May 2015

The Fattened Davis Complex and the Weighted L^2-(Co)Homology of Coxeter Groups

Wiktor Jerzy Mogilski
University of Wisconsin-Milwaukee

Follow this and additional works at: https://dc.uwm.edu/etd
Part of the Mathematics Commons

Recommended Citation

Mogilski, Wiktor Jerzy, "The Fattened Davis Complex and the Weighted L^2-(Co)Homology of Coxeter Groups" (2015). Theses and Dissertations. 897.
https://dc.uwm.edu/etd/897

The Fattened Davis Complex and the Weighted $L^{2}-(\mathrm{co})$ homology of Coxeter Groups

 byWiktor J. Mogilski

A Dissertation Submitted in Partial Fulfillment of the

Requirements for the Degree of

Doctor of Philosophy
in Mathematics
at

The University of Wisconsin-Milwaukee
May 2015

ABSTRACT
 The Fattened Davis Complex and the Weighted L^{2}-(co)homology of Coxeter Groups

by

Wiktor J. Mogilski

The University of Wisconsin-Milwaukee, 2015
Under the Supervision of Boris L. Okun

Associated to a Coxeter system (W, S) there is a contractible simplicial complex Σ called the Davis complex on which W acts properly and cocompactly by reflections. Given a positive real multiparameter \mathbf{q} indexed by S, one can define the weighted $L^{2}-($ co $)$ homology groups of Σ and associate to them a nonnegative real number called the weighted L^{2}-Betti number. Unfortunately, not much is known about the behavior of these groups when \mathbf{q} lies outside a certain restricted range, and weighted L^{2}-Betti numbers have proven difficult to compute. We propose a program to compute the weighted $L^{2}-(c o)$ homology of Σ by introducing a thickened version of this complex which we call the fattened Davis complex. A salient feature of this complex is that our construction produces a homology manifold with boundary possessing Σ as a W-equivariant retract. This allows us to use many standard algebraic topology tools such as Poincaré duality for computing the $L^{2}-$ (co)homology of Σ, and we successfully perform computations for many examples of Coxeter groups.

Within the spectrum of weighted $L^{2}-(c o) h o m o l o g y ~ t h e r e ~ i s ~ a ~ c o n j e c t u r e ~ o f ~ i n-~$ terest called the Weighted Singer Conjecture. The conjecture claims that if Σ is an n-manifold (equivalently, the nerve of the corresponding Coxeter group is an ($n-1$)sphere), then the weighted $L^{2}-($ co $)$ homology groups of Σ vanish above dimension $\frac{n}{2}$
whenever $\mathbf{q} \leq 1$. We present a proof of the conjecture in dimension three that encompasses all but nine Coxeter groups. Then, under some restrictions on the nerve of the Coxeter group, we obtain partial results whenever $n=4$ (in particular, the conjecture holds for $n=4$ if the nerve of the corresponding Coxeter group is a flag complex). We also prove a version of this conjecture in dimensions three and four whenever Σ is a manifold with (nonempty) boundary, and then extend our results in dimension four to prove a general version of the conjecture for the case where the nerve of the Coxeter group is assumed to be a flag triangulation of a 3-manifold.
(C) Copyright by Wiktor J. Mogilski, 2015

All Rights Reserved

TABle of Contents

1 Introduction 1
2 Coxeter Groups and Preliminaries 5
2.1 Coxeter systems and Coxeter groups 5
2.2 Growth series 6
2.3 Homology manifolds 7
2.4 Mirrored spaces 7
2.4.1 Mirrored homology manifolds with corners 8
2.5 Basic construction 8
2.6 Posets, abstract simplicial complexes, and geometric realizations 11
2.6.1 Flag complexes 12
2.6.2 Geometric realizations 12
2.7 The (Λ, S)-chamber 12
2.7.1 Neighborhoods of faces 13
2.8 The Davis complex 14
2.8.1 The labeled nerve 15
2.8.2 Right-angled cones and suspensions 15
2.8.3 The Coxeter cellulation 15
2.8.4 Twisted products 16
2.9 Virtual cohomological dimension 16
3 Weighted L^{2}-(co)homology 18
3.1 Hecke-von Neumann algebras 18
3.1.1 Induced Hilbert $\mathcal{N}_{\mathbf{q}}-$ modules 19
3.2 Weighted $L^{2}-(c o)$ homology 19
3.2.1 $\quad L_{\mathbf{q}}^{2}-$ Betti numbers and twisted products 22
3.2.2 An alternate definition of $L_{\mathbf{q}}^{2}$-Betti numbers 22
3.3 New and old results for Σ_{L} 23
4 Ruins and Weighted L^{2}-(co)homology 26
4.1 Some Hilbert $\mathcal{N}_{\mathbf{q}}(W)$-submodules of $L_{\mathbf{q}}^{2}(W)$ 26
4.2 Ruins 27
$4.3 L_{\mathbf{q}}^{2}-(\mathrm{co})$ homology of ruins 28
4.4 A spectral sequence 32
$4.5 \quad L_{\mathbf{q}}^{2}-(\mathrm{co})$ homology of $\left(\Sigma, \Sigma^{(k-1)}\right)$ 34
4.6 Some Consequences 38
5 The Weighted Singer Conjecture 43
5.1 The case where L is a disk 44
5.2 A cell structure on K 44
5.3 Andreev's theorem 45
5.4 Equidistant hypersurfaces 48
5.5 The conjecture in dimension three 49
5.6 The conjecture in dimension four 54
5.7 The case where L is a $3-$ manifold 55
6 The Fattened Davis Complex 58
6.1 Construction 58
6.2 Properties of Φ_{L} 60
6.3 The structure of $\partial \Phi_{L}$ 61
6.4 Algebraic topology of Φ_{L} and $\partial \Phi_{L}$ 64
7 Computations 67
7.1 The case where L is a graph 67
7.2 Connection to the Weighted Singer Conjecture 74
7.3 Quasi-Lánner groups 75
7.4 Other 2-spherical groups 77
Bibliography 82
Curriculum Vitae 84

List of Figures

2.1 : (Λ, S)-chamber when Λ is the boundary complex of an octahedron 13
$2.2: \Sigma_{L}$ whenever $W=\mathbb{Z}_{2} * \mathbb{Z}_{2} * \mathbb{Z}_{2}$ 14
3.1 : Weights on the 1 -cells of Σ_{L} whenever $W=\mathbb{Z}_{2} * \mathbb{Z}_{2} * \mathbb{Z}_{2}$ and $\mathbf{q}=q$, a positive real number 20
3.2 : An element of $L_{1}^{2} H_{1}\left(\Sigma_{L}\right)$ whenever $W=\mathbb{Z}_{2} * \mathbb{Z}_{2} * \mathbb{Z}_{2}$ 21
3.3 : Schematic for the proof of Lemma 3.3.8 25
4.1 : Geometric realizations when $U=\{s, t, u\}$ 37
5.1 : K_{d} when W is right-angled and the labeled nerve L is the boundary complex of an octahedron 45
5.2 : The two figures on the left show Euclidean vertices, while the far right is not a Euclidean circuit 47
$6.1: K \subset K^{f} \subset P$ when $W=D_{\infty} \times D_{\infty}$ and $P=\Delta^{3}$ 60
7.1 : K^{f} when $L=K_{4}(3)$ 76
7.2 : Fundamental chamber for $\partial \Phi_{L}$ when $L=K_{5}(3)$ 78
7.3 : 2-spherical Coxeter diagrams satisfying the hypothesis of Corollary 7.4.4 81

ACKNOWLEDGMENTS

I would like to thank my advisor Boris L. Okun for his wonderful guidance, patience and invaluable help. I also thank the other members of my advisory committee for their support and the privilege to learn mathematics from them.

Chapter 1

Introduction

A recurring theme in geometric group theory is the investigation of properties of a group by studying a space on which the group acts on (or vice-versa). This space is usually reasonably nice (for example, a metric space), hence geometric group theory closely interacts with algebraic topology, discrete geometry, and geometric topology. The groups that this thesis focuses on are Coxeter groups, and a construction by Davis equips us with a natural simplicial complex called the Davis complex (denoted by Σ) on which the Coxeter group acts on.

