V containing γ such

that V is contained inside the immediate attracting basin of γ.

The above theorem came from an unjustified step of a proof written by Fornæss

and Sibony in [FS91]. For the sake of completeness, we include a proof here. In the

case where the family of maps consists of one function, a sort of topological proof can be

found by using the open mapping theorem.

To prove Theorem 2.2, we need some facts regarding holomorphic functions of

several variables. A polydisk of radius (r0, r1) is an open subset of C2 of the form

B(z, r0) × B(c, r1). A function f : C2 → C is holomorphic if it is continuous and if

its first partial derivatives exist. It is analytic at (c0, z0) if it can be represented as a

uniformly convergent power series in some open polydisk centered at (c0, z0):

(4) f(c, z) =
∞∑

i,j=0

αi,j(z − z0)i(c− c0)j

z ∈ B(z0, r0), c ∈ B(c0, r1) for some r0, r1 > 0.

Just as in the case of functions of a single variable, analytic and holomorphic are equiv-

alent. In the power series expansion given above, we can let

(5) αi,j =
1

i!j!

∂f i+j

∂zicj
(c0, z0).

For more details on the theory of functions of several complex variables, see [Nis01].

We need the following lemma to prove Theorem 2.2.

Lemma 2.3. Let M1,M2, ...,Mn be positive real numbers and suppose
∏n

k=1 Mk < 1.

Given a number ε1 > 0 there exists positive numbers ε2, ..., εn such that

1. εkMk < ε(k modn)+1 for all k = 1, 2, ..., n, and

2. εk < max{ε1/Mn, ε1/MnMn−1, ..., ε1/(MnMn−1 · ... ·M1)} for all k = 2, ..., n.
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Proof. Since
n∏
j=1

Mj < 1 we have ε1

n∏
j=1

Mj < ε1. We can then inductively define a

finite sequence εk as follows. For each k = 2, 3, ..., n we have εk−1

n∏
j=k−1

Mj < ε1. So choose

εk such that εk−1

n∏
j=k−1

Mj < εk

n∏
j=k

Mj < ε1. We then have

(6) ε1

n∏
j=1

Mj < ε2

n∏
j=2

Mj < ... < εn−1Mn−1Mn < εnMn < ε1.

The inequalities from statement 1 also hold. This can be seen by taking each

inequality in (6) and dividing out the appropriate factors. The bounds on the numbers

εk also follows from the inequalities in (6). �

Proof of Theorem 2.2. Let γ = {z1, z2, ..., zn} be an attracting cycle of fc0(z). Since

f(c, z) is continuous, we can choose ε′ and δ′ such that

1. f( B(c0, δ
′), B(zk, ε

′) ) is contained inside the immediate basin of attraction of γ

for each k = 1, 2, ..., n.

2. f(c, z) has a Taylor expansion in B(c0, δ
′)×B(zk, ε

′).

For each k let Tk(c, z) =
∑

i≥1,j≥0

αi,j(z − zk)i−1(c− c0)j and Uk(c) =
∞∑
j=1

α0,j(c− c0)j

where αi,j are the coefficients of the power series expansion of f(c, z) around (c0, zk).

Then the power series expansion is given by f(c, z) = f(c0, zk) + (z− zk)Tk(c, z) +Uk(c).

Now since f(c, z) is holomorphic, and γ is an attracting cycle, we can choose ε′′ < ε′,

δ′′ < δ′, and µ so that
n∏
k=1

|Tk(c, z)| < µ < 1 for z ∈ B(γ, ε′′) and c ∈ B(c0, δ
′′). For each

k = 0, 1, ..., n let Mk = sup{|Tk(c, z)| : z ∈ B(zk, ε
′′), c ∈ B(c0, δ

′′)}. Then
n∏
k=1

Mk ≤ µ < 1

Now choose ε1 such that max{ε1, ε1/(MnMn−1 · ... ·Mk) : k = 1, 2, ..., n} < ε′′. Now we

can choose for each j = 2, ..., n an εj such that the inequalities of Lemma 2.3 hold. Since

f(c, z) is analytic in c, Uk(c)→ 0 as c→ c0. So for each k = 1, ..., n choose δk such that

for c ∈ B(c0, δk), εkMk + |Uk(c)| < ε(k modn)+1.

Finally, let δ = min{δ1, δ2, ..., δn, δ
′, δ′′} and Vk = B(zk, εk). Suppose z ∈

n⋃
k=1

Vk and

c ∈ B(c0, δ). Then z ∈ Vk for some k. So |f(c, z) − z(k modn)+1| = |f(c, z) − f(c0, zk)| =
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Figure 2.2. Filled Julia set for a non-autonomous iteration of f0(z) = z2

and f1(z) = z2 − 1
5
z + 11

100
.

|(z − zk)Tk(c, z) + Un(c)| ≤ εkMk + |Uk(c)| < ε(k modn)+1. Therefore, fc(Vk) ⊂ V(k modn)+1

which completes the proof.

�

Proof. Let z ∈
⋃
c∈W Ac and c = (c1, c2, ...) ∈ WN. Then z ∈ Ad for some d ∈ W .

Suppose c1 = d. Then by invariance fc1(z) ∈ Ad. Now suppose c1 6= d. By condition 2,

fc1(z) ∈ Ac for all c 6= d. Therefore fc1(z) ∈
⋃
c∈W Ac and

⋃
c∈W Ac is a sub-invariant set.

Now assume fn−1
c (z) = w ∈

⋃
c∈W Ac. Then w ∈ Ad for some d ∈ W . Using an

argument similar to the previous paragraph, we can show that fcn(w) ∈
⋃
c∈W Ac. Thus

fnc (z) ∈
⋃
c∈W Ac. By condition 1 we have fnc (z) is bounded. �

Example 2.2. Let f0(z) = z2, g(z) = z + 1/10 and f1(z) = (g ◦ f0 ◦ g−1)(z) =

z2 − 1
5
z + 11

100
. Then A0 = B(0, 1/2) is sub-invariant under f0 and A1 = B(1/10, 1/2)

is sub-invariant under f1. Notice A0 ⊂ B(1/10, 3/5). So f1(A0) ⊂ f1(B(1/10, 3/5)) =

B(1/10, 9/25) ⊂ A1. A similar argument shows that f0(A1) ⊂ A0. Therefore, B(0, 1/2)
⋃
B(1/10, 1/2)

is invariant, and for any sequence c ∈ {0, 1}N, fnc (z) is bounded for all z ∈ B(0, 1/2)
⋃
B(1/10, 1/2).

Figure 2.2 shows us the filled Julia set for a given c ∈ {0, 1}N.
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Figure 2.3. Filled Julia sets for non-autonomous iterations (i.e. two re-
alized sequences c) of {z2 + c}c∈W ,
c ∈ W = B(−.1 + .75i, .04) is generated according to a uniform distribu-
tion.

