
University of Wisconsin Milwaukee
UWM Digital Commons

Theses and Dissertations

May 2014

Experiments on Temporal Variable Step BDF2
Algorithms
Anja Katrin Denner
University of Wisconsin-Milwaukee

Follow this and additional works at: https://dc.uwm.edu/etd
Part of the Mathematics Commons

This Thesis is brought to you for free and open access by UWM Digital Commons. It has been accepted for inclusion in Theses and Dissertations by an
authorized administrator of UWM Digital Commons. For more information, please contact open-access@uwm.edu.

Recommended Citation
Denner, Anja Katrin, "Experiments on Temporal Variable Step BDF2 Algorithms" (2014). Theses and Dissertations. 400.
https://dc.uwm.edu/etd/400

https://dc.uwm.edu/?utm_source=dc.uwm.edu%2Fetd%2F400&utm_medium=PDF&utm_campaign=PDFCoverPages
https://dc.uwm.edu/etd?utm_source=dc.uwm.edu%2Fetd%2F400&utm_medium=PDF&utm_campaign=PDFCoverPages
https://dc.uwm.edu/etd?utm_source=dc.uwm.edu%2Fetd%2F400&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/174?utm_source=dc.uwm.edu%2Fetd%2F400&utm_medium=PDF&utm_campaign=PDFCoverPages
https://dc.uwm.edu/etd/400?utm_source=dc.uwm.edu%2Fetd%2F400&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:open-access@uwm.edu

Experiments on temporal variable step

BDF2 algorithms

by

Anja Katrin Denner

A Thesis Submitted in
Partial Fulfillment of the

Requirements for the Degree of

Master of Science
in

Mathematics

at

The University of Wisconsin-Milwaukee
May 2014

ABSTRACT

Experiments on temporal variable step

BDF2 algorithms

by

Anja Katrin Denner

The University of Wisconsin-Milwaukee, 2014
Under the Supervision of Professor Bruce A. Wade

Efficient algorithms for solving stiff PDEs are of great interest. For developing such

an algorithm step sizes should vary in both space and time. We have to understand

each separately first before putting it together, and this thesis is dedicated to de-

veloping a sharper notion of the performance of a variable step size BDF2 scheme

for some examples. We find suitable parameters for the variable step size algorithm

proposed by Jannelli and Fazio in their respective paper concerning adaptive stiff

solvers at low accuracy and complexity [5]. Finally, we make a short excursion on

the stability of BDF2 for the Allen-Cahn Equation.

ii

Table of Contents

1 Introduction 1

2 Derivation of the BDF schemes 3
2.1 Fixed step size 5

2.1.1 BDF1 6
2.1.2 BDF2 8

2.2 Variable temporal step size 9
2.2.1 Step size selection for BDF2 13

3 Test Problems 17
3.1 A First Test Problem 17
3.2 A Problem from Biochemistry 22
3.3 The Allen-Cahn Equation 24

3.3.1 Experiments on the stability of BDF2 29

4 Conclusion 32

Bibliography 33

Appendix 34

iii

List of Figures

3.1 An exponentially decaying PDE 18

3.2 A Problem from Biochemistry 22

3.3 Allen-Cahn Equation 24

3.4 Allen-Cahn Equation with VS-BDF2 26

3.5 Allen-Cahn Equation with new initial data 31

iv

List of Tables

2.1 Neville-Aitken scheme for divided differences 10

3.1 Convergence of BDF1 19

3.2 Convergence of BDF2 19

3.3 VS-BDF2 vs. BDF2 for the first test problem 21

3.4 VS-BDF2 vs. BDF2 for the Biochemistry Problem 23

3.5 VS-BDF2 vs. BDF2 for the Allen-Cahn Equation 27

3.6 VS-BDF2 vs. BDF2 for the Allen-Cahn Equation in the critical area 28

3.7 Results for the Allen-Cahn Equation 29

3.8 Results for the Allen-Cahn Equation with new initial data 31

v

ACKNOWLEDGEMENTS

I want to thank Prof. Bruce A. Wade who suggested to work on this topic and

helped me in developing the thesis. I also want to thank Prof. Istvan Lauko and

Prof. Lei Wang for being on the committee.

vi

1

Chapter 1
Introduction

Partial differential equations (PDEs) play an important role in modelling real life

problems and thus also in research. Unfortunately, PDEs rarely can be solved ana-

lytically, which is why there is a lot of effort in developing efficient numerical schemes

to solve them. Space and time are discretized separately where the step sizes usually

depend on the function. The easiest way of discretizing is to have a uniform mesh.

Some of the problem solutions change at some points more drastically than on oth-

ers, which would enforce a very small step size to assure a good solution. Therefore

we desire to use adaptive methods which allow us to use a small step size in areas

of rapid changes and a large step size if changes are hardly noticable. This way the

program automatically chooses the optimal step size. One question is how the algo-

rithm should choose the step size and remain stable. Jannelli and Fazio proposed an

algorithm for BDF2 [5], which involves many parameters that the user has to choose

manually in advance. In this thesis we will have a closer look on three test prob-

lems and determine suitable parameters for each problem when using this algorithm.

In chapter 2 we will derive the schemes that we will use. Throughout the thesis we

will look at Backward differentiation formulas, so called BDF schemes, commonly

used to solve stiff problems. We will focus on BDF1 and BDF2, two multistep

schemes, where the index indicates the number of steps. First uniform versions of

BDF1 and BDF2 are being presented which will afterwards be transformed into

variable step size schemes. The implementation and a description of the schemes

can be found in the appendix.

In chapter 3 we want to further investigate the methods. In a first step we will

demonstrate that the methods are working correctly which will be done by conver-

2

gence tests. Next, we adjust the parameters for the variable step size BDF2 scheme

for a problem where an exact solution is known, a Biochemistry problem and the

Allen-Cahn Equation. Furthermore, we will have a look at the stability of BDF2.

For ordinary differential equations (ODEs) it is known that BDF2 remains stable

if the amplification factor is chosen no larger than 1 +
√

2. This has been proven

in 1983 by Grigorieff [3]. We desire a similar result for PDEs. So far Emmrich has

proven that stability is guaranteed for an amplification factor of less than or equal

to 1.91 [2]. Bruce Wade conjectures that for PDEs the same boundary holds as for

ODEs [8]. In section 3.3.1 we will describe and perform some experiments in order

to support his theory.

Finally, chapter 4 comprises the conclusions derived from the investigations and the

experiments of the chapters before.

3

Chapter 2
Derivation of the BDF schemes

In this chapter we will derive the schemes of BDF1 and BDF2. Both are A-stable

which makes these two BDF schemes so valuable for stiff problems. The BDF

schemes loose stability the higher the order of the scheme; schemes of order 3 and

higher are not A-stable and those of order 7 and higher are even unstable. Also

they are more complicated to implement. BDF2 is just a good compromise: It is of

order 2, can be computed relatively easily, and has good stability properties.

Consider a PDE of a reaction-diffusion type:

ut (x, t) = β∆u (x, t) + f (x, t, u (x, t)) , x ∈ (a, b) (2.1)

u (x, 0) = u0 (x) , x ∈ (a, b)

u (a, t) = α1

u (b, t) = α2

Here we focus on one dimension in space in order to advance the numerical exper-

iments. It is sufficient to derive a scheme for homogeneous boundary conditions

(u (a, t) = u (b, t) = 0) since we can transform any problem with boundary condi-

tions that are not all zero to a homogeneous boundary problem in the following way:

We subtract a linear function w (x) to preprocess the problem.

w (x) = α1 +
x− a
b− a

(α2 − α1)

This function assures that the boundary conditions

u (a, t) = α1 and u (b, t) = α2

become zero if we define

v (x, t) := u (x, t)− w (x)

4

Thus

v (a, t) = u (a, t)− w (a) = α1 −
(
α1 +

a− a
b− a

(α2 − α1)

)
= α1 − α1 = 0

v (b, t) = u (b, t)− w (b) = α2 −
(
α1 +

b− a
b− a

(α2 − α1)

)
= α1 − (α1 − α2) = 0

Furthermore, since w is independent of t, we get

vt =
∂

∂t
(u (x, t)− w (x)) = ut (2.2)

and also

∆v =
∑ ∂2

∂x2i
(u (x, t)− w (x)) =

∑
uxixi (x, t) = ∆u (2.3)

since w (x) is linear in x. Thus the PDE (2.1) turns into

vt (x, t) = β∆v (x, t) + f (x, t, v (x, t) + w (x)) (2.4)

This shows that the only term that changes is the forcing term f (x, t, v (x, t) + w (x)).