Within the spectrum of Coxeter groups is the theory of weighted $L^{2}-($ co $)$ homology of Coxeter groups, which is the central subject of this thesis. The main idea is to use the Davis complex to attach to the Coxeter group an equivariant cohomology theory where the objects are Hilbert spaces. Let S denote the generating set of the Coxeter group W and begin with an S-tuple $\mathbf{q}=\left(q_{s}\right)_{s \in S}$ of positive real numbers, where $q_{s}=q_{t}$ if s and t are conjugate in W. One uses the S-tuple \mathbf{q} to assign weights (real numbers) to each of the cells of Σ in a way that is compatible with the W action. Elements of $L_{\mathbf{q}}^{2} C_{k}(\Sigma)$ are then infinite W-equivariant real valued k-chains that are square-summable with respect to the weights. In other words, they are real valued functions on the k-cells that are square-summable when taking into account the weights on the k-cells. These spaces are Hilbert spaces, and there is a weighted boundary operator which is adjoint to the ordinary coboundary operator with respect to the inner product (these operators are bounded). One then defines the
reduced $L^{2}-($ co $)$ homology spaces $L_{\mathbf{q}}^{2} H_{*}(\Sigma)$ (the homology and cohomology spaces are isomorphic as Hilbert spaces).

These cohomology groups are generally infinite dimensional when nonzero, but a striking feature of this cohomology theory is that one can assign to these groups a nonnegative real number called the weighted L^{2}-Betti number (hence they are distinguishable). The predominant goal of this subject is to completely determine the weighted L^{2}-Betti numbers $L_{\mathbf{q}}^{2} b_{*}(\Sigma)$ for any Coxeter group. Weighted $L^{2}-$ Betti numbers not only tie the theory of weighted $L^{2}-(\mathrm{co})$ homology to algebraic properties of the Coxeter group, but they also intertwine it with many other topics such as Hecke algebras, growth series, the Euler characteristic conjecture, and operator theory. Outside of the ties to these topics, one of the most important applications of weighted L^{2}-Betti numbers is that they can be used to compute the ordinary L^{2}-Betti numbers of buildings of finite thickness.

Weighted L^{2}-Betti numbers are also notoriously difficult to compute, very little being known when $\mathbf{q} \notin \overline{\mathcal{R}} \cup \overline{\mathcal{R}}^{-1}$, where \mathcal{R} denotes the region of convergence of the growth series of the Coxeter group. In fact, just computing the ordinary $L^{2}-B e t t i$ numbers of Coxeter groups still proves troublesome to this day. To illustrate the difficult nature of these invariants, a formula of Atiyah shows that ordinary $L^{2}-$ Betti numbers can be used to compute the orbihedral Euler characteristic. So, if one considers the fundamental group of a closed aspherical n-manifold, with n even, then knowing the vanishing of the $L^{2}-(c o) h o m o l o g y ~ g r o u p s ~ o f ~ t h e ~ u n i v e r s a l ~$ cover outside of the middle dimension implies the Hopf conjecture on the sign of the
 of as a formidable attack on the Euler characteristic conjecture and has proven to be successful in many situations (for example, in the case of locally symmetric manifolds).

This thesis is structured as follows. In Chapter 2, we introduce some preliminaries and definitions needed for the content of the thesis. For example, we discuss Coxeter groups, growth series, and explain how to construct the Davis complex. To construct the Davis complex, one needs a notion due to Davis called the basic con-
struction. The idea is to start with a certain type of space X called a mirrored space and use a Coxeter group W to build a new space on which the Coxeter group acts on. An important result of this chapter is that we give new conditions on X so that the basic construction produces a homology manifold with boundary with a proper and cocompact Coxeter group action. This result will be especially important in Chapter 6.

Chapter 3 is dedicated to weighted $L^{2}-(c o)$ homology theory. We first introduce the weighted $L^{2}-(c o) h o m o l o g y ~ g r o u p s ~ a n d ~ d e f i n e ~ w e i g h t e d ~ L^{2}-$ Betti numbers. We then introduce an alternate definition of weighted L^{2}-Betti numbers and discuss some previous results for the weighted $L^{2}-(c o)$ homology theory of the Davis complex. The new results of this chapter are as follows. We first observe that it is possible to use any acyclic complex on which the Coxeter group acts properly and cocompactly by reflections to compute the weighted L^{2}-Betti numbers of Coxeter groups. In particular, we can use a vcd W-dimensional complex of Bestvina to compute weighted L^{2}-Betti numbers. An immediate consequence of this is that $L_{\mathbf{q}}^{2} b_{k}(\Sigma)=0$ for $k>\operatorname{vcd} W$, and in many cases this allows us to obtain vanishing of high-dimensional $L_{\mathbf{q}}^{2}-$ Betti numbers, as Bestvina's complex is usually of much lower dimension than the Davis complex. We then show that top-dimensional $L_{\mathbf{q}}^{2}-$ Betti numbers behave monotonically in q. More precisely, we show that if the top-dimensional $L_{\mathbf{q}}^{2}-$ Betti vanishes for $\mathbf{q}=\mathbf{1}$, then it must have been zero for all $\mathbf{q} \leq 1$. This later allows us to "push" many of our computations (as well as previously known computations) from $\mathbf{q}=1$ to $\mathbf{q} \leq 1$.

Chapter 4 focuses on specific W-stable subcomplexes of the Davis complex called ruins, which were used in proofs by Davis, Dymara, Januszkiewicz, and Okun in [8]. By considering a particular exact sequence for the $L_{\mathbf{q}}^{2}-(c o)$ homology involving these complexes (also used in [8]), we are able to show new concentration theorems for the $L_{\mathbf{q}}^{2}-(\mathrm{co})$ homology of ruins. Using a spectral sequence appearing in [10], we are then able to show that for a certain range of $\mathbf{q}, L_{\mathbf{q}}^{2} H_{*}\left(\Sigma, \Sigma^{(k)}\right)$ is concentrated in dimension $k+1$ (here $\Sigma^{(k)}$ denotes the k-skeleton of Σ). We then proceed derive some consequences, one being that we are able to generalize a theorem of Dymara
[12, Theorem 10.3] which states that if $\mathbf{q} \in \mathcal{R}$, then $L_{\mathbf{q}}^{2} H_{*}(\Sigma)$ is concentrated in dimension zero.

In Chapter 5 we consider the Weighted Singer Conjecture, which was formulated in [8]. It states that if Σ is an n-manifold and $\mathbf{q} \leq \mathbf{1}$, then $L_{\mathbf{q}}^{2} H_{k}(\Sigma)$ vanishes for $k>\frac{n}{2}$. We first discuss progress on this conjecture, and then we use the results of Chapter 3 to prove that $L_{\mathbf{q}}^{2} H_{k}(\Sigma)=0$ whenever $k \geq n-1$ and Σ is an n-manifold with (nonempty) boundary. For the case when $n=3,4$, this proves a version of the Weighted Singer Conjecture whenever Σ is an n-manifold with (nonempty) boundary. We then adapt an argument appearing in [8] and combine it with our results to prove the Weighted Singer Conjecture in dimension three. Then, we prove the conjecture in dimension four under some additional restrictions on the nerve of the corresponding Coxeter group. A consequence of this is that the conjecture holds in dimension four if the nerve is assumed to be flag complex. Lastly, we generalize the result in dimension four and show that $L_{\mathbf{q}}^{2} H_{k}(\Sigma)=0$ for $k>2$ whenever the nerve is a flag triangulation of any $3-$ manifold.

