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ABSTRACT
A MECHANISTIC MODEL OF MULTIDECADAL CLIMATE VARIABILITY

by

Tyler Plamondon

University of Wisconsin-Milwaukee, 2015

Under the Supervision of Dr. Sergey Kravtsov

This thesis addresses the problem of multidecadal climate variability by constructing and

analyzing the output of a mechanistic model for the Northern Hemisphere’s multidecadal

climate variability. The theoretical backbone of our modeling procedure is the so-called

“stadium-wave” concept, in which interactions between regional climate subsystems are

thought to result in a phase-space propagation of multidecadal climate anomalies across

the hemispheric and global scales. The current generation of comprehensive climate

models do not appear to support the “stadium wave,” which may indicate that either

the models lack the requisite physics, or that the “stadium wave” itself is an artifact of

statistical analyses used to identify it. This research aims to construct a process model

that captures realistic multidecadal teleconnections between well known climatic in-

dices, namely the North Atlantic Oscillation (NAO), Pacific Decadal Oscillation (PDO),

Atlantic Multidecadal Oscillation (AMO), and El Niño/Southern Oscillation (ENSO) in-

dices. The model is shown to predict some major components of the observed temporal

structure within this climate-index network, in particular the maximum positive corre-

lation between AMO and PDO at a +15 year lag, maximum anti-correlation between

AMO and NAO at a lag of -10 years, and a peak positive correlation between the latter

two indices at a +20 year lag, as well as the maximum anti-correlation between NAO

and PDO at a lag of around +30 years. Future work will include exploring the model’s

parametric dependencies and physical feedback mechanisms leading to this behavior.
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Chapter 1

Introduction

The Earth’s climate has gone through a warming period over the course of the 20th

century. Understanding the causes of this warming, how much is anthropogenically

forced and how much is intrinsic, is important both scientifically and economically. This

warming was nonuniform and exhibits pronounced multidecadal variations which may

be a combined effect of nonlinear changes in external forcing ([2], [3], others) with global

intrinsic variability superimposed on warming trends ([4], [5], others). Current climate

models working towards this understanding are uncertain due to extreme sensitivity of

the climate models produced to parameterizations [6].

A current attempt to understand this multidecadal variability is the “stadium wave” hy-

pothesis ([7], [6]). It starts, theoretically, with accumulated observational and modeling

evidence for the existence of the multidecadal intrinsic oscillation rooted in the dynam-

ics of Atlantic Meridional Overturning Circulation (AMOC). It is argued [7] that this

signal attains a hemispheric importance via a sequence of delayed feedbacks resulting in

a “propagation” of a “wave” in a phase space of climate indices. The state-of-the-art

climate models do not appear to support the stadium wave. In this study, we attempt

to construct a mechanistic model that would rationalize the stadium wave.

Previously studied coupled models have been able to produce synthetic climates which

exhibit intrinsic multidecadal variability in the Northern Atlantic. The global expres-

sions of this variability, however, were typically too weak to be able to explain observed

nonuniformity of the global warming rate ([8], [9]). It has been concluded that other fac-

tors must have contributed to the 20–30-yr-long mid-century pause in increasing global
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temperature trends; the most likely candidate being forced climate cooling tropospheric

aerosols [2].

Hemispheric signature is argued by coupled climate modelers to be weak. However,

observations show a ubiquitous multidecadal signal in many climate subsystems defined

using various climate indices such as AMO (Atlantic Multidecadal Oscillation), ENSO

(El-Niño Southern Oscillation), NAO (North Atlantic Oscillation), and PDO (Pacific

Decadal Oscillation). AMO and PDO exhibit pronounced multidecadal signals as well

as annual oscillatory behavior. This multidecadal oscillation is also apparent in NAO as

well as in NAO variance. ENSO does not exhibit strong multidecadal oscillations but

displays a multidecadal variance component.

Building upon the work of Tsonis et al., 2007 [10], recent studies [6] have considered a

network of climate indices associated both dynamically and geographically with different

climate subsystems. They identified oscillatory behavior with a common multidecadal

time scale with varying phases across the different climatic indices. This signal prop-

agates in the space of climate indices and the authors coined this phenomena as a

“stadium wave.” This wave is hypothesized to arise from the affect of AMO acting

on the jet stream (NAO), which propagates a multidecadal signal to the North Pacific

(PDO) and tropical Pacific (ENSO), then closing the loop over the atlantic (through

NAO variance).

