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ABSTRACT
MATHEMATICAL MODELING OF COMPETITION FOR LIGHT AND

NUTRIENTS BETWEEN PHYTOPLANKTON SPECIES IN A POORLY MIXED
WATER COLUMN

by

Thomas Stojsavljevic

The University of Wisconsin-Milwaukee, 2014
Under the Supervision of Professor Gabriella Pinter

Phytoplankton live in a complex environment with two essential resources forming

various gradients. Light supplied from above is never homogeneously distributed in

a body of water due to refraction and absorption from biomass present in the

ecosystem and from other sources. Nutrients in turn are typically supplied from

below. In poorly mixed water columns phytoplankton can be heterogeneously

distributed forming various layering patterns. The relationship between the location

and the thickness of the layers is an open problem of interest. Here we present three

models which study how competition for light and resources can form common

layering patterns seen in nature and investigate how the location and thickness of

the layer changes when the motility of the phytoplankton is varied. Using this we

study the phenomenon of coexistence of multiple phytoplankton species and the

presence of species spatial separation.
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1 Introduction

Phytoplankton constitute an important part of aquatic ecosystems. In addition to

serving as the base of the aquatic food chain, phytoplankton generate 70% of the

world’s atmospheric oxygen and also absorb half of the carbon dioxide contributing

to global warming [2], [16]. Excessive algal growth in lakes and water reservoirs also

present social and economic challenges. Besides negatively impacting water-based

recreation, cases of human illness and animal deaths caused by cyanotoxins produced

by certain harmful phytoplankton species have been reported. In one instance, 53

dialysis patients in Brazil died in 1996 as a result of receiving water intravenously

containing high concentrations of a toxin produced by Microcystis [6]. Considering

their wide ranging impacts it is critically important to understand the underlying

dynamics of phytoplankton ecology.

In general, phytoplankton are regarded as the community of plants adapted to

suspension in the sea or in fresh waters and which is susceptible to passive movement

by wind and current. These include algae, diatoms, and cyanobacteria (commonly

referred to as blue-green algae). Phytoplankton come in a variety of sizes and mor-

phology which help them compete for resources such as light and nutrients [6]. From

laboratory experiments, it is known that phytoplankton require inorganic nitrogen,

sulphur, and phosphorous compounds along with trace elements and vitamins. For

freshwater environments, phosphorus and nitrogen are often nutrients present in low

amounts and inhibit biomass growth. In particular, free phosphorus is available only

from geochemical sources within aquatic ecosystems [10]. Thus there are naturally

occurring resource gradients where there is a larger concentration of nutrients at the

bottom of a body of water than there is at the surface.

In order for algal cells to survive there needs to be a balance between light and

their internal nutrients to properly conduct photosynthesis. Light is never homoge-
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neously distributed in aquatic environments since it forms a gradient over biomass

and other light-absorbing substances [8], [9]. The deeper a species is in the water

column, the less light there is available for it to use due to the shading from popula-

tions above. Therefore spatial heterogeneity, both horizontally and vertically, created

by the species throughout the environment is a key feature to understanding algal

populations[11], [14], [16].

Given that light and nutrients both limit phytoplankton growth, in order to un-

derstand phytoplankton dynamics it is necessary to know how phytoplankton are able

to remain suspended in the illuminated layers of the water. Continuous residence in

the illuminated layers is neither necessary nor optimal for growth [18]. Since there is

a wide array of phytoplankton morphology, there are several strategies employed by

species in order to regulate their position. Certain species possess flagella which can

be used for swimming while other species use their internal nutrients to change their

buoyancy by reducing their sinking velocity in nutrient-rich water [11]. This way the

effects of the light and nutrient gradients can be balanced and growth can occur.

While phytoplankton are able to regulate their location within a body of water

via active movement, the physical processes caused by mixing significantly impact

how phytoplankton grow. Since the phytoplankton are suspended in water and are

susceptible to diffusion processes, mixing conditions produce different populations

distributions vertically in a body of water. Prominent vertical distributions include

deep chlorophyll maxima (DCMs), benthic layers, and surface scums [11], [14]. Deep

chlorophyll maxima is the layering phenomenon where biomass accumulation happens

beneath the surface of the water column. Surface scums is the layering pattern where

up to 90% of the biomass concentration is near the surface resulting in heavy shading

of the water. Benthic layers occur in stratified bodies of water. Stratification in

bodies of water is due to temperature fluxes at the surface and advections within the

body of water. The thickness of these layers is controlled by the degree of mixing and
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can vary from several centimetres to tens of meters [11].

Various mathematical models have been developed to describe the dynamics of

phytoplankton populations [2], [6], [11], [14], [15]. In this paper we first describe

the model given in [11]. Following that model description is an explanation of the

numerical methods we used to implement the model. Simulations under various

settings were conducted and their results and biological interpretation are presented.

Finally, we develop two new models to explore the issue of coexistence of multiple

algal species under various nutrient constraints using numerical simulations.

2 One Phytoplankton Species and One Nutrient Model

The following is a model used to study vertical phytoplankton distributions by Klaus-

meier and Lichtman in [11]. This model incorporates intra-specific competition for

light and nutrients in a poorly mixed body of water. For simplifying purposes Klaus-

meier and Lichtman consider a one dimensional water column where the depth is

indexed by z, where 0 ≤ z ≤ zb. The surface of the water column occurs at z = 0 and

the bottom of the water column is given by zb. The full model consists of equations

for the depth distributions of biomass density, b(z, t), nutrient concentrations, R(z, t),

and light, I(z, t).

Since light and nutrients form gradients throughout bodies of water, in order to

model the change in biomass density it is necessary to know which factor is limiting

phytoplankton growth. The functions fI(I(z, t)) and fR(R(z, t)) will be used to repre-

sent the phytoplankton growth rate when light and nutrients are limiting respectively.

In general, the functions fI and fR need to be bounded, strictly increasing functions.

Following Liebig’s law of the minimum, the gross phytoplankton growth rate is given

by min(fI(I), fR(R)). Biomass loss due to grazing, respiration, and death is given by

a density and depth independent constant m. Combining these, we define the net per

capita growth rate at depth z by g(z, t) = min(fI(I(z, t)), fR(R(z, t)))−m.
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To complete describing the dynamics of phytoplankton populations, processes de-

scribing phytoplankton movement need to be incorporated. Phytoplankton movement

is divided into two components: the first being passive movement due to turbulence in

the water column and the second being the active movement. For simplicity, Klaus-

meier and Lichtman only consider phytoplankton species which rely on flagella to

swim. Passive movement is modelled by eddy diffusion with diffusion coefficient Db

which is uniform throughout the water column. This assumption is not necessary

and, in general, depth dependent diffusion is permissible. To model the active move-

ment, we introduce a velocity function ν which is dependent on the gradient of the

growth rate,
∂g

∂z
, i.e. ν = ν

(
∂g

∂z

)
. Given how phytoplankton can regulate their

position depending on whether light or nutrients are limiting, the biological assump-

tion is introduced that phytoplankton will move up if the conditions are better above

than they are below, and phytoplankton will move down if the conditions are better

below than they are above, and phytoplankton will not move if the conditions are

worse above and below. Positive velocity is oriented upward and associated to the

negative z direction. Specifically we assume ν(.) is an odd, decreasing function which

approaches a value νmax as
∂g

∂z
approaches negative infinity and approaches −νmax as

∂g

∂z
approaches positive infinity.