In Chapter 6, we construct a complex that we call the fattened Davis complex. The idea is to "fatten" the Davis complex to a (homology) manifold with boundary so that we have standard algebraic topology tools (such as Poincaré duality) at our disposal. We carefully perform this fattening in such a way so that we can understand the weighted $L^{2}-(c o)$ homology of the boundary. In fact, understanding the weighted $L^{2}-(c o) h o m o l o g y ~ o f ~ t h e ~ b o u n d a r y ~ w i l l ~ s i m p l y ~ a m o u n t ~ t o ~ u n d e r s t a n d i n g ~$ the weighted $L^{2}-(c o)$ homology of certain infinite special subgroups of W. A large portion of this chapter is dedicated to studying the structure and algebraic topology of the fattened Davis complex. In Chapter 7, we then use the fattened Davis complex (combined with results from previous chapters) to perform new computations of $L_{\mathbf{q}}^{2-}$ Betti numbers for many examples of Coxeter groups. Of note is that mostly all of the computations are performed for $\mathbf{q} \geq \mathbf{1}$, and hence they compute the ordinary $L^{2}{ }^{-}$ (co)homology of buildings associated to these Coxeter groups with integer thickness vector \mathbf{q}.

Chapter 2

Coxeter Groups and Preliminaries

2.1 Coxeter systems and Coxeter groups

A Coxeter matrix $M=\left(m_{s t}\right)$ on a set S is an $S \times S$ symmetric matrix with entries in $\mathbb{N} \cup\{\infty\}$ such that

$$
m_{s t}= \begin{cases}1 & \text { if } s=t \\ \geq 2 & \text { otherwise }\end{cases}
$$

One can associate to M a presentation for a group W as follows. Let S be the set of generators and let $\mathcal{I}=\left\{(s, t) \in S \times S \mid m_{s t} \neq \infty\right\}$. The set of relations for W is

$$
R=\left\{(s t)^{m_{s t}}\right\}_{(s, t) \in \mathcal{I} .}
$$

The group defined by the presentation $\langle S, R\rangle$ is a Coxeter group and the pair (W, S) is a Coxeter system. If all off-diagonal entries of M are either 2 or ∞, then W is right-angled.

Given a subset $T \subset S$, define W_{T} to be the subgroup of W generated by the elements of T. Then $\left(W_{T}, T\right)$ is a Coxeter system. Subgroups of this form are special subgroups. W_{T} is a spherical subgroup if W_{T} is finite and, in this case, T is a spherical subset. If W_{T} is infinite, then T is non-spherical. We will let \mathcal{S} denote the poset of spherical subsets (the partial order being inclusion).

Given $w \in W$, call an expression $w=s_{1} s_{2} \cdots s_{n}$ reduced if there exists no integer $k<n$ with $w=s_{1}^{\prime} s_{2}^{\prime} \cdots s_{k}^{\prime}$. We define the length of w, denoted by $l(w)$, to be the integer n so that $w=s_{1} s_{2} \cdots s_{n}$ is a reduced expression for w. Given a subset $T \subset S$
and an element $w \in W$, the special coset $w W_{T}$ contains a unique element of shortest length. This element is said to be (\varnothing, T)-reduced.

2.2 Growth series

Suppose that (W, S) is a Coxeter system. Let $\mathbf{t}:=\left(t_{s}\right)_{s \in S}$ denote an S-tuple of indeterminates, where $t_{s}=t_{s^{\prime}}$ if s and s^{\prime} are conjugate in W. If $s_{1} s_{2} \cdots s_{n}$ is a reduced expression for w, define t_{w} to be the monomial

$$
t_{w}:=t_{s_{1}} t_{s_{2}} \cdots t_{s_{n}} .
$$

Note that t_{w} is independent of choice of reduced expression due to Tits' solution to the word problem for Coxeter groups (see the discussion at the beginning of [6, Chapter 17]). The growth series of W is the power series in \mathbf{t} defined by

$$
W(\mathbf{t})=\sum_{w \in W} t_{w} .
$$

The region of convergence \mathcal{R} for $W(\mathbf{t})$ is defined to be

$$
\mathcal{R}:=\left\{\mathbf{t} \in(0,+\infty)^{S} \mid W(\mathbf{t}) \text { converges }\right\} .
$$

For each $T \subset S$, we denote the growth series of the special subgroup W_{T} by $W_{T}(\mathbf{t})$, the respective region of convergence by \mathcal{R}_{T}, and define $\mathbf{t}^{-1}:=\left(t_{s}^{-1}\right)_{s \in S}$. We record the following formula for later computations.

Theorem 2.2.1 ([6, Theorem 17.1.9]).

$$
\frac{1}{W(\mathbf{t})}=\sum_{T \in \mathcal{S}} \frac{(-1)^{|T|}}{W_{T}\left(\mathbf{t}^{-1}\right)}
$$

Note that if W is finite, then $W(\mathbf{t})$ is a polynomial with integral coefficients. Thus an immediate consequence of the above formula is that $W(\mathbf{t})$ is a rational function in \mathbf{t}.

2.3 Homology manifolds

A space X is a homology n-manifold if it has the same local homology groups as \mathbb{R}^{n}, i.e. that for each $x \in X$

$$
H_{k}(X, X-x)= \begin{cases}\mathbb{Z} & \text { if } k=n \\ 0 & \text { otherwise }\end{cases}
$$

The pair $(X, \partial X)$ with ∂X closed in X is a homology n-manifold with boundary if it has the same local homology groups as does a manifold with boundary, i.e., the following conditions hold:

- $X-\partial X$ is a homology n-manifold,
- ∂X is a homology $(n-1)-$ manifold,
- for each $x \in \partial X$, the local homology groups $H_{*}(X, X-x)$ all vanish.
X is a generalized homology n-sphere, abbreviated $G H S^{n}$, if it is a homology $n-$ manifold with the same homology as S^{n}. Similarly, the pair $(X, \partial X)$ is a generalized homology n-disk, abbreviated $G H D^{n}$, if it is a homology n-manifold with boundary with the same homology as the pair $\left(D^{n}, S^{n-1}\right)$. Note that the cone on a generalized homology sphere is a generalized homology disk.

2.4 Mirrored spaces

A mirror structure over a set S on a space X is a family of subspaces $\left(X_{s}\right)_{s \in S}$ indexed by S. Then X is a mirrored space over S. Put $X_{\varnothing}=X$, and for each nonempty subset $T \subseteq S$, define the following subspaces of X :

$$
X_{T}:=\bigcap_{s \in T} X_{s}, \quad X^{T}:=\bigcup_{s \in T} X_{s} .
$$

If (W, S) is a Coxeter system and X is a mirrored space over S, then the mirror structure $\left(X_{s}\right)_{s \in S}$ is W-finite if $X_{T}=\varnothing$ for all non-spherical $T \subseteq S$.

2.4.1 Mirrored homology manifolds with corners

Suppose that X is a mirrored space over a finite set S. X is an S-mirrored homology n-manifold with corners if every nonempty X_{T} is a homology $(n-|T|)$-manifold with boundary $\partial X_{T}=\bigcup_{U \nexists T} X_{U}$. By taking $T=\varnothing$, this definition implies that the pair ($X, \partial X$) is a homology n-manifold with boundary.

Given a Coxeter system (W, S), we set $S^{\prime}=S \cup\{e\}$, where e is the identity element of W. We now say that $T \subseteq S^{\prime}$ is spherical if and only if $T-\{e\}$ is spherical. A mirrored space X over the set S^{\prime} with W-finite mirror structure $\left(X_{s}\right)_{s \in S^{\prime}}$ is a partially S-mirrored homology n-manifold with corners if every nonempty X_{T} is a homology $(n-|T|)$-manifold with boundary $\partial X_{T}=\bigcup_{U \nsubseteq T} X_{U}$. To summarize, we simply have defined the non- S-mirrored part of X to be an auxiliary mirror corresponding to the identity element of W.

2.5 Basic construction

Suppose that (W, S) is a Coxeter system and that X is a mirrored space over S. As before, for each nonempty subset $T \subset S$, let W_{T} be the subgroup of W generated by $T \subset S$. Put $S(x):=\left\{s \in S \mid x \in X_{s}\right\}$. Define an equivalence relation \sim on $W \times X$ by $(w, x) \sim\left(w^{\prime}, y\right)$ if and only if $x=y$ and $w^{-1} w^{\prime} \in W_{S(x)}$. Give $W \times X$ the product topology and let $\mathcal{U}(W, X)$ denote the quotient space:

$$
\mathcal{U}(W, X)=(W \times X) / \sim .
$$

$\mathcal{U}(W, X)$ is the basic construction and X is the fundamental chamber. There is a natural W-action on $W \times X$, and this action respects the equivalence relation, hence the W-action on $W \times X$ descends to a W-action on $\mathcal{U}(W, X)$.