This thesis is structured as follows: Chapter 2 discusses the climate indices used as

well as the analytical methods applied to data sets. The mechanistic model for coupled

climate indices is described in chapter 3 beginning with the AMOC (Atlantic Meridional

Overturning Circulation) as the major mechanism for equator-to-pole redistribution of

heat. Results of the model as well as discussions of the differences and similarities

between model and observed indices are presented in chapter 4. Lastly, final remarks

and potential future work will be discussed in chapter 5.
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Chapter 2

Data and Methods

2.1 Data

We considered a suite of well-known climate indices, which characterize the variability

of oceanic and atmospheric regional climate subsystems. These subsystems (and their

respective representative indices) are: Atlantic Ocean with its Meridional Overturning

Circulation (AMO), Northern Hemisphere’s mid-latitude jet-stream and its main jet-

shifting mode (NAO), dominant mode of the North Pacific Ocean’s decadal variability

(PDO), as well as the famous coupled mode of tropical Pacific variability associated with

ENSO.

2.1.1 Atlantic Multidecadal Oscillation (AMO)

The AMO index ([11], [12]) used here is from the NOAA’s Earth System Research

Laboratory [13] and was calculated from the Kaplan SST data set as an area average

over the North Atlantic. The data set runs monthly from January, 1856 to March 2015.

2.1.2 Pacific Decadal Oscillation (PDO)

The PDO index ([14], [15]) used here was made available by Mantua, N.J. [16]. This

index was derived as the leading principal component of monthly SST anomalies pole-

ward of 20◦N in the North Pacific Ocean. The pattern of variability was separated
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from any increasing global temperature trends by removing monthly global average SST

anomalies. This index runs monthly from 1900 to 2001.

2.1.3 El-Niño Southern Oscillation (ENSO)

The ENSO index ([17]) used here is the nino34 index from NOAA [18]. This index was

a computation of average SSTAs across the area [5◦N-5◦S,170◦W-120◦W]. This index

runs monthly from 1870 to 2015.

2.1.4 North Atlantic Oscillation (NAO)

The NAO index ([19], [20]) used here is from the NCAR/UCAR climate data guide [21].

This index is the DJFM (December, January, February, March) station-based data set.

A station index for year ti represents an average of the ti−1 year December value and

January, February, and March of year ti. This index runs annually from 1864 to 2014.

2.2 Data Analysis Methodology

For each time series considered, we first formed the anomalies by removing the least-

squares linear trend and seasonal cycle (see section 4.1). For the latter, we regressed out

the time series associated with the first five harmonics of the seasonal cycle; these time

series have the form

cos
( n

12
2πt

)

, sin
( n

12
2πt

)

(2.1)

where n = 1, 2, ... 5.

We calculated power spectra by means of the classical Welch periodogram method. This

method slides a “window” through the time series, multiplies each window by a taper

signal, calculates the Fourier transform, and computes the variance for each frequency.

Each observed time series was appended ten times in order to compare results of observed

and simulated data based on the default spectral estimation parameters within Matlab.

The spectrum for model indices was computed for 100 hundred-year realizations and an

ensemble average was computed to increase statistical significance (see section 4.2).



5

Essential to the “stadium wave” are the lagged correlations between the different mem-

bers of the climate index network considered (see section 4.3). The cross-covariance of

two time series, x(t) and y(t), is defined as

σxy(τ) =
1

N − 1

N
∑

i=0

(x(i− τ)− x̄)(y(i)− ȳ), (2.2)

where an overbar represents a mean value. The cross-covariance can then be normalized

by dividing σxy by the STD, σx and σy, of each series to obtain the cross-correlation

rxy(τ) =
σxy(τ)

σxσy
. (2.3)

A value of rxy = +1 represents perfect correlation and rxy = −1 corresponds to perfect

anti-correlation. Having a strong correlation or anti-correlation at a lagged time reveals

delayed responses between signals.
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Chapter 3

Mechanistic Model

3.1 AMO

The leading dynamics of the AMO here was hypothesized to be due to intrinsic variabil-

ity of the Atlantic ocean Meridional Overturning Circulation [22]. Following Stommel

(1961) [23], the North Atlantic ocean was modeled using two well-mixed boxes (Fig. 3.1)

exchanging heat via the THC advection, wind mixing (modeled as a temperature diffu-

sion) and driven by the heat fluxes from an overlying atmosphere. The salinity effects

on circulation were neglected for simplicity.