2. Introduction to Random Iteration

We now introduce random iteration. We adopt the notation C(ω) for a sequence

of random variables. We always assume that C(ω) = (C1, C2, ...) is a sequence of inde-

pendent and identically distributed (IID) random variables. In all of our examples, we

use computers to generate a realized sequence c according to a uniform distribution or,

in the discrete case, a Bernoulli distribution where the probability that Cj = 0 is 1/2.

Consider the following situations.

Example 2.3. Suppose fc(z) = z2 + c. Let W = B(−.1 + .75i, .04). Recall that

the filled Julia set of z2− .1 + .75i is a familiar set referred to as the “rabbit” in discrete

dynamics. The filled Julia sets for two non-autonomous (realized) iterations of this family

are shown in Figure 2.3.

Example 2.4. Let fc(z) and W be defined the same as in the previous example.

Now suppose that cz is a sequence dependent on z ∈ C. That is for each z a different

sequence c is generated according to a uniform distribution. Then we may get different

pictures for the filled Julia set. An example of a non-autonomous iteration in this case

is shown in Figure 2.4.
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Figure 2.4. Filled Julia sets for a non-autonomous iteration of {z2 +
c}c∈W ,W = B(−.1+.75i, .04) where the realized sequences cz are functions
of z.

We will see from Theorem 2.5 that the two processes shown in Figures 2.3 and 2.4 are

the same “on the average”.

It is clear from Figures 2.1 and 2.3 that using different sequences c may give us

different filled Julia sets. We would like to know for a fixed z ∈ C the probability that

fnC(ω)(z) ends up in an invariant domain for large n. In order to answer this question,

we need to establish the existence of a probability measure on WN. The development

of such a measure is described by K.L. Chung in [Chu01]. Let’s review a few of those

details.

Recall that the triple (Ω,A ,P) where Ω is a nonempty set and A is a σ-algebra

is called a probability space if P : A → [0, 1] is a countably additive measure with

P(Ω) = 1. Let (Ωn,An, P̄n)∞n=1 be a probability space for each n (for our purposes, we

let Ωn = W and the P̄n will usually be the same measure for each n). A subset A is

called a finite-product set if

(7) A = ×∞n=1An

where An ∈ An, and for all but finitely many n An = Ωn. Now define A0 to be the

collection of all finite-product sets and A to be the sigma algebra generated by A0.
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Define a set function P on A0 by

(8) P(A) =
∞∏
n=1

P̄n(An)

where A has the form given in (7). And if B =
⋃n
k=1Bk where the Bk’s are (pairwise)

disjoint finite-product sets, then

(9) P(B) =
n∑
k=1

P(Bk)

It can be shown that P is a probability measure on A0 and can be extended uniquely to

a probability measure on A [Chu01].

A measure P : A → [0, 1] is absolutely continuous with respect to Lebesgue mea-

sure if for every measurable set A such that λ(A) = 0 we have P(A) = 0. We adopt

the convention that absolute continuity always refers to absolute continuity with respect

to λ. Let X ⊂ C and B(X) be the sigma algebra of all Borel subsets of X. A Borel

probability measure P : B(X)→ [0, 1] is regular if both of the following conditions hold:

1. For each A ∈ B(X),P(A) = inf{P(U) : A ⊂ U and U is open}

2. For each open U ⊂ X,P(U) = sup{P(K) : K ⊂ U and K is compact}

A topological space X is second countable if there is a countable collection of open sets

B (called a basis) such that every open set U ⊂ X is a union of elements in B. If X is

a compact Hausdorff space, then X is second countable iff X is metrizable. Finally, if X

is a second countable locally compact Hausdorff space with a Borel probability measure

P , then P is regular [Coh80].

We need the following for a later proof.

Lemma 2.4. Let V be a Lebesgue measurable subset of C. Let f : V → C be a

nonconstant analytic map and suppose λ(A) = 0 where A ⊂ C is compact. Then

1. f(A) is a set of Lebesgue measure zero.

2. f−1(A) is also a set of Lebesgue measure zero.

Proof. Let’s begin with statement 1. We claim that there are finitely many critical

points contained in A. Let C denote the set of critical points in A. By contradiction
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assume C is infinite. Since A is compact we know C has a limit point, and by continuity

this limit point must also be a critical point. This contradicts the fact that the zeros of

the analytic function f ′ are isolated. Thus our claim holds, and C is a set of measure

zero.

Now let An = A − B(C , 1/n). We will show that λ(f(An)) = 0 for each n. For

each z′ in An, we can choose a δz′ such that f(z) 6= f(z′) on B(z′, δz′) and B(z′, δz′)

contains no critical points. Then {B(z′, δz′) : z′ ∈ An} is an open cover of An. So we

can choose a finite set z1, z2, ..., zm whose corresponding neighborhoods cover An. Let

Akn = B(zk, δzk)
⋂
An where k = 1, 2, ...,m. Define fk by restricting the domain of f to

Ak. By the inverse function theorem [Gam01], for each k = 1, 2, ...,m the functions fk

are C1 diffeomorphisms on B(zk, δzk). Then

λ(fk(A
k
n)) =

∫
Ak

n

|f ′(z)|2 dλ

≤ sup{|f ′(z)|2 : z ∈ Akn} λ(Akn)

= 0

(see [Coh80] page 171) It follows that λ(f(An)) ≤ λ(
m⋃
k=1

f(Akn)) = 0.

Now since An is an increasing sequence of sets, λ(
∞⋃
n=1

f(An)) = limλ(f(An)) = 0.

Since f(A)− f(C ) =
∞⋃
n=1

f(An) we have that f(A) is a set of measure zero.

Statement 2 can be shown from statement 1 using similar techniques. �

Now we adopt the notation cn for a finite sequence of length n. For our next

result, assume {fc}c∈W has a sub-invariant domain V (for example, the family could

be a collection of class B maps), and note that for a fixed z the function defined by

cn 7→ fn(cn, z) is A n measurable for each n ∈ N (A n = ×nk=1A ). We adopt the

notation fn(cn)z for this function.

Now, let

E(z, V ) = {c ∈ WN : fn(c, z) ∈ V for all sufficiently large n}
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Figure 2.5. Probability of c-stability for a non-autonomous iteration of
{z2 + c}c∈W where W = B(−.1 + .75i, .04).

where V is a sub-invariant domain. We will need to make sure that this set is measurable.

For each n ∈ N define, just as in [FS91], En(z, V ) = {c ∈ WN : fn(c, z) ∈ V } =

f−n(V )z×WN. Then En(z, V ) is measurable. Notice that En(z, V ) is a nested increasing

sequence of sets, and we justify this as follows. Suppose c ∈ En(z, V ). Then fn(c, z) ∈ V .