We will be interested in conditions on X which guarantee that the basic construction produces a homology n-manifold with boundary. But first, we consider the following proposition, as the proof is similar to the main result of this subsection.

Proposition 2.5.1 (Compare [6, Proposition 10.7.5]). Suppose that (W, S) is a Coxeter system and that X is an S-mirrored homology n-manifold with corners
with W-finite mirror structure. Then $\mathcal{U}(W, X)$ is a homology n-manifold.
Proof. Without loss of generality suppose that $x \in X$. By excision, we need to show that the local homology groups $H_{\star}(U, U-x)$ are correct for some neighborhood U of x in $\mathcal{U}(W, X)$. If $x \in X-\partial X$ then we are done since $X-\partial X$ is a homology n-manifold and x does not lie in any mirror. As before, set $S(x)=\left\{s \in S \mid x \in X_{s}\right\}$ and suppose that $|S(x)| \geq 1$.

Let V be a neighborhood of x in X. For each $s \in S(x)$, set $V_{s}=V \cap X_{s}$, and give V the mirror structure $\left\{V_{s}\right\}_{s \in S(x)}$. Note that, for each $T \subseteq S(x), V_{T}=V \cap X_{T}$, where as before, $X_{T}=\bigcap_{s \in T} X_{s}$. Now, $x \in X_{S(x)}$, so for each $T \subset S(x), x \in \partial X_{T}\left(X_{T}\right.$ is by assumption a homology $(n-|T|)$-manifold with boundary and $\left.X_{S(x)} \subseteq \partial X_{T}\right)$. Furthermore, x does not lie in $\partial X_{S(x)}$. Therefore by excision, it follows that for each $T \subset S(x)$, the local homology groups $H_{*}\left(V_{T}, V_{T}-x\right)$ vanish, and $H_{*}\left(V_{S(x)}, V_{S(x)}-x\right)$ is concentrated in dimension $n-|S(x)|$ and \mathbb{Z} in that dimension.

Now, define

$$
\begin{aligned}
Z & :=V \cup \operatorname{Cone}(V-x) \\
Z_{s} & :=V_{s} \cup \operatorname{Cone}\left(V_{s}-x\right)
\end{aligned}
$$

So, Z has the mirror structure $\left\{Z_{s}\right\}_{s \in S(x)}$. Since V is a neighborhood of x in X, and $x \in \partial X$, it follows that the local homology groups $H_{*}(V, V-x)$ vanish. In particular, $H_{*}(V) \cong H_{*}(V-x)$, and the Mayer-Vietoris sequence, along with the five lemma, implies that Z is acyclic. Similarly, for each $T \subset S(x)$, since the local homology groups $H_{*}\left(V_{T}, V_{T}-x\right)$ vanish, it follows that Z_{T} is acyclic. Since $H_{*}\left(V_{S(x)}, V_{S(x)}-x\right)$ is concentrated in dimension $n-|S(x)|$ and \mathbb{Z} in that dimension, that Mayer-Vietoris sequence again implies that the same is true for $H_{\star}\left(Z_{S(x)}\right)$. In particular, $Z_{S(x)}$ has the same homology as $S^{n-|S(x)|}$.

We now finish the proof by applying the following lemma:
Lemma 2.5.2 ([6, Corollary 8.2.5]). $\mathcal{U}\left(W_{S(x)}, Z\right)$ has the same homology as S^{n} if and only if there is a unique spherical subset $R \subseteq S(x)$ satisfying the following three conditions:
(a) $W_{S(x)}$ decomposes as $W_{S(x)}=W_{R} \times W_{S(x)-R}$.
(b) For all spherical $T^{\prime} \subseteq S(x)$ with $T^{\prime} \neq R,\left(Z, Z^{T^{\prime}}\right)$ is acyclic.
(c) $\left(Z, Z^{R}\right)$ has the same homology as $\left(D^{n}, S^{n-1}\right)$.

We apply the lemma to $R=S(x)$. Condition (a) is then satisfied vacuously, so we wish to show (b) and (c). For $T \subseteq R$, consider the cover of Z^{T} by the mirrors $\left\{Z_{s}\right\}_{s \in T}$. Note that for each $U \subset R$, the intersection of mirrors Z_{U} is acyclic. The nerve of this cover is a simplex on U, and in particular is contractible. The Acyclic Covering Lemma [3, Theorem 4.4, Ch VII] then implies that Z^{U} is acyclic. Note that Z_{R} has the same homology as $S^{n-|R|}$, so a similar spectral sequence argument also implies that Z^{R} has the same homology as S^{n-1}.

Now, set $U=\mathcal{U}\left(W_{R}, V\right)$. Since $\mathcal{U}\left(W_{R}, Z\right)=U \cup \operatorname{Cone}(U-x)$ and $\mathcal{U}\left(W_{R}, Z\right)$ has the same homology as S^{n}, it follows that $H_{*}(U, U-x)$ is concentrated in dimension n and \mathbb{Z} in that dimension. Therefore U is our desired neighborhood.

Proposition 2.5.3. Suppose that (W, S) is a Coxeter system and suppose that X is a partially S-mirrored homology n-manifold with corners. Set $Y=X_{e}$ and give Y the induced mirror structure $\left(Y_{s}\right)_{s \in S}$, where $Y_{s}:=Y \cap X_{s}$. Then $\mathcal{U}(W, X)$ is a homology n-manifold with boundary $\partial \mathcal{U}(W, X)=\mathcal{U}(W, Y)$.

Proof. Set $\mathcal{U}=\mathcal{U}(W, X)$ and $\partial \mathcal{U}=\mathcal{U}(W, Y)$. Proposition 2.5.1 guarantees that $\partial \mathcal{U}$ is a homology $(n-1)$-manifold. This is because $Y=X_{e}$, and X_{e} (with its induced S-mirror structure) is an S-mirrored homology ($n-1$)-manifold with corners. Similarly, Proposition 2.5.1 implies that $\mathcal{U}-\partial \mathcal{U}$ is a homology n-manifold, since $\mathcal{U}-\partial \mathcal{U}=U(W, Z)$, where $Z=X-Y$ (with its induced S-mirror structure) is an S-mirrored homology n-manifold with corners. It remains to show that for each $x \in \partial \mathcal{U}$, the local homology groups $H_{*}(\mathcal{U}, \mathcal{U}-x)$ vanish.

Suppose that $x \in \partial \mathcal{U}$. Without loss of generality, we can assume that $x \in Y \subset \partial X$. If x does not lie in any mirror $\left(X_{s}\right)_{s \in S}$, then we are done by excision. So, suppose $|S(x)| \geq 1\left(\right.$ recall $\left.S(x)=\left\{s \in S \mid x \in X_{s}\right\}\right)$ and let V be a neighborhood of x in X. We now give V the S-mirror structure as in the proof of Proposition 2.5.1, noting that
the only difference between that proof and the current situation is the fact that the local homology groups $H_{*}\left(V_{S(x)}, V_{S(x)}-x\right)$ vanish. This is because, since $x \in Y$ and $|S(x)| \geq 1$, it follows that $x \in \partial X_{S(x)}$. Now, following the proof of Proposition 2.5.1 line by line, the only difference now is that $Z_{S(x)}$ is acyclic (as opposed to having the homology of S^{n-1} as before). This then implies that $\mathcal{U}\left(W_{S(x)}, Z\right)$ is acyclic [6, Corollary 8.2.8], which in turn implies that the local homology groups $H_{*}(\mathcal{U}, \mathcal{U}-x)$ vanish.

2.6 Posets, abstract simplicial complexes, and geometric realizations

A poset is a partially ordered set. Given a poset \mathcal{P} and an element $p \in \mathcal{P}$, set

$$
\mathcal{P}_{\geq p}:=\{x \in \mathcal{P} \mid x \geq p\} .
$$

Define $\mathcal{P}_{\leq}, \mathcal{P}_{<}$, and $\mathcal{P}_{>}$similarly. The opposite or dual poset to \mathcal{P} is the poset $\mathcal{P}^{o p}$ with the same underlying set but with the order relation reversed.

An abstract simplicial complex consists of a set S (called the vertex set) and a collection \mathcal{S} of finite subsets of S such that
(i) for each $s \in S,\{s\} \in \mathcal{S}$ and
(ii) if $T \in \mathcal{S}$ and if $T^{\prime} \subset T$, then $T^{\prime} \in \mathcal{S}$.

An abstract simplicial complex \mathcal{S} is a poset, the partial order being inclusion. An element of \mathcal{S} is called a simplex. If T is a simplex of \mathcal{S} and $T^{\prime} \leq T$, then we call T^{\prime} a face of T. The dimension of a simplex T is defined by

$$
\operatorname{dim} T:=\operatorname{Card}(T)-1 .
$$

A subset \mathcal{S}^{\prime} of an abstract simplicial complex \mathcal{S} is a subcomplex if it is also an abstract simplicial complex. The subcomplex \mathcal{S}^{\prime} is a full subcomplex if whenever $T \in \mathcal{S}$ such that the vertices of T are contained in \mathcal{S}^{\prime}, then $T \in \mathcal{S}^{\prime}$.

2.6.1 Flag complexes

An incidence relation is a symmetric and reflexive relation. Suppose that \mathcal{P} is a poset. We can symmetrize the partial order to obtain an incidence relation on \mathcal{P} as follows: two elements $p, q \in \mathcal{P}$ are incident if and only if $p \leq q$ or $q \leq p$. Any set of incident elements in a poset is totally ordered. A flag in \mathcal{P} is a finite chain, i.e., a totally ordered subset. When \mathcal{P} is a poset, $\operatorname{Flag}(\mathcal{P})$ denotes the abstract simplicial complex of all flags in \mathcal{P}. It is called the flag complex of \mathcal{P}.

2.6.2 Geometric realizations

Suppose that \mathcal{S} is an abstract simplicial complex with vertex set S. Let \mathbb{R}^{S} denote the vector space of all finitely supported functions $S \rightarrow \mathbb{R}$. For each $s \in S$ let e_{s} denote the characteristic function of $\{s\}$. The standard simplex on S, denoted by Δ^{S}, is the convex hull of the standard basis $\left\{e_{s}\right\}_{s \in S}$ of \mathbb{R}^{S}.

For each nonempty finite subset $T \subset S$, let σ_{T} denote the face of Δ^{S} spanned by T. Define a subcomplex $\operatorname{Geom}(\mathcal{S})$ of Δ^{S} by

$$
\sigma_{T} \in \operatorname{Geom}(\mathcal{S}) \text { if and only if } T \in \mathcal{S}_{>\varnothing}
$$

The simplicial complex $\operatorname{Geom}(\mathcal{S})$ is called the standard geometric realization of \mathcal{S}.

The geometric realization of a poset \mathcal{P} is now defined to be the geometric realization of the simplicial complex $\operatorname{Flag}(\mathcal{P})$. We use the notation

$$
|\mathcal{P}|:=\operatorname{Geom}(\operatorname{Flag}(\mathcal{P})) .
$$

2.7 The (Λ, S)-chamber

A cell is the convex hull of finitely many points in \mathbb{R}^{n}. A cell complex is a collection of cells Λ where
(i) if $C \in \Lambda$ and F is a face of C, then $F \in \Lambda$,
(ii) for any two cells $C_{1}, C_{2} \in \Lambda$, either $C_{1} \cap C_{2}=\varnothing$ or $C_{1} \cap C_{2}$ is a common face of C_{1} and C_{2},
(iii) Λ is locally finite, i.e. each cell in Λ is contained in only finitely many other cells of Λ.

Suppose that Λ is a cell complex with vertex set S and let $\mathcal{F}(\Lambda)$ denote the poset of cells of Λ, including the empty set. Let $P:=|\mathcal{F}(\Lambda)|$ denote the geometric realization of the poset $\mathcal{F}(\Lambda)$. For each $T \in \mathcal{F}(\Lambda)$, define $P_{T}:=\left|\mathcal{F}(\Lambda)_{\geq T}\right|$ and $\partial P_{T}:=\left|\mathcal{F}(\Lambda)_{>T}\right|$, so each P_{T} is the cone on $b \operatorname{Link}(T, \Lambda)$, the barycentric subdvision of $\operatorname{Link}(T, \Lambda)$. In particular, taking $T=\varnothing$, we have that P is the cone on $b \Lambda$, with cone point corresponding to \varnothing. For each $s \in S$, put $P_{s}:=P_{\{s\}}$. This endows P with the mirror structure $\left(P_{s}\right)_{s \in S} . P$ is the (Λ, S)-chamber.

Figure 2.1: (Λ, S)-chamber when Λ is the boundary complex of an octahedron

Note that if Λ is a $G H S^{n-1}$, then the link of every cell σ in Λ is a $G H S^{n-\operatorname{dim} \sigma-2}$. It follows that P is a $G H D^{n}$ and that for each $T \in \mathcal{F}(\Lambda)$, the pair $\left(P_{T}, \partial P_{T}\right)$ is a $G H D^{n-\operatorname{dim} \sigma_{T}-1}$, where σ_{T} is the geometric cell in Λ spanned by T.

2.7.1 Neighborhoods of faces

Let σ_{T} denote the geometric cell spanned by the vertex set T in Λ, and let $b \sigma_{T}$ denote its barycentric subdivision. By definition, $b \sigma_{T}$ is the $\left(\partial \sigma_{T}, T\right)$-chamber, and in particular, σ_{T} has a natural mirror structure over T.
P is itself a flag simplicial complex, and for each $T \in \mathcal{F}(\Lambda), P_{T}$ is a subcomplex of P. Hence $P_{T}-\bigcup_{U \supset T} P_{U}$ has a neighborhood of the form $\sigma_{T} * P_{T}$, the join of σ_{T}
and P_{T}. Following the join lines for a little while, it follows that $P_{T}-\bigcup_{U \supset T} P_{U}$ has neighborhoods of the form Cone $\left(\sigma_{T}\right) \times P_{T}$. We record this fact, as we will use it in an upcoming construction.

2.8 The Davis complex

Suppose that (W, S) is a Coxeter system and, as before, denote by \mathcal{S} the poset of all spherical subsets of S, partially ordered by inclusion. \mathcal{S} is an abstract simplicial complex with vertex set S. Let L be the geometric realization of the abstract simplicial complex \mathcal{S} and K be the (L, S)-chamber. In this special situation, K is called the Davis chamber and L is called the nerve of (W, S).

For each $s \in S$ define

$$
K_{s}:=\left|\mathcal{S}_{\geq\{s\}}\right| .
$$

So, K_{s} is the union of simplices in K with minimum vertex $\{s\}$. The family $\left(K_{s}\right)_{s \in S}$ is a mirror structure on K.

The Davis complex Σ_{L} associated to the nerve L is now defined to be $\Sigma_{L}:=$ $\mathcal{U}(W, K)$.

Figure 2.2: Σ_{L} whenever $W=\mathbb{Z}_{2} * \mathbb{Z}_{2} * \mathbb{Z}_{2}$

Note that Σ_{L} is naturally a simplicial complex, the simplicial structure of K inducing a simplicial structure on Σ_{L}, and moreover, it is proved in [7] that Σ_{L} is contractible. Furthermore, if L is a triangulation of an $(n-1)$-sphere, then Σ_{L} is an n-manifold.

2.8.1 The labeled nerve

There is a natural way to label the edges of L so that the Coxeter system (W, S) can be recovered (up to isomorphism) from L. Let $E(L)$ denote the set of edges of L. We define the labeling map $m: E(L) \rightarrow\{2,3, \ldots\}$ by sending $\{s, t\} \rightarrow m_{s t}$, where $m_{s t} \in \mathbb{N}$ and $(s t)^{m_{s t}}=1 . L$ with this labeling map is the labeled nerve.

2.8.2 Right-angled cones and suspensions

Let c denote a point and let L be the labeled nerve. Consider the join $L^{\prime}=c * L$, where all of the new edges are labeled by $2 . L^{\prime}$ is called the right-angled cone on L. Note that the corresponding Coxeter system to L^{\prime} is $\left(W \times \mathbb{Z}_{2}, S \cup\{c\}\right)$, and $\Sigma_{L^{\prime}}=\Sigma_{L} \times[-1,1]$.

If P is a collection of two points, not joined by an edge, then we call the rightangled join $P * L$ the right-angled suspension of L. If the points of P are c_{1} and c_{2}, then the corresponding Coxeter system to the right-angled suspension of L is $\left(W \times D_{\infty}, S \cup\left\{c_{1}, c_{2}\right\}\right)$, where D_{∞} is the infinite dihedral group.

2.8.3 The Coxeter cellulation

The Davis complex also admits a decomposition into Coxeter cells. For each $T \in$ \mathcal{S}, let v_{T} denote the corresponding barycenter in K. Let c_{T} denote the union of simplices $c \subset \Sigma_{L}$ such that $c \cap K_{T}=v_{T}$. The boundary of c_{T} is then cellulated by $w c_{U}$, where $w \in W_{T}$ and $U \subset T$. With its simplicial structure, the boundary ∂c_{T} is the Coxeter complex corresponding to the Coxeter system $\left(W_{T}, T\right)$, which is a sphere since W_{T} is finite. It follows that c_{T} and its translates are disks, which are called Coxeter cells of type T. We denote Σ_{L} with this decomposition into Coxeter cells by $\Sigma_{c c}$. Note that $\Sigma_{c c}$ is a regular CW complex with with poset of cells that can
be identified with $W \mathcal{S}:=\left\{w W_{U} \mid w \in W, T \in \mathcal{S}\right\}$. The simplicial structure on Σ_{L} is the geometric realization of the poset $W \mathcal{S}$, hence Σ_{L} is the barycentric subdivision of $\Sigma_{c c}$. The properties of the Coxeter cellulation can be summarized as follows:

Proposition 2.8.1 ([6, p.130, Proposition 7.3.4]). $\Sigma_{c c}$ has the following properties:
(i) its vertex set is W, its 1-skeleton is the Cayley graph, Cay (W, S), and its 2-skeleton is a Cayley 2-complex,
(ii) the link of each vertex is isomorphic to L,
(iii) a subset of W is the vertex set of a cell if and only if it is a coset of a spherical subgroup,
(iv) the poset of cells is $W \mathcal{S}$.

2.8.4 Twisted products

Suppose that H acts on Y and that H is a subgroup of G. The twisted product $G \times_{H} Y$ is the quotient space of $G \times Y$ by the action $h(g, x)=\left(g h^{-1}, h x\right)$. The natural G-action on $G \times Y$ descends to a G-action on $G \times_{H} Y$. Hence one can view $G \times_{H} Y$ as a G-bundle over G / H, and if G / H is discrete, then it follows that $G \times_{H} Y$ is just a disjoint union of copies of Y, one for each element of G / H.

Now, suppose that (W, S) is a Coxeter system with Davis complex Σ_{L} and that $T \subset S$. Let Σ_{T} denote the Davis complex corresponding to the subgroup W_{T}. It follows that the subcomplex of Σ_{L} corresponding to W_{T} is $W \Sigma_{T}:=W \times_{W_{T}} \Sigma_{T}$. In particular, Σ_{L} contains a copy of Σ_{T} for every coset of W_{T}.

2.9 Virtual cohomological dimension

The cohomological dimension of a group Γ is

$$
\operatorname{cd} \Gamma:=\sup \left\{n \mid H^{n}(\Gamma ; M) \neq 0 \text { for some } \mathbb{Z} \Gamma \text { - module } M\right\} .
$$

If Γ is virtually torsion free, then its virtual cohomological dimension, denoted by $\operatorname{vcd} \Gamma$, is the cohomological dimension of any torsion-free subgroup of finite index.

Since Coxeter groups are virtually torsion free, it makes sense to talk about their virtual cohomological dimension, denoted by vcd W. In fact, given a Coxeter system (W, S), one can determine vcd W simply by looking at the nerve. Given a spherical $T \in \mathcal{S}$, let σ_{T} denote the corresponding closed simplex in the nerve L.

Proposition 2.9.1 ([6, Corollary 8.5.5]).

$$
\operatorname{vcd} W=\max \left\{n \mid \bar{H}^{n-1}\left(L-\sigma_{T}\right) \neq 0, \text { for some } T \in \mathcal{S}\right\}
$$

Note that the dimension of Σ_{L} is usually much larger than vcd W. For example, when W is finite, $\operatorname{dim} \Sigma_{L}=|S|$, while $\operatorname{vcd} W=0$.

Chapter 3

Weighted $L^{2}-(\mathbf{c o})$ homology

In this chapter we present a brief introduction to weighted L^{2-} (co)homology. Further details can be found in $[6,8,12]$. We then compile some new and old results pertaining to the weighted $L^{2}-(\mathrm{co})$ homology of the Davis complex Σ_{L}.

Let (W, S) be a Coxeter system. For the remainder of this thesis, let $\mathbf{q}=\left(q_{s}\right)_{s \in S}$ denote an S-tuple of positive real numbers satisfying $q_{s}=q_{s^{\prime}}$ whenever s and s^{\prime} are conjugate in W. Set $\mathbf{q}^{-1}=\left(q_{s}^{-1}\right)_{s \in S}$. If $w=s_{1} \cdots s_{n}$ is a reduced expression for $w \in W$, we define $q_{w}:=q_{s_{1}} \cdots q_{s_{n}}$.

3.1 Hecke-von Neumann algebras

Let $\mathbb{R}(W)$ denote the group algebra of W and let $\left\{e_{w}\right\}_{w \in W}$ denote the standard basis on $\mathbb{R}(W)$ (here e_{w} denotes the characteristic function of $\{w\}$). Given a multiparameter \mathbf{q} of positive real numbers as above, we deform the standard inner product on $\mathbb{R}(W)$ to an inner product

$$
\left\langle e_{w}, e_{w^{\prime}}\right\rangle_{\mathbf{q}}= \begin{cases}q_{w} & \text { if } w=w^{\prime} \\ 0 & \text { otherwise }\end{cases}
$$

Using the multiparameter \mathbf{q}, one can give $\mathbb{R}(W)$ the structure of a Hecke algebra. We will denote $\mathbb{R}(W)$ with this inner product and Hecke algebra structure by $\mathbb{R}_{\mathbf{q}}(W)$, and $L_{\mathbf{q}}^{2}(W)$ will denote the Hilbert space completion of $\mathbb{R}_{\mathbf{q}}(W)$ with respect to $\langle,\rangle_{\mathbf{q}}$. There is a natural anti-involution on $\mathbb{R}_{\mathbf{q}}(W)$, which implies that there is
an associated Hecke-von Neumann algebra $\mathcal{N}_{\mathbf{q}}(W)$ acting on the right on $L_{\mathbf{q}}^{2}(W)$. It is the algebra of all bounded linear endomorphisms of $L_{\mathbf{q}}^{2}(W)$ which commute with the left $\mathbb{R}_{\mathbf{q}}(W)$-action.

Define the von Neumann trace of $\phi \in \mathcal{N}_{\mathbf{q}}(W)$ by $\operatorname{tr}_{\mathcal{N}_{\mathbf{q}}}(\phi):=\left\langle e_{1} \phi, e_{1}\right\rangle_{\mathbf{q}}$, and similarly for an $(n \times n)$-matrix with coefficients in $\phi \in \mathcal{N}_{\mathbf{q}}(W)$ by taking the sum of the von Neumann traces of elements on the diagonal. This allows us to attribute an nonnegative real number called the von Neumann dimension for any closed subspace of an n-fold direct sum of copies of $L_{\mathbf{q}}^{2}(W)$ which is stable under the $\mathbb{R}_{\mathbf{q}}(W)-$ action, called a Hilbert $\mathcal{N}_{\mathbf{q}}-$ module. If $V \subseteq\left(L_{\mathbf{q}}^{2}(W)\right)^{n}$ is a Hilbert $\mathcal{N}_{\mathbf{q}}-$ module, and $p_{V}:\left(L_{\mathbf{q}}^{2}(W)\right)^{n} \rightarrow\left(L_{\mathbf{q}}^{2}(W)\right)^{n}$ is the orthogonal projection onto V (note that $\left.p_{V} \in \mathcal{N}_{\mathbf{q}}(W)\right)$, then define

$$
\operatorname{dim}_{\mathcal{N}_{\mathbf{q}}} V:=\operatorname{tr}_{\mathcal{N}_{\mathbf{q}}}\left(p_{V}\right)
$$

3.1.1 Induced Hilbert \mathcal{N}_{q}-modules

Suppose that $T \subset S$ and that V_{T} is a Hilbert $\mathcal{N}_{\mathbf{q}}\left(W_{T}\right)$-module. The induced Hilbert $\mathcal{N}_{\mathbf{q}}-$ module V is defined to be the completion of the tensor product

$$
L_{\mathbf{q}}^{2}(W) \otimes_{\mathbb{R}_{\mathbf{q}}\left(W_{T}\right)} V_{T} .
$$

A standard fact is that its dimension is given by

$$
\operatorname{dim}_{\mathcal{N}_{\mathbf{q}}} V=\operatorname{dim}_{\mathcal{N}_{\mathbf{q}}\left(W_{T}\right)} V_{T}
$$

3.2 Weighted $L^{2}-($ co $)$ homology

Suppose (W, S) is a Coxeter system and that X is a mirrored finite CW complex over S. Set $\mathcal{U}=\mathcal{U}(W, X)$. We first orient the cells of X and extend this orientation to \mathcal{U} in such a way so that if σ is a positively oriented cell of X, then $w \sigma$ is positively oriented for each $w \in W$.

We define a measure on the W-orbit of an $i-$ cell $\sigma \in X$ by

$$
\mu_{\mathbf{q}}(w \sigma)=q_{u}
$$

where u is $(\varnothing, S(\sigma))$-reduced and $S(\sigma):=\left\{s \in S \mid \sigma \subseteq X_{s}\right\}$. This extends to a measure on the i-cells $\mathcal{U}^{(i)}$, which we also denote by $\mu_{\mathbf{q}}$.

Figure 3.1: Weights on the 1 -cells of Σ_{L} whenever $W=\mathbb{Z}_{2} * \mathbb{Z}_{2} * \mathbb{Z}_{2}$ and $\mathbf{q}=q$, a positive real number

Define the \mathbf{q}-weighted i-dimensional $L^{2}-(c o)$ chains on \mathcal{U} to be the Hilbert space:

$$
L_{\mathbf{q}}^{2} C_{i}(\mathcal{U})=L_{\mathbf{q}}^{2} C^{i}(\mathcal{U})=L^{2}\left(\mathcal{U}^{(i)}, \mu_{\mathbf{q}}\right)
$$

These are infinite W-equivariant square summable (with respect to $\mu_{\mathbf{q}}$) real-valued i-chains. The inner product is given by

$$
\langle f, g\rangle_{\mathbf{q}}=\sum_{\sigma} f(\sigma) g(\sigma) \mu_{\mathbf{q}}(\sigma)
$$

and we denote the induced norm by $\left\|\left\|\|_{\mathbf{q}}\right.\right.$.
The boundary map $\partial_{i}: L_{\mathbf{q}}^{2} C_{i}(\mathcal{U}) \rightarrow L_{\mathbf{q}}^{2} C_{i-1}(\mathcal{U})$ and coboundary map $\delta^{i}: L_{\mathbf{q}}^{2} C_{i}(\mathcal{U}) \rightarrow$ $L_{\mathbf{q}}^{2} C_{i+1}(\mathcal{U})$ are defined by the usual formulas, however there is one caveat: they are not adjoints with respect to this inner product whenever $\mathbf{q} \neq \mathbf{1}$. Thus one remedies this issue by perturbing the boundary map ∂_{i} to $\partial_{i}^{\mathbf{q}}$:

$$
\partial_{i}^{\mathbf{q}}(f)\left(\sigma^{i-1}\right)=\sum_{\sigma^{i-1} c \alpha^{i}}[\sigma: \alpha] \mu_{\mathbf{q}}(\alpha) \mu_{\mathbf{q}}^{-1}(\sigma) f(\alpha) .
$$

A simple computation shows that $\partial_{i}^{\mathbf{q}}$ is the adjoint of δ^{i} with respect to the weighted inner product, hence $\left(L_{\mathbf{q}}^{2} C_{*}(\mathcal{U}), \partial_{i}^{\mathbf{q}}\right)$ is a chain complex. We now define the reduced \mathbf{q}-weighted $L^{2}-($ co)homology by

$$
\begin{gathered}
L_{\mathbf{q}}^{2} H_{i}(\mathcal{U})=\operatorname{Ker}_{i}^{\mathbf{q}} / \overline{\operatorname{Im} \partial_{i+1}^{\mathbf{q}}}, \\
L_{\mathbf{q}}^{2} H^{i}(\mathcal{U})=\operatorname{Ker} \delta^{i} / \overline{\operatorname{Im} \delta^{i-1}} .
\end{gathered}
$$

Figure 3.2: An element of $L_{\mathbf{1}}^{2} H_{1}\left(\Sigma_{L}\right)$ whenever $W=\mathbb{Z}_{2} * \mathbb{Z}_{2} * \mathbb{Z}_{2}$
The Hodge Decomposition implies that $L_{\mathbf{q}}^{2} H^{i}(\mathcal{U}) \cong L_{\mathbf{q}}^{2} H_{i}(\mathcal{U}) \cong \operatorname{ker} \partial_{i}^{\mathbf{q}} \cap \operatorname{ker} \delta^{i}$ and versions of Eilenberg-Steenrod axioms hold for this homology theory. There is also a weighted version of Poincaré duality: If \mathcal{U} is a locally compact homology n-manifold with boundary $\partial \mathcal{U}$, then

$$
L_{\mathbf{q}}^{2} H_{i}(\mathcal{U}) \cong L_{\mathbf{q}^{-1}}^{2} H_{n-i}(\mathcal{U}, \partial \mathcal{U}) .
$$

One can also assign the von Neumann dimension to each of the Hilbert spaces $L_{\mathbf{q}}^{2} H_{i}(\mathcal{U})$ (as they are Hilbert $\mathcal{N}_{\mathbf{q}}-$ modules). We denote this by $L_{\mathbf{q}}^{2} b_{i}(\mathcal{U})$ and call it the i-th $L_{\mathbf{q}}^{2}-$ Betti number of \mathcal{U}. We then define the weighted Euler characteristic of \mathcal{U} :

$$
\chi_{\mathbf{q}}(\mathcal{U})=\sum(-1)^{i} L_{\mathbf{q}}^{2} b_{i}(\mathcal{U})
$$

3.2.1 $\quad L_{\mathbf{q}}^{2}-$ Betti numbers and twisted products

Suppose that X is a mirrored finite CW complex and and let $T \subset S$. Recall the twisted product $W \times_{W_{T}} \mathcal{U}\left(W_{T}, X\right)$. It follows that the $\mathcal{N}_{\mathbf{q}}-$ module

$$
L_{\mathbf{q}}^{2} H_{*}\left(W \times_{W_{T}} \mathcal{U}\left(W_{T}, X\right)\right)
$$

is induced from the $\mathcal{N}_{\mathbf{q}}\left(W_{T}\right)$-module $L_{\mathbf{q}}^{2} H_{*}\left(\mathcal{U}\left(W_{T}, X\right)\right)$. Thus

$$
L_{\mathbf{q}}^{2} b_{*}\left(W \times_{W_{T}} \mathcal{U}\left(W_{T}, X\right)\right)=L_{\mathbf{q}}^{2} b_{*}\left(\mathcal{U}\left(W_{T}, X\right)\right)
$$

3.2.2 An alternate definition of $L_{\mathbf{q}}^{2}$-Betti numbers

As discussed in $[10, \S 6]$, there is an alternate approach in defining $L_{\mathbf{q}}^{2}$-Betti numbers using the ideas of Lück [15]. The main point is that there is an equivalence of categories between the category of Hilbert $\mathcal{N}_{\mathbf{q}}-$ modules and projective modules of $\mathcal{N}_{\mathbf{q}}$. Hence one can define $\operatorname{dim}_{\mathcal{N}_{\mathbf{q}}} M$ for a finitely generated projective $\mathcal{N}_{\mathbf{q}}-$ module M which agrees with the dimension of the corresponding Hilbert $\mathcal{N}_{\mathbf{q}}-$ module. So, $\operatorname{dim}_{\mathcal{N}_{\mathbf{q}}} M$ for an arbitrary $\mathcal{N}_{\mathbf{q}}$-module is then defined to be the dimension of its projective part.