Figure 3.1: Qualitative representation of the Atlantic Ocean. A subscript of 1 cor-
responds to the south box of latitude 0◦-30◦N and a subscript of 2 corresponds to
the north box of latitude 30◦N-90◦N. Upper case A refers to the surface area of the

corresponding basin, and upper case T refers to temperature.

Warm water flows north in the upper layers of the Atlantic ocean followed by a southward

return of cooler water in the lower layer [22]. The volume flux associated with this
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overturning is parameterized, using a two-dimensional convection analogy, as

q ≡ k∆T (t− τa), (3.1)

where ∆T ≡ T1−T2 represents the equator-to-pole temperature gradient, k is a param-

eterization constant with units of [m3t−1K−1], t is time in years, and τa is a delay. This

delay is associated with a dynamical adjustment of the ocean to variable forcing.

The equations describing the evolution of each box can be written as

ρcpAhṪ1 = λ(T ∗

a1 − T1)A− ρcp|q(t)|(T1 − T2)− k∗H(T1 − T2), (3.2)

ρcpAhṪ2 = λ(T ∗

a2 − T2)A− ρcp|q(t)|(T2 − T1)− k∗H(T2 − T1). (3.3)

The air-sea heat flux is parameterized by a linearized bulk formula with the constant

λ, units of [Wm−2K−1], as λ(Ta − T ) where Ta is the radiative equilibrium temper-

ature of the above atmosphere and T is the ocean temperature. Horizontal diffusion,

characterized by the constant k∗H , with units [JK−1t−1], depends on the difference in

temperature between the two basins. The area of each Atlantic ‘box’ are approximately

equal, A1 = A2 ≡ A and h represent the depth of the ocean basins. ρ is the density of

water and cp is the specific heat capacity of water.

Subtracting Eq. 3.3 from Eq. 3.2 then gives the following ODE for the temperature

difference between the two basins:

∆Ṫ = λ̃(∆T ∗

a −∆T )−
|q(t)|

Ah
∆T − kH∆T, (3.4)

where ∆T ∗

a ≡ T ∗

a1 − T ∗

a2, λ̃ ≡ λ/(ρcph), and kH ≡ k∗H/(ρcpAh). This model (Eq. 3.4)

is driven by the specified gradient of the thermal forcing expressed via the meridional

gradient of the atmospheric radiative equilibrium temperature ∆T ∗

a . We postulate, that

in addition to the climatological gradient, ∆T ∗

a , is also influenced by the evolution of

underlying SSTs via Bjerknes-style feedback, and has a substantial noise component due

to atmospheric eddies.

For model tuning, it is useful to derive an expression for the Eq. 3.4 climatology under a

given constant forcing ∆T ∗

a . When the system is in equilibrium: ∆Ṫ=0. Then, solving
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Eq. 3.4 for ∆T as ∆T̄ gives

q̄(t) = k∆T̄ = −
(λ̃+ kH)−

√

(λ̃+ kH)2 + 4k
Ah

λ̃∆T ∗

a

2/(Ah)
. (3.5)

The negative root was chosen in order to guarantee ∆T > 0 in equilibrium. This means

the temperature near the equator is higher than toward the arctic, as one would expect.

Due to the uncertainty in λ, kH can be taken to be zero. Solving Eq. 3.5 for k gives

k =
q̄( q̄

Ah
+ λ̃)

λ̃∆T ∗

a

. (3.6)

Now, a noisy atmosphere is introduced (NAO, section 3.4). This can be broken up into

a base forcing, Bjerknes style feedback of ocean into atmosphere [24], and white noise.

The base forcing is the mean difference in radiative equilibrium temperature of the north

and south atmospheres, the Bjerknes feedback is parameterized by the constant γ, and

the white noise ξ(t) is weighted by the amplitude AN . Mathematically, this all is written

as

∆T ∗

a = ∆T̄a
∗

+ γ∆T +ANξ(t). (3.7)

Plugging Eq. 3.7 into Eq. 3.4 then gives

∆Ṫ = −
|q(t)|

Ah
∆T − λ̃(1− γ)∆T + λ̃∆T̄a

∗

+ λ̃ANξ(t). (3.8)

In order to non-dimensionalize Eq. 3.8, the following scales are defined: [t] ≡1yr and