Combining physical and biological dynamics we can describe the change in phy-

toplankton biomass by the partial differential equation

∂b

∂t
= (min(fI(I), fR(R)))b−mb+Db

∂2b

∂z2
+

∂

∂z

[
ν

(
∂g

∂z

)
b

]
= [Growth]− [Loss] + [Passive Movement] + [Active Movement]. (2.1)

Under the assumption that phytoplankton do not enter or leave the water column
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equation (2.1) has no flux boundary conditions

[
−Db

∂b

∂z
− ν

(
∂g

∂z

)
b

] ∣∣∣∣∣
z=0

=

[
−Db

∂b

∂z
− ν

(
∂g

∂z

)
b

] ∣∣∣∣∣
z=zb

= 0. (2.2)

Nutrients in the water column are impacted by diffusion processes and by phyto-

plankton through consumption and recycling from dead phytoplankton. In [11], the

nutrient under consideration is phosphorus due to its role as a limiting nutrient in

aquatic ecosystems. Let DR represent the diffusion coefficient and let ε represent the

proportion of the nutrients from dead phytoplankton that is immediately recycled.

Then we can describe the change in the nutrients by the partial differential equation

∂R

∂t
= − b

Y
min(fI(I), fR(R)) +DR

∂2R

∂z2
+ εm

b

Y

= −[Uptake] + [Mixing] + [Recycling] (2.3)

where Y is the yield of phytoplankton biomass per nutrient consumed.

It is assumed that nutrients do not leave the system from the surface but are

supplied at the bottom of the water column. Nutrients in the sediment are assumed

to have constant concentration denoted by Rin and diffuse across the sediment-water

interface at a rate proportional to the concentration difference of the interface. Under

these assumptions we get the boundary conditions

∂R

∂z

∣∣∣∣∣
z=0

= 0,
∂R

∂z

∣∣∣∣∣
z=zb

= h(Rin −R(zb)) (2.4)

where the parameter h describes the permeability of the sediment-water interface.

Finally, light at depth z is determined using the Lambert-Beer law with phyto-

plankton attenuation coefficient a, background attenuation coefficient abg, and in-

cident light Iin. The incident light is considered to be constant in our simulations

although this assumption can easily be relaxed. Using this we have the equation for
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I(z, t) is given by

I(z, t) = Iin exp

[
−
∫ z

0

(ab(w, t) + abg)dw

]
. (2.5)

Equations (2.1)-(2.5) constitute our first model. This is a non-local, nonlinear system

of integro-partial differential equations for which theoretical analysis has been con-

ducted. Existence of solutions for (2.1)-(2.5) is investigated in [3] while asymptotic

behavior of positive solutions is studied in [4].

3 Simulation Technique

In order to simulate the model, we follow the Method of Lines approach [7]. Under

this approach the spatial differential operators as well as the integral term given in

equation (2.5) will be replaced by discrete approximations. This will result in a large

system of ordinary differential equations of the form

db(t)

dt
= F(b(t)), t ≥ 0 (3.1)

where the vector b ∈ Rn contains the components bi(t) resulting from the discretiza-

tion. Since (3.1) is still continuous in time the resulting system of ODEs will then be

solved by numerical integration.

3.1 Spatial Discretization

To begin we define a spatial grid on the one dimensional water column 0 ≤ z ≤ zb.

Let s0 = 0, si =
(
i− 1

2

)
∆z, and sN+1 = zb be the spatial grid where ∆z = zb

N
. Here

N will represent the partition of the water column and will be the resulting number

of ODEs present in (3.1). To simplify notation, for i = 1, . . . , N let bi(t) denote an

approximation to b(si, t). A visual representation of the discretization adapted from
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[7] is given below in Figure 3.1.

Figure 3.1: The spatial discretization of the one-dimensional water column and visual
representation for discretizing the derivative of the flux.

To discretize the spatial derivatives at the points si present in the diffusion and

active movement terms in equation (2.1) a finite volume approach is used. First define

the flux of the phytoplankton by

J(z, t) = −
(
νb(z, t) +Db

∂b

∂z
(z, t)

)
. (3.2)

The minus sign on the diffusion term is present to indicate that turbulent diffusion

is in the direction opposite to the biomass concentration while the minus sign on the

active movement term is a result of the orientation of the velocity.

As demonstrated in Figure 3.1, assume there is an imaginary box of size ∆z around

the point si and denote the fluxes at the side of these ’boxes’ by Ji ≈ J(si + 1
2
∆z, t)

which depends on the numerical values bi. Doing this, conservation of J is obtained

since the outflow of one part of one box will serve as the input for the adjacent box.

Further, observe that equation (2.1) can be rewritten using J by

∂b

∂t
(z, t) = g(z)b(z, t)− ∂J

∂z
(z, t).
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Thus our interest is in approximating
∂J

∂z
at the point z = si. To form the approxi-

mation we first split the flux into two components

∂J

∂z
(z, t) = −

(∂A
∂z

(z, t)− ∂P

∂z
(z, t)

)
(3.3)

where A represents the active movement portion of the flux while P represents the

portion of passive movement in the flux (Db
∂b

∂z
).

We use the approximation

∂J

∂z
(z, t) ≈ Ji − Ji−1

∆z
= −

(Ai − Ai−1

∆z
− Pi − Pi−1

∆z

)
. (3.4)

What follows is a description of determining the approximation for Ji. For the ad-

vection term in equation (2.1) (the active movement) a third-order upwind scheme is

used. The diffusion terms present in equations (2.1) and (2.3) (the passive movement)

are handled using a symmetric discretization.

3.2 Biomass Advection

Under the assumptions laid out in Section 2, phytoplankton will move up or down in

the water column depending on growth conditions. Thus to determine Ai under the

upwinding scheme, first we need to separate the cases when νi > 0 (upward movement)

and νi < 0 (downward movement). Further, movement near the surface of the water

column and near the bottom of the water column have to be treated separately. No

flux boundary conditions tell us that there cannot be upward movement at the surface

or any downward motion on the bottom. However phytoplankton can swim up to the

surface and down to the bottom. The surface will rely on the terms A0, A1, and A2

and the bottom will rely on AN−2, AN−1, and AN . The rest of the water column will

rely on the terms Ai for i = 2, . . . , N − 2.
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First consider phytoplankton that are in the water column but are not at the sur-

face or the bottom. To implement the upwinding scheme it is necessary to know which

direction the phytoplankton are swimming. When the phytoplankton are swimming

down towards the bottom the flow is from left to right in Figure 3.1. For that rea-

son more information will be used from the left. Similarly, when phytoplankton are

swimming up towards the surface, the flow is from the right to the left. Separating

the cases for νi > 0 and νi < 0 we get that the upwinding scheme in general can be

given by the formula

Ai =
1

6
νi(2bi + 5bi+1 − bi+2) ∗ (νi > 0) +

1

6
νi(−bi−1 + 5bi + 2bi+1) ∗ (νi < 0)

= [Upward movement] + [Downward movement]. (3.5)

Thus the approximation to
∂A

∂z
is given by

Ai − Ai−1

∆z
=

1

6∆z

(
νi(2bi + 5bi+1 − bi+2) ∗ (νi > 0)

+ νi(−bi−1 + 5bi + 2bi+1) ∗ (νi < 0)

− νi−1(2bi−1 + 5bi − bi+1) ∗ (νi−1 > 0)

− νi−1(−bi−2 + 5bi−1 + 2bi) ∗ (νi−1 < 0)
)
.

Combining like terms and reorganizing we get

Ai − Ai−1

∆z
=

1

6∆z

(
νi−1 ∗ (νi−1 < 0)bi−2 − (νi ∗ (νi < 0) + 2νi−1 ∗ (νi−1 > 0)

− 5νi−1 ∗ (νi−1 < 0))bi−1 + (2νi ∗ (νi > 0) + 5νi ∗ (νi < 0)

− 5νi−1 ∗ (νi−1 > 0)− 2νi−1 ∗ (νi−1 < 0))bi + (5νi ∗ (νi > 0)

+ 2νi ∗ (νi < 0) + νi−1 ∗ (νi−1 > 0))bi+1 − νi ∗ (νi > 0)bi+2

)
.