Thus from now on, we assume to have zero boundary conditions.

Let u (x, t) be the exact solution of the PDE. We use the method of lines, that is, we

set down a mesh in space and time, but we will consider them separately. The points

in space will be denoted with xi and time with tn where the maximum number of

steps are m and N , respectively.

For the sake of convenience we will denote u (xi, tn) with ui,n . If we use a computer

to solve the problem, we cannot compute these numbers exactly, but only have ap-

proximations of them. Thus we use vi,n for the approximation to ui,n.

We seek

vi,n for 1 ≤ i ≤ m, 0 ≤ n ≤ N

with vi,0 = u (xi, 0) as given.

5

We want to derive a vectorized form for the discretized version of

uxx =
∂2

∂x2
u (x, t)

Let h be the spatial step size (h = b−a
m+1

, where m is the number of x-values that we

have). The first derivative can be approximated via

∂

∂x
u (xi, t) =

u (xi+1, t)− u (xi, t)

h
=
vi+1 − vi

h

We evaluate the approximation to the first derivative at xi ± 1
2
h to compute an

approximation to the second derivative. This yields

∂2

∂x2
u (xi, t) =

vi+1−vi
h
− vi−vi−1

h

h
=
vi+1 − 2vi + vi−1

h2

With this the PDE (2.1) can be written in a semi-discrete form as

ut = β
vi+1 − 2vi + vi−1

h2
+ f (xi, t, vi) for 1 ≤ i ≤ m (2.5)

To make it easier we vectorize this result. With the choices

v =

v1
...
vm

 , F (x, t, v) =

f (x1, t, v1)
f (x2, t, v2)

...
f (xm, t, vm)

 , B =
1

h2

−2 1 0 · · · 0

1 −2 1
. . .

...

0
. 0

...
. . . 1 −2 1

0 · · · 0 1 −2

 ,

equation (2.5) can be written as

ut = βBv + F (x, t, v) (2.6)

The approximation for ut depends on the scheme we use. In section 2.1 we will

derive BDF1 and BDF2 for uniform step sizes and afterwards, in section 2.2, for

variable temporal step sizes.

2.1 Fixed step size

We derive the BDF schemes for a uniform temporal step size which we denote with

k =
tf−t0
N

(with tf being the final time, t0 the starting time and N the number of

time steps). These schemes are fairly easy since we only have one step size.

6

2.1.1 BDF1

BDF1 is a first order backward differentiation formula, also known as Backward

Euler. A recursive formula using centered differences in space at the time step tn+1,

assuming that we are marching forward and already know all vi,n, 1 ≤ i ≤ m, can

be obtained via

vn+1 − vn

k
= Bvn+1 + F

(
x, tn+1, v

n+1
)

Solving for vn+1 yields

vn+1 = (I − kB)−1
(
vn + kF

(
x, tn+1, v

n+1
))

(2.7)

where the matrix (I − kB) is invertible since it is strictly diagonally dominant and

vn denotes the vector:

vn =

v1,n
...

vm,n

This is an implicit, recursive formula and the algorithm to solve a stiff problem using

BDF1 is the following:

Algorithm 2.1: BDF1

v0 = u (x, 0)

for n:=0 to N-1 do

vn+1 = (I − kB)−1 (vn + kF (x, tn+1, v
n+1))

end

Since we do not know vn+1 inside the nonlinearity on the right-hand side of equa-

tion (2.7) we use a predictor-corrector method. As a predictor we use the Forward

Euler method, which is an explicit scheme. This method is preferred over Newton’s

7

method because the latter needs to compute the Jacobian at each time step and

thus is expensive. Additionally, it is proven that only one step of the corrector is

necessary (see [6], pp. 105-107). However, better results can be achieved if the

correction is done 3 or 4 times. As can be seen in Algorithm 2.2, we correct the

prediction until the difference between two consecutive corrections is small enough

or the maximum number of iterations is reached.

Algorithm 2.2: BDF1 as a predictor corrector

v0 = u (x, 0)

for n:=0 to N-1 do

comment: predictor

ṽn+1 = Bvn + kF (x, tn+1, v
n)

comment: corrector

vold = ṽn+1

err =∞
p = 0

while err > tol and p < maxIterations do

ṽn+1 = (I − kB)−1 (vn + kF (x, tn+1, ṽ
n+1))

err = ‖vold − ṽn+1‖
vold = ṽn+1

p = p+ 1

end

vn+1 = ṽn+1

end

The respective implementation in Matlab can be found in the appendix (see Mat-

lab-Function 2).

8

2.1.2 BDF2

BDF2 is a second order backward differentiation formula. Since it is a two-step

scheme we need two inital values, necessarily computed by some other formula. We

can use the BDF1 scheme to obtain a second starting value.

This time

ut (x, tn) ≈
3
2
vn+1 − 2vn + 1

2
vn−1

k
(2.8)

The equation can be derived by interpolation, e. g. using a Newton’s polynomial

where the error is O (k3). As before this is best put into vector form. If we plug

the second order backward differentiation formula into equation (2.6) we obtain the

following:

3
2
vn+1 − 2vn + 1

2
vn−1

k
= Bvn+1 + F

(
x, tn+1, v

n+1
)

(2.9)

If we solve for vn+1 equation (2.9) becomes

vn+1 =

(
I − 2

3
kB

)−1(
4

3
vn − 1

3
vn−1 +

2

3
kF
(
x, tn+1, v

n+1
))

since
(
I − 2

3
kB
)

is strictly diagonally dominant and thus invertible.

Now we can formulate an algorithm for BDF2. This algorithm already includes the

predictor, Forward Euler, and the first order scheme, BDF1, to get a second initial

value.

Algorithm 2.3: BDF2

v0 = u (x, 0)

comment: do one step of BDF1 to obtain second initial value

for n:=1 to N-1 do

9

comment: predictor

ṽn+1 = Bvn + kF (x, tn+1, v
n)

comment: corrector

vold = ṽn+1

err =∞
p = 0

while err > tol and p < maxIterations do

ṽn+1 =
(
I − 2

3
kB
)−1 (4

3
vn − 1

3
vn−1 + 2

3
kF (x, tn+1, ṽ

n+1)
)

err = ‖vold − ṽn+1‖
vold = ṽn+1

p = p+ 1

end

vn+1 = ṽn+1

end

In the appendix, there is also a Matlab code of this algorithm available (see Mat-

lab-Function 3).

2.2 Variable temporal step size

For our experiments we also need a variable temporal step size version of the schemes

derived in the previous section. For BDF1 there is no big change in the scheme: it

is first order and a simple one step scheme. The changes for BDF2 are significant.

In the following, we will derive a variable step size scheme for BDF2 (VS-BDF2).

Assume the approximations v0, v1, . . . , vn are already computed. Now we have to

find a formula to compute vn+1. We use the data points vn+1, vn, vn−1 to inter-

polate with a quadratic function. Using the Newton polynomials we can find the

interpolant. The polynomials can be computed using the Neville-Aitken scheme for

divided differences.

10

v [ti, ti+1] v [ti, ti+1, ti+2]
tn−1 vn−1

tn vn vn−vn−1

tn−tn−1

tn+1 vn+1 vn+1−vn
tn+1−tn

vn+1−vn

tn+1−tn
− vn−vn−1

tn−tn−1

tn+1−tn−1

Table 2.1: Neville-Aitken scheme for divided differences

With the help of Table 2.1 we get:

p (t) = vn−1 +

(
vn − vn−1

tn − tn−1

)
(t− tn−1) +

(
vn+1−vn
tn+1−tn −

vn−vn−1

tn−tn−1

tn+1 − tn−1

)
(t− tn−1) (t− tn)

(2.10)

Suppose we have a characteristic step size, τ , such that there exist positive δ0, δ1

satisfying

δ0τ ≤ τn ≤ δ1τ , n = 1, . . . , N

where we define τn := tn+1− tn and N ≥ 1. Then the step size ratios are rn := τn
τn−1

.