Let y = fn(c, z). Since V is a sub-invariant domain and y ∈ V we have that fc(y) ∈ V

for all c ∈ W . Thus fn+1(c, z) ∈ V and we have that c ∈ En(z, V ).

Now observe that

(10) E(z, V ) =
∞⋃
n=1

En(z, V )

So E(z, V ) is measurable. It follows that for each z ∈ C, the probability that fn(C(ω), z)

is contained in V is defined by g(z) := P(E(z, V )).

Suppose χE is the characteristic function. If we choose a sequence of indepen-

dent and identically distributed random sequences C1(ω),C2(ω)..., then χE(C1(ω)),

χE(C2(ω)), ... is a sequence of discrete random variables which are independent and

identically distributed. Now the expected value of χE is equal to P(E(z, V )). By the

strong law of large numbers, we get the following result.
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Figure 2.6. Probability of c-Stability for random iteration over {f0, f1}
where f0(z) = z2 and f1(z) = z4 − 2z2.

Proposition 2.5. Let Sn(z) = 1
n

n∑
k=1

χE(z,V )(Ck(ω)) where z ∈ C is fixed. Then the

sequence of averages Sn(z) converges to P(E(z, V )) with probability one.

This proposition means that if we average the images of the filled Julia sets of a family of

random iterations, we get a pictorial representation of the function g(z) := P(E(z, V )).

Example 2.5. Let W = B(−.1 + .75i, .04). If we choose 500 random iterations of

{z2 + c}c∈W and average the images of their corresponding filled Julia sets, we get the

image seen in Figure 2.5 where the invariant domain V is a neighborhood of ∞. The

black represents where g(z) = P(E(z, V )) is close to zero, and blue represents where

P(E(z, V )) is close to one. We will see in theorem 2.8 that g(z) is continuous when W

is contained inside a small neighborhood.

Example 2.6. Recall in example 2.1 we let f0(z) = z2 and f1(z) = (z2− 1)2− 1, if

we choose 500 random iterations of {f0, f1} and average the images of the corresponding

filled Julia set together we get the image seen in Figure 2.6. The coloring scheme is the

same as in the previous example.
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3. Probability and c-Stability

In this section, we look at the properties of the probability functions g(z) introduced

in Example 2.5 whenW is an open set of finite Lebesgue measure. The motivation behind

this endeavor is based on a result by Fornæss and Sibony [FS91] which deals with stability

of a random iteration when W = B(co, δ). Given c0 ∈ C let λ denote the normalized

Lebesgue measure on W = B(c0, δ) and λ denote the corresponding product measure on

WN. f(c)z denotes the function c 7→ f(c, z).

A function f(c, z) is called generic if for every z ∈ C the function f(c)z is noncon-

stant. Recall that a family {fc(z)} is analytic if f(c, z) is a holomorphic function in two

variables.

Theorem 2.6. [FS91] Let f : B(c0, δ) × C → C be generic where the family

{fc}c∈W is an analytic family of rational maps of constant degree m. Suppose that fc0(z)

has d ≥ 1 attracting cycles γ1, γ2, ..., γd. For each 1 ≤ j ≤ d let Vj be a neighborhood

contained in the basin of attraction of γj. Then there exists a δ0 s.t. for all δ < δ0 there

are continuous functions g1, g2, ..., gd defined on C such that

1. 0 ≤ gj(z) ≤ 1 and
d∑
j=1

gj(z) = 1, and

2. For z ∈ C there exists disjoint open sets Ej(z) ⊂ B(c0, δ)
N such that λ(Ej(z)) =

gj(z), and if c ∈ Ej(z), then for all sufficiently large n, fn(c, z) ∈ Vj.

Hence for every z, the sequence fnc (z) is c-stable for almost every c. The authors state

(without proof), the above theorem is valid for more general probability measures other

than λ. For the rest of this section, let P1 be an absolutely continuous probability

measure on the Borel subsets of W . We assume that the support of P1 is W . Let Pn be

the n-dimensional product measure on (Wn,B(Wn)). P will be the product measure on

(WN,B(WN)) as introduced in the previous section.

The requirement that f(c, z) be generic in Theorem 2.6 is very restrictive. Indeed,

if f(c, z) =
P (c,z)
Q(c,z)where P,Q are polynomials in z and c, then it is easy to see that if

deg(Pc) 6= deg(Qc) then f(c, z) will not be generic since f(c,∞) is constant. So we would
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like to find a way to remove this restriction, which we can achieve by assuming f(c, z)

has the form given in (2).

Definition 2.2. We call z0 a non-generic point if f(c)z0 is constant for all c ∈ W ,

and z0 is called a generic point if f(c)z0 is nonconstant. The set of all non-generic points

is denoted by Ω.

If z0 is non-generic, then
∂f
∂c (c, z0) = 0 for all c ∈ W . Conversely, if for some fixed

z0,
∂f
∂c (c, z0) = 0 for all c ∈ W , then f(c)z0 is non-generic. So the partial derivative can

be used to find the non-generic points of a family {fc(z)}c∈W .

Now notice that the image of a non-generic point z0 (for any c ∈ W) may be another

non-generic point. In fact, it may be the case that the orbit of a non-generic point may

consist entirely of non-generic points (i.e. fn(Wn, z0) consists of one point for all n). So

a non-generic point can be classified into two categories.

Definition 2.3. Let z0 ∈ Ω.

1. z0 is finitely non-generic if for some n fn(Wn, z0) is open and we write z0 ∈ Ω<∞.

2. z0 is infinitely non-generic if fn(Wn, z0) consists of a single point for all n and

we write z0 ∈ Ω∞.

Both of these cases can occur. Consider the following examples. If f(c, z) =

(z2 − 4)c + z2 − 2, it is easy to check that Ω∞ = {2,−2,∞} and these are the only

non-generic points. Now consider g(c, z) = (z2 − 4)c. For this family, Ω∞ = {∞} but

Ω<∞ = {2,−2}.

First, we show that Ω is finite.

Proposition 2.7. Suppose f(c, z) is rational in both variables and {fc(z)} is of

constant degree for all c ∈ W. The family {fc(z)} has only finitely many non-generic

points.

Proof. We can write f(c, z) in the form

(11)
P (c, z)

Q(c, z)
=

∑m1

i=0 αi(z)ci∑m2

j=0 βj(z)cj
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where the coefficient functions αi(z), βj(z) are polynomials and deg(P (c)z) = m1, deg(Q(c)z) =

m2.

Now fix z ∈ C.

Case 1: Suppose f(c)z ≡ 0. Then P (c)z ≡ 0 which implies αi(z) = 0 for all

i = 0, 1, ..., n. Since these polynomials have only finitely many zeros in common, we have

finitely many non-generic points in this case. The case where f(c)z ≡ ∞ is similar.

Case 2: Suppose f(c)z ≡ κ where κ 6= 0,∞ Then f(c)z has no zeros or poles. It

follows that P (c)z and Q(c)z are constant functions. Hence αi(z) = 0 for i = 1, 2, ..., n

and βj(z) = 0 for j = 1, 2, ...,m. Since these have only finitely many zeros in common,

we have shown our result. �

If z ∈ Ω∞, since Ω∞ is finite there exists k,m such that fk(Wk, z) = fm(Wm, z).

So the elements of Ω∞ are pre-periodic or periodic (see definition 1.3), and Ω∞ is a

sub-invariant set. We need the following definitions. Let Vj be an invariant domain

containing an attracting cycle γj for fc0 .

Definition 2.4. Let c0 ∈ W . Ω′∞(c0) will denote the infinitely non-generic points

not contained in any attracting basin of fc0 .

Definition 2.5.

En
j (z) = {cn ∈ Wn : fn(cn, z) ∈ Vj} for j = 1, 2, ..., d

Ej(z) =
∞⋃
n=1

En
j (z)

Sn0 (z) = {cn : fn(cn, z) ∈ C− V } = f−n(C− V )z

Sn(z) = {cn : fn(cn, z) ∈ C− V }

gnj (z) = Pn(En
j (z))

hnj (z) = Pn(Sn0 (z))

(12)

Observe that En
j (z) is a nested increasing sequence. With the knowledge that Ω is

finite, we can show that for z ∈ C− Ω∞ the event Ej(z) occurs with probability one.
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Theorem 2.8. Suppose f : W × C → C has the form given in (2). Assume the

family of rational maps {fc}c∈W is of constant degree greater than 1, and assume W is

an open set where c0 ∈ W ⊂ B(c0, δ), and Ω′∞(c0) = ∅. Let V1, V2, ..., Vd be sub-invariant

neighborhoods of the attracting cycles γ1, γ2, ..., γd of fc0 contained inside their respective

attracting basins such that ∂Vj
⋂
f(W ,Ω) = ∅ for all j. Then there exists δ0 > 0 such

that for all δ < δ0 there are functions g1, g2, ..., gd continuous on C such that

1. The functions {gj(z)}dj=1 form a partition of unity, and

2. For z ∈ C there exists disjoint open sets Ej(z) ⊂ WN such that P(Ej(z)) = gj(z)

and for every c ∈ Ej(z), fn(c, z) ∈ Vj for all sufficiently large n.

The proof of this theorem requires a few lemmas. We continue to use the same

notation as in Theorem 2.8.

Lemma 2.9. Fix δ > 0. Assume W ⊂ B(c0, δ), and Ω′∞(c0) = ∅. Then for every

z ∈ C there exists c ∈ WN such that fn(c, z) ∈ V =
⋃d
i=1 Vi for large enough n.

Proof. We know that z ∈ Jc0
⋃
Fc0 . If z ∈ Jc0 then z is contained in the boundary

of some attracting basin for fc0 [Bea91]. If z is generic, then f(c)z is an open map.

Thus there exists a c1 ∈ W such that f(c1, z) is in an attracting basin, and then for

some n, fn(cn, z) ∈ V where cn = (c1, c0, ..., c0). Now if z0 ∈ Ω<∞ then there exists an n

such that fn(cn, z) is generic and then we use the previous argument. In the case where

z ∈ Ω∞ then z0 is a preperiodic point of an attracting cycle, so the constant sequence

c = (c0, c0, ...) will suffice. The rest of the proof is similar to the proof in [FS91]. �

Let D ⊂ C be a domain. Recall that a function f : D → R is lower semicontinuous

if for all z ∈ D and real numbers A < f(z) there exists a δ > 0 such that if σ(z′, z) < δ

then A < f(z′). f is upper semicontinuous if −f is lower semicontinuous. It is well

known that the sum of two lower(upper) semicontinuous functions is also lower(upper)

semicontinuous. A function is continuous iff it is both upper and lower semicontinuous.

Lemma 2.10. Let Pn be a Borel probability measure on Wn where W is open and

bounded. For each n and j, the functions gnj (z), and hnj (z) are lower semicontinuous on

C.
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Proof. Let z ∈ C andA < gnj (z). For z, z′ ∈ C and cn,d
n ∈ Wn let σ∞[(cn, z), (d

n
, z′)] =

max{σ(z, z′), |c1 − d1|, ..., |cn − dn|}. Then σ∞ is a metric on Wn × C.

We claim that for any open set U ⊂ Wn there exists a nested increasing sequence

of compact sets Km ⊂ int(Km+1) such that
⋃∞
m=1 Km = U . Indeed, if we let Km =

{cn ∈ Wn : d(cn,Wn − U) ≥ 1
m
} then the sequence of sets Km does have that property

[Con78]. Since Pn is a Borel probability measure and Wn is locally compact Hausdorff,

Pn is regular. Now En
j (z) = f−n(Vj)z is a nonempty open set by the continuity of

fn(cn)z. From our earlier claim with U = En
j (z), there exists a sufficiently large m such

that A < Pn(Km) ≤ Pn(En
j (z)) = gnj (z).

Choose ε > 0 so that Bσ(fn(Km, z), ε) ⊂ Vj. Now, fn is uniformly continuous on

Wn×C. So choose δ > 0 such that if (cn, z), (d
n
, z′) ∈ Wn×C and σ∞[(cn, z), (d

n
, z′)] <

δ, then σ(fn(cn, z), fn(d
n
, z′)) < ε. Now assume σ(z′, z) < δ. We will show Km ⊂ En

j (z′).

Let cn ∈ Km. Then σ∞[(cn, z), (cn, z′)] < δ. Thus σ(fn(cn, z), fn(cn, z′)) < ε, that

is fn(cn, z′) ∈ Bσ(fn(Km, z), ε) ⊂ Vj. Therefore cn ∈ En
j (z′), that is Km ⊂ En

j (z′). We

now have A < Pn(Km) ≤ Pn(En
j (z′)) = gnj (z′).

The proof that hnj (z) is lower semicontinuous is similar. �

We are now ready to prove Theorem 2.8. It is similar to the proof of Theorem 2.6

found in [FS91]. We include it here with more details for the sake of completeness.

Proof of Theorem 2.8. From Theorem 2.2 we can choose δ0 such that there are

open sub-invariant sets Vj which are neighborhoods of attracting cycles γj. Furthermore,

suppose f(W ,Ω)
⋂
∂V = ∅. For our first step, we show that for each j = 1, 2, ..., d, gnj (z)

is continuous on C for every n. We then show that gnj converges uniformly to complete

the proof.