[T ] ≡1K. Eq. 3.8 can then be multiplied through by [t]/[T ], absorbing [T ] into temper-

ature terms, to get

∆Ṫ = −
|q(t)|

Ah
[t]∆T − λ̃[t](1− γ)∆T + λ̃[t]∆T̄a

∗

+ λ̃[t]ANξ(t). (3.9)

3.1.1 AMO Parameter Choices

Begin by calculating the surface area of the Atlantic basins:

A1 =
π

3
r2E sin(30◦) ≈ A2 ≡ A =

π

3
(6.4 · 106m)2 sin(30◦) = 2.14 · 1013m2. (3.10)
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The depth of the oceanic layer is given in Figure 3.1 as

h = 4000 m. (3.11)

Then, initial tweaking of Eqn. 3.9 gives

λ = 30
W

m2K
−→ λ̃ ≡

λ

ρcph
=

30Wm−2K−1

1000kg ·m−3 · 4000J · kg−1K−1 · 2.14 · 1013m2
,

λ̃ = 1.875 · 10−9 s−1.

The ocean feedback into the atmosphere, parameterized by γ was chosen to be

γ = 0.8.

The difference in radiative equilibrium atmospheric temperatures was assumed

∆T̄ ∗

a = 15 K.

The noise amplitude was chosen to be

AN = 2.

Then, taking the mean volume flux as

q̄ = 8 SV,

allows for the calculation of k via Eqn. 3.6:

k = 0.56 SV ·K−1.

Choosing a delay parameter of

τa = 15 yrs

then completes this model. These parameters were chosen to give comparable results

with observations.



10

3.2 PDO

The proposed model for PDO is given as

Ṫp = −kaTp − koTp(t− τp) + γ(∆T +Apξ(t)), (3.12)

where Tp is the SST anomalies of the North Pacific, ka is the weight of the negative feed-

back with dimensions of frequency, ko is the weight of the delay effect (same dimensions

as ka), and τp is a delay.

The negative linear feedback of Eq. 3.12 represents atmospheric damping of SST anoma-

lies. The choice of damping parameter ka may reflect the air-sea exchange within par-

ticular geographical/dynamical areas such as the interactions between the Aleutian low-

pressure system and the subtropical gyre circulation in the North Pacific [25].

The second term on the right-hand-side of Eq. 3.12 is a delayed suppression of SSTAs.

The underlying dynamics may be attributed to adjustment via oceanic Rossby waves as

a result of variable forcing.

On decadal time scales, NAO (section 3.4, AMO effect and intrinsic atmospheric noise)

is zonally symmetric. It is assumed here that the Atlantic and Pacific exhibit the same

atmospheric forcing. This is represented by the term in parenthesis of Eq. 3.12.

Eq. 3.12 can be made dimensionless by the same kind of argument of Eq. 3.9.

3.2.1 PDO Parameter Choices

Parameters are chosen so that simulations mimic the observed behavior in time and

frequency space (spectral analysis). The delayed feedback amplitude is chosen to be

ko = 0.2 s−1,

the instantaneous atmospheric feedback parameter as

ka = 0.8 s−1,
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the noise amplitude as

Ap = 0.8,

and the delay parameter as

τp = 12 yrs.

3.3 ENSO

ENSO has been treated as a delayed action oscillator in the past ([1], [26], etc..). This

was the basis of the ENSO model here as well. The western side of the tropical Pacific

has a deep thermocline which allows for SST anomalies to influence the atmosphere.

The opposite is the case in the east. Shallow thermocline depth allows for the cool SSTs

to be influenced by wind anomalies. This is shown schematically in Figure 3.2.

Figure 3.2: “In the central to eastern part of the basin, a strong positive feedback
loop exists between SST anomalies, heating anomalies and surface wind anomalies. In
the west, the wind-driven ocean perturbations do not affect SST; but rather perturb the
deep thermocline. Uncoupled or weakly coupled waves travel to the western boundary

and back to the east, where they affect the SST.”[1]

The ENSO model is given as

Ṫe = keTe − bT 3

e −D′Te(t− τe(t)) +AeΓ(t), (3.13)

where Te represents tropical SST anomalies, ke is the parameterization of positive feed-

back, b is the nonlinear suppression coefficient, D′ is weight of delayed negative feedback,

Ae is the white-noise amplitude, Γ represents Gaussian white-noise, and τe is a delay.
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The first term of Eq. 3.13 is known as the Bjerknes feedback for ENSO ([26], [1]). This

is the byproduct of the coupled ocean-atmosphere dynamics in the Pacific. Positive

perturbations of SSTs in the east from a flat thermocline reduces the Walker circulation

which leads to an even flatter thermocline and further warming of SSTs.