Now consider phytoplankton near the surface of the water column. Unlike the



10

upwinding scheme used on Ai for i = 2, . . . , N − 2, the upwinding scheme for A0 and

A1 have to be modified. Given that the system is closed we have A0 = 0. To compute

A1 observe that A1 depends only on b1, b2, and b3. Using this, A1 can be computed

using the formula

A1 = ν1 ∗ (ν1 < 0)
(b1 + b2

2

)
+

1

6
ν1 ∗ (ν1 > 0)(2b1 + 5b2 − b3). (3.6)

Using the same strategy as before we construct the approximations
∂A

∂z
for z = s1

and z = s2. For z = s1 we get

∂A

∂z
(s1, t) ≈

A1 − A0

∆z
=

1

6∆z

(
(3ν1 ∗ (ν1 < 0) + 2ν1 ∗ (ν1 > 0))b1

+ (3ν1 ∗ (ν1 < 0) + 5ν1 ∗ (ν1 > 0))b2 − ν1 ∗ (ν1 > 0)b3

)
.

For z = s2 we get

∂A

∂z
(s2, t) ≈

A2 − A1

∆z
=

1

6∆z

(
(−ν2 ∗ (ν2 < 0)− 3ν1 ∗ (ν1 < 0)− 2ν1 ∗ (ν1 > 0))b1

+(2ν2 ∗ (ν2 > 0) + 5ν2 ∗ (ν1 < 0)− 5ν1 ∗ (ν1 > 0)− 3ν1 ∗ (ν1 < 0))b2

+(5ν2 ∗ (ν2 > 0) + 2ν2 ∗ (ν2 < 0) + ν1 ∗ (ν1 > 0))b3 − ν2 ∗ (ν2 > 0)b4

)
.

Finally, consider phytoplankton near the bottom of the water column. As with

the computations near the surface, the upwinding scheme for AN−1 and AN has to be

modified. As with A0, since the system is closed it follows that AN = 0. To compute

AN−1 observe that AN−1 will depend on bN−2, bN−1, and bN . Hence we get

AN−1 = νN−1 ∗ (νN−1 > 0)
(bN + bN−1

2

)
+

1

6
νN−1 ∗ (νN−1 < 0)(−bN−2 + 5bN−1 + 2bN).

(3.7)

Using this we finish constructing the approximations of
∂A

∂z
by computing the
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approximations at z = sN−1 and z = sN . At z = sN we get

∂A

∂z
(sN , t) ≈

AN − AN−1

∆z
=

1

6∆z

(
νN−1 ∗ (νN−1 < 0)bN−2

+ (−3νN−1 ∗ (νN−1 > 0)− 5νN−1 ∗ (νN−1 < 0))bN−1

+ (−3νN−1 ∗ (νN−1 > 0)− 2νN−1 ∗ (νN−1 < 0))bN

)
.

Finally, at z = sN−1 we get

∂A

∂z
(sN−1, t) ≈

AN−1 − AN−2

∆z
=

1

6∆z

(
νN−2 ∗ (νN−2 < 0)bN−3

+ (−νN−1 ∗ (νN−1 < 0)− 2νN−2 ∗ (νN−2 > 0)

− 5νN−2 ∗ (νN−2 < 0))bN−2 + (5νN−1 ∗ (νN−1 < 0)

+ 3νN−1 ∗ (νN−1 > 0)− 5νN−2 ∗ (νN−2 > 0)

− 2νN−2 ∗ (νN−2 < 0))bN−1

+ (2νN−1 ∗ (νN−1 < 0) + νN−2 ∗ (νN−2 > 0))bN

)
.

Using these approximations, one can construct the active movement matrix, AM ,

such that AMb gives the approximations to
∂A

∂z
. The active movement matrix will

be an N × N sparse matrix whose coefficients are given by the velocities νi with

their corresponding positive and negative parts. This matrix will be a banded matrix

which has non-zero elements in the two diagonal arrays above and the two diagonal

arrays below the main diagonal, and non-zero elements in the main diagonal.

3.3 Biomass Diffusion

To finish the discretization of the biomass flux, the spatial derivatives present from

the diffusion term need to be approximated. Unlike the active movement problem
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where a symmetric difference can produce unwanted numerical artifacts [7], we use a

symmetric method to discretize the diffusion for both the biomass and the nutrients.

Let Pi = P (si+
1
2
∆z). Since the system is closed for phytoplankton at the surface

and the bottom of the water column, we have P0 = PN = 0. For i = 1, . . . , N − 1 we

have

Pi = Di
bi+1 − bi

∆z
. (3.8)

Using (3.7) we form the approximations to the diffusion term of
∂P

∂z
by computing

(3.3) using the appropriate differences. Computing the differences we get

P1 − P0

∆z
=

1

(∆z)2
(D1b1 −D1b2), (3.9)

Pi − Pi−1

∆z
=

1

(∆z)2
(−Dibi+1 + (Di +Di−1)bi −Dibi+1), (3.10)

PN − PN−1

∆z
=

1

(∆z)2
(−DN−1bN−1 +DN−1bN). (3.11)

Thus the resulting biomass diffusion matrix, PM , will be an N×N tridiagonal matrix.

The main diagonal will consist of
1

(∆z)2
D1,

1

(∆z)2
(Di+Di−1), and

1

(∆z)2
DN−1. The

upper and lower diagonals will consist of elements of the form − 1

(∆z)2
Di where

i = 2, . . . , N for the lower diagonal and i = 1, . . . , N − 1 for the upper diagonal.

3.4 Nutrient Diffusion

While the nutrient diffusion matrix that results from the discretization is almost

identical to the biomass diffusion matrix constructed above there is a key difference.

Unlike the biomass, the model developed by Klausmeier and Lichtman is not assumed

to be a closed system for the nutrients. The boundary terms given in (2.4) show
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that nutrients can be supplied from the sedimentary layer at the bottom of the water

column. So while equations (3.8) and (3.9) will still be valid for the nutrients equation,

(3.10) will no longer hold in this circumstance.

Using the boundary term for
∂R

∂z
at z = zb we can define PN by the equation

PN =
DN

∆z

(
h(Rin −RN)

)
. (3.12)

Proceeding as we did before, we now calculate the approximation of
∂P

∂z
(z, t) at

z = sN . Using (3.7) (making the change from bi to Ri) and (3.11) we get

PN − PN−1

∆z
=

1

(∆z)2
(−DNhRin + (DNh+DN−1)RN +−DN−1RN−1).

Note that in addition to changing the (N,N) entry, the boundary term also introduces

a vector which is 0 for the first N − 1 entries and a fixed constant for its N -th term.

4 Model Simulation

As outlined in the previous section applying the discretization to the model given

by equations (2.1) - (2.5) results in a large system of ordinary differential equations.

Since the resulting ODE model (3.1) is stiff, i.e., the eigenvalues of the Jacobian matrix

∂F

∂b
are widely spread apart, to numerically solve the system an implicit integration

method is needed. In this treatment, we implemented the model in MATLAB and

integrated using MATLAB’s ODE solver ode15s [1].

In order to implement the model, functional representations of fI(I), fR(R), and

ν
(∂g
∂z

)
are required along with the parameter values present in equations (2.1) - (2.5).