We claim that for fixed cn−1,P1{c : fn((cn−1, c), z) ∈ ∂V } = 0. To prove this,

notice that ∂V is a set of Lebesgue measure zero since it is a finite union of neighborhoods

of the attracting cycles. So by Lemma 2.4, {c : fn((cn−1, c), z) ∈ ∂V } is a set of Lebesgue

measure zero in W . Thus the claim holds by the absolute continuity of P1.

As a result of our last claim,

Pn(Sn(z)− Sn0 (z)) =

∫
cn−1∈Wn−1

P1
{
c : fn((cn−1, c), z) ∈ ∂V

}
dPn−1 = 0
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which implies Pn(Sn0 (z)) = Pn(Sn(z)).

Since En
j (z) × W ⊂ En+1

j (z), we have gnj (z) ≤ gn+1
j (z). Also, in Lemma 2.10,

it was shown that gnj (z) and Pn(Sn0 (z)) = Pn(Sn(z)) are lower semicontinuous. Now

gnj (z) = 1 −
∑

i 6=j g
n
i (z) − Pn(Sn(z)) which implies gnj (z) is upper semicontinuous. So

gnj (z) is continuous on C.

For each z ∈ C choose a sequence cz such that fn(cz, z) ∈ V for all sufficiently large

n (Lemma 2.9). Then for each z we can choose a δz such that fn(cz, B(z, δz)) ⊂ V . So

{B(z, δz)} forms an open cover of C. Thus we can choose a finite set {z1, z2, ..., zk} such

that fn(czi , B(zi, δi)) ⊂ V . Thus there exists an N such that for all n ≥ N, fn(c, z) ∈ V

for some c. It follows that,
⋃d
j=1 E

n
j (z) is a nonempty open set with positive measure.

For n ≥ N there exists an M ∈ (0, 1) such that
∑
gnj (z) > M and Pn(Sn(z)) =

1−
∑
gnj (z) ≤ 1−M for all z ∈ C. We then have for all n ∈ N,

Pn+N(Sn+N(z)) =

∫
cn∈Sn(z)

PN
(
SN(fn(cn, z))

)
dPn ≤ (1−M)Pn(Sn(z)).

We can write n = qN + r where 0 ≤ r < N . By induction on q we get

PqN+r(SqN+r(z)) ≤ (1−M)q Pr(Sr(z)).

Let C = max{Pr(Sr(z)) : 1 ≤ r < N, z ∈ C}. Then

Pn+N(Sn+N(z)) = P(q+1)N+r
(
S(q+1)N+r(z)

)
≤ (1−M)q+1 Pr(Sr(z))

≤ C(1−M)n/N .

Thus Pn(Sn(z)) → 0 as n → ∞ uniformly. Now assume n,m ≥ N and without loss of

generality assume m ≥ n. We have

gmj (z)− gnj (z) ≤ gn+m
j (z)− gnj (z)

= gnj (z) +

∫
cn∈Sn(z)

Pm
(
Em
j (fn(cn, z))

)
dPn − gnj (z)

≤ Pn(Sn(z)).
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So gnj (z) converges uniformly to some continuous function gj(z).

�

From Theorem 2.8 we still get the following corollary just as the authors did in [FS91].

Corollary 2.11. Let f be a rational map with the same properties as stated in

Theorem 2.8. Then there is a set E ⊂ WN of full measure such that if c ∈ E , fn(c, z) ∈

V =
⋃d
j=1 Vj for almost every z ∈ C and all sufficiently large n. In particular, J (c) is

of Lebesgue measure zero with probability one.

Proof. Proof is the same as in [FS91]. �

4. Random Iteration and Semigroups

The theory of random iteration is closely related to the dynamics of semigroups

of rational maps. The dynamics of semigroups and their relation to random iteration

has been extensively studied by Hiroki Sumi. In particular, Sumi discovered several

generalizations of Theorem 2.6 in [Sum13] using what is called the kernel Julia set

(Jker). We state one of these results and show its connection with infinitely non-generic

points (see definition 2.2).

A rational semigroup G is a semigroup generated by a set of rational functions S

where the operation on this set is function composition. This set is denoted by 〈S〉. The

Fatou set of the rational semigroup F(G ) ⊂ C is the set of all points where the rational

semigroup forms a normal family. The Julia set is J (G ) := C−F(G ). Notice by Montel’s

theorem if U is a sub-invariant domain (with respect to S), then U
⋂
J (G ) = ∅, where

〈S〉 = G .

Rational semigroups were first studied by Hinkkanen and Martin. They have shown

that several ideas from classical iteration theory carry over to dynamics of semigroups

[HM96]. In particular, it is known that J (G ) =
⋃
g∈G J (g), and g−1(J (G )) ⊂ J (G )

for all g ∈ G .

We need a few definitions.

Definition 2.6. Let K be a sub-invariant compact subset and G be a semigroup.

We say that K is a minimal set if
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1. K is a sub-invariant compact set with respect to G , and

2. If K ′ ⊂ K is another sub-invariant compact set, then K ′ = K.

Thus K is a smallest compact sub-invariant subset with respect to the semigroup G .

Definition 2.7. [Sum13] If G is a rational semigroup, we define the kernel Julia set

by

Jker(G ) :=
⋂
g∈G

g−1(J (G ))

When the semigroup is clear from context, we may simply write Jker. It is easy to check

that Jker(G ) is a sub-invariant set which is compact in C, and Jker(G ) ⊂ J (G ).

Now let P be a Borel probability measure over the set of rational functions on C.

We endow the set of rational functions on C with the topology induced by the metric

d(f, g) = sup{σ(f(z), g(z)) : z ∈ C}. Let ΓP be the support of P . Suppose that

G = (g1, g2, ...) ∈ ΓN
P . Let Gn(z) = gn ◦ gn−1 ◦ ... ◦ g1(z) and P̄ = ×∞i=1P . J (Gn) denotes

the Julia set of the random iteration Gn(z). Then we have the following results due to

Sumi.

Theorem 2.12. [Sum13] (Cooperation Principle II) Let P be a Borel probability

measure over the rational functions on C where ΓP is compact and let S be the union of

all compact sets that are minimal with respect to the group 〈ΓP〉 . If Jker〈ΓP〉 = ∅ and

J 〈ΓP〉 6= ∅ then

1. J (Gn) is a set of Lebesgue measure zero with probability one

2. For z ∈ C there exists a borel subset Uz where P̄(Uz) = 1 such that for every

G ∈ Uz we have d(Gn(z), S)→ 0 as n→∞.

We make the connection between Jker(G ) and infinitely non-generic points (see

Definitions 2.3, 2.4). We define Exc(g) = {z : g−n(z) is finite} which is commonly

referred to as the exceptional set. It is known that the exceptional set contains at most

2 elements.

Theorem 2.13. Let {fc}c∈W be a holomorphic family of rational maps. Then either

1. Jker〈fc〉c∈W = C which implies that J 〈fc〉c∈W = C or

2. Jker〈fc〉c∈W ⊂ Ω∞
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Proof. Let z ∈ Jker. Suppose z is a generic point. Then f(W)z ⊂ J (G ) is an open

set, and f(W)z
⋂
J (g) 6= ∅ for some g ∈ 〈fc〉c∈W . Thus C− Exc(g) =

⋃∞
n=1 g

n(f(W)z)

[Bea91] and
⋃∞
n=1 g

n(f(W)z) ⊂ Jker. Since Jker is compact, we must have that Jker = C

which gives us statement 1.

The other possibility is z and in fact every element of Jker is non-generic. Now

if z ∈ Jker is finitely non-generic, then we can choose an n such that fn(Wn, z) is a

generic point. But since Jker is forward sub-invariant, we have fn(Wn, z) ∈ Jker which

is a contradiction. Thus z must be infinitely non-generic. �
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CHAPTER 3

Seed Iteration

1. Introduction to Seed Iteration

In classical iteration theory, we study the behavior of the sequence

zn+1 = f(zn)

where f(z) is a rational function. The sequence {z0, z1, ...} = {fn(z0)}n∈N is called the

orbit of z0 and is denoted by O+(z0). Notice that if z ∈ O+(z0) then O+(z) ⊂ O+(z0).

In this section, we let f(w, z) be a polynomial function and study the behavior of the

sequence

(13) zn+1 = f(z0, zn).

For this type of iteration, it is not necessarily true that O+(z) ⊂ O+(z0) for z ∈ O+(z0).

We define the function f(w, z) more precisely below.

In this chapter, we assume f is a polynomial function in z where αi are polynomial

functions. So f has the form given in (1) where c is replaced by w. The formula is

provided again here for easy reference.

(1) f(w, z) =
m∑
j=0

αj(w)zj

We call the αi the coefficient functions, and at least one of them is always be nonconstant.

Of course we assume αm 6≡ 0 and the degree m ≥ 1.

Now define fn : C2 → C by fn(w, z) = f(w, f(w, ...f(w, f(w, z))...)) (n times) . So

the expression f(w, z) is composed in the z variable n times to get a function fn(w, z).

Then we let z = w to get another function denoted by Fn(w) := fn(w,w). Thus the

variables w in (1) remain unchanged in the composition process. For this reason, w is



32

called the seed variable, and we refer to this family of compositions as seed iteration. We

need to ensure that the the highest degree terms in (1) do not vanish when we replace z

with w. Hence we require that the degree of the term αm(w)wm is strictly greater than

the degrees of αj(w)wj, j = 0, 1, ...,m − 1. (the author thanks Dr. Hans Volkmer for

drawing our attetion to this problem in an earlier draft of this paper)

Seed iteration is a concpet of the author’s own invention. We will be studying the

family of functions {Fn(w)}n∈N. The notation in this chapter becomes very complex, so

we may use the following conventions:

• fg = f ◦ g

• fA = f(A) where A ⊂ C

• N0 = N
⋃
{0}

• Jw = {z : no subsequence of fnw(z) converges locally uniformly at z}

Thus Jw denotes the Julia set from classical iteration theory. We still define the Fatou

and Julia set in the same way, with slight notational modifications:

F(Fn) = {w : Fn(w) has a subsequence that converges locally uniformly at w}

J (Fn) = C−F(Fn)

K(Fn) = {w : Fn(w) is bounded }

Observe that we are working in the metric space (C, | |), so we define ∞ ∈ F(Fn) if the

family of maps diverges locally uniformly as defined in [Mil06]. Even though w is not

a parameter in the traditional sense, it is still useful to use what we know about the

family {fw} when w is a parameter. Thus we still make use of the notation fw(z) for the

function w 7→ f(w, z).

Example 3.1. Let f(w, z) = z2 + w and note that the Mandelbrot set M is the

filled Julia set K(Fn). In this case J (Fn) = ∂M (this fact is a corollary of Theorem 4.2

in [McM94]).

Example 3.2. Now let f(w, z) = z2 +w− 1. Then F2(w) = (w2 +w− 1)2 +w− 1.

The filled Julia set for this sequence of compositions is seen in Figure 3.1.
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Figure 3.1. Filled Julia set for Fn(z) where f(w, z) = z2 + w − 1.

2. Properties of Seed Iteration

The first question we answer is whether or not J is nonempty for this type of

iteration, and we will see that this depends on the chosen coefficient functions. Recall

that Hurwitz’s Theorem says the following.

Theorem 3.1. Let {fn(z)} be a sequence of analytic functions which converges

uniformly to f(z) on U and suppose f(z) has a zero of multiplicity N at z0. Then there

exists a δ > 0 such that fn(z) has N zeros counting multiplicity in B(z0, δ). [Gam01]

We will use this in the next theorem. Recall that deg(P ◦Q) = deg(P ) deg(Q)

Proposition 3.2. Suppose f(w, z) has the form given in (1) where m ≥ 2 and the

coefficient functions αi are all polynomials. Then J (Fn) 6= ∅.

Proof. From equation (1) letting z = Fn(w) we know that the degree of each term

is deg(αj) + j deg(Fn) (we define deg(F0) := 1). Thus

deg(Fn+1) = max
j=0,1,...,m

{deg(αj) + j deg(Fn)} = deg(αm) +m deg(Fn).

Observe that

deg(αm) +m > deg(αj) + j for all j = 0, 1, ...,m− 1 =⇒
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deg(αm)− deg(αj) > (j −m) > (j −m) deg(Fn) =⇒

deg(αm)− deg(αj) > (j −m) deg(Fn) =⇒

deg(αm) +m deg(Fn) > deg(αj) + j deg(Fn)

for all j. Hence deg(Fn+1) = deg(αm)+m deg(Fn) which is a strictly increasing sequence

(since deg(Fn) > 1 for all n).

By contradiction suppose some subsequence Gk of Fn converges locally uniformly on

C to G(w). For each zero {wi}di=1 of G(w) whose corresponding multiplicities are {Mi}di=1

we can choose a δi such that B(wi, δi) contains Mi zeros of Gk for all large enough k.

Hence the degree of Gk is constant for all large enough k which is a contradiction as

deg(Gk) is a strictly increasing sequence. �

Now at the beginning of this section, we defined the Filled Julia set K(Fn). So

naturally, we would like to know if ∞ ∈ F(Fn). In [Büg97] Büger showed that ∞ ∈

F(fnc ) where fnc is a non-autonomous iteration of class B functions (see Section 1 for

definintion). We use techniques similar to his proof to show the same thing for seed

iteration.

Theorem 3.3. If f(w, z) has the form given in (1) with polynomial coefficient

functions and min{deg(f(w)z), deg(fw(z))} ≥ 2, then ∞ ∈ F(Fn).

Proof. Since f(w, z) is a polynomial function in z and w with deg(fw(z)) ≥ 2, we

can choose an R > 0 such that |f(w,z)|
|z| ≥ 2 for |z| > R and |w| > R. We now show that

|fn(w, z)| > 2n|z| if |z|, |w| > R.
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We already have that the formula holds for n = 1. Now suppose |fn−1(w, z)| >

2n−1|z| if |z|, |w| > R. Then |fn(w, z)| = |f(w, fn−1(w, z))| > 2|fn−1(w, z)| > 2n|z|.

Thus the claim holds.

Now setting z = w we get |Fn(w)| > 2n|w|. It follows that the family {Fn} omits

3 points at infinity. Therefore, by Montel’s Theorem ∞ ∈ F(F n) . �

3. Affine Properties

In general iteration theory, it is known that F(fnh) = hF(fn) [Bea91] (in fact

this holds when f, h are rational functions). A similar result holds for seed iteration. We

prove this and then show an example. Observe that

fn(w, h(z)) = f(w, f(w, ...f(w, f(w, h(z)))...)) and

fn(h(w), z) = f(h(w), f(h(w), ...f(h(w), f(h(w), z))...)).

Proposition 3.4. Suppose h(z) is a noncostant affine transformation, f(w, z) has

the form given in (1). Then hF [fn(h(w), w)] = F [fn(w, h−1(w))] and hJ [fn(h(w), w)] =

J [fn(w, h−1(w))].

Proof. Let w0 ∈ hF [fn(w, h(w))]. Then there exists z0 ∈ F [fn(w, h(w))] such that

h(z0) = w0. Choose a neighborhood V of z0 such that fn(z, h(z)) has a subsequence

which converges uniformly on V . Since h(z) is analytic and nonconstant, h(V ) is a

neighborhood of w0.

We claim that fn(h−1(w), w) has a subsequence which converges uniformly on h(V ).

First let ε > 0 and choose a subsequence fnk(w, h(w)) and an N such that for all k, l ≥ N ,

|fnk(w, h(w)) − fnl(w, h(w))| < ε for every w ∈ V . Now let w ∈ h(V ) and let z =

h−1(w). Then z ∈ V so if k, l ≥ N, |fnk(h−1(w), w) − fnl(h−1(w), w)| = |fnk(z, h(z)) −

fnl(z, h(z))| < ε.

We have hF [fn(w, h(w))] ⊂ F [fn(h−1(w), w)]. Showing containment in the other

direction is similar. Taking complements of both sides of hF [fn(w, h(w))] = F [fn(h−1(w), w)]

produces the second statement of the conclusion (note h is one-to-one so h(C − A) =

C− h(A)). �
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Figure 3.2. K[fn( i
2
w,w)] (left) and K[fn(w,−2iw)] (right) where

f(w, z) = z2 + w.

Example 3.3. Let f(w, z) = z2 +w. Then from Proposition 3.4, J [fn(w,−2iw)] is

a rotation by π/2 followed by a dilation of 1/2 of of the set J [fn( i
2
w,w)]. Pictures of the

filled Julia Set of these sequences are shown in Figure 3.2 which motivates this theorem.

It is important to note that we have yet to show that ∂K = J for seed iteration.

4. Holomorphic Motions and Stability

Our next theorems looks at the structure of J (Fn), and we will use the properties

of the classical Julia sets Jw to do so. In particular, we examine when the Julia set

J (Fn) has empty interior.

We need the concepts of a holomorphic motion and stability found in [McM94].

Definition 3.1. Let W ⊂ C be connected and choose a basepoint x ∈ W . A

holomorphic motion of a set E ⊂ C is a family of injections {φw}w∈W which map E into

C such that

1. For a fixed z ∈ E, φ(w, z) = φ(w)z is a holomorphic function of w, and

2. φx(z) is the identity function.

The map φw(z) can be extended to a quasiconformal map on the Riemann sphere; hence,

φw is a homeomorphism.
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Given an analytic family of rational functions {fw}w∈W we say that the Julia sets

move holomorphically if there exists a holomorphic motion φ : W × Jx → C such

that φw(Jx) = Jw and φw ◦ fx(z) = fw ◦ φw(z). Define the stable set by S = {w :

Jw moves holomorphically}. It is known that for the family z2 + w, S = C − ∂M

[McM94].

Theorem 3.5. Let f(w, z) be a polynomial function and suppose {w : w ∈ Jw}
⋃
{w :

fw(z) has a neutral periodic cycle} has empty interior. Then J (Fn) ⊂ {w : w ∈ Jw}
⋃
{w :

fw(z) has a neutral periodic cycle} and thus J (Fn) has empty interior.

Proof. Let U be an open set disjoint from {w : w ∈ Jw}
⋃
{w : fw(z) has a neutral

periodic cycle}. Now let w0 ∈ U . Then the subsequential limits of Fn(w0) = fnw0
(w0)

converge towards some attracting cycle γ. Choose δ1 such that {fw}w∈B(w0,δ1) has a

sub-invariant domain V containing γ and B(w0, δ1) ⊂ U . Now choose N such that

FN(w0) ∈ V . Since FN(w) is continuous, we can choose a δ2 such that FN(B(w0, δ2)) ⊂ V .

Since V is a sub-invariant domain, fnw(FN(w)) = Fn+N(w) ∈ V for all n ∈ N and

w ∈ B(w0, δ2). Now let δ = min{δ1, δ2}. Then Fn(B(w0, δ)) ⊂ V for all n ≥ N .

It follows from Montel’s theorem that Fn is a normal family at w0 and on U . Thus

J (Fn) ⊂ {w : w ∈ Jw}
⋃
{w : fw(z) has a neutral periodic cycle} �

The previous theorem leads one to consider when the set {w : w ∈ Jw} has

nonempty interior. This is a question we will attempt to answer next.

Observe that a holomorphic motion can be used to partition a Julia set Jw into

equivalence classes. Suppose the Julia sets of {fw(z)}w∈W move holomorphically and

x ∈ W . If z ∈ Jc and z′ ∈ Jd define (c, z) ∼ (d, z′) if there exists a y ∈ Jx such that

φ(c, y) = z and φ(d, y) = z′. It is easy to check that this defines an equivalence relation.

It is these tools that may allow one to improve the hypothesis in Theorem 3.5 as

well as shed some light on some open questions regarding hyperbolicity and stability from

classical iteration theory (see [McM94] for details). One question that has eluded the

author for some time is the following.

Question 3.1. Suppose {fw}w∈W is a family of polynomial functions where W is

a connected open set and f(w, z) has the form given in (1). Assume
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Figure 3.3. Filled Julia set K(Fn(w) where f(w, z) = z2 + w − i (left).

The basin of attraction for the function γ(w) = 1
2
− 1

2

√
1− 4(w − i)(right).

1. Jw moves holomorphically for w ∈ W , and

2. Jw is totally disconnected for all w ∈ W .

If {w : w ∈ Jw} = W , then what can we say about the structure of J (Fn)? And how

“often” does one run across the situation where w ∈ Jw for all w ∈ W?

5. Function Spaces and “Fixed Points” of Seed Iteration

Now we examine the limit functions for seed variable iteration. We start with an

example.

Example 3.4. Let f(w, z) = z2 + w − i. Then K(Fn) for this iteration is shown

on the left of Figure 3.3. Now consider the function fw(z). We know that the attracting

fixed point of this function is γ(w) = 1
2
− 1

2

√
1− 4(w − i). Then the function γ is in a

sense “fixed” as f(w, γ(w)) = γ(w). Furthermore, the iterates of Fn(w) converge to the

function γ(w) on some subset of K(Fn) which we can think of as the basin of attraction for

γ. Indeed, that subset is shown in Figure 3.3 on the right. The colors change depending

on the amount of time it took for Fn(w) to get “close” to γ(w).

So some of the limit functions of seed variable iteration are the functions γ(w)

which map w to a periodic attracting cycle of fw, and these functions are in a sense

“fixed points” themselves.

Let C(U) be the set of mappings continuous on the domain U ⊂ C. Recall that

there is a natural topology on C(U). We define a neighborhood of a function φ ∈ C(U)
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by N(φ|K , δ) = {ψ ∈ C(U) : |φ(z) − ψ(z)| for all z ∈ K} where K ⊂ U is compact.

The topology generated by these neighborhoods is called the topology of locally uniform

convergence. A sequence φn converges in this topology if the maps converge locally

uniformly on U [Mil06].

DefineOn : C(U)→ C(U) to be the operator induced by fn(w, z), that isOn(γ)(w) =

fn(w, γ(w)). If On(γ) = γ and |∂fn
∂z

(w, γ(w))| < 1 then γ(w) is an attracting fixed point

of fw. It is easy to check that γ is analytic (see [Gam01] page 234 for details). So

the function γ is a fixed point of the operator O. A natural question to ask is: does

On(φ)→ γ as n→∞ for φ in some neighborhood of γ?

Proposition 3.6. Let γ(w) be an attracting fixed point for z 7→ f(w, z) and U =

{w : |∂f
∂z

(w, γ(w))| < 1}. Suppose O : C(U) → C(U) is the operator induced by f(w, z).

Let K ⊂ U be compact. Then there exists a δ > 0 such that if φ ∈ B(γ|K , δ) then

On(φ)→ γ as n→∞.

Proof. Choose a compact subset K ⊂ U . Suppose the degree of z in f(w, z) is

n. Let αj = maxw∈U |∂
jf
∂zj

(w, γ(w))| for j = 1, 2, ..., n. Now choose δ > 0 such that

α1 +α2δ+α3δ
2 + ...+αnδ

n−1 ≤ α < 1 where α > 0 is any number greater than α1. Now

suppose φ ∈ BK(γ, δ). Then, using the Taylor expansion of f(w, z) about γ(w), we have

|O(φ)(w)−O(γ)(w)| = |f(w, φ(w))− γ(w)| =

|∂f
∂z

(w, γ(w))(φ(w)− γ(w)) + ...+
∂nf

∂zn
(w, γ(w))(φ(w)− γ(w))n| ≤

|φ(w)− γ(w)||α1 + α2δ + α3δ
2 + ...+ αnδ

n−1| < α|φ(w)− γ(w)|

Thus O is a contraction on B(γ|K , δ). �

This motivates the following definition.

Definition 3.2. Let O be the operator induced by f(w, z) and let On denote its

n-th iterate. A continuous function φ is periodic with period n if On(φ) = φ and n is the

smallest natural number with this property.

1. γ is an attracting function on U if |∂fn
∂z

(w, γ(w))| < 1 for all w ∈ U
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2. γ is a repelling function on U if |∂fn
∂z

(w, γ(w))| > 1 for all w ∈ U

Now if γ is an attracting function on U , then define

B(γ) = {φ ∈ C(U) : On(φ) converges to γ}

This B(γ) of course corresponds to the basin of attraction that we are familiar with in

classical iteration theory. Now, this theory of seed iteration can be tied in with non-

autonomous or random iteration as the following example illustrates.

Example 3.5. Let c ∈ {0, 1}. Define fnc (w, z) = fcn(w, fcn−1(w, ...fc2(w, fc1(w, z))...)),

and F n
c (w) = fnc (w,w). We call this random seed iteration. Now suppose we let

f0(w, z) = z2 + w and f1(w, z) = z2 − 1. Then the filled Julia set for FN
c (w) is pic-

tured in Figure 3.4 (left).

Now we know that the function z 7→ z2 − 1 has {0,−1} as an attracting cycle. So

the constant function γ1(w) = −1 is the attracting function on a neighborhood of −1

for f1(z, w). Furthermore, we know that f0(w, z) = z2 + w probably has an attracting

function γ0(w) of period 2 defined on a small neighborhood about −1. Thus the functions

γ0 and γ1 are probably close (and in fact equal at −1) in the topology of locally uniform

convergence. This motivates the upcoming conjecture.

Let {fc(w, z)}c∈Γ be a family of functions. These induce a family of operators

{Oc}c∈Γ. Define fnc (w, z) as in Example 3.5. Does there exist a similar concept of

invariant domains for the operators Oc?

Conjecture 3.7. In example 3.5 there exists a δ > 0 and a set U ⊂ C(B(−1, δ))

such that Oc(U ) ⊂ U and F n
c (w) converges locally uniformly on B(−1, δ).

Example 3.6. On the right of Figure 3.4 is the filled Julia set for a non-autonomous

seed iteration of f0(w, z) = z2 + w and f1(w, z) = z2 − .1 + .75i.
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Figure 3.4. Filled Julia set for non-autonomous seed iteration of
f0(w, z) = z2 + w and f1(w, z) = z2 − 1 (left). Filled Julia set for ran-
dom seed iteration of f0(w, z) = z2 + w and f1(w, z) = z2 − .1 + .75i
(right).
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