Without any sort of suppression, the positive Bjerknes feedback would allow for SST

anomalies to grow without bound. Nonlinear effects, such as advective processes (pri-

marily; [27],[1]) in the ocean and moist processes in the atmosphere act to limit this.

An exact form is not known, so this nonlinear suppression takes a cubic form.

Equatorially trapped ocean waves propagate westward as Rossby waves. These waves

reflect as eastward propagating Kelvin waves and bring the opposite thermocline depth

anomaly to the east coast of the Pacific with a delay τe.

Warm ENSO events tend to occur when PDO is in a positive phase and cool ENSO

events when PDO’s phase is negative. PDO effects the structure of the thermocline

in the equatorial Pacific and this changes the Rossby and Kelvin wave propagation

speeds. In this respect, τe = τe(t). Assuming a constant background delay τ̄e, the time

dependence of τe is then assumed

τe(t) = τ̄e + sTp(t), (3.14)

where s is the amplitude for the modulation of ENSO’s delay parameter by PDO.

Scaling Eq. 3.13, time by the time ket and temperature by
√

b/keTe, allows the equation

to be written in dimensionless form as

Ṫe = Te − T 3

e −DTe(t− τe(t)) +AeΓ(t), (3.15)

where D ≡ D′/ke. Because Ae is just a noise amplitude, it did not get redefined. Te, t,

and τe in Eq. 3.15 are now dimensionless.

3.3.1 ENSO Parameter Choices

Attempting to create ENSO patterns with periods of rapid and weak oscillations on

similar time scales as the observed ENSO, the linear positive-feedback frequency was
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chosen to be

ke = 0.1 yr−1,

the nonlinear damping coefficient as

b = 0.1 K−2yr−1,

the amplitude of delayed feedback from equatorially trapped waves as

D′ = 1 yr−1,

the mean delay of the trapped waves as

t̄e = 10 months,

and the amplitude that modulates the delay of ENSO as

s = 2.

These parameters differ significantly from those chosen in previous literature ([26], [1]).

This model is not meant to be an exact realization of the ENSO effect, so the parameter

choices are not definite. The above values of ke and b are are an order of magnitude

less than previously used values [26]. Also, setting D′ = 1 implies no loss of information

upon reflection of Rossby waves from the eastern Pacific basin. This is not physical.

However, this model is not derived from first principles and the above parameters seem

to give a more realistic ENSO-type behavior such as periods of increasing and decreasing

variance.

3.4 NAO

The proposed NAO model is

Pa = −γ∆T + (1− ǫ)ANξ(t) + ǫTe, (3.16)



14

where Pa represents the difference in SLP anomalies between the sub-tropical and sub-

polar regions of the Atlantic and ǫ is a weight. Equation (3.16) is dimensionless by

construction.

The SLP across the Atlantic will have a significant contribution from the SSTs governed

by AMO. This can be characterized by the Bjerknes feedback and is the first term in

the right-hand-side of (3.16). This means positive ∆T anomalies tend to decrease this

pressure difference, and vice versa.

A recent study [28] suggests that ENSO influences the Atlantic atmosphere. This can be

added to the model in an ad-hoc way by combining ENSO with the noise in the Atlantic

atmosphere from AMO using the wight ǫ.

The only new parameter in NAO to be chosen is ǫ. This is taken to be

ǫ = 0.85

in order to produce similar temporal patterns between the model and observations (see

section 4.1).

3.5 The mechanistic model of coupled oscillators

The model constructed in this section is thus the one for a sequence of coupled delayed

action oscillators, each of which in isolation represents dynamics of various climate

subsystems: AMO, NAO, PDO and ENSO. The AMO behavior affects the NAO via

air–sea coupling, and the NAO transfers this AMO signal to the Pacific, thus introducing

multidecadal time scales into PDO. PDO, in turn, affects the ENSO behavior, which

feeds back on the NAO. To close this system, we should let the ENSO-driven NAO

component (see the last term in 3.16) to affect the AMO as forcing in (3.9). We haven’t

done it yet, so the results discussed below are for the sequence of one-way coupled

oscillators, with ENSO’s effects on AMO suppressed.
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Chapter 4

Results and Discussion

The model was integrated using the standard forward Euler method. The integration

step sizes were as follows:

• AMO : 1 year,

• PDO : 6 months,

• ENSO : 1 month,

• NAO : 1 year.

All observed indices are linearly detrended with the first five harmonics of the natural

cycle removed in order to isolate the anomalies. Dimensionless indices were formed by

dividing each index by its STD. This normalization was also performed on the model

indices.

It turns out that the simulated NAO and PDO indices exhibit systematic phase-shift

biases relative to other indices when compared to the observed shifts. This is clearly a

drawback of our model that will need to be corrected in the future. However, we will

demonstrate in this section that the manual shifting of the simulated NAO index by

10 yr forward and the PDO index — by 12 yr backward results in the best match of

the simulated data’s lagged cross-correlation functions with those of the observed data

In summary, the reconstructions of NAO and PDO were manually shifted to compare

behavior of lagged correlations between different indices (see section 4.3). A total of

102 hundred-year realizations were constructed from Eqns. 3.9, 3.12, 3.15, and 3.16.
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For the manual shifting, the single time series’ (10,200 years) have the beginning (end)

selected years appended to the end (beginning), depending on the direction of the shift

(see section 4.1). Then, the first and last hundred-year segments are discarded before

breaking each long time series into one hundred 100-year sets. This gives no unphysical

discontinuities in the samples.

4.1 Simulated and Observed Climate Variability

Figure 4.1 displays a sample realization of AMO as well as the observed AMO index. It

is seen that the model displays similar multidecadal behavior but is not as noisy on an

annual time scale (see spectral analysis of section 4.2).

As described above, the realization of PDO was manually shifted backwards by one full

delay τp and is plotted in Figure 4.2 along with the observed 6-month mean values of

the PDO index (note that the apparent match of the phase between the observed and

simulated data is completely accidental). All subsequent analysis of the constructed

PDO time series is done with the shifted data. To the naked eye, these two time series

share very similar traits but further analysis is required to better understand this.

A sample realization of the ENSO (unshifted) model is shown in Figure 4.3. Note that

the model, just like observations, shows prolonged decadal periods of strong and frequent

ENSO events.

Finally, a sample of the NAO reconstruction is plotted with the annually observed NAO

index. The NAO reconstruction was shifted 10 years forward (see above) to match

correlations found between AMO and NAO in observations (Section 4.3).
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Figure 4.1: Sample model realization of AMO plotted with observed annual-mean
values of AMO.

Figure 4.2: Sample model realization of PDO plotted with observed annual-mean
values of PDO.
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Figure 4.3: Sample model realization of ENSO plotted with observed monthly values
of ENSO.

Figure 4.4: Sample model realization of NAO plotted with observed annual values of
AMO.
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4.2 Spectral Analysis

The computed spectral densities of both, observed AMO and model AMO, are plotted

in Figure 4.5. The observed AMO spectrum exhibits focused energy in the 50-85 year

period range with a small source at about 25 years. The model primarily describes

dominant periods on the bounds of this range along with a trail of periods into the 25

year range, but not including a significant signal at a period of 25 years.

The PDO model comes close to resolving the three leading periods of the PDO index at

∼60, ∼25, and ∼9 years. This is shown in Figure 4.6. The observed PDO has a strong

source of energy around a period of ∼5.5 years that the model is missing.

The observed ENSO spectrum, shown in Figure 4.7, is fairly noisy in the period range

of 2-12 years with a small source of energy in the 1.4–1.8 year period range. The model

has a much smoother distribution of frequencies in the low frequency range with a peak

period of about 5 years. The energy diminishes quickly among frequencies higher than

this peak. The model is missing oscillations with a period less than 2.5 years.

The observed NAO has peak periods of ∼35 and ∼85 years, as seen in Figure 4.8, whereas

the model also has peak frequencies near these values, the dominant period of 50 years

is a clear consequence of the AMO forcing (see Figure 4.5) .

Figure 4.5: Spectral densities for observed AMO and model AMO. Model AMO
spectral density computed as ensemble average of 100 hundred-year realizations.
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Figure 4.6: Spectral densities for observed PDO and model PDO. Model PDO spectral
density computed as ensemble average of 100 hundred-year realizations.