Following [11], the functions fI and fR will have a Michaelis-Menten representation

fI(I(z, t)) = r
I(z, t)

I(z, t) +KI

(4.1)
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and

fR(R(z, t)) = r
R(z, t)

R(z, t) +KR

, (4.2)

where KI and KR are the half-saturation constants for the light and nutrients re-

spectively. Finally, following [14] the function ν used for the simulations is given by

ν
(∂g
∂z

)
= −νmax

∂g
∂z

|∂g
∂z
|+Kswim

. (4.3)

The parameter values used for the simulations along with their biological interpreta-

tions are reported below in Table 4.1.

Parameter Explanation Value Source
N Spatial discretization level 100
zb Water column depth (m) 20 [11]
Rin Sediment P concentration (µg P L−1) 100 [11]
h Sediment-water column permeability (m−1) 10−2 [11]
Iin Incoming light (µmol photons m−2 s−1) 1,400 [11]
abg Background attenuation coefficient (m−1) 0.35 [11], [12]
a Algal attenuation coefficient (m−1 [cells ml−1]−1) 10−5 [11], [12]
Db Eddy biomass diffusion coefficient (m2 d−1) 10 [11]
DR Eddy nutrient diffusion coefficient (m2 d−1) 10 [11]
νmax Species 1 swimming speed (m d−1) 10∗ [11]
r Maximum growth rate (d−1) 0.4 [11]
m Loss rate (d−1) 0.2 [11]
KR P half-saturation constant (µg P L−1) 1.0 [11]
KI Light half-saturation constant (µmol photons m−2

s−1)
50 [11]

Y Yield coefficient (cells ml−1 [µg P L−1]−1) 103 [11]
ε Recycling coefficient (dimensionless) 0.9∗ [14]

Kswim Swimming constant (m−1 d−1) 0.001 [14]

Table 4.1: Parameters used in the simulation of the model (2.1)-(2.5). Parameter
values listed with a ∗ superscript are varied to study their effect on population dy-
namics.

For initial conditions suppose that b(z, 0) = 104 cells ml−1 and R(z, 0) = 1.25 µg

P L−1 holds for all z such that 0 ≤ z ≤ zb. All simulations throughout this sec-
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tion are set to model the changes of the phytoplankton population density and the

changes in the concentration of phosphorus for a period of time. Since our interest is

investigating phytoplankton layer formation, the simulations are run until the model

reaches equilibrium [11]. The simulations presented here examine the effects of the

parameters νmax and ε as they are varied in biologically feasible intervals. These two

parameters are of interest because of their intrinsic relationship with the phytoplank-

ton’s access to nutrients in the environment. The first set of simulations examines

changes in the vertical distribution as the parameter ε is increased while νmax is held

constant at νmax = 10. The second set of simulations examines the effects of reducing

νmax from the value given in Table 4.1 while ε = 0 is held constant throughout.

Given equation (2.3) it is apparent that 0 ≤ ε < 1. To examine the effects that

this parameter has on the phytoplankton distribution throughout the water column

three different scenarios are considered. The first case is ε = 0 which would imply

that no nutrient content is released into the water column upon phytoplankton death.

Then ε will be increased to 0.45 and then finally to 0.9 to see the effects of nutrient

recycling.

As the parameter ε is increased overall phytoplankton abundance will increase.

This phenomenon is occurring because increasing ε will increase the amount of free

phosphorus present in the water column. While the location of the phytoplankton

bloom did not change when ε was increased from 0 to 0.45, the bloom moved closer

to the surface when ε was set to 0.9. This represents the surface scum layering

phenomenon. Under this setting the amount of phosphorus present in the water

column will not be limiting to the phytoplankton growth as can be seen in panel C.

Comparing the nutrient distributions from panels A and B to the nutrient dis-

tribution in panel C, first note the difference in scale. While panels A and B range

from 0-12 µg P L−1, panel C ranges from 0-18 µg P L−1. Further, while the nutrient

distributions in panels A and B are nearly identical, panel B has nearly double the
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Figure 4.1: Model (2.1)-(2.5) simulations under varying levels of ε. Panel A represents
the case ε = 0. Panel B represents the case ε = 0.45. Panel C represents the case
ε = 0.9.

biomass density as panel A while the biomass in panel C has nearly an order 10

difference from panel A. In panel C, not only is there more nutrient available at the

surface, the amount of nutrients available increases much more rapidly as the depth

increases.

Now consider the parameter νmax. Unlike ε there are no automatic constraints

on what νmax can be in simulations. For purposes of biological feasibility suppose,

that νmax ≤ 1
2
zb. Since photosynthesis requires a balance between light exposure and

nutrients, the speed that phytoplankton can swim in order to regulate their position

in the water column is critical for growth. To study the effects that νmax has on the

phytoplankton density distribution we consider three cases. The first case will be

νmax = 0, in which case the only process controlling phytoplankton movement is the
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diffusion. Then the case of low versus high swimming speeds will be compared by

setting νmax = 1 and νmax = 10.

As can be seen in the figure below, swimming speed has a major impact on the

biomass distribution and the nutrient distribution. When νmax = 0 there is a major

loss of biomass from the initial condition. The remaining phytoplankton are then

stratified in such a way that those at the surface will automatically have the best

possible growth rate because light is abundant and nutrients are supplied via diffusion.

Phytoplankton not at the surface have their light reduced by shading from the biomass

above. Thus as the depth increases the water column is able to support less biomass

despite the abundance of nutrients. With swimming, phytoplankton near the surface

move toward the bottom in order to access the nutrients deeper down in the water

column while phytoplankton deep in the water column will move toward the surface

to get more light. This creates the changes seen in the nutrient distributions between

the simulations. These changes are due to the amount of biomass in the system.

When νmax = 0, the biomass density is 4.202 × 104 cells ml−1. With swimming, the

biomass density is 4.272 × 104 cells ml−1 when νmax = 1 and 4.416 × 104 cells ml−1

when νmax = 10.

Another factor impacting the thickness of a layer is the turbulent diffusion. The

width of a layer of phytoplankton swimming toward a preferred depth and mixed by

turbulent diffusion is proportional to Db

νmax
. Thus, as the swimming speed increases,

the thickness of the DCM’s decreases when the diffusion is held constant as exhibited

in Figure 4.2 panels B and C. When mixing conditions are poor, the thickness ranges

between 0.1-1 m while under well mixed conditions the thickness of a layer ranges

between 10-100 m [11].
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Figure 4.2: Model (2.1)-(2.5) simulations under varying levels of νmax. Panel A
represents the case νmax = 0. Panel B represents the case νmax = 1. Panel C
represents the case νmax = 10.

5 Coexistence of Multiple Phytoplankton Species

While the model proposed by Klausmeier and Lichtman is able to successfully repli-

cate common vertical phytoplankton distributions such as surface blooms and deep

chlorophyll maxima, it does not provide insights into more complex ecological phe-

nomenon. In particular, their model does not provide any explanations for why it

is possible for multiple phytoplankton species to coexist in the same body of water.

Biologists researching this problem have argued that the diversity of phytoplank-

ton could be explained by using an argument involving the principle of competitive

exclusion [10], [17].

The principle of competitive exclusion postulates that two or more species com-
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peting for the same resources cannot coexist if other environmental factors are held

constant. In this setting, one species would out-compete all the other species present

so that the final equilibrium state would consist of a single species population. G.E.

Hutchinson (1961) proposed that the diversity of phytoplankton could be explained

phenomenologically as the failure to ever reach an equilibrium state as the environ-

mental factors changed. Ecologically this argument is contradicted from various field

observations [10], [19].

To resolve this dilemma MacArthur and Levins (1964) modify the above argument.

Their idea is that phytoplankton specialize on a particular proportion of mixture of

two or more resources rather than specializing on a uniform resource. In this setting, it

is hypothesized that a particular species will be found where their favorite proportion

is found. When the environmental factors change, then that particular species will

be replaced by another species which is more effective under the new conditions [13].