This is called a ”quasi-uniform” mesh. Thus using τn, equation (2.10) becomes

p (t) = vn−1 +

(
vn − vn−1

τn−1

)
(t− tn−1) +

(
vn+1−vn

τn
− vn−vn−1

τn−1

τn−1 + τn

)
(t− tn−1) (t− tn)

(2.11)

Now the VS-BDF2 scheme is derived through the following collocation at tn+1

p′ (tn+1) = f
(
tn+1, v

n+1
)

Thus equation (2.11) yields

p′ (t) =
vn − vn−1

τn−1
+

(
vn+1−vn

τn
− vn−vn−1

τn−1

τn−1 + τn

)
(2t− tn−1 − tn)

and the scheme is

f
(
tn+1, v

n+1
)

=
vn − vn−1

τn−1
+

(
vn+1−vn

τn
− vn−vn−1

τn−1

τn−1 + τn

)
(2tn+1 − tn−1 − tn)

11

=
vn − vn−1

τn−1
+

(
vn+1−vn

τn
− vn−vn−1

τn−1

τn−1 + τn

)
(τn−1 + 2τn)

=
1

τn−1
vn − 1

τn−1
vn−1

+
τn−1 + 2τn
τn−1 + τn

(
τn−1v

n+1 − τn−1vn − τnvn + τnv
n−1

τn−1τn

)

=
τn−1 + 2τn

τn (τn−1 + τn)
vn+1 +

 1

τn−1
−

(τn−1 + 2τn)
(

1
τn−1

+ 1
τn

)
τn−1 + τn

 vn

+

(
− 1

τn−1
+

τn−1 + 2τn
τn−1 (τn−1 + τn)

)
vn−1

Now we consider the coefficients of vn+1, vn, vn−1 separately. We want to simplify

each coefficient as much as possible to get an easy representation for VS-BDF2. For

our simplifications we define rn := τn
τn−1

.

For the coefficient of vn+1 we obtain

τn−1 + 2τn
τn (τn−1 + τn)

=
1

τn−1 + τn

(
τn−1
τn

+
2τn
τn

)
=

1

τn−1 + τn

(
1

rn
+ 2

)
=

1
rn

+ 2

τn

(
τn−1

τn
+ 1
)

=
1
rn

+ 2

τn

(
1
rn

+ 1
)

=
1 + 2rn

τn (1 + rn)
,

where we try to replace as much as possible by rn. Similar manipulations for the

coefficient of vn lead to

1

τn−1
−

(τn−1 + 2τn)
(

1
τn−1

+ 1
τn

)
τn−1 + τn

=
1

τn−1
− τn−1 + 2τn
τn−1 (τn−1 + τn)

− τn−1 + 2τn
τn (τn−1 + τn)

12

=

τn
τn−1

τn
−

τn
τn−1

(τn−1 + 2τn)

τn (τn−1 + τn)
− (τn−1 + τn) + τn

τn (τn−1 + τn)

=
rn
τn
− rn (τn−1 + 2τn)

τn (τn−1 + τn)
− 1

τn
− 1

τn−1 + τn

=
rn
τn
− rn (τn−1 + τn) + rnτn

τn (τn−1 + τn)
− 1

τn
− 1

τn−1 + τn

=
rn
τn
− rn
τn
− rn
τn−1 + τn

− 1

τn
− 1

τn−1 + τn

= − 1

τn

(
τnrn

τn−1 + τn
+ 1 +

τn
τn−1 + τn

)
= − 1

τn

(
1 +

τn (rn + 1)

τn−1 + τn

)
= − 1

τn

(
1 +

rn + 1
1
τn

(τn−1 + τn)

)

= − 1

τn

(
1 +

rn + 1
1
rn

+ 1

)

= − 1

τn

(
1 +

rn (rn + 1)

1 + rn

)
= − 1

τn
(1 + rn)

Lastly we need to simplify the coefficient of vn−1 using the results that we got for

the second coefficient. We have τn−1+2τn
τn−1(τn−1+τn)

= rn(τn−1+2τn)
τn(τn−1+τn)

, therefore

− 1

τn−1
+

τn−1 + 2τn
τn−1 (τn−1 + τn)

= −
τn
τn−1

τn
+
rn (τn−1 + 2τn)

τn (τn−1 + τn)

=
1

τn

(
−rn +

rn (τn−1 + 2τn)

τn−1 + τn

)
=

1

τn

(
−rn +

rn (τn−1 + τn) + rnτn
τn−1 + τn

)
=

1

τn

(
−rn + rn +

rnτn
τn−1 + τn

)
=

1

τn

rn
τn
τn−1

1
τn−1

(τn−1 + τn)

13

=
1

τn

r2n
1 + rn

Finally, putting all these simplifications together, we obtain a compact version for

VS-BDF2:

1 + 2rn
1 + rn

vn+1 − (1 + rn) vn +
r2n

1 + rn
vn−1 = τnf

(
tn+1, v

n+1
)

(2.12)

2.2.1 Step size selection for BDF2

Now that we derived a variable step size version of BDF2 one may wonder how

to adapt the time step. Our goal is to design an automatic procedure that works

effectively and remains stable. Jannelli and Fazio suggest such an algorithm in their

paper [5] for stiff ODEs. The adaption can be done by using the monitoring function

ηn =
‖vn+1 − vn‖
‖vn‖+ εM

(2.13)

where εM > 0 is a constant which assures that ηn stays within the given limits, so

ηmin ≤ ηn ≤ ηmax. The monitoring function is then used to control the step size

selection. If ηn > ηmax the chosen step size was too large. As a consequence the

step size is being rejected and reduced by the chosen reduction factor, σ, before the

procedure is being repeated. If ηn < ηmin the step size is accepted but for the next

time step it is increased by the amplification factor, ρ.

Jannelli and Fazio not only introduce this monitoring function but also the following

algorithm to select the next step size:

14

Algorithm 2.4: Step size selection [5]

Given: kn, vn, time

calculate vn+1 using the current step size kn and the monitoring

function ηn

IF ηmin ≤ ηn ≤ ηmax THEN

time = time+ kn

IF time > tf THEN

time = tf

kn+1 = tf − (time− kn)

END

ELSE IF ηn < ηmin

time = time+ kn

kn+1 = ρkn with ρ > 1

IF kn+1 > kmax THEN

kn+1 = kmax

ELSE IF kn+1 < kmin THEN

kn+1 = kmin

END

IF time > tf THEN

time = tf

kn+1 = tf − (time− kn)

END

continue with next time step

ELSE IF ηn > ηmax

kn = σkn with 0 < σ < 1

IF kn > kmax THEN

kn = kmax

ELSE IF kn < kmin THEN

15

kn = kmin

END

start the procedure again with the smaller time step

END

This algorithm requires the user to choose the parameters appropriately, which

might be difficult especially since the behaviour of the function is unknown. The

parameters represent the following:

kn = current step size

kmin = minimum allowed step size

kmax = maximum allowed step size

ηn = current value of the monitoring function

ηmin = minimum value of the monitoring function

ηmax = maximum value of the monitoring function

vn = solution vector at time step n

ρ = amplification factor

σ = reduction factor

The problem which arises when using this algorithm is that the range for ηn has

to be large enough, otherwise the algorithm can be stuck in a loop of decreasing

the stepsize until the limiting conditions for ηn are met. On the other hand, if the

range for ηn is too wide the step size remains the same for most cases. In that case,

if the step size is very small it stays small and the advantage in comparison with

the uniform step size version no longer exists. Also, the amplification and reduction

factors have to be chosen wisely.

For ODEs, Grigorieff proved that the amplification factor for a two step scheme

(BDF2) can be chosen no larger than 1 +
√

2 without potentially causing instability

16

([3], p. 405). However, stability for ODEs and PDEs is not the same. For ODEs

we assume to have only one variable whereas for PDEs we have another parame-

ter which changes. Becker has proven that for PDEs stability is guaranteed for an

amplification factor of less than 2+
√
13

3
≈ 1.86 [1]. Emmrich improved this upper

boundary to 1.91 [2].

Since we use the method of lines we have a fixed spatial grid and thus are in the

case of an ODE. This means we can choose our amplification factor not larger than

1 +
√

2. However, since the problem is a PDE we will decrease the step size in space

as well to get a sense of how the algorithm reacts on step size changes for both

variables.

Besides the amplification factor all the other parameters can be chosen relatively

arbitrarily. An investigation on how to choose them for some test problems will be

done in the next chapter. Also, the results of a stability analysis for the Allen-Cahn

Equation will be presented.

17

Chapter 3
Test Problems

The test problems that are being used in this thesis are three types:

i) A problem which is exponentially decaying with a known exact solution,

ii) A problem from biochemistry [7] and

iii) The Allen-Cahn Equation, a reaction-diffusion problem from mathematical

Physics [7]

In this chapter VS-BDF2, which was introduced in section 2.2, is used to solve

the problems mentioned above. The chapter is devided into three sections, one on

each problem. In each section the problem itself will be presented as well as the

parameters for Algorithm 2.4 which lead to satisfying results. For the first problem

there will also be a numerical proof of the correctness of the fixed step size methods

and for the Allen-Cahn Equation the results of some experiments on the stability of

the BDF2 scheme are added.

3.1 A First Test Problem

This problem is an exponentially decaying problem which is designed so that we

know the exact solution. We use this problem to verify that all the methods run

correctly. The given PDE is

∂

∂t
u =

∂2

∂x2
u− 2u+ 2e−2t (3.1)

u (x, 0) = x (1− x)

u (0, t) = u (1, t) = 0

x ∈ [0, 1] , t > 0

18

Figure 3.1: Exact solution to equation (3.1)

The exact solution for this problem is

u (x, t) = e−2tx (1− x)

with x ∈ [0, 1] and t > 0.

First we test the BDF1 method. The method is run with different step sizes for

space, h, and time, k. For the spatial step size a geometric sequence is chosen.

The temporal step size is chosen accordingly using the ratio k = 1
2
h. Each time

we compute the error between the computed solution and the exact solution at the

final time step. This is done by using the maximum norm of the difference of the

computed and the exact solution. The result of this error computation is being

stored in a vector, err, with an entry for each step size. Finally, log ratio is the

logarithmic ratio between two consecutive errors, thus

log ratio =
log
(
erri−1

erri

)
log
(
h2i−1+ki−1

h2i+ki

)
The results of this experiment can be seen in Table 3.1.

19

h k err log ratio
0.125000 0.062500 0.001251 –
0.062500 0.031250 0.000608 0.90483
0.031250 0.015625 0.000300 0.93938
0.015625 0.007813 0.000149 0.96588
0.007813 0.003906 0.000074 0.98193
0.003906 0.001953 0.000037 0.99071
0.001953 0.000977 0.000019 0.99529

Table 3.1: Convergence of BDF1. Log ratios appear to approach indicating first order
convergence.

We observe that the last column converges to 1 as we reduce the step sizes. This

means we can be sure that the method BDF1 works correctly. It is a first order

scheme and thus the logarithmic ratio of the error should approximately be 1.

We do the same test for BDF2. The results we get can be seen in Table 3.2.

h k err log ratio
0.125000 0.062500 0.000096 –
0.062500 0.031250 0.000023 1.76916
0.031250 0.015625 0.000006 1.86225
0.015625 0.007813 0.000001 1.92424
0.007813 0.003906 0.000000 1.96097
0.003906 0.001953 0.000000 1.98027
0.001953 0.000977 0.000000 1.99007

Table 3.2: Convergence of BDF2. Log ratios indicate second order convergence.

Here we can see that the logarithmic ratio converges to 2. Since BDF2 is a second

order scheme this implies that BDF2 is also working correctly.

Now that we know that the schemes for uniform step sizes work as we expect, we

switch to the variable step size scheme. We apply Algorithm 2.4 described in section

2.2.1. Each problem needs different parameters thus we have to adjust them for each

20

problem separately.

It is not obvious how to choose the parameters. While the range for ηn should be

small to maintain accuracy it has to be large enough to not be caught in a loop

of reducing the step size. Regarding the step size we also have to consider which

jumps we allow and how small or how large the step size can be. Also it is not

known precisely what effect on stability results from such step size changes [1, 2, 3].

By choosing different values for the parameters and constantly comparing the results

obtained by the adaptive VS-BDF2 the following parameters led to satisfying results:

kmin = 2−9 · k

kmax = t1 − t0
ρ = 2

σ = 0.5

ηmax = 10−3

ηmin = 0.8 · ηmax
tol = k4

Here ”satisfying” is meant in terms of the achieved accuracy as well as the needed

CPU-time.

The initial step size for time was chosen as 1
32

and the spatial step size as 1
1024

. This

configuration led to an accuracy which is reached if the uniform step size is 1
2048

but was twice as fast. During this computation the smallest step size which the

algorithm chose was 4.8828e − 04 and the largest step size was also 4.8828e − 04

which is the same as 1
2048

.

Since we are working on a PDE we need to have a look at the variable step size algo-

rithm where both, spatial and temporal step size, change. However, the algorithm

which we are studying is just adaptive in time. To still get a chance to find out how

21

the algorithm behaves if the spatial step size goes to zero, we use different spatial

step sizes but we still consider a uniform mesh in space. Experimenting with the

parameters we realize that for this problem it does not matter which step size for

space is used. Also the error stays about the same. The only thing that changes is

the time which the algorithm needs. While VS-BDF2 is slightly slower (5.85 seconds

vs. 5.62 seconds) for a spatial step size h = 1
512

, it is twice as fast (32.46 seconds

vs. 69.02 seconds) if h = 1
1024

and for h = 1
2048

it is faster by a factor of 3.7 (172.15

seconds vs. 641.26 seconds). Further results can be seen in Table 3.3.

h = 1
512

variable scheme uniform scheme
rejections/total 6/1025

minimum k 4.8828e-04 9.7656e-04
maximum k 4.8828e-04 9.7656e-04

CPU-time (in sec) 5.851239 5.618539
error 5.6243e-09 2.2256e-08

h = 1
1024

variable scheme uniform scheme
rejections/total 6/1025

minimum k 4.8828e-04 4.8828e-04
maximum k 4.8828e-04 4.8828e-04
CPU-time 32.462305 69.021668

error 5.6260e-09 5.5642e-09

h = 1
2048

variable scheme uniform scheme
rejections/total 6/1025

minimum k 4.8828e-04 2.4414e-04
maximum k 4.8828e-04 2.4414e-04
CPU-time 172.147816 641.259316

error 5.6327e-09 1.4006e-09

Table 3.3: VS-BDF2 vs. BDF2 for the first test problem

If we compare the results for h = 1
1024

and h = 1
2048

we can see that the accuracy

did not decrease as much as the CPU-time increased. So we realize that a smaller

step size does not improve the results for this problem. Also the algorithm always

chooses the same temporal step size. This might be a cause of the simplicity of

the problem. Since it is exponentially decaying, it might not be very reasonable to

change the step size.

22

3.2 A Problem from Biochemistry

The problem which we consider in this section is a problem which arises in biochem-

istry.

∂

∂t
u = β

∂2

∂x2
u− u

1 + u
(3.2)

u (x, 0) = 1

u (0, t) = u (1, t) = 0

x ∈ [0, 1]

t > 0

For our calculations β is chosen to be 1. If we just have a look at the graph

this problem looks similar to the one presented in the previous section. However, it

seems to be a more challenging problem, as it is difficult to find suitable parameters.

Figure 3.2: Solution for the Biochemistry Problem with h = 1/64 and k = 0.5h

Unlike the other problems the amplification factor influences the accuracy of the

problem a lot. If we choose this factor to be larger than 1.91, which is the upper

23

bound for guaranteed stability proposed in [2], the solution lacks in accuracy. If we

keep the amplification factor at 1.91 we obtain results of about the same accuracy

as we get for a uniform time discretization (see Table 3.4). Nevertheless, the CPU

time of the variable step size scheme is higher than for the uniform step size version.

h = 1
128

variable scheme uniform scheme
rejections/total 10/521

minimum k 1.9073e-06 3.9064e-03
maximum k 6.4525e-04 3.9064e-03
CPU-time 0.239829 0.035578

error 0.0011 0.0012

h = 1
256

variable scheme uniform scheme
rejections/total 12/598

minimum k 4.7684e-07 1.9531e-03
maximum k 5.8849e-04 1.9531e-03
CPU-time 0.885438 0.140825

error 0.0014 0.0012

h = 1
512

variable scheme uniform scheme
rejections/total 14/532

minimum k 1.1921e-07 9.7656e-04
maximum k 0.0010 9.7656e-04
CPU-time 3.742556 1.464874

error 0.0011 0.0012

h = 1
1024

variable scheme uniform scheme
rejections/total 16/596

minimum k 2.9802e-08 4.8828e-04
maximum k 9.3494e-04

CPU-time (in sec) 23.172954 15.039555
error 8.9112e-04 4.0384e-04

Table 3.4: VS-BDF2 vs. BDF2 for the Biochemistry Problem

24

3.3 The Allen-Cahn Equation

The Allen-Cahn Equation is a problem involving a high gradient. This makes it a

hard problem for any solver.

∂

∂t
u = β

∂2

∂x2
u+ u− u2 (3.3)

u (x, 0) = 0.53x+ 0.47 sin (−1.5πx)

u (−1, t) = −1

u (1, t) = 1

x ∈ [0, 1]

t > 0

Figure 3.3: Solution for the Allen-Cahn Equation with h = 1/32 and k = 8h

Here we chose β to be 0.01. The idea is to use VS-BDF2 for this problem. Theoret-

ically, the following should happen: In the region of the high gradient, the step sizes

should be chosen very small while they should be bigger in other regions. With this

choice we should be able to compute an accurate solution without having a high

25

CPU time. In practice we used VS-BDF2 and observed that the algorithm chose the

step sizes exactly as we predicted. While experimenting, we found that the following

choice of parameters yields a satisfying result:

kmin = 2−11

kmax = t1 − t0
ρ = 1 + 1.4142

σ = 0.5

ηmax = 10−3

ηmin = 0.1 · ηmax
tol = k4

For a start, the spatial discretization was chosen to be h = 1
256

. For this configu-

ration only 19 step sizes were rejected of 11685 in total; a relatively small amount.

The accuracy is about the same, with an error of 4.8622e-05 for the variable step

size scheme and 4.2344e-05 for the uniform step size scheme which uses the temporal

step size k = 1
256

= 3.90625e − 03. Both times the error is computed in relation to

a uniform time step solution with a step size of k = 1
4096

. The variable step size

scheme used a minimum step size of 8.5882e-04 and a maximum step size of 2.3925.

The advantage for the CPU time was 8.2% since the variable step size scheme needs

71.9 seconds with this configuration whereas the uniform step size scheme needs

78.3 seconds. Further results can be seen in Table 3.5

Still the variable step size scheme is probably more accurate in the region of the

turn since it uses a very small step size in that area. The smallest step size is used

for t = 36.318 which is right in the area of the sharp gradient. Afterwards the step

size is increased and the largest is used for t = 45.497. This can be seen in Figure 3.4.

To investigate the accuracy further we will now compare the error in the area of

the sharp gradient. According to the results in Table 3.6 it seems like the uniform

26

Figure 3.4: Solution to the Allen-Cahn Equation using VS-BDF2 with h = 1/256 and the
parameters as mentioned above.

scheme would create a higher accuracy but if we take a look at the minimum used

step size we realize that this is close to the step size which we used to compute the

exact solution. It is still very likely that in this area the variable step size scheme is

of higher accuracy than our sample solution. Since we do not have an exact solution

it would be necessary to compute a solution with an even smaller uniform step size

to compute a meaningful error. For such a computation a high performance com-

puter would be needed since a usual laptop does not allow to work with matrices as

large as they would have to be. Another way of solving this dilemma would be to

use another programming language.

One might wonder why an amplification factor of 1 + 1.4142 was used although so

far stability for PDEs is only guaranteed for an amplification factor of ≤ 1.91. We

will discuss that in the next section.

27

h = 1
64

variable scheme uniform scheme
rejections/total 18/11688

minimum k 8.5882e-04 1.5625e-02
maximum k 2.3925 1.5625e-02

CPU-time (in sec) 6.537504 2.048366
error 7.1284e-04 6.9014e-04

h = 1
128

variable scheme uniform scheme
rejections/total 18/11685

minimum k 8.5882e-04 7.8125e-03
maximum k 2.3925 7.8125e-03
CPU-time 16.217164 10.248174

error 1.5571e-04 1.7149e-04

h = 1
256

variable scheme uniform scheme
rejections/total 19/11685

minimum k 8.5882e-04 3.9063e-03
maximum k 2.3925 3.9063e-03
CPU-time 71.916994 78.284406

error 4.8622e-05 4.2344e-05

h = 1
512

variable scheme uniform scheme
rejections/total 19/11682

minimum k 8.5882e-04 1.9531e-03
maximum k 2.3925 1.9531e-03
CPU-time 538.930810 1036.027920

error 4.8219e-05 1.0085e-05

Table 3.5: VS-BDF2 vs. BDF2 for the Allen-Cahn Equation

28

h = 1
64

variable scheme uniform scheme
rejections/total 9/7376

minimum k 4.6674e-04 1.5625e-02
maximum k 0.0137 1.5625e-02

CPU-time (in sec) 3.462705 1.048271
error 0.0256 0.0199

h = 1
128

variable scheme uniform scheme
rejections/total 9/7429

minimum k 4.5623e-05 7.8125e-03
maximum k 0.0137 7.8125e-03
CPU-time 9.581836 6.045913

error 0.0106 0.0050

h = 1
256

variable scheme uniform scheme
rejections/total 9/7444

minimum k 4.5623e-05 3.9063e-03
maximum k 0.0137 3.9063e-03
CPU-time 47.324385 48.033946

error 0.0069 0.0012

h = 1
512

variable scheme uniform scheme
rejections/total 9/7445

minimum k 4.5623e-05 1.9531e-03
maximum k 0.0137 1.9531e-03
CPU-time 348.108156 652.074548

error 0.0059 2.9466e-04

Table 3.6: VS-BDF2 vs. BDF2 for the Allen-Cahn Equation in the critical area

29

3.3.1 Experiments on the stability of BDF2

From our experiments we found out that an amplification factor of 1 + 1.4142 led

to satisfying results and that the scheme seemed to be stable. If we just consider

one fixed spatial step size we are in the case of solving a stiff ODE and as stated

previously, for ODEs stability is guaranteed for a step size of less than or equal to

1 +
√

2. But this thesis concerns experiments on the stability of the BDF2 scheme

for PDEs in the method of lines. We do a sequence of experiments where both step

sizes go to zero. The results of Emmrich’s research [2] are useful but an amplification

factor which is greater than 2 would be more practical. Wade conjectures that for

PDEs the same boundary holds as for ODEs [8].

It is difficult to show instability in experiments since the claim is just an implica-

tion, not an if and only if condition. For the experiments instability means that the

method has difficulties to compute an accurate solution. It is hard to find evidence

for these difficulties. One either has to find abnormalities in the numbers or in

purely looking at the plot and spotting areas where the function does not behave

as one would expect. The result of a series of experiments with VS-BDF2 for the

Allen-Cahn Equation can be seen in Table 3.7.

h starting k 2 2.2 2.41421 2.75
0.03125 0.03125 2.71654E-03 NaN NaN NaN
0.01563 0.01563 6.90136E-04 3.22435E-01 NaN NaN
0.00781 0.00781 1.71488E-04 1.71488E-04 NaN NaN
0.00391 0.00391 4.23444E-05 4.23443E-05 4.22324E-05 NaN
0.00195 0.00195 1.00853E-05 1.00947E-05 1.00863E-05 6.99309E+181
0.00098 0.00098 2.05341E-06 2.05911E-06 2.05064E-06 2.05871E-06

Table 3.7: Results for the Allen-Cahn Equation

The first column is the spatial discretization, the second is the initial temporal dis-

cretization and in the other four columns the results for the different amplification

factors which were used are listed. For this problem the whole time interval was

30

equally divided into 20 intervals. During these intervals the step size is kept the

same. At the end of each interval the step size is either increased (by the chosen

amplification factor) or reduced (by the factor 0.4). The strategy is to decrease once

after two times of increasing. This assures that the step size does not become too

large after a short time.

The NaN entries in this table are blow ups which means the numbers were too large

for Matlab. As can be seen in the table the problem seems to be stable even for

an amplification factor of 2.41421. The smaller h and k get the more accurate the

scheme seems to become, even for large amplification factors. However, these blow

ups show us that there is something going on which should be investigated theoret-

ically in the future.

Besides the difficulty to show instability, we do not know the exact solution, thus an

approximated solution with a small step size is computed. And the question arises

how we can measure the error. For all these experiments the error is the maximum

norm of the difference of the solutions at the last time step.

Since it is difficult to show instability for the Allen-Cahn Equation with the initial

data given the above initial conditions, we have chosen to drive the scheme unstable

by more challenging initial conditions. The original initial data is smooth, and in fact

in C∞. To create more difficulties for the scheme the initial data was changed into

u(x, 0) =

2.33333 · x+ 1.33333, if x ≤ −0.5
−1.2 · x, if − 0.5 ≤ x ≤ 0.5
1.73333 · x− 0.733333, if x > 0.5

(3.4)

This has a similar shape but two corners. Not even being C1 should cause a bit

more trouble for the scheme than a smooth initial function. However, it seems to be

even stable for an amplification factor greater than 1 +
√

2 as can be seen in Table

3.8 but at the same time the error is much larger than in Table 3.7. This implies

31

that the scheme has some difficulties solving the problem.

Figure 3.5: Solution for the Allen-Cahn Equation with new initial data and h = 1/32 and
k = 8h

h starting k 2 2.2 2.41421 2.75
0.03125 0.03125 1.06344E-01 NaN NaN NaN
0.01563 0.01563 4.59888E-02 4.59192E-02 NaN NaN
0.00781 0.00781 2.14673E-02 2.14801E-02 NaN NaN
0.00391 0.00391 9.85246E-03 9.85310E-03 9.86729E-03 NaN
0.00195 0.00195 4.18946E-03 4.18940E-03 4.18972E-03 5.32344E-02
0.00098 0.00098 1.39108E-03 1.39106E-03 1.39102E-03 1.39209E-03

Table 3.8: Results for the Allen-Cahn Equation with new initial data

32

Chapter 4
Conclusion

Based on the variable step size algorithm published by Jannelli and Fazio [5] we

have adjusted the parameters for three test problems. For the first test problem,

an exponentially decaying problem, the algorithm chose a uniform step size which

was chosen independently of the initial step size. This indicates that this problem is

not suitable for a variable step size algorithm. For the Biochemistry problem it was

difficult to find any parameters for the adaptive VS-BDF2 to improve the perfor-

mance of the uniform BDF2 scheme. A reason for that might be the similar shape to

the first problem. For the Allen-Cahn Equation it turned out that an amplification

factor of ≈ 1 +
√

2 was a good choice. This is higher than the upper bound which

guarantees stability that has been proven so far [2], yet the same as the limit for

the ODE case [3]. The Allen-Cahn Equation seems to be a problem which is robust

and big step size changes do not affect the solution as the initial step sizes for space

and time go to zero. This suggests, that the bound of 1.91 is not sharp and that a

greater amplification factor might still guarantee stability. It is worth a try to mimic

the proof for ODEs in the PDE case and see whether similar results can be achieved.

In the future a fully adaptive scheme, which means adaptive in space and time

together is desired. In our case, where only the temporal step size was varying, we

had a vector of a fixed size whose values were changing. We could easily alter this

to a variable spatial step size scheme, but applying variable step sizes in both time

and space would be challenging. One of the biggest hurdles that would have to be

taken in practice is the question about an appropriate data structure. Despite the

effort, that a solution of this problem would bring, it is definitely worth a try as this

approach could lead to undreamed-of possibilities.

33

Bibliography

[1] J. Becker, A second order backward difference method with variable steps for

a parabolic problem, 1998

[2] E. Emmrich, Stability and error of the variable two-step BDF for semilinear

parabolic problems , 2005

[3] E. Hairer, S.P. Nørsett, G. Wanner, Solving Ordinary Differential Equa-

tions I - Nonstiff Problems , Springer Verlag, 2008

[4] E. Hairer, G. Wanner, Solving Ordinary Differential Equations II - Stiff

and Differential-Algebraic Problems , Springer-Verlag, 1991

[5] A. Jannelli, R. Fazio, Adaptive stiff solvers at low accuracy and complexity ,

2006

[6] J.D. Lambert, Numerical Methods For Ordinary Differential Systems , Wiley,

1991

[7] A.Q.M. Khaliq, J. Mart́ın-Vaquero, B.A. Wade, M. Yousuf, Smooth-

ing schemes for reaction-diffusion systems with nonsmooth data, 2009

[8] B.A. Wade, Private communication

34

Appendix

In this appendix all methods that were used to obtain the results in this thesis are

listed as well as a description for each method.

MatlabMatlabMatlab-Function 1: forwardEuler.m

1 function u = forwardEuler(u,k,B,f,t,w)

2 %%%

3 %

4 % DESCRIPTION

5 % This function computes a solution of an ODE using forward euler.

6 %

7 % IN

8 % u = solution at the current time step

9 % k = stepsize for time

10 % B = matrix for calculating u_n+1

11 % f = pertubation function

12 % t = current time

13 % w = value of the preprocessing function (optional)

14 %

15 % OUT

16 % u = approximation of u for the next time step

17 %

18 %%%

19

20 if nargin<6

21 w = zeros(size(u));

22 end

23 % forward euler for obtaining approximation for u_n+1

24 u = u + k*(B*u+f(t,u+w));

Line 20-22: If no preprocessing values are defined we set w = 0.

Line 24: Forward Euler scheme: un+1 = un + k (Bu+ f (t, un + w))

35

MatlabMatlabMatlab-Function 2: BDF1 uniform.m

1 function [S u] = BDF1_uniform(x,h,t0,t1,k,beta,f,u0,iter,eps,w)

2 %%%

3 %

4 % DESCRIPTION

5 % This function computes a solution of a PDE of a reaction

6 % diffusion type using the BDF1 scheme.

7 %

8 % IN

9 % x = spatial discretization

10 % h = spatial stepsize

11 % t0 = start time

12 % t1 = final time

13 % k = stepsize for time

14 % beta = constant

15 % f = forcing function

16 % u0 = initial condition

17 % iter = number of iterations for corrector

18 % eps = error that is allowed (for stopping fix point iteration)

19 % w = preprocessing function (optional)

20 %

21 % OUT

22 % S = value of u at each time step

23 % u = solution of the partial differential equation

24 %

25 %%%

26

27 if nargin<11

28 w = @(y) 0.*y;

29 end

30

31 % Number of entries in u

32 N = size(x,1);

33 time = t0;

34 % preparation for the loop

35 u = u0;

36

37 % matrix in which all results are being stored

38 S = zeros(size(u0,1),(t1-t0)/k+1);

39 i = 1;

36

40 S(:,i) = u0;

41

42 B = beta/h^2*(diag(ones(N-1, 1), -1) ...

43 + diag(-2*ones(N, 1), 0) ...

44 + diag(ones(N-1, 1), 1));

45

46 w_value = w(x);

47

48 A = (eye(size(B))-k*B);

49 for t=t0+k:k:t1

50 time = time+k;

51 % predictor

52 u_new = forwardEuler(u,k,B,f,time,w_value);

53

54 it = 0;

55 err = inf;

56 % u is fixed for this loop

57 u_old = u;

58 % corrector

59 while err>eps && it<iter

60 u_new = A\(u + k*f(time,u_new + w_value));

61 err = norm(u_old-u_new,inf);

62 u_old = u_new;

63 it = it+1;

64 end

65 u = u_new;

66 % store new result

67 i = i+1;

68 S(:,i) = u;

69 end

Lines 27-29: If no preprocessing function is passed on we define w (x) := 0 · x.

Line 35: Storing the initial values in u.

Line 38: Initializing the matrix S in which the vector u will be stored for

each time step.

Line 42-44: Initializing the matrix B as defined in chapter 2.

37

Line 48: A is the matrix which we need for BDF1, so A = I − kB where I

is the identity matrix.

Lines 52: We use the Forward Euler method as a predictor for the next time

step.

Line 59-64: We use BDF1 to correct the prediction. The correction is repeated

until either the maximum norm of two consecutive corrections is

smaller than a certain tolerance or until the maximum number of

iterations is reached.

Line 65-68: Storing the new value.

MatlabMatlabMatlab-Function 3: BDF2 uniform.m

1 function [S u] = BDF2_uniform(x,h,t0,t1,k,beta,f,u0,iter,eps,w)

2 %%%

3 %

4 % DESCRIPTION

5 % This function computes a solution of a PDE of a reaction

6 % diffusion type using the BDF2 scheme.

7 %

8 % IN

9 % x = spatial discretization

10 % h = spatial stepsize

11 % t0 = start time

12 % t1 = final time

13 % k = stepsize for time

14 % beta = constant

15 % f = forcing function

16 % u0 = initial condition

17 % iter = number of iterations to approximate u at the next timestep

18 % eps = error that is allowed (for stopping fix point iteration)

19 % w = preprocessing function (optional)

20 %

21 % OUT

22 % S = value of u at each time step

38

23 % u = solution of the partial differential equation

24 %

25 %%%

26

27 if nargin<11

28 w = @(y) 0.*y;

29 end

30

31 % Number of entries in u

32 N = size(x,1);

33 time = t0;

34 % preparation for the loop

35 u = u0;

36

37 % matrix in which all results are being stored

38 S = zeros(size(u0,1),(t1-t0)/k+1);

39 i = 1;

40 S(:,i) = u0;

41

42 B = beta/h^2*(diag(ones(N-1, 1), -1) ...

43 + diag(-2*ones(N, 1), 0) ...

44 + diag(ones(N-1, 1), 1));

45

46 % 2 initial values needed for BDF2

47 % -> use BDF1 to get the second value

48 w_value = w(x);

49 time = time + k;

50

51 % predictor

52 u_new = forwardEuler(u,k,B,f,time,w_value);

53

54 it = 0;

55 err = inf;

56 % u is fixed for this loop

57 u_old = u;

58 A = (eye(size(B))-k*B);

59 % corrector

60 while err>eps && it<iter

61 u_new = A\(u + k*f(time,u_new + w_value));

62 err = norm(u_old-u_new,inf);

63 u_old = u_new;

64 it = it+1;

39

65 end

66 u = u_new;

67 % store new result

68 i = i+1;

69 S(:,i) = u;

70 % loop for BDF2

71 for t=t0+2*k:k:t1

72 time = time + k;

73 % predictror

74 u_new = forwardEuler(u,k,B,f,time,w_value);

75

76 it = 0;

77 err = inf;

78 % u is fixed for this loop

79 u_old = u;

80 A = (eye(size(B))-2/3*k*B);

81 % corrector

82 while err>eps && it<iter

83 u_new = A\(4/3*u-1/3*S(:,i-1)+2/3*k*f(time,u_new+w_value));

84 err = norm(u_old-u_new,inf);

85 u_old = u_new;

86 it = it+1;

87 end

88 u = u_new;

89 % store new result

90 i = i+1;

91 S(:,i) = u;

92 end

Lines 27-29: If no preprocessing function is passed on we define w (x) := 0 · x.

Line 35: Storing the initial values in u.

Line 38: Initializing the matrix S in which the vector u will be stored for

each time step.

Line 42-44: Initializing the matrix B as defined in chapter 2.

Line 52: Use Forward Euler to get a predictor for u1.

Line 60-65: Use BDF1 to calculate u1 which is needed to use BDF2.

40

Lines 74: Using Forward Euler as predictor.

Lines 82-87: Iterations for BDF2 which is used as the corrector. Like for BDF1

the correction is repeated until either the maximum norm of two

consecutive corrections is smaller than a certain tolerance or until

the maximum number of iterations is reached.

MatlabMatlabMatlab-Function 4: BDF1 vspre.m

1 function [S u] = BDF1_vspre(x,h,t0,t1,kt,beta,f,u0,iter,eps,w)

2 %%%

3 %

4 % DESCRIPTION

5 % This function computes a solution of a PDE of a reaction

6 % diffusion type using a variable step size form of the BDF1 scheme.

7 %

8 % IN

9 % x = spatial discretization

10 % h = spatial stepsize

11 % t0 = start time

12 % t1 = final time

13 % kt = stepsize for time (vector)

14 % beta = constant

15 % f = forcing function

16 % u0 = initial condition

17 % iter = number of iterations for corrector

18 % eps = error that is allowed (for stopping fix point iteration)

19 % w = preprocessing function (optional)

20 %

21 % OUT

22 % S = value of u at each time step

23 % u = solution of the partial differential equation

24 %

25 %%%

26

27 if nargin<11

28 w = @(y) 0.*y;

29 end

30

41

31 % Number of entries in u

32 N = size(x,1);

33 time = t0;

34 % preparation for the loop

35 u = u0;

36

37 % matrix in which all results are being stored

38 S = zeros(size(u0,1),length(kt));

39 i = 1;

40 S(:,i) = u0;

41

42 B = beta/h^2*(diag(ones(N-1, 1), -1) ...

43 + diag(-2*ones(N, 1), 0) ...

44 + diag(ones(N-1, 1), 1));

45

46 % forward euler for obtaining approximation for u_n+1

47 w_value = w(x);

48

49 for t=1:length(kt)

50 % set k to the current temporal step size

51 k = kt(t);

52 % update current time

53 time = time+k;

54

55 % predictor

56 u_new = forwardEuler(u,k,B,f,time,w_value);

57

58 it = 0;

59 err = inf;

60 % u is fixed for this loop

61 u_old = u;

62 A = (eye(size(B))-k*B);

63 % corrector

64 while err>eps && it<iter

65 u_new = A\(u + k*f(time,u_new + w_value));

66 err = norm(u_old-u_new,inf);

67 u_old = u_new;

68 it = it+1;

69 end

70 u = u_new;

71 % store new result

72 i = i+1;

42

73 S(:,i) = u;

74 end

The only difference to the uniform version of BDF1 is that k is no longer a scalar

but a vector in which the step sizes are being stored.

MatlabMatlabMatlab-Function 5: BDF2 vspre.m

1 function [S u] = BDF2_vspre(x,h,t0,t1,k,beta,f,u0,iter,eps,w)

2 %%%

3 %

4 % DESCRIPTION

5 % This function computes a solution of a PDE of a reaction

6 % diffusion type using a variable step size form of the BDF2 scheme.

7 %

8 % IN

9 % x = spatial discretization

10 % h = spatial stepsize

11 % t0 = start time

12 % t1 = final time

13 % kt = stepsize for time (vector)

14 % beta = constant

15 % f = forcing function

16 % u0 = initial condition

17 % iter = number of iterations to approximate u at the next timestep

18 % eps = error that is allowed (for stopping fix point iteration)

19 % w = value of the preprocessing function (optional)

20 %

21 % OUT

22 % S = value of u at each time step

23 % u = solution of the partial differential equation

24 %

25 %%%

26

27 if nargin<11

28 w = @(y) 0.*y;

29 end

30

31 % Number of entries in u

32 N = size(x,1);

43

33 time = t0;

34 % preparation for the loop

35 u = u0;

36

37 % matrix in which all results are being stored

38 S = zeros(size(u0,1),length(k));

39 i = 1;

40 S(:,i) = u0;

41

42 B = beta/h^2*(diag(ones(N-1, 1), -1) ...

43 + diag(-2*ones(N, 1), 0) ...

44 + diag(ones(N-1, 1), 1));

45

46 % 2 initial values needed for BDF2

47 % -> use BDF1 to get the second value

48

49 w_value = w(x);

50 time = time + k(1);

51 % predictor

52 u_new = forwardEuler(u,k(1),B,f,time,w_value);

53

54 it = 0;

55 err = inf;

56 % u is fixed for this loop

57 u_old = u;

58 A = (eye(size(B))-k(1)*B);

59 % corrector

60 while err>eps && it<iter

61 u_new = A\(u + k(1)*f(time,u_new + w_value));

62 err = norm(u_old-u_new,inf);

63 u_old = u_new;

64 it = it+1;

65 end

66 u = u_new;

67

68 % store new result

69 i = i+1;

70 S(:,i) = u;

71

72 %loop for BDF2

73 for t=2:length(k)

74 time = time + k(t);

44

75 rt = k(t)/k(t-1);

76 % predictor

77 u_new = forwardEuler(u,k(t),B,f,time,w_value);

78

79 it = 0;

80 err = inf;

81 % u is fixed for this loop

82 u_old = u;

83 A = ((1+2*rt)/(1+rt)*eye(size(B))-k(t)*B);

84 % corrector

85 while err>eps && it<iter

86 u_new = A\((1+rt)*u-(rt)^2/(1+rt)*S(:,i-1)...

87 +k(t)*f(time,u_new+w_value));

88 err = norm(u_old-u_new,inf);

89 u_old = u_new;

90 it = it+1;

91 end

92 u = u_new;

93 % store new result

94 i = i+1;

95 S(:,i) = u;

96 end

For the variable step size BDF2 scheme k is no longer a scalar but a vector in which

the step sizes are being stored. Thus in lines 86-87 the equation for VS-BDF2 is

realized.

MatlabMatlabMatlab-Function 6: BDF2 vs adaptive.m

1 function [S u timedisc] = BDF2_vs_adaptive(x,h,t0,t1,k,beta,f,u0,...

2 iter,eps,kmin,kmax,rho,...

3 sigma,eta_min,eta_max,tol,w)

4 %%%

5 %

6 % DESCRIPTION

7 % This function computes a solution of a PDE of a reaction diffusion

8 % type using a variable step size form of the BDF2 scheme and the

9 % step size selection algorithm suggested by Jannelli and Fazio.

10 %

11 % IN

45

12 % x = spatial discretization

13 % h = spatial stepsize

14 % t0 = start time

15 % t1 = final time

16 % k = initial temporal step size

17 % beta = constant

18 % f = forcing function

19 % u0 = initial condition

20 % iter = number of iterations to approximate u at the next timestep

21 % eps = error that is allowed (for stopping fix point iteration)

22 % kmin = minimal temporal stepsize

23 % kmax = maximal temporal stepsize

24 % rho = step size amplification factor

25 % sigma = step size reduction factor

26 % eta_min = lower bound for the tolerance

27 % eta_max = upper bound for the tollerance

28 % tol = of order of the rounding unit so that eta is modified as

29 % needed

30 % w = preprocessing function (optional)

31 %

32 % OUT

33 % S = value of u at each time step

34 % u = solution of the partial differential equation

35 %

36 %%%

37

38 if nargin<18

39 w = @(y) 0.*y;

40 end

41

42 % Number of entries in u

43 N = size(x,1);

44 time = t0;

45 % preparation for the loop

46 u = u0;

47

48 % matrix in which all results are being stored

49 i = 1;

50 S(:,i) = u0;

51

52 B = beta/h^2*(diag(ones(N-1, 1), -1) ...

53 + diag(-2*ones(N, 1), 0) ...

46

54 + diag(ones(N-1, 1), 1));

55

56 % 2 initial values needed for BDF2

57 % -> use BDF1 to get the second value

58

59 % forward euler for obtaining approximation for u_n+1

60 w_value = w(x);

61 status = ’again’;

62 time_old = time;

63 timedisc(1) = time_old;

64 counter = 0;

65

66 while strcmp(status,’again’)

67 time = time_old + k;

68 % predictor

69 u_new = forwardEuler(u,k,B,f,time,w_value);

70

71 it = 0;

72 err = inf;

73 % u is fixed for this loop

74 u_old = u;

75 A = (eye(size(B))-k*B);

76 % corrector

77 while err>eps && it<iter

78 u_new = A\(u + k*f(time,u_new + w_value));

79 err = norm(u_old-u_new,inf);

80 u_old = u_new;

81 it = it+1;

82 end

83 % get new temporal step size

84 [k, status, counter] = adaptive(k,kmin,kmax,rho,sigma,eta_min,...

85 eta_max,u,u_new,tol,time-k,t1,counter);

86 end

87 status = ’again’;

88 u = u_new;

89

90 % store new result

91 i = i+1;

92 S(:,i) = u;

93 time_old = time_old + k;

94 timedisc(i) = timedisc(i-1)+k;

95

47

96 %loop for BDF2

97 while time_old<t1

98

99 while strcmp(status,’again’)

100 % update current time

101 time = time_old+k;

102 rt = k/(timedisc(i)-timedisc(i-1));

103 % predictor

104 u_new = forwardEuler(u,k,B,f,time,w_value);

105

106 it = 0;

107 err = inf;

108 % u is fixed for this loop

109 u_old = u;

110 A = ((1+2*rt)/(1+rt)*eye(size(B))-k*B);

111 % corrector

112 while err>eps && it<iter

113 u_new = A\((1+rt)*u-(rt)^2/(1+rt)*S(:,i-1)...

114 +k*f(time,u_new+w_value));

115 err = norm(u_old-u_new,inf);

116 u_old = u_new;

117 it = it+1;

118 end

119 % get new temporal step size

120 [k, status, counter] = adaptive(k,kmin,kmax,rho,sigma,...

121 eta_min,eta_max,u,u_new,...

122 tol,time-k,t1,counter);

123 end

124 status = ’again’;

125 u = u_new;

126

127 % store new result

128 i = i+1;

129 S(:,i) = u;

130 time_old = time_old + k;

131 timedisc(i) = timedisc(i-1)+k;

132 end

133 counter

The only difference to the preassigned version is that k is chosen adaptively.

48

MatlabMatlabMatlab-Function 7: adaptive.m

1 function [k, status, counter] = adaptive(k,kmin,kmax,rho,sigma,

eta_min,eta_max,un,un1,tol,time,tmax,counter)

2

3 %%%

4 %

5 % DESCRIPTION

6 % This function the next step size using a monitoring function.

7 %

8 % IN

9 % k = temporal discretization

10 % kmin = minimal temporal stepsize

11 % kmax = maximal temporal stepsize

12 % rho = step amplification factor

13 % sigma = step reduction factor

14 % eta_min = lower bound for the tolerance

15 % eta_max = upper bound for the tollerance

16 % un = approximation at time step n

17 % un1 = approximation at time step n+1

18 % tol = of order of the rounding unit so that eta is modified as

19 % needed

20 % time = current time

21 % tmax = maximal time

22 %

23 % OUT

24 % k = new temporal time step

25 % status = string that indicates whether this time step needs to be

26 % repeated or not

27 % counter = counts the number of rejected step sizes

28 %

29 %%%

30

31 % monitor function

32 eta = norm(un-un1,inf)/(norm(un,inf)+tol);

33

34 %% adapt step size

35 % eta too large

36 if eta>eta_max

37 k = sigma*k;

38 status = ’again’;

49

39 counter = counter+1;

40 % eta too small

41 elseif eta<eta_min

42 k = rho*k;

43 status = ’proceed’;

44 % eta ok

45 else

46 status = ’proceed’;

47 end

48

49 %% check step size

50 % step size is too small

51 if k<kmin

52 k = kmin;

53 % step size is too large

54 elseif k>kmax

55 k = kmax;

56 end

57

58 %% check maximal time

59 if time+k > tmax

60 k = tmax - time;

61 end

The function is an implementation of the step size selection algorithm proposed in

[5].

	University of Wisconsin Milwaukee
	UWM Digital Commons
	May 2014

	Experiments on Temporal Variable Step BDF2 Algorithms
	Anja Katrin Denner
	Recommended Citation

	Introduction
	Derivation of the BDF schemes
	Fixed step size
	BDF1
	BDF2

	Variable temporal step size
	Step size selection for BDF2

	Test Problems
	A First Test Problem
	A Problem from Biochemistry
	The Allen-Cahn Equation
	Experiments on the stability of BDF2

	Conclusion
	 Bibliography
	 Appendix