Figure 4.7: Spectral densities for observed ENSO and model ENSO. Model ENSO
spectral density computed as ensemble average of 100 hundred-year realizations.
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Figure 4.8: Spectral densities for observed NAO and model NAO. Model NAO spec-
tral density computed as ensemble average of 100 hundred-year realizations.
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4.3 Correlations

4.3.1 Smooth Indices

In order to study the correlation of multidecadal trends in the data, both observed

indices and constructed indices were run through a 40-year lowpass Butterworth filter.

This is shown in Figures 4.9 and 4.10. As a reminder, the NAO and PDO constructions

of Figure 4.10 have been shifted (see section 4.1). These multidecadal waves are the

basis of current studies into the “stadium wave” hypothesis. This is a currently debated

topic. While some are looking into possible mechanisms, such as [6] and this thesis,

others believe this multidecadal telloconnection to be a product of applied statistics

[29].

4.3.2 Cross-Correlation of Indices

The first correlation shown in Figure 4.11 is the correlation of AMO with PDO (model

PDO shifted). The observed indices demonstrate a slightly negative correlation (∼-0.1)

at zero lag. With increasing lag comes an increase in correlation up to a maximum

positive correlation of ∼0.7 at a lag of about 15 years. Decreasing the lag from zero

results in an increase in negative correlation until the lag reaches -15 years at which

the correlation is about -0.9. The model creates this same sort of increasing positive

correlation when moving from a lag of zero to a lag of about 13-15 years, where the

model reaches a maximum positive correlation of 0.65-0.97. There is much more noise

in the model when the lag is becoming negative. The strong anti-correlation between

these indices is not captured. Because both of these model indices have been shifted,

this teleconnection is not inherent in this model. Instead, Figure 4.11 highlights the

similarities and differences between observed and constructed indices in the space of lag

times. Further study is needed to rectify this issue.

The correlation of AMO with NAO (model NAO shifted) is shown in Figure 4.12. At a

lag of -12 years, the observed AMO and NAO are maximally anti-correlated at ∼-0.77.

The model also has a maximum anti-correlation in the -10 to -12 year lag range. The

spread of this anti-correlation is between -0.6 and -0.97. This lag range is surrounded

by decreasing anti-correlation in both directions. However, more than 10 lag years in
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either direction from this minimum starts becoming noisy in the model and thus does

not explain the strong positive correlation between AMO and NAO at lags of -45 years

and 21 years. Again, these similarities and differences are relative to the manual shifts

in the AMO and NAO models.

At zero lag, observed NAO is most positively correlated with PDO with a correlation

of ∼0.88 (see Figure 4.13). This correlation is underestimated by the model (both

indices shifted) with a wide uncertainty ranging into negatively correlated values. The

maximum anti-correlation occurs at a lag of about 30 years. The model estimates this

at a lag of ∼26 years and the spread remains negative. The secondary maximum of

anti-correlation of the observed indices occurs at a lag of about -37 years. Similar to

the situation about a lag of zero, the model is very noisy in this region and does not

capture this occurrence. With both of these model indices shifted, these similarities are

not directly inherent in the model.

The reader has been reminded several times of the manual shift in the realizations of

NAO and PDO. Because of these shifts, it was mentioned that the shown teleconnections

in Figures 4.11, 4.12, and 4.13 are not strictly inherent in the model. However, it was

the single shift of PDO by 12 years and NAO by 10 years which resulted in the best

correspondence between observed and model correlations for all simulated realizations.

This suggests the model may be capable of producing the correct lag correlations between

indices with either: further adjustment of parameters, introduction of additional relevant

lags, or introducing missing dynamics such as adding atmospheric forcing to AMO and

PDO by means of ENSO’s effect on NAO.
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Figure 4.9: Observed indices (black) with smoothed indices (red) plotted on top. The
smoothed indices were computed by means of a 40-year lowpass filter.
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Figure 4.10: Model indices (black) with smoothed indices (red) plotted on top. The
smoothed reconstructions were computed by means of a 40-year lowpass filter.
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Figure 4.11: Correlation between smoothed AMO and PDO indices. Observed (black)
and model (red). PDO model index has been shifted as described in the text. The
model spread (blue) is the ±STD of the correlation calculated over one hundred 100-

year correlations.

Figure 4.12: Correlation between smoothed AMO and NAO indices. Observed (black)
and model (red). NAO model index has been shifted as described in the text. The
model spread (blue) is the ±STD of the correlation calculated over one hundred 100-

year correlations.
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Figure 4.13: Correlation between smoothed NAO and PDO indices. Observed (black)
and model (red). Both model indices have been shifted as described in the text. The
model spread (blue) is the ±STD of the correlation calculated over one hundred 100-

year correlations.
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Chapter 5

Conclusions and Future Work

We examined collective multidecadal variability in the observed and simulated indices

representing different sub-systems of the grand climate system. In particular, the dy-

namics of the Atlantic Ocean’s Meridional Overturning Circulation (AMOC) manifests

in multidecadal oscillations of the Atlantic Multidecadal Oscillation (AMO) SST index

(North Atlantic area-averaged SSTs [11]). The North Atlantic SST redistribution is

hypothesized to affect the the mid-latitude jet stream, whose latitudinal shifts recorded

in the variability of the North Atlantic Oscillation (NAO) index [21] communicate the

multidecadal AMOC signal to the Pacific Ocean. This signal is used to drive the noisy

atmosphere of the Pacific Decadal Oscillation’s (PDO) SSTAs poleward of 20◦N ([14],

[16]). The PDO effects the thermocline structure across the equatorial Pacific which

changes the wave propagation speed of equatorially trapped Rossby and Kelvin waves,

one of the primary driving mechanisms of the SSTAs across the equatorial Pacific known

as the El-Ñino Southern Oscillation (ENSO) [18]. This dynamical sequence, referred to

as the stadium wave [6] was modeled mechanistically in a suite of coupled delayed oscil-

lator models representing each subsystem.

Observed climate indices were linearly detrended with the first five harmonics of the

natural seasonal cycle removed in order to isolate anomalies from global warming and

periodic seasonal trends. Both observed and model indices were normalized by their

respective STDs to compare dimensionless time series. Power spectra by means of the

Welch periodogram were computed for observed and constructed series. To increase

statistical significance of model index spectra, one hundred 100-year time series were
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used to compute an ensemble average. Observed and model date sets were smoothed

using a 40-year lowpass Butterworth filter. This smoothing highlights the multidecadal

components of the indices, particularly AMO, NAO, and PDO. The normalized cross-

correlation of indices was then computed from the smoothed versions of observed and

model indices.

Our model produces realizations which have similar temporal behaviors as those of ob-

served indices. AMO is dominated by a multidecadal component in the model but is

lacking in variance on a yearly time-scale. Model PDO demonstrates positive and neg-

ative phases on the multidecadal scale from the influence of AMO as well as realistic

decadal variations. ENSO realizations display multidecadal variations in amplitude vari-

ance which correspond to periods of El-Niño and La-Niña ([27], [28]). The realization

of NAO demonstrates realistic oscillatory amplitudes on yearly time scales as driven by

ENSO as well as a multidecadal component.

From the realizations (with the previously described shifts), we demonstrate the model’s

potential in describing some strong correlations between observed indices. AMO and

PDO have a strong positive correlation at a lag of about 15 years which is resolved by

the the shifted PDO index with statistical significance. The correlation between these

indices surrounding a lag of 15 years is also similar but becomes noisy in the model.

The peak anti-correlation between AMO and NAO is found at a lag of -15 years which

is resolved from the shifted NAO index with statistical significance. The model becomes

particularly noisy when moving to positive lags. NAO and PDO display strong positive

correlation at a lag of zero years, which the model also demonstrates but not with

statistical significance. The strong anti-correlation at a lag of about 30 years is more

statistically resolved by the model but closer to a lag of about 25 years.

Before computing the normalized cross-correlation between smoothed AMO/PDO, AMO/-

NAO, and NAO/PDO, the realizations of NAO and PDO were shifted in order to com-

pare the dependence of the correlations on lag time of the model results with observa-

tions. A single shift of 12 years backwards for PDO and 10 years forward for NAO.

While shifting the data in this fashion doesn’t demonstrate intrinsic multidecadal tele-

connections from within the model, the fact that this single shift gives the most realistic

comparison with observations does demonstrate that there may be a key component of

the model missing or a parameter adjustment is required.
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In the future, we plan on introducing the ENSO-driven NAO component to affect the

AMO forcing. We hope this will increase statistical significance in correlation between

model climate indices as well as account for strong connections seen in observations

which were not present within simulations. As well as improving the present results, we

hope to demonstrate the multidecadal components of ENSO and NAO variance which

may be helpful in predicting future El-NiÑo and La-Niña events.
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