In this section, two new models are developed which explore the above hypothe-

sis. For purposes of simplicity the proposed models explore the competition of two

phytoplankton species under different nutrient conditions in the environment. The

first model is an extension of [11] and examines competition for one limiting nutrient.

The second model investigates population dynamics when the phytoplankton species

have to compete for a preferred nutrient when two limiting nutrients are present.

5.1 Two Species Competing for One Limiting Nutrient

The following is a model to study the coexistence of two phytoplankton species in a

poorly mixed body of water with one limiting nutrient. The phytoplankton species

are assumed to compete in uptake of the limiting nutrient and light absorption. As

before, for simplifying purposes consider the one dimensional water column index by

z, where 0 ≤ z ≤ zb. The full model will consist of a non-local, nonlinear system of

integro-partial differential equations for the depth distributions of biomass densities
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b1(z, t) and b2(z, t), the limiting nutrient concentration R(z, t), and light I(z, t).

Biomass densities are assumed to be limited by the availability of light and nu-

trients. The functions fI,1(I(z, t)) and fI,2(I(z, t)) will represent the phytoplankton

growth rate when light is limiting for species 1 and species 2 respectively while the

functions fR,1(R(z, t)) and fR,2(R(z, t)) will represent the phytoplankton growth rate

when nutrients are limiting for species 1 and 2 respectively. The functions fI,1(I),

fI,2(I), fR,1(R), and fR,2 are assumed to be stricly increasing and bounded. As with

the previous model, the gross phytoplankton growth rate of each species will follow

the Liebig law of the minimum so that the per-capita growth rate will be given by

the equations gk(z, t) = min(fI,k(I(z, t)), fR,k(R(z, t)))−mk where the index k = 1, 2

represents the respective species. Finally, each phytoplankton species will be effected

by their movement within the water column. The movement of each species is as-

sumed to be effected by the processes of diffusion and active movement as outlined in

Section 2. The resulting partial differential equations for biomass densities are given

by

∂b1
∂t

= min(fI,1(I), fR,1(R))b1 −m1b1 +Db1

∂2b1
∂z2

+
∂

∂z

[
ν1

(∂g1
∂z

)
b1

]
= [Growth]− [Loss] + [Passive movement] + [Active movement] (5.1)

and

∂b2
∂t

= min(fI,2(I), fR,2(R))b2 −m2b2 +Db2

∂2b2
∂z2

+
∂

∂z

[
ν2

(∂g2
∂z

)
b2

]
= [Growth]− [Loss] + [Passive movement] + [Active movement]. (5.2)

These partial differential equations are given no flux boundary conditions

[
−Db1

∂b1
∂z
− ν1

(
∂g1
∂z

)
b1

] ∣∣∣∣∣
z=0

=

[
−Db1

∂b1
∂z
− ν1

(
∂g1
∂z

)
b1

] ∣∣∣∣∣
z=zb

= 0, (5.3)
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and

[
−Db2

∂g2
∂z
− ν2

(
∂g2
∂z

)
b2

] ∣∣∣∣∣
z=0

=

[
−Db2

∂g2
∂z
− ν2

(
∂g2
∂z

)
b2

] ∣∣∣∣∣
z=zb

= 0. (5.4)

For the simulations, the functions fI,k and fR,k for k = 1, 2 will take the Michaelis-

Menten forms given by

fI,1(I(z, t)) = r1
I(z, t)

I(z, t) +KI,1

,

fI,2(I(z, t)) = r2
I(z, t)

I(z, t) +KI,2

,

fR,1(R(z, t)) = r1
R(z, t)

R(z, t) +KR,1

,

and

fR,2(R(z, t)) = r2
R(z, t)

R(z, t) +KR,2

where r1 and r2 are the maximal growth rates of species 1 and 2 respectively and the

KI,1, KI,2, KR,1, and KR,2 represent half-saturation constants for light and nutrients

for species 1 and 2 respectively. Following equation (4.3) the functions ν1 and ν2 will

take the form

ν1

(∂g1
∂z

)
= −ν1max

∂g1
∂z

|∂g1
∂z
|+Kswim

and

ν2

(∂g2
∂z

)
= −ν2max

∂g2
∂z

|∂g2
∂z
|+Kswim

.

As before, nutrients in the water column are impacted by diffusion processes and

by phytoplankton from consumption and recycling. Let DR represent the diffusion

coefficient of the nutrients and let ε represent the proportion of nutrients that are

available in the water column from dead phytoplankton. The change in the limiting
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nutrient R is given by the partial differential equation

∂R

∂t
= − b1

Y1
min(fI,1(I), fR,1(R)) + ε

b1
Y1
− b2
Y2

min(fI,2(I), fR,2(R))

+ ε
b2
Y2

+DR
∂2R

∂z2

= −[Species 1 Uptake] + [Species 1 Recycling]− [Species 2 Uptake]

+ [Species 2 Recycling] + [Mixing]. (5.5)

Nutrients are not assumed to enter or leave the water column from the surface but

are supplied from the sedimentary layer at the bottom. Thus we have the boundary

conditions for equation (5.5) will be given by equation (2.4).

Finally, to describe the change in light at depth z, we modify the Lambert-Beer

law to accommodate the presence of multiple phytoplankton species. Assuming that

the relationship between the number of species present and the light absorption is

linear, equation (2.5) is modified to become

I(z, t) = Iin exp

[
−
∫ z

0

(ab1(w, t) + ab2(w, t) + abg)dw

]
(5.6)

where the parameters Iin, a, and abg have the same interpretation as before. Equations

(5.1)-(5.6) constitute our model.

Parameter interpretation and values used for the simulations can be found in Ta-

ble 5.1. To test the assertion that MacArthur and Levins made, the parameters that

need to be different than those given in [11] and [14] are KI,2, KR,2, and m2. The

half-saturation constants for light and nutrients used in the growth rate affect the

proportion of light and nutrients needed by a species. For this reason, these param-

eters are chosen such that KI,2 < KI,1 and KR,2 > KR,1. This way the competing

species will have growth rates defined in such a way that the first species has a growth

rate with proportionally larger requirement on light while the second species has a
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growth rate with proportionally larger nutrient requirements. With these assump-

tions, the phytoplankton species will have natural niches located at different depths

that they will want to occupy. Finally, in order to test the hypothesis that MacArthur

and Levins made, the phytoplankton species will need to have different loss rates. If

m1 = m2 then the principle of competitive exclusion would hold and the model would

give the extinction of one of the phytoplankton species.

For initial conditions suppose that b1(z, 0) = b2(z, 0) = 104 cells ml−1 and R(z, 0) =

1.25 µg P L−1 holds for all z such that 0 ≤ z ≤ zb. As in Section 4, the simulations

throughout this section are set to model the changes of the phytoplankton population

density and the changes in the concentration of phosphorus over a period of time to

investigate the layer formation patterns that the two species model exhibits. Like with

our first model, the simulations presented here examine the effects of the parameters

ν1max , ν2max and ε as they are varied in biologically feasible intervals.

As in Section 4, the three values of ε used to study the impact of nutrient recycling

are ε = 0, 0.45, and 0.9 while the swimming speeds are kept constant at ν1max =

ν2max = 10. The vertical distributions of the two phytoplankton species and the

nutrient concentration are given below in Figure 5.1.

The proposed two species model is able to replicate vertical distributions such

as surface blooms (Figure 5.1 C) and the DCM (Figure 5.1 A and B). As with the

model proposed by Klausmeier and Lichtman, when ε increases, the location of each

species bloom moves closer to the surface and the biomass densities of both species

increases. However, unlike the single species model, more ecological complexity is

described. In particular Figure 5.1 implies the existence of multiple DCM’s within an

environment. Moreover, Figures 5.1 A and B show that the DCM’s of each species are

located at different depths and are non-overlapping as hypothesized by MacArthur

and Levins while Figure 5.1 C demonstrates that multiple phytoplankton species are

able to occupy the same layer in the water column. This heterogeneity is a key feature
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Parameter Explanation Value Source
N Spatial discretization level 100
zb Water column depth (m) 20 [11]
Rin Sediment P concentration (µg P L−1) 100 [11]
h Sediment-water column permeability (m−1) 10−2 [11]
Iin Incoming light (µmol photons m−2 s−1) 1,400 [11]
abg Background attenuation coefficient (m−1) 0.35 [11], [12]
a Algal attenuation coefficient (m−1 [cells ml−1]−1) 10−5 [11], [12]
Db1 Species 1 biomass diffusion coefficients (m2 d−1) 10 [11]
Db2 Species 2 biomass diffusion coefficients (m2 d−1) 10 [11]
DR Nutrient diffusion coefficient (m2 d−1) 10 [11]
ν1max Species 1 swimming speed (m d−1) 10∗ [11]
ν2max Species 2 swimming speed (m d−1) 10∗ [11]
r1 Species 1 maximum growth rates (d−1) 0.4 [11]
r2 Species 2 maximum growth rates (d−1) 0.4 [11]
m1 Species 1 Loss rate (d−1) 0.2 [11]
m2 Species 2 Loss rate (d−1) 0.1
KR,1 P half-saturation constant (µg P L−1) 1 [11]
KR,2 P half-saturation constant (µg P L−1) 10
KI,1 Light half-saturation constant (µmol photons m−2

s−1)
50 [11]

KI,2 Light half-saturation constant (µmol photons m−2

s−1)
5

Y1 Species 1 yield coefficient (cells ml−1 [µg P L−1]−1) 103 [11]
Y2 Species 2 yield coefficient (cells ml−1 [µg P L−1]−1) 103 [11]
ε Recycling coefficient (dimensionless) 0.9∗ [14]

Kswim Swimming constant (m−1 d−1) 0.001 [14]

Table 5.1: Parameters used in the simulation of the model (5.1)-(5.6). Parameter
values listed with a ∗ superscript are varied to study their effect on population dy-
namics.
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of phytoplankton ecology.

Figure 5.1: Model (5.1)-(5.6) simulations under varying levels of ε. Panel A represents
the case ε = 0. Panel B represents the case ε = 0.45. Panel C represents the case
ε = 0.9.

Now consider the parameters ν1max and ν2max . In general, the model does permit

these parameters having distinct values, but for purposes of this analysis assume

ν1max = ν2max . The use of different swimming speeds can force the model to exhibit

predictions that would be expected under the principle of competitive exclusion. For

example, under the parametrization ν1max = 10 m d−1, ν2max = 1 m d−1, and ε = 0.9,

the model predicts that species 2 would go extinct which is what we would expect

given the competitive advantage species 1 has in this scenario. Since our interest is in

examining what factors can explain coexistence of phytoplankton species these cases

are considered pathological.

As in Section 4, for purposes of biological feasibility suppose that ν1max ≤ 1
2
zb. For
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the simulations, ν1max will be set to 0 m d−1 (diffusion only), 1 m d−1 (low swimming

speed), and 10 m d−1 (high swimming speed) with ε = 0. As can be seen in Figure 5.2

below, the swimming speed of the phytoplankton has a major impact on the depth

profiles for biomass and the nutrient gradient.

Figure 5.2: Model (5.1)-(5.6) simulations under varying levels of ν1max = ν2max . Panel
A represents the case ν1max = 0. Panel B represents the case ν1max = 1. Panel C
represents the case ν1max = 10.

Under the setting where there is no active movement present for either species,

there is a major decrease in population density from the intial conditions. However,

the effect of this is more noticeable in species 1 than species 2. The reason this occurs

is that the two species have different mortality rates. Without active movement,

phytoplankton are only able to change position in the water column by the passive

process of diffusion. While the principle of competitive exclusion would predict that

species 2 would have an advantage due to its lower loss rate, as can been seen in
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Figure 5.2 A, species 1 does not go completely extinct. Species 1 does not go extinct

because it is designed with a growth rate that proportionally favors light to nutrients.

While Figure 5.1 A is consistent with the biological theory, Figure 5.1 B offers

the most interesting ecological insights out of the three simulations. Not only are

there distinct peaks in biomass densities present in different depths of the water

column, neither species is absent from any depth either. Indeed, as noted above,

when ν1max = ν2max = 10 m d−1 and ε = 0, the model shows that the phytoplankton

stratify themselves in thin layers at their preferred niche in an independent fashion.

What this suggests is that to have a heterogeneous environment throughout the water

column, nutrient cycling should be present and phytoplankton swimming speed should

be moderate.

To test this claim, let ν1max = 7 m d−1, ν2max = 6 m d−1, and ε = 0.75 and suppose

that all other parameters are as reported in Table 5.1. Further, suppose that the same

initial conditions hold. Figure 5.3 shows the resulting depth profiles simulated by the

model.

Figure 5.3: Model (5.1)-(5.6) simulation with ν1max = 7, ν2max = 6, and ε = 0.75
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As hypothesized, the model under this parametrization gives a vertically hetero-

geneous water column. At the surface species 1 is present at approximately 1,400 cells

ml−1 and species 2 is present at approximately 140 cells ml−1 while at the bottom

of the water column species 1 is scarce at approximately 20 cells ml−1 and species

2 is present at approximately 780 cells ml−1. Further, the proportional light to nu-

trient depth dependent niches are clearly exhibited at approximately 6.5 m deep for

species 1 and at approximately 12.7 m deep for species 2. While these depths rep-

resent distinct DCM’s, both phytoplankton species are shown to be able to coexist

and are present in equal amounts at approximately 9.17 m. Further, the phosphorus

concentration gradient is consistent with figures reported in the simulations done in

[11] and [14].

5.2 Two Species With Preferential Nutrient Uptake

For the final model under consideration we modify the model given by equations

(5.1)-(5.6). In all of the previous models discussed, there has been only one nutrient

present in the system and it is assumed to be limiting growth. The phytoplankton

were assumed to use the nutrient present to facilitate their growth. This is an idealized

situation and the interaction between phytoplankton species and nutrients present in

the environment are complex [16]. For example, the species Mycrocistis prefers to

acquire nitrogen from ammonia rather than nitrate [2]. The proposed model studies

the coexistence of two phytoplankton species in an environment where there are two

limiting nutrients present with the assumption that one nutrient is preferentially taken

up. Without loss of generality, it is assumed that R1 is the preferred nutrient. The

full model will consist of a non-local, nonlinear system of integro-partial differential

equations for the depth distributions of biomass densities b1(z, t) and b2(z, t), the

limiting nutrient concentrations R1(z, t) and R2(z, t), and light I(z, t).