As before, suppose (W, S) is a Coxeter system and that X is a mirrored finite CW complex over S. Set $\mathcal{U}=\mathcal{U}(W, X)$. As in [15], define $H_{*}^{W}\left(\mathcal{U}, \mathcal{N}_{\mathbf{q}}(W)\right)$ to be the homology of the $\mathcal{N}_{\mathbf{q}}(W)$-chain complex

$$
C_{*}^{W}\left(\mathcal{U}, \mathcal{N}_{\mathbf{q}}(W)\right):=\mathcal{N}_{\mathbf{q}}(W) \otimes_{\mathbb{R}_{\mathbf{q}}(W)} C_{*}(\mathcal{U})
$$

where $C_{*}(\mathcal{U})$ is the cellular chain complex of \mathcal{U} with the induced $\mathbb{R}_{\mathbf{q}}(W)$-structure. Similarly, define the cohomology groups $H_{W}^{\star}\left(\mathcal{U}, \mathcal{N}_{\mathbf{q}}(W)\right)$ to be the cohomology of the complex

$$
C_{W}^{*}\left(\mathcal{U}, \mathcal{N}_{\mathbf{q}}(W)\right):=\operatorname{Hom}_{W}\left(C_{*}(\mathcal{U}), \mathcal{N}_{\mathbf{q}}(W)\right) .
$$

It then follows that

$$
L_{\mathbf{q}}^{2} b_{i}(\mathcal{U})=\operatorname{dim}_{\mathcal{N}_{\mathbf{q}}} H_{i}^{W}\left(\mathcal{U}, \mathcal{N}_{\mathbf{q}}(W)\right)=\operatorname{dim}_{\mathcal{N}_{\mathbf{q}}} H_{W}^{i}\left(\mathcal{U}, \mathcal{N}_{\mathbf{q}}(W)\right) .
$$

The advantage of these definitions is that we do no need to take closures of images as in the definition of reduced \mathbf{q}-weighted $L^{2}-(c o)$ homology (this is particularly useful when dealing with spectral sequences).

3.3 New and old results for Σ_{L}

In this section we begin by stating some previous results on the weighted $L^{2}-$ (co)homology of Σ_{L}. We start with the following result of Dymara, which explicitly computes $L_{\mathbf{q}}^{2} b_{0}\left(\Sigma_{L}\right)$.

Proposition 3.3.1 ([12, Theorem 7.1, Theorem 10.3]). $L_{\mathbf{q}}^{2} b_{0}\left(\Sigma_{L}\right) \neq 0$ if and only if $\mathbf{q} \in \mathcal{R}$. Moreover, when $\mathbf{q} \in \mathcal{R}, L_{\mathbf{q}}^{2} b_{k}\left(\Sigma_{L}\right)=0$ for $k>0$.

Dymara also computes the weighted Euler characteristic of Σ_{L}, revealing the connection between weighted $L^{2}-(c o)$ homology of Σ_{L} and the growth series of the corresponding Coxeter group W.

Proposition 3.3.2 ([12, Corollary 3.4]).

$$
\chi_{\mathbf{q}}\left(\Sigma_{L}\right)=\frac{1}{W(\mathbf{q})}
$$

Recall that $\Sigma_{c c}$ denotes Σ_{L} with the Coxeter cellulation (see Section 2.8.3). The following proposition states that if we compute the weighted $L^{2}-$ (co)homology with respect to either cellulation, then we get the same answer.

Proposition 3.3.3 ([12, Theorem 5.5]).

$$
L_{\mathbf{q}}^{2} H_{*}\left(\Sigma_{L}\right) \cong L_{\mathbf{q}}^{2} H_{*}\left(\Sigma_{c c}\right)
$$

In conjunction with Proposition 3.3.2, the following theorem explicitly computes the weighted $L^{2}-(c o)$ homology of Coxeter groups which act properly and cocompactly by reflections on Euclidean space.

Theorem 3.3.4 ([8, Corollary 14.5]). Suppose that W is a Euclidean reflection group with nerve L.

- If $\mathbf{q} \leq \mathbf{1}$, then $L_{\mathbf{q}}^{2} H_{*}\left(\Sigma_{L}\right)$ is concentrated in dimension 0 .
- If $\mathbf{q} \geq \mathbf{1}$, then $L_{\mathbf{q}}^{2} H_{*}\left(\Sigma_{L}\right)$ is concentrated in dimension n.

The following lemma says that we can compute the weighted L^{2}-Betti numbers of any acyclic complex of the form $\mathcal{U}(W, X)$, with X finite, on which W acts properly, and get the same answer. Thus we will sometimes write $L_{\mathbf{q}}^{2} b_{k}(W)$ instead of $L_{\mathbf{q}}^{2} b_{k}\left(\Sigma_{L}\right)$ to denote the k-th $L_{\mathbf{q}}^{2}-$ Betti number of W.

Lemma 3.3.5. Let (W, S) be a Coxeter system and suppose that X and X^{\prime} are finite mirrored $C W$ complexes with $\mathcal{U}(W, X)$ and $\mathcal{U}\left(W, X^{\prime}\right)$ both acyclic and both admitting proper W-action. Then for every $k \geq 0$,

$$
L_{\mathbf{q}}^{2} b_{k}(\mathcal{U}(W, X))=L_{\mathbf{q}}^{2} b_{k}\left(\mathcal{U}\left(W, X^{\prime}\right)\right)
$$

Proof. Set $\mathcal{U}=\mathcal{U}(W, X)$ and $\mathcal{U}^{\prime}=\mathcal{U}\left(W, X^{\prime}\right)$. Since \mathcal{U} and \mathcal{U}^{\prime} are both acyclic, it follows that the respective cellular chain complexes $C_{*}(\mathcal{U})$ and $C_{\star}\left(\mathcal{U}^{\prime}\right)$ are are chain homotopic. This chain homotopy induces a chain homotopy of the chain complexes $C_{*}^{W}\left(\mathcal{U}, \mathcal{N}_{\mathbf{q}}(W)\right)$ and $C_{*}^{W}\left(\mathcal{U}^{\prime}, \mathcal{N}_{\mathbf{q}}(W)\right)$.

In fact, Bestvina constructed such a complex for any finitely generated Coxeter group.

Theorem 3.3.6 ([2]). Let W be a finitely generated Coxeter group. Then W acts properly and cocompactly on an acyclic vcd W-dimensional complex of the form $\mathcal{U}(W, X)$.

Corollary 3.3.7. Let (W, S) be a Coxeter system. Then

$$
L_{\mathbf{q}}^{2} b_{k}(W)=0 \text { for } k>\operatorname{vcd} W
$$

Proof. We can use the acyclic vcd W-dimensional complex of Theorem 3.3.6 to compute the weighted L^{2}-Betti numbers of W. Lemma 3.3.5 now completes the proof.

We now prove a lemma which is crucial for later computations.
Lemma 3.3.8. Let $n=\operatorname{vcd} W$ and suppose and that $L_{1}^{2} b_{n}(W)=0$. Then

$$
L_{\mathbf{q}}^{2} b_{k}(W)=0 \text { for } k \geq n \text { and } \mathbf{q} \leq 1 .
$$

Proof. By Corollary 3.3.7, we obtain vanishing for $k>n$. Now, suppose for a contradiction that $L_{\mathbf{q}}^{2} b_{n}(W) \neq 0$ for $\mathbf{q}<\mathbf{1}$. Let B_{W} denote the complex of Theorem 3.3.6. Lemma 3.3.5 says that we can compute weighted L^{2}-Betti numbers of W with respect to the complