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ABSTRACT
A MATHEMATICAL MODEL OF MOISTURE MOVEMENT AND BACTERIAL

GROWTH IN TWO-DIMENSIONAL POROUS MEDIUM

by

Rachel Elizabeth TeWinkel

The University of Wisconsin-Milwaukee, 2014
Under the Supervision of Professor Istvan Lauko

Bacterial growth in sand is of concern in regard to the health of beaches. A

mathematical model is presented that represents the movement of moisture and the

growth of bacteria through a beach. Simulations were run by numerically solving

Richards Equation using a Finite Volume Method in order to track moisture

movement. A model of moisture-dependent bacterial growth was then implemented.

These simulations show that elevated bacteria counts following rain events do not

necessarily result from bacteria in the body of water, but can also be sourced from

the sand. Additionally, four different moisture-dependent bacterial growth models

are compared to computationally investigate the relationship between relative

moisture level in the sand and bacterial growth.
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1

1 Introduction

The dynamics of bacterial growth in beaches is of concern due to the need to keep

public beaches safe for those who frequent them. Certain indicators in the water and

sand are monitored in accordance with the standards set by the U.S. Environmental

Protection Agency in order to diagnose the health of the beach [38]. Among those

indicators are enterococci and Escherichia coli [5]. Studies have been done to try

to find a good way to predict bacterial growth given factors such as temperature,

sunlight, wind patterns, and wave height [15, 37, 39]. Although many researchers

are concerned with the level of bacteria in the water, sand has been shown to be a

possible source of bacteria contamination and studying this aspect of beach health

is currently of interest. While individual factors have been studied, it is difficult to

draw conclusions about the impact of each factor given that they each affect bacterial

growth in different ways simultaneously and the weather is constantly changing [15,

37].

In this thesis, a brief discussion of the finite volume method is given using an ex-

ample of a simplified advection equation. We then formulate a finite volume method

for Richards Equation in order to model moisture movement in unsaturated condi-

tions in two dimensions with a vertical cross-section of the beach being considered.

We implement a bacterial growth model dependent on moisture and nutrient lev-

els. Both mobile and immobile bacteria are considered, where mobile bacteria move

through the moisture in the pore space and immobile bacteria are attached to the

grains of sand. Since the relationship of the dependence between bacterial growth

and moisture is not wholly understood, we explore four growth models with different

representations of moisture dependence. We then compare growth when there is no

rain on the beach to growth during and after a rain event and end with a brief dis-

cussion on the impact of temperature on the growth.
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2 Basic Principles of the Finite Volume Method

2.1 Generalized Formulation of a Finite Volume Scheme

The finite volume method involves creating a mesh over the domain and identifying

the cell centers. The cells are the subdomain defined by the mesh. The centers are

assumed to have an averaged solution to the equation for the entire cell. Meshes used

for this method can be structured or unstructured. Common meshes have grids with

cells in the shape of polygons [7, 8, 16].

The following shows the process of obtaining the integral form from the differential

form of an equation following a generalized example by Causon et al [7]. Consider

the following two-dimensional linear advection equation over the Cartesian plane:

∂U

∂t
+ vx

∂U

∂x
+ vy

∂U

∂y
= 0, (2.1)

where U = U(x, y, t) is a convected concentration and ⟨vx, vy⟩ is the constant two-

dimensional velocity of a medium carrying the concentration. This equation repre-

sents uniform flow over time t in the directions of x and y. With the initial condi-

tion of U(x, y, 0) = f(x, y), the exact solution of the above equation is U(x, y, t) =

f(x− vxt, y − vyt) [7]. Equation (2.1) can be written in finite volume form using

H⃗ = Uv⃗,

where the flow velocity is v⃗ = vx⃗i + vy j⃗ and i⃗ and j⃗ are the Cartesian basis vectors.

H⃗ is a vector field and is referred to as the flux density. Its components measure the

rate of mass flow through a unit length [7].
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Keeping in mind that ∇ is the differential operator i⃗
∂

∂x
+ j⃗

∂

∂y
, (2.1) now becomes:

∂U

∂t
+∇ · H⃗ = 0. (2.2)

Integrating (2.2) over an arbitrary (simply connected) region D, which can be

considered to be an arbitrary volume element, in the Cartesian plane results in [7]:

∫∫
D

(∂U
∂t

+∇ · H⃗
)
dD =

∫∫
D

0

∫∫
D

∂U

∂t
dD +

∫∫
D

∇ · H⃗dD = 0

The second term of the above equation can be rewritten using Green’s Theorem.

A line integral around the perimeter, S, of D gives:

∫∫
D

∂U

∂t
dD +

∮
S

H⃗ · n⃗ds = 0,

where n⃗ is the outward unit normal vector on S. We then approximate the first

integral, resulting in:

A
∂Ũ

∂t
+

∮
S

H⃗ · n⃗ds = 0,

where Ũ is the approximate value of U over D, and A is the area of D [7]. Thus, the

differential equation can be written in the form:

∂Ũ

∂t
= − 1

A

∮
S

H⃗ · n⃗dS (2.3)

This holds for any region over the x-y plane where (2.1) holds. Equation (2.3) is

approximated over each volume element, or, cell to produce the finite volume scheme.
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Thus, by knowing H⃗, the length of the sides of each cell, and n⃗, the normal vector,

which is constant on each side, this method can be applied to approximate solutions

over the entire grid [7].

Figure 2.1 shows an example of one cell in the mesh grid with normal vectors on

two sides.

Figure 2.1: A single cell with vectors indicating the outward normal to each of the
the cell walls.

3 Finite Volume Method with Richards Equation

3.1 Modeling Moisture Content

We consider a sandy beach along a freshwater lake with a certain level of moisture

content. Assume that the grain size of the sand is uniform throughout the beach.

We also assume that there is a certain level of bacteria throughout this beach. These

bacteria can be either mobile, that is, they move with the moisture between sand

particles, or immobile such that they attach to sand particles and remain in place

despite moisture movement through the sand [34]. Not only do some of the bacteria

move with the moisture, but bacteria need moisture in order to survive and grow,

so the bacteria population dynamics are dependent on the dynamics of the moisture

in the beach. Richards Equation is a partial differential equation that models the

movement of moisture through unsaturated soil. This equation has no known ana-
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lytical solution, but the finite volume method can be used to approximate numerical

solutions for this equation [6, 11, 17, 33].

To formulate Richards Equation, consider Darcy’s Law describing the water flow

rate through sand:

q = −K∇h,

where q, the vectorial quantity, is the flux or flow rate per unit area. This q = ⟨q1, q2⟩

with q1 as the x component of q and q2 as the z component of q. While q is a vector

quantity for three dimensions, for this model, we assume that everything behaves

uniformly in the third dimension and therefore only consider the flux in the x and z

directions. K is the hydraulic conductivity which measures the ease with which water

can flow through the sand and is a function of water content and h is the pressure

head [33]. When considering two dimensions, by mass conservation,

∂θ

∂t
+∇ · q = 0

∂θ

∂t
+
∂q1
∂x

+
∂q2
∂z

= 0

∂θ

∂t
= −∂q1

∂x
− ∂q2
∂z

where θ represents the volumetric water content, x is the horizontal direction and z

is the vertical direction [6, 33]. Written another way,

∂θ

∂t
= ∇ ·

(
K∇(ψ + z)

)
(3.1)

where ψ, the suction or matric potential, is a function of water content, and z is

the gravitational potential for moisture due to capillary action. The gravitational
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potential is measured as the height. The matric potential measures the ability of

sand to suction moisture. [33].

We represent moisture on the volume element as dimensionless water content.

Sand, especially below the surface of the beach, does not completely dry out, nor does

it reach full saturation in natural conditions. Let θr be the residual water content,

meaning the water content of the sand when it is as dry as natural conditions allow,

and let θs be the saturated water content, or the highest water content that sand

can achieve in natural conditions. These values are dependent on soil type and are

obtained through experimentation and are readily available in the literature [1, 19, 27].

The dimensionless water content can be represented as [33, 35]:

Θ =
θ − θr
θs − θr

, θr < θ < θs.

Then (3.1) becomes,

∂Θ

∂t
=

1

θs − θr
∇ ·
(
K(Θ)∇

(
ψ(Θ) + z

))
(3.2)

which gives an equation for the change in dimensionless water content [17, 35].

The models for matric potential and unsaturated hydraulic conductivity have

been well-studied for over one hundred years and several different models have been

proposed [26, 33]. In 1980, van Genuchten proposed the following model for the

matric potential and it is a well-accepted model for this function [35]. This model is

given as:

ψ(Θ) = −α
(
Θ−1/m − 1

)−1/n
,

in terms of water content. α and n are all given as values estimated from data and

m = 1− 1
n
[1, 3, 6, 19, 29, 33, 35, 36].
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van Genuchten’s model for the unsaturated hydraulic conductivity is also well-

accepted and is given as [33, 35]:

K(Θ) = K0Θ
L
(
1− (1−Θ1/m)m

)2
whereK0 is the matching point saturation [33] and L is an exponent obtained through

experimentation [3, 19, 29, 33, 35, 36, 42].

Integrating both sides of (3.2) over the domain D results in:

∫
D

∂Θ

∂t
dD =

∫
D

∇ ·
( 1

θs − θr
K∇

(
ψ + z

))
dD

Θt+∆t
i,j −Θt

i,j

∆t
=

1

A

∫
S

−→n ·
( 1

θs − θr
K∇

(
ψ + z

))
dS (3.3)

where A is the area of the cell, S is the perimeter of the cell wall, and −→n is the

outward normal vector to the cell wall.

3.2 Applying the Finite Volume Method to the Model

Since the bacterial content is dependent on moisture content, this model is driven by

numerically solving (3.2). Figure 3.1 shows the domain mesh that is used and how

this domain can be pictured in relation to a beach. It is assumed that the domain

behaves uniformly in the third dimension just as this cross-section does.

Dirichlet boundary conditions that provide values for the moisture content of

the boundary cells of the beach. The values of the matric potential, gravitational

potential, and hydraulic conductivity on the walls of each of these cells are needed in

order to obtain a solution. We can easily calculate the gravitational potential since it

is just the height of each wall’s center. The moisture values along the walls of each cell

are needed since the matric potential and hydraulic conductivity are dependent on
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Figure 3.1: The above figure shows the domain used to represent a beach; divided into
grid cells. The figure represents a cross section of the beach such that distance from
the body of water is shown along the x-axis and depth of the beach is shown along
the z-axis. These distances are measured in centimeters. The curve of the beach is
represented by a sinusoidal curve. There is a depth of 100 cm on the left side of the
domain and a depth of 150 cm on the right side of the domain. This represents the
way a beach slopes leading to a body of water. The boundary cells are shaded and
the domain itself is shown as white cells.
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the moisture. The selected mesh is such that each quadrilateral cell has two vertical

walls and the opposite walls of each volume element are either horizontal or slanted.

Figure 3.2: This figure illustrates how a moisture value is found along a vertical
wall of one cell. In order to find the moisture value at the center point, Lagrangian
interpolation is used to find the values (shown as smaller points) just above or below
the respective cell centers. Then these values are averaged to find the needed moisture
value along the vertical wall.

Consider the moisture values along the vertical walls as represented in Figure 3.2.

We must find the moisture value on each vertical cell wall by using the moisture values

for the center of each cell. Using Lagrangian interpolation, we can find the moisture

values just above and below the centers. These moisture values are used to find the

hydraulic conductivity, K, and the matric potential, ψ, in the x direction along all of

the vertical walls. In order to find K in the z direction, the moisture used was that

calculated along the horizontal or slanted walls by using an interpolation between the

cell centers above and below the wall. The matric potential along these cell walls

was averaged by the four matric potential values on the vertical walls around it as

shown in Figure 3.3. It is important to note that small errors accumulated in this
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interpolation can reduce the accuracy of the method.

Figure 3.3: Here, the cell centers are shown as well as the locations along the vertical
walls where the matric potential was calculated. These matric potential values are
averaged to get the matric potential along the horizontal wall (this point shown in
the very middle of the figure) to estimate the flux through the cell boundaries.

With the moisture values estimated on the center of the walls, the flux through the

walls can be estimated. The outward unit normal along the vertical walls only has an

x component. The projected component on to this normal is only the x component

of this flux. For the horizontal or slanted walls, the normal component of the flux to

that wall includes both x and z components. The outward unit normal vectors can

be calculated based on the geometry of the selected mesh.

Equation (3.3) can be expanded as:

Θt+∆t
i,j −Θt

i,j

∆t
=

1

A(θs − θr)

∫
S

−→n · ⟨Kψx, Kψz +K⟩ dS (3.4)

Figure 3.4 identifies the positions around the walls of a cell. These positions are

presented in a further discretization of equation (3.4) as follows:

Let W a, W b, W c, and W d be the widths of the walls going through the respective

points a, b, c, and d. Let n1 be the x component of the outward unit normal along each
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Figure 3.4: The above figure shows the positions on the cell walls contributing to the
flux calculation as described in Equation (3.5).

wall and n2 be the z component of the same normal. Note that ⟨na
1, n

a
2⟩ = ⟨−1, 0⟩

and ⟨nc
1, n

c
2⟩ = ⟨1, 0⟩. Then (3.4) becomes:

Θt+∆t
i,j −Θt

i,j =
∆t

A(θs − θr)

∫
S

−→n · ⟨Kψx, Kψz +K⟩ dS

Θt+∆t
i,j = Θt

i,j +
∆t

A(θs − θr)

∫
S

−→n · ⟨Kψx, Kψz +K⟩ dS
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Θt+∆t
i,j = Θt

i,j +
∆t

A(θs − θr)

(
W aKa

(
⟨na

1, n
a
2⟩ · ⟨ψa

x, ψ
a
z + 1⟩

)
+W cKc

(
⟨nc

1, n
c
2⟩ · ⟨ψc

x, ψ
c
z + 1⟩

)
+W bKb

( ⟨
nb
1, n

b
2

⟩
·
⟨
ψb
x, ψ

b
z + 1

⟩ )
+W dKd

( ⟨
nd
1, n

d
2

⟩
·
⟨
ψd
x, ψ

d
z + 1

⟩ ))
Θt+∆t

i,j = Θt
i,j +

∆t

A(θs − θr)

(
−W aKaψa

x +W cKcψc
x

+W bKb
(
ψb
xn

b
1 + ψb

zn
b
2 + nb

2

)
+W dKd

(
ψd
xn

d
1 + ψd

zn
d
2 + nd

2

))

Equation (3.5) represents the form of Richards Equation that was used to run the

simulation.

Θt+∆t
i,j = Θt

i,j +
∆t

(θs − θr)A

((
W cKcψc

x −W aKaψa
x

)
+
(
W bKbψb

xn
b
1 +W bKbψb

zn
b
2 +Ki−1,jn

b
2

)
+
(
W dKdψd

xn
d
1 +W dKdψd

zn
d
2 +Ki,jn

d
2

))
(3.5)

The values of Ki,j and Ki−1,j are used instead of the K values directly on the walls

as an upwinding scheme. By using the height of the center of the cell above the wall

for this value, the moisture is encouraged to move down through the domain during

the simulation.

4 Modeling Bacterial Growth

For this model, it is assumed that bacteria only need water and nutrients to survive.

Here we focus on the specific bacteria Escherichia coli, commonly, E. coli, which are
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either mobile or immobile in the media. Currently, the interactions between most

bacteria, moisture, and nutrients is not fully understood. While it is known that

bacteria prefer to grow in certain conditions, the effect of these varying conditions

on bacterial growth is a complicated area of study [6, 15, 18, 20, 24, 37, 39, 40]. For

simplicity, we assume that the temperature is within the correct range necessary for

bacterial growth and survival.

It is possible for bacteria that are mobile in the water to become immobile by

attaching to grains of sand. While immobile, bacteria can grow, shedding mobile

daughter cells into the water. Although attachment of bacteria is somewhat studied,

detachment is a topic that is explored less often [34]. We will consider two subpop-

ulations of the total bacteria population. Bacteria are either mobile and can move

between grains of sand when fluxed with the moisture, or they are immobile. Immo-

bile bacteria do not move with the moisture flux, but still need favorable moisture

conditions to survive and grow. Assume that there are rates at which bacteria attach

and detach from the sand. The following system is used to model the bacteria and

nutrient contents in the beach:

∂Bm

∂t
= ∇ ·

(
ξ1BmK∇(ψ + z)

)
+ (µ− d1 − γ1)Bm + (µ+ γ2)Bi,

∂Bi

∂t
= γ1Bm − (d2 + γ2)Bi,

and,

∂N

∂t
= ∇ ·

(
ξ2NK∇(ψ + z)

)
− εµB,

where Bm is the concentration of mobile bacteria, Bi is the concentration of immobile

bacteria, and the total concentration of bacteria is given as B = Bm + Bi. The con-

centration of nutrients is represented as N . The units for, or expression of, measuring
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the concentration of bacteria in sand is not universally agreed upon [38]. For the

purposes of this paper, we express the concentration of bacteria in colony forming

units (CFU’s) per 100 cm3 of sand. We also assume the nutrient levels are measured

in µmol per 100 cm3 of sand. We use ε as a proportionality constant that scales the

bacteria’s uptake of nutrients. This ε can be adjusted depending on the situation and

the actual value for this parameter is a subject of further study. The parameters ξ1

and ξ2 denote the transport rates for the mobile bacteria and the nutrient, respec-

tively, and represent the impact the moisture flux has on moving mobile bacteria and

nutrients through the sand. The rate that mobile bacteria become immobile is rep-

resented as γ1 and the rate at which immobile bacteria become mobile is represented

as γ2. The rate at which mobile bacteria die is given as d1 and the rate at which

immobile bacteria die is given as d2.

µ is a function of water content and nutrient levels and represents the growth rate

of the bacteria population [6, 24]. It is more specifically represented as:

µ = µmaxf(Θ)
N

CN +N
,

where CN is a nutrient parameter, µmax is the greatest rate at which bacterial growth

can occur, and there is a range of moisture that promotes bacterial growth modeled by

some function f(Θ) [6, 24]. Little is known regarding the bacterial growth dependence

on moisture except for general relationships and the fact that bacteria need water to

thrive and grow. We will thus consider four functions as follows and compare the

results of simulations using these functions for f(Θ):
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f1(Θ) = 0.765

(
1

2πσ2
e−

1
2σ2 (Θ−Θopt)2

)

f2(Θ) = 1− e−5Θ

f3(Θ) = 0.425

(
Θa1−1(1−Θb1−1)

B(a1, b1)

)

f4(Θ) = 0.513

(
Θa2−1(1−Θb2−1)

B(a2, b2)

)

The scalars in the beginning of f1(Θ), f3(Θ), and f4(Θ) were approximated so

that at the optimal moisture level the f(Θ) will result in a value of one; making a

comparison of these functions possible. The f1(Θ) is a scalar density function of the

normal distribution centered around Θopt. This function results from the assumption

that the bacteria need a higher level of moisture, but levels that are too high will

result in less bacterial growth. The f2(Θ) was chosen to see if there was a pattern of

more moisture relating to more bacterial growth with bacteria preferring the highest

moisture level possible. The functions f3(Θ) and f4(Θ) are both based on the Beta

Distribution. f3(Θ) was chosen to see if there is a very strong preference for a high rel-

ative moisture level, but with growth quickly decreasing beyond that level. Although

intuitively it would seem that a higher moisture level would be preferable for the

bacterial growth, f4(Θ) was chosen to investigate any preference the bacteria might

have for growing where there is moisture, but not so much that it is overwhelming to

their growth. The goal is to see if the pattern of bacterial growth found when using

any or all of these functions follows the results that are shown in the literature. A

visualization of these four curves in relation to the moisture level is given in Figure 4.1.
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Figure 4.1: The above shows the bacterial growth factor as a function of the relative
moisture content. f1(Θ) is represented in red, f2(Θ) is represented by the green
curve, f3(Θ) is represented by the purple curve, and f4(Θ) is represented in blue.
The parameters used are Θopt = 0.7, a1 = 4, b1 = 1.5, a2 = 2, and b2 = 3.5.

5 Results

5.1 Simulation of Moisture

The simulation of bacteria and nutrient dynamics is driven by the moisture dynamics1.

Thus, the first consideration was to properly simulate how moisture flows through the

beach. Since Richards Equation models moisture movement in unsaturated soils, if

the cells in the discretized beach become too saturated, the simulation does not give

biologically relevant results. This means that, for our simulation, while the boundary

cells can be nearly completely saturated, moisture can still flow through the sides and

out of the bottom of the domain. The initial moisture profile is given by an equation

using the arctangent function and is shown in Figure 5.1.

The model was tested using some fully saturated moisture values in an attempt

1A PDF of the MATLAB code used to run these simulations is available upon request by emailing
the author at tewinke2@uwm.edu.
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Figure 5.1: The above shows the initial moisture profile at the beginning of each
simulation given as relative moisture content. There is no wave wetting at the start
of the simulation and it is assumed that ground water would flow below the x-axis in
this domain.
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to flood the beach and impossible moisture values resulted due to the fact that the

moisture model is only for unsaturated soil. So, we focused on keeping the simulations

such that all values for moisture, nutrient, and bacteria are within biological possi-

bility. Simulations were done both with and without rain wetting and all simulations

were run with a wave wetting. For the simulation of wave wetting, the top boundary

conditions for the first cells (approximately the first 333 cm of the domain) on the

left side were given a relative moisture value of 0.95 for a certain period of time every

minute depending on how close to the body of water the respective domain cell was.

To simulate a rain type of wetting, the entire top boundary was changed to have a

relative moisture content of 0.95 for the duration of the simulation of this type of

wetting. When boundary wetting does not occur, the appropriate top boundary cells

are turned to the default top boundary value of 0.1. It should be noted that this is

not a completely accurate way to model waves and rain. This is why we refer to it as

either wetting or dampening. In reality, when water is added to the top of a beach,

a saturated column develops in the top layers and the pressure increases, thus en-

couraging the water to push through the sand. The situation gets more complicated

when we consider that sometimes it rains very heavily and other times there is just

light rain. Our simulation does not account for differences between wetting events.

It simulates rain and waves by just adding moisture to the system as a Dirichlet

boundary condition.

Since the nutrients and bacteria have a flux dependence, when the rain dampening

is simulated, extra nutrients and bacteria are added to the system at the boundaries

along with the moisture. When it rains in reality, runoff comes down the beach

and brings in extra nutrients and bacteria, so this is appropriate for the model.

The values for modeling moisture have been established and are shown in Table

5.1 [1, 3, 6, 19, 29, 33, 35, 36, 42].

It is assumed that no bioclogging occurs. In other words, the population of bacte-
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Table 5.1: Constants for Modeling Moisture Movement

K0 L α n θr θs
29.7 -0.930 0.145 2.68 0.045 0.43

ria cannot become so great that the cells block moisture movement through the beach.

No matter how we simulate bacterial growth, moisture movement is not affected. Al-

though bioclogging does occur in certain situations [5, 28, 34], the complexity that it

adds to the model was beyond the scope of this paper.

The boundary conditions related to the relative moisture content are as follows:

the top boundary has a moisture level of 0.1, the bottom boundary has a moisture

level of 0.98, the left boundary has a moisture level of 0.99, and the right moisture

level if 0.75. Figure 5.2 shows the moisture profile after twenty-four hours of only

wave dampening. The effect of this dampening on the left can be seen as well as the

moisture moving through the bottom of the domain when compared to Figure 5.1.

Next, a twenty-four hour period was simulated with rain dampening from hour

one to hour nineteen only. Throughout the simulation the moisture seeps into the

domain as provided by the rain and wave wetting boundary conditions. The wave

movement continues throughout the entire simulation. Moisture moves down and to

the right of the beach profile as would be expected. The beach profile after a total

of fourteen hours is shown in Figure 5.3. Figure 5.4 shows the domain profile after

twenty-four hours.

The moisture flux through the top boundary was tracked through both simulations

and was consistently positive for all moisture simulations. The rain moisture continues

to move moisture deeper into the sand as it is pulled down by gravity. In a more

complicated model, rain and waves would be modeled by an increase in water on the

top boundary as well as an increase in pressure which would cause moisture to be

pulled down through the domain even more than what is shown here. Adding this
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Figure 5.2: This figure shows the moisture profile as a result of simulating a twenty-
four hour period with only wave wetting. This addition of moisture via wave damp-
ening continued for the entire simulation.
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Figure 5.3: This profile was produced after a thirteen hours of simulated rain wetting.
The top of the profile is near saturation and the moisture seeps down the domain.
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Figure 5.4: This figure shows the moisture profile after twenty-four simulated hours.
A rain dampening was simulated from hours one to nineteen. Moisture is seen seeping
into the sand, but the top of the domain is dry due to changed boundary conditions.
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component would be appropriate in a continuation of this research.

5.2 Simulation of Bacterial Growth

5.2.1 Initial and Boundary Conditions

Since nutrient can move with the flux, it is assumed for the initial conditions that it

has done just that. Also, it was assumed that there is some uniform level of nutrient

for all cells at the start of the simulation. The initial conditions for the nutrient

are shown in Figure 5.5. The nutrient boundary conditions are kept simple as zero

on all borders except for a nutrient content of one for the top boundary. The same

boundary conditions hold for the bacteria. These conditions ensure that bacteria and

nutrient are not added through the boundary conditions on the bottom or sides of

the domain. Exploring the effect of varying the boundary conditions is a topic for

further work.

Since mobile bacteria need moisture to move, it was assumed there is a greater

moisture dependence for the mobile bacteria than for the immobile bacteria. There

are thus more mobile bacteria in the cells with a higher moisture level. We also

assumed that there is some uniform distribution of mobile bacteria to all cells since

there is some level of moisture in all cells. The initial mobile bacteria distribution is

shown in Figure 5.6.

Although immobile bacteria need moisture to survive, it is within reason to as-

sume that some mobile bacteria traveled through the moisture to a particular cell in

the domain, attached to the sand in that cell, and remained there even after some

of the moisture traveled away from the cell. Therefore, we assumed that there is a

greater number of immobile bacteria uniformly distributed and there are fewer bacte-

ria distributed based on relative moisture level. Figure 5.7 shows the initial immobile

bacteria distribution and the total initial bacteria distribution is shown in Figure 5.8.
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Figure 5.5: The initial nutrient profile is shown above. The nutrient is measured in
concentration of µmol per 100 cm3 of sand.
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Figure 5.6: The above shows the initial mobile bacteria distribution. The bacteria is
measured in concentration of CFU’s per 100 cm3 of sand.
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Figure 5.7: The above shows the immobile bacteria distribution at the start of each
simulation.

0 200 400 600 800 1000
0

50

100

150

 

 

0

5

10

15

20

Figure 5.8: The above shows the total bacteria distribution at the start of each
simulation.
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Table 5.2 shows the parameter values used in conjunction with the nutrient and

bacteria modeling.

Table 5.2: Constants for Modeling Bacterial Growth and Nutrients

CN µmax ξ1 ξ2 σ d1 d2 γ1 γ2 ε Θopt

30 30 0.2 0.1 0.35 3 2 3 1 0.3 0.7

5.2.2 Results With No Rain

The first simulations were run with only wave dampening. Figure 5.9 shows the results

after a twenty-four hour simulated period using f1(Θ) as the moisture-dependent

growth factor. Most of the bacterial growth is toward the bottom half of the domain

and where the wave dampening has added moisture.

Figure 5.10 shows the results of running the same simulation with f2(Θ) as the

moisture-dependent bacterial growth factor. There is slightly more growth in the

bottom half of the domain than with the simulations using f1(Θ), but the growth is

approximately the same. Figure 5.11 shows the results of the same simulation for the

nutrients. There is not much change from the initial nutrient profile at about fifty

centimeters of depth, but below that, some of the nutrient has been consumed by the

bacteria in that part of the domain. There is also a little nutrient that was fluxed in

with the wave wetting. The nutrient profile is not shown for the other simulations,

but they all follow the pattern of less nutrient remaining where more bacteria has

grown and some nutrient added where wave dampening has occurred. During the

simulation, some bacteria and nutrient can be seen exiting through the bottom of the

domain as they travel with the moisture flux.

Figure 5.12 shows the results the bacterial growth for the simulation using f3(Θ).

The results show lower bacteria counts, although they are in the same areas of growth

for the previous simulations. This difference is not wholly unexpected since much of
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Figure 5.9: This figure shows the bacteria profile after twenty-four hours of simulation
with no rain dampening and using f1(Θ).
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Figure 5.10: The above figure shows the bacteria profile after a simulated twenty-four
hour period with no rain wetting and using f2(Θ).
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Figure 5.11: The above figure shows the nutrient profile after a simulated twenty-four
hour period with no rain wetting and using f2(Θ).
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the moisture has moved through the domain and f3(Θ) has much more of a clear pref-

erence for high moisture values than the other moisture-dependent bacterial growth

functions.

The result of the bacteria growth simulation using f4(Θ) is shown in Figure 5.13.

There is much less growth for this moisture-dependent growth function and the scale

was changed compared to the other simulations in order to more easily see where

growth was occurring. The bacteria do not prefer to grow where moisture is added

and the most obvious area of growth is seen as a band at about fifty centimeters

depth. The concentration of bacteria in that part of the domain is about the same as

the concentrations in that area for the simulations using f1(Θ) and f2(Θ). However,

Figure 5.13 also shows that bacteria modeled by f4(Θ) do not prefer to grow much

below seventy centimeters depth unlike all three of the other simulations. Simulations

of bacterial growth with f4(Θ) shows a clear preference to grow at relative moisture

values below 0.5, so it makes sense that there is less growth in areas of higher moisture.

This low moisture preference prevents bacterial growth.

Since moisture, bacteria, and nutrient can move through the boundaries of the do-

main, the amount of nutrient and bacteria that passed through the domain boundary

was tracked throughout the simulation. The flux of the bacteria through the domain

boundaries when using f2(Θ) is shown in Figure 5.14 and the flux of the nutrient

through the domain boundaries when using the same moisture-dependent bacterial

growth function is shown in Figure 5.15.

In order to get Figures 5.14 and 5.15, the flux through the bottom, right, and

left boundaries is plotted time step for time step. For the the nutrient and bacteria

flux through the top boundary, these fluxes were averaged every hour and plotted.

When the top boundary bacteria and nutrient fluxes are plotted time step for time

step, there are oscillations in the amount of bacteria and nutrient moving through the

boundary in conjunction with the wave movement, but it was somewhat difficult to see
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Figure 5.12: This figure shows the bacteria profile as a result of simulating a twenty-
four hour period using f3(Θ). There was only a wave wetting used in this simulation.



32

Figure 5.13: The above shows the bacteria profile as a result of simulating a twenty-
four hour period using f4(Θ) with only wave wetting.
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that, overall, bacteria and nutrient were added through the top domain. Therefore,

we took an average of the amount of bacteria and nutrient being fluxed through the

top boundary.
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Figure 5.14: The above shows the bacteria fluxed through the domain boundaries as
a result of simulating a twenty-four hour period using f2(Θ) with only wave wetting.

The wave dampening is simulated by only having Dirichlet boundary conditions,

so when cells are not experiencing a wave dampening, the top boundary has a moisture

value of 0.1. This causes some of the moisture that was added during the dampening

to be suctioned back through the top of the domain by matric potential and this suc-

tions back some of the nutrient and bacteria out of the domain; resulting oscillations

when the flux values are plotted. Dirichlet boundary conditions used in this manner

are not the most effective way of modeling wave movement since the suctioning of

flux back through the top of the domain does not happen with actual lake waves.

However, on average, it can still be seen in these figures that nutrient and bacteria

are being added in small amounts through the top boundary during the simulation
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due to the wave dampening.
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Figure 5.15: The above shows the nutrient fluxed through the domain boundaries as
a result of simulating a twenty-four hour period using f2(Θ) with only wave wetting.

For all of the simulations in this section, the most bacteria and nutrient is lost

through the bottom boundary of the domain. At no point did the domain lose or

gain more than one CFU of bacteria per 100 cm3 or one µmol per 100 cm3 of nutrient

through any boundary. Most of the loss was from the moisture fluxing through the

bottom boundary and was experienced within the first simulated ten hours. This

corresponds to when most of the moisture is lost through the bottom of the domain.

Bacteria and nutrient were lost through the right and left sides of the domain in trivial

quantities. The addition of bacteria to the system through the top is not enough to

account for the growth seen in the simulations where there is wave dampening.
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5.2.3 Results With Rain

Next, the simulation was run for the same period of time, but with eighteen hours of

rain wetting simulated from hours one to nineteen. Figure 5.16 shows the results of

using f1(Θ) to model moisture-dependent bacterial growth. Note that the scale was

changed from the previous section in order to properly see approximately what the

bacteria counts are in the highest region of bacterial growth. It is clear that there is

much more growth as a result of the increase in moisture. Almost all of the growth

is shown to be where the moisture levels were increased as a result of the changed

boundary conditions in the simulation. Growth below the surface matches that in

the previous section, so it is only growth on the surface of the beach that is affected.

This makes sense because rain dampening causes moisture to seep into the beach

and make a better living environment for the bacteria. Studies show that there is

a great spike in bacterial growth following a rain event, sometimes resulting in very

dangerous bacteria levels [5, 6, 34, 38]. This is partly due to bacteria and nutrient

added to the system, but is also due to the increase in favorable growing conditions

by the increase in moisture in the sand.

The results when running the same simulation with f2(Θ) are shown in Figure

5.17. The amount of growth and location of growth is very similar to that shown

in Figure 5.16. Figure 5.18 shows the corresponding nutrient profile for the beach.

The nutrient profiles for the other simulations are not shown, but at the end of

each simulation, where there was increased bacterial growth, there is less nutrient

remaining and there is some nutrient added with the flux on the top boundary.

The results for the same simulation using f3(Θ) are shown in Figure 5.19. It is

almost indistinguishable from Figure 5.16. As with the previous simulations involving

rain, the bacteria’s high moisture preference and the influx of moisture result in

excellent conditions for growth. The area where there is wave dampening shows the
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Figure 5.16: This figure shows the result of simulating a twenty-four hour period
using f1(Θ). From hours one to nineteen, rain wetting was simulated.
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Figure 5.17: The above shows the bacteria profile with rain wetting using f2(Θ) after
a twenty-four hour period. The rain was simulated from hours one to nineteen.
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Figure 5.18: This shows the nutrient profile of the beach after a total twenty-four
hour period and with rain wetting from hours one to nineteen. f2(Θ) was used for
this simulation.
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most growth. Note that even though the moisture seeps into the domain as shown in

Figure 5.4, the bacteria remain mostly on the top of the beach. This can be caused,

in part, to the choice for ξ1 which controls how much the moisture flux influences the

movement of bacteria through the sand.

Figure 5.20 shows the result of the simulation when using f4(Θ). Although there

is an increase in the bacterial counts, it is not as prominent as with the three previous

simulations. Another difference is the location of bacterial growth. With this moisture

preference, there is a band of growth about half way down the sand, identical to what

was seen in the previous section, and there is preference for growing just above the area

where the wave dampening occurs. Note that there is no scale change for this model

from the previous section when there was no rain dampening simulated. The lack of

a spike in bacterial growth on the surface of the beach indicates that f4(Θ) is not a

good model for bacterial growth. Additionally, studies suggest that bacteria prefer

to grow in sand where there is some wave action [37, 38], and this is an important

consideration when understanding this model. The fact that f4(Θ) does not show a

preference for bacterial growth where there is wave dampening further indicates that

this model is not appropriate.

As with the previous section, the amount of bacteria and nutrient fluxed through

the domain boundaries was tracked throughout the simulation and the results of for

f2(Θ) are shown in Figures 5.21 and 5.22. The fluxes through the bottom as well as

the right and left sides were essentially identical to the respective fluxes in Figures

5.14 and 5.15. As with those plots, the bacteria and nutrient fluxes through the right,

left, and bottom boundary are plotted time step for time step and the fluxes through

the top boundary were averaged every hour and then plotted.

As a result of the rain dampening, there is a greater amount of nutrient and

bacteria fluxed through the top border during the rain event. At no one point did

the top boundary flux in more than six CFU’s of bacteria per 100 cm3 or one µmol
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Figure 5.19: The above figure shows the bacteria profile with rain wetting using f3(Θ).
This profile is the result of a total twenty-four hour simulated period with moisture
added to the top boundary from hours one to nineteen.
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Figure 5.20: The above figure shows the bacteria profile with rain wetting using f4(Θ).
This profile is the result of a total twenty-four hour simulated period. From hours
one to nineteen, moisture is added to the top boundary.
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of nutrient per 100 cm3. In reality, when it rains, there is more bacteria and nutrient

that is fluxed into the system than what is simulated here. Similarly to the bacteria

and nutrient flux tracking in the previous section, the Dirichlet boundary conditions

related to the moisture are adding bacteria and nutrient when there is dampening,

but when the top boundary is made to have a moisture value of 0.1, some of the

bacteria and nutrient are fluxed back out of the domain. Still, our simulation shows

that the rain dampening provides more favorable conditions for bacterial growth and

our simulations show bacteria being sourced from the sand. Monitoring bacterial

growth solely in the body of water may not be sufficient in understanding the health

of a beach.
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Figure 5.21: The above shows the bacteria fluxed through the domain boundaries as a
result of simulating a twenty-four hour period using f2(Θ) with constant wave wetting
and rain wetting from hours one to nineteen. Although difficult to distinguish in the
figure, the values for the left boundary closely match those of the right boundary.

The figures presented here were chosen so that the scale provided could show the
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areas of highest bacterial growth as well as allow for estimation of what the final

bacteria counts are in those areas of high growth. If the scale is lowered, it can

be more easily seen that bacteria grow along the entire top of the beach during a

rain dampening event. For the profiles of f1(Θ), f2(Θ), and f3(Θ) presented in this

section, some bacterial growth can be seen along the entire surface of the beach, but

it is not as much growth as what is seen closer to the body of water.
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Figure 5.22: The above shows the nutrient fluxed through the domain boundaries as a
result of simulating a twenty-four hour period using f2(Θ) with constant wave wetting
and rain wetting from hours one to nineteen. Although difficult to distinguish in the
figure, the values for the left boundary closely match those of the right boundary.

For all simulations there is not a great difference between where the immobile

and mobile bacteria prefer to grow. The only difference is that there is slightly more

mobile bacteria that grow where moisture is being fluxed in via the simulated rain and

wave wetting. This can be partially accounted for in that it is only mobile bacteria

that are being fluxed in or out of the system, but it is also accounted for by the fact

that bacterial growth occurs where there is moisture and all bacteria start as mobile
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bacteria.

Recent research shows that rain events correlate to an increase in bacterial growth,

but that within a certain time frame, the bacterial counts return to pre-rain levels

without totally diminishing [38]. Our model does not include any factor that could

inhibit growth as long as there is wave dampening because the death rate is treated

as a constant. Expanding upon the assumptions of this model and including new

assumptions about other factors impacting bacterial growth could help us understand

the fluctuation in growth around rain events.

5.2.4 Temperature Considerations

It is very difficult to properly account for all types of weather and their affect on

beaches. Although the results of the presented simulations show that there can be

growth as deep as 100 centimeters into the beach, data from the literature suggests

this is not always the case [37]. One reason for this could be that the temperature of

the sand decreases with depth. The sand deeper in the beach is colder than the sand

on the surface. Since rain would cause the temperature of the sand to become lower

than it would be on a sunny day, we simply considered the case where there is no

rain wetting. An assumed temperature profile of the beach is shown in Figure 5.23.

In order to get this profile, it was assumed that the top of the beach had a temper-

ature of 30◦ Celcius and that the temperature decreased by 0.2◦ for every centimeter

of depth until a temperature of 12◦ was reached. At that point it was assumed that

the temperature had reached an equilibrium and all sand below maintained a temper-

ature of 12◦ [37, 40]. Then, a scalar was multiplied by µ according to the temperature.

E. coli prefer to grow at approximately 37◦ so a normal distribution centered around

thirty-seven was created to try to closely match the shape of the function used in

previous studies [18]. This resulted in the growth simply being scaled by some pos-

itive number no greater than one. Naturally, the bacterial growth was not as great,
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Figure 5.23: The above figure shows the temperature profile of the beach when tem-
perature is modeled as a function of depth.

but after twenty-four hours, the bacteria counts were actually less than those given

by the initial conditions. The closer the temperature is to the preferred value of 37◦,

the more growth there will be. The same parameter values as before were used and

the simulation was run using f2(Θ) and only wave wetting. The results are shown in

Figure 5.24.

A similar idea was used in previous studies of bacterial growth and temperature,

but the function of growth with respect to temperature proved to be difficult to im-

plement for these simulations [18]. Currently it is known that bacteria have certain

temperature ranges that provide optimal growth, but the relationship between the

temperature and growth rate is not as simple as using a normal distribution to model

temperature dependence. A better understanding of the relationships between tem-

perature, moisture, nutrient level, and other factors is needed in order to properly

implement temperature in this model.
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Figure 5.24: The above figure is of the total bacteria profile and shows results of
simulations using f2(Θ) after twenty-four hours when temperature is considered as a
factor in bacterial growth.
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6 Discussion

Given the fact that Richards Equation is meant to model moisture movement solely

in unsaturated soil, it is difficult to flood the entire domain and still have biologically

accurate solutions to the equation. As a topic of further study, it is important to

consider changing the algorithm so that the domain can have both saturated and

unsaturated cells. The saturated cells could be treated one way by the algorithm

and unsaturated cells can still be treated by algorithm presented. This expansion of

the model would be incorporating two different models for moisture movement, each

with changing domains, but it would also provide a more accurate model and a way

to study the effect of groundwater moving through the bottom of the domain.

The treatment of the rain and wave modeling would be made more accurate if

there was added pressure when the top boundary is made wet. This would be a

component in the modeling of a saturated domain. Additionally, the values of ξ1 and

ξ2 are probably much closer to one than the values used in the simulations. These

values can be better treated if there is a simulation involving both saturated and

unsaturated portions of the domain.

Adding the y component, the third dimension, would be a practical extension

of this model as well. For this paper, it was assumed that the cross-section of the

beach was representative of the entire beach in the third dimension. Adding the third

dimension would allow for different considerations on the boundaries.

It would also be useful to utilize a mesh refinement system for this model. This

would allow the domain mesh to include more cells in areas where there is high of

flux between cells; although it could make modeling waves more difficult. Refining

the mesh where needed could give more accurate results as well as less accumulated

interpolation error.

The moisture, nutrient, and bacterial dynamics simulated show that bacteria prob-
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ably prefer a relative moisture level greater than 0.5. The f1(Θ), f2(Θ), and f3(Θ)

seemed to be better candidates for modeling bacterial growth than f4(Θ). The spikes

in growth and preference for growing in sand affected by wave wetting was seen in

all but f4(Θ), and these are important patterns that have been verified in the litera-

ture [37, 38]. It is impossible to state whether any of the three remaining candidates

provide a better model than the other two given that the results are so close. While

there is growth below fifty centimeters in every simulation, changing the assumptions

to account for temperature and differences in sand grain porosity below the surface

of the beach could help the model align with the published research stating that

there is not as much, if any, bacterial growth as deep as fifty centimeters into the

beach [37]. Although temperature was considered as a factor impacting growth, a full

implementation of temperature with the model is a topic of further study.

For the bacteria and nutrient models, sufficient data could not be found. Although

the parameters related to moisture movement are documented, most of the parameters

related to bacterial growth were estimated based on what information could be found

in the literature. In many cases, the parameters were chosen based on many trials

run with different parameter values and then comparing the results of those trials to

general patterns of bacterial growth that have been discussed in the literature [2, 20,

24, 34, 37, 38].

It would also be valuable to look at modeling these scenarios over a longer period

of time. Rain events are correlated with spikes in the number of bacteria in sand, and

then the bacterial counts return to some normal level after the rain has passed and it

would be beneficial to see if this can also be simulated [38]. With our current model,

there would not be any decrease in the bacterial population after a rain event. This

is because there are other factors at play besides basic nutrients and moisture which

are not represented. Predation, competition, and sunlight often lead to a decrease in

bacterial counts in water versus the sand [37, 38, 39]. Changing the death rate to be a
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function of sunlight, among other factors, could make the model more accurate if we

want to simulate what happens to the bacteria population during longer periods of

time. Another possible change could be making the growth rate a function of factors

that limit bacterial growth as well as moisture and nutrient. The model presented

accounts for the basic need for nutrients and water, but more information is needed

to model the complexity of bacterial survival. In order to better predict the long

term growth of bacteria on beaches, we need a more thorough understanding of these

relationships.
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