Since the phytoplankton species now have two nutrients that are drawn from
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the environment, modifications to the growth terms in equations (5.1) and (5.2)

need to be considered. This is done by modifying the per-capita growth rate gk(z)

for species k = 1, 2. While we still assume that the growth of the phytoplank-

ton species follows Liebig’s law of the minimum, the functions fR,1 and fR,2 are

now dependent on both R1(z, t) and R2(z, t). Thus the per-capita growth becomes

gk(z, t) = min(fI,k(I(z, t), fR,k(R1(z, t), R2(z, t)))) − mk for species k = 1, 2 respec-

tively. The functions fR,1(R1, R2) and fR,2(R1, R2) will take the form of a modified

Michaelis-Menten equation given by

fR,1(R1(z, t), R2(z, t)) = r1

(
R1(z, t)

KR1,1 +R1(z, t)
+

R2(z, t)

KR2,1 +R2(z, t)
e−λR1(z,t)

)
(5.7)

and

fR,2(R1(z, t), R2(z, t)) = r2

(
R1(z, t)

KR1,2 +R1(z, t)
+

R2(z, t)

KR2,2 +R2(z, t)
e−λR1(z,t)

)
(5.8)

where the parameters KR1,1 and KR2,1 represent the half-saturation constants for

species 1 with the corresponding nutrient, the parameters KR1,2 and KR2,2 represent

the half-saturation constants for species 2 with the corresponding nutrient, and λ

is an inhibition coefficient. The functions fI,1, fI,2, ν1

(
∂g1
∂z

)
and ν2

(
∂g2
∂z

)
will

take the forms described in the previous section. Using the physical and biological

assumptions established in Section 2, the equations for the biomass distributions are

given by the partial differential equations

∂b1
∂t

= min(fI,1(I), fR,1(R1, R2))b1 −m1b1 +Db1

∂2b1
∂z2

+
∂

∂z

[
ν1

(∂g1
∂z

)
b1

]
= [Growth]− [Loss] + [Passive movement] + [Active movement] (5.9)
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and

∂b2
∂t

= min(fI,2(I), fR,2(R1, R2))b2 −m2b2 +Db2

∂2b2
∂z2

+
∂

∂z

[
ν2

(∂g2
∂z

)
b2

]
= [Growth]− [Loss] + [Passive movement] + [Active movement]. (5.10)

These PDEs will be given no flux boundary conditions given by equations (5.3) and

(5.4).

To model the change in the nutrients R1 and R2, modifications to nutrient uptake

formulation are made. Since both species will be using both nutrients to grow, it’s

necessary to determine the proportion of each nutrient lost to uptake processes. Define

the functions g and h by

g(Rk) =
Rk

KRk,1 +Rk

(5.11)

and

hk(R1, R2) =
R2

KR2,k +R2

e−λR1 (5.12)

for k = 1, 2. These functions will be used to give the appropriate proportion of

each nutrient drawn by each species. Using these modification and the physical and

biological assumptions the partial differential equations for the nutrients are given by

∂R1

∂t
=− r1

Y1
min(fI,1(I), fR,1(R1, R2))

g(R1)

fR,1(R1, R2)
b1 + εm1

b1
Y1

− r2
Y2

min(fI,2(I), fR,2(R1, R2))
g(R2)

fR,2(R1, R2)
b2 + εm2

b2
Y2

+DR1

∂2R1

∂z2

= −[Species 1 Uptake] + [Species 1 Recycling]− [Species 2 Uptake]

+ [Species 2 Recycling] + [Mixing]

(5.13)
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and

∂R2

∂t
=− r1

Y1
min(fI,1(I), fR,1(R1, R2))

h1(R1, R2)

fR,1(R1, R2)
b1 + εm1

b1
Y1

− r2
Y2

min(fI,2(I), fR,2(R1, R2))
h2(R1, R2)

fR,2(R1, R2)
b2 + εm2

b2
Y2

+DR1

∂2R1

∂z2

= −[Species 1 Uptake] + [Species 1 Recycling]− [Species 2 Uptake]

+ [Species 2 Recycling] + [Mixing].

(5.14)

For boundary conditions on the nutrient equations, assume as in Section 2 that

nutrients cannot enter or leave the water column from the surface and that both

nutrients are supplied from the bottom. As before, nutrients in the sediment are

assumed to have constant concentration. Let the concentration of nutrient 1 in the

sediment be denoted by Rin1 and let the concentration of nutrient 2 in the sediment

be denoted by Rin2 . Then we have the boundary conditions for equations (5.13) and

(5.14) are given by

∂R1

∂z

∣∣∣∣∣
z=0

= 0,
∂R1

∂z

∣∣∣∣∣
z=zb

= h(Rin1 −R1(zb)) (5.15)

and

∂R2

∂z

∣∣∣∣∣
z=0

= 0,
∂R2

∂z

∣∣∣∣∣
z=zb

= h(Rin2 −R2(zb)) (5.16)

where h represents the permeability of the sediment-water interface.

These PDEs along with equation (5.6) form our model. Table 5.2 lists the param-

eter interpretations and values used in the model simulations. For initial conditions

suppose b1(z, 0) = b2(z, 0) = 104 cells ml−1, R1(z, 0) = 2.25 µg L−1, and R2(z, 0) = 2.1
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µg L−1 holds for all z such that 0 ≤ z ≤ zb. To investigate the phytoplankton layer-

ing patterns, model simulations are run for a time period long enough for numerical

changes in phytoplankton and nutrient distributions to approximately stabilize. As

before, the investigation of layer formation will focus on studying the effects of the

parameters ε, ν1max , and ν2max . For simplifying purposes we consider situations when

νmax1 = νmax2 although this assumption can be relaxed.

To investigate the impact that nutrient recycling has in this model three levels

of recycling are used. The first case considered, ε = 0, corresponds to no nutrients

being released into the environment upon phytoplankton death. The cases ε = 0.45

and ε = 0.9 serve to study the impact of nutrient recycling on layer formation. For

the simulations the swimming speeds of the phytoplankton are set to ν1max = ν2max

= 10 m d−1. The model simulations are depicted below in Figure 5.4.

As with the previous models, panels A and B represent the formation of DCM’s

while panel C represents a surface scum formation. In that simulation, there is

a distinct difference in the nutrient distributions compared to the distributions in

Panels A and B in Figure 5.4. Not only does panel C predict that there are more

nutrients present in the water column, but at the substrate the preferred nutrient for

growth (Nutrient 1) is present in higher amounts than Nutrient 2. This occurs because

in that simulation there is no biomass at the substrate level and since Rin1 > Rin2

there is more supply of Nutrient 1 than Nutrient 2. Another feature of panel C which

separates it from the other simulations is the support of biomass at the surface despite

the fact that both nutrients are limiting at depths up to 5 m. This characteristic

implies that surface scums are able to sustain their biomass by nutrient recycling

under poor mixing conditions. In general, nutrient cycling helps biomass abundance

of phytoplankton species. As with the previous interspecies model, Panels A and B

have nearly identical nutrient distributions yet in panel B more biomass is supported

by the environment. While the relative location of the DCM’s has not changed
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Parameter Explanation Value Source
N Spatial discretization level 100
zb Water column depth (m) 20 [11]
Rin1 Sediment concentration Nutrient 1 (µg L−1) 150
R)in2 Sediment concentration Nutrient 2 (µg L−1) 100 [11]
h Sediment-water column permeability (m−1) 10−2 [11]
Iin Incoming light (µmol photons m−2 s−1) 1,400 [11]
abg Background attenuation coefficient (m−1) 0.35 [11], [12]
a Algal attenuation coefficient (m−1 [cells ml−1]−1) 10−5 [11], [12]
Db1 Species 1 biomass diffusion coefficients (m2 d−1) 10 [11]
Db2 Species 2 biomass diffusion coefficients (m2 d−1) 10 [11]
DR1 Nutrient 1 diffusion coefficient (m2 d−1) 10 [11]
DR2 Nutrient 2 diffusion coefficient (m2 d−1) 10 [11]
ν1max Species 1 swimming speed (m d−1) 10∗ [11]
ν2max Species 2 swimming speed (m d−1) 10∗ [11]
r1 Species 1 maximum growth rates (d−1) 0.4 [11]
r2 Species 2 maximum growth rates (d−1) 0.4 [11]
m1 Species 1 Loss rate (d−1) 0.2 [11]
m2 Species 2 Loss rate (d−1) 0.1
KR1,1 Nutrient 1 half-saturation constant for Species 1

(µg L−1)
1 [11]

KR1,2 Nutrient 1 half-saturation constant for Species 2
(µg L−1)

1 [11]

KR2,1 Nutrient 2 half-saturation constant for Species 1
(µg L−1)

10

KR2,2 Nutrient 2 half-saturation constant for Species 2
(µg L−1)

10

KI,1 Light half-saturation constant (µmol photons m−2

s−1)
50 [11]

KI,2 Light half-saturation constant (µmol photons m−2

s−1)
5

Y1 Species 1 yield coefficient (cells ml−1 [µg P L−1]−1) 103 [11]
Y2 Species 2 yield coefficient (cells ml−1 [µg P L−1]−1) 103 [11]
ε Recycling coefficient (dimensionless) 0.9∗ [14]

Kswim Swimming constant (m−1 d−1) 0.001 [14]
λ Nutrient uptake inhibition factor (dimensionless) 1

Table 5.2: Parameters used in the simulation of the model given by equations (5.9),
(5.10), (5.13), (5.14), and (5.6) . Parameter values listed with a ∗ superscript are
varied to study their effect on population dynamics.
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significantly, the relative abundance of species 1 nearly doubles between the two

simulations.

Figure 5.4: Equations (5.9), (5.10), (5.13), and (5.14) simulations under varying levels
of ε. Panel A represents the case ε = 0. Panel B represents the case ε = 0.45. Panel
C represents the case ε = 0.9.

As suggested in [11], swimming speed and levels of mixing impact the thickness of

the layers that phytoplankton grow in. The previous model simulations suggest that

as swimming speed ν1max and ν2max increase, the biomass layer is thinner. We test to

see if this phenomenon holds in this model. Proceeding as before, we consider three

different swimming speeds: ν1max = 0 (diffusion only), ν1max = 1 (low swimming

speed), and ν1max = 10 (high swimming speed). For these simulations we assume

ε = 0. The results of these simulations are depicted below in Figure 5.5.

Unlike the previous multi-species model, when the phytoplankton movement is

assumed to only be governed by diffusive processes, both species are present. While
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the second species’ biomass distribution is only affected by a drop in overall abundance

(approximately 1,000 cells ml−1 uniformly over depth) between the previous model

and the current model under consideration, species 1 biomass distribution is distinctly

different. This difference is occurring because unlike the previous model, the preferred

limiting nutrient concentration is approximately 0.214 µg L−1 at the surface (in the

previous model nutrient concentrations at the surface are approximately 2 µg L−1).

While Nutrient 2 is present at 2.75 µg L−1 at the surface, it’s impact on growth isn’t

as beneficial and since species 2 is assumed to have a growth rate which proportionally

favors nutrients to light, growth is inhibited. Conversely, since species 1 is assumed to

have a growth rate which proportionally favors light to nutrients, it is more abundant

at the surface than in the previous model simulations.

Figure 5.5: Equations (5.9), (5.10), (5.13), and (5.14) simulations under varying levels
of ν1max = ν2max . Panel A represents the case ν1max = 0. Panel B represents the case
ν1max = 1. Panel C represents the case ν1max = 10.



36

While Figure 5.2 panel A differs significantly from Figure 5.5 panel A, the biomass

distributions for panels B and C are similar thematically. For instance, when swim-

ming speed is low, both species are able to coexist throughout the entire water column

and two DCM’s form. Furthermore, as the swimming speed increases the thickness of

the DCM’s decreases and the phytoplankton stratify throughout the depth at their

preferred niches.

6 Conclusion and Suggestions for Future Work

The proposed multi-species models successfully replicates common layering phenomenon

such as surface scums and deep chlorophyll maxima as seen in nature and in previous

mathematical models such as [11] and [14]. The presence of light and nutrient gradi-

ents are essential in controlling biomass abundance and the coexistence of phytoplank-

ton species can be attributed to how different species specialize on the proportions of

light and nutrients needed to conduct photosynthesis as proposed by MacArthur and

Levins. Additionally, the results from the proposed multi-species models presented

here offer several avenues of continued modelling efforts.

In addition to replicating the various phenomena, the proposed multi-species mod-

els also offer insights into the relationship between a biomass layer and the ratio of

phytoplankton swimming speed and the turbulence of the water. This study focused

on poorly mixed bodies of water. A natural extension of our work would be to con-

sider working with stratified water columns with various levels of mixing depending

on the depth [14]. Currently we are able to show the formations of thin layers under

fast swimming speeds and poor mixing. To further validate the models under consid-

eration it would be important to study the predicted thickness of biomass layers in

different environments.

Besides investigating biomass layering phenomenon in various environments to

show further generality, there are theoretical avenues that our current model simu-
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lations suggest could be fruitful to explore. Since the current models do predict the

formation of thin layers as swimming speed is increased, it is possible that game the-

oretic approximations to the model can be formed. While the simulations discussed

in Sections 4 and 5 are done under biologically feasible parameters, when swimming

speed is increased to 100 m d−1 and ε = 0, increasingly thin layers for all three models

can be exhibited.

Figure 6.1: Demonstration of increasingly thin biomass layers in all three models.

As outlined in [11], since the phytoplankton are able to form thin layers the

competition for light and nutrients can be viewed as a game. The goal is to find a

strategy, in this situation a depth, which is evolutionarily stable. A strategy is said

to be evolutionarily stable if, when the whole population is using this strategy, any

small group of invaders using a different strategy will eventually die off over time

[5]. For the single species, the evolutionary stable strategy (ESS) is the depth that
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prevents growth in the rest of the water column [11], [14].

To form the game theoretic approximation it is assumed that the phytoplankton

can form an infinitely thin layer at a depth zl by setting b(z) = Bδ(zl) where δ(zl) is

the Dirac delta function and B is the total depth-integrated biomass. With this, given

a layer at zl the equilibrium biomass of phytoplankton, the distribution of nutrients,

and light in the absence of movement can be calculated. The ESS depth, z∗, is the

depth where g(z) ≤ 0 for z > z∗ because either there is insufficient nutrients R(z) ≤

R∗ or there is insufficient light I(z) ≤ I∗. The ESS provides a stable equilibrium

for the full model [4], [11]. This has been fully developed for the one species and

one nutrient model in Section 2. The simulation results for the multi-species models

suggest that a similar game theoretic strategy can be developed. To do so, further

mathematical analysis of the proposed multi-species models is required. In particular,

analysis on existence of solutions and equilibrium distributions is needed for a rigorous

treatment.

Finally, to make the model more realistic to use for applications there are a couple

of approaches for further model development that can be considered. Since our sim-

ulations were concerned with long-term layer formations we ran all simulations with

the incident light constant. While it was noted earlier that the model does allow this

result to be relaxed, to further increase model accuracy non-constant light should be

used. In particular, a light pattern of 15 hours of light and 9 hours of dark would be of

considered interest. Additionally, another way the models presented can be modified

to more accurately model aquatic ecosystems is to formulate different mathematical

schemes for the active movement. For simplifying purposes we assumed all species

present in the environment had flagella or cillia so that the active movement can be

done by swimming. While this could serve as a first approximation to the movement

of a species of practical importance like Microcystis, it would be more accurate to

have the active movement be modelled as a function of the internal carbon quota of
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the cell. This is because Microcystis changes the rate at which it conducts photosyn-

thesis to change its buoyancy in the water. Once this task is accomplished it would

be of interest to model a two species system where one species’ active movement was

governed by swimming while the other species’ active movement was governed by

changing buoyancy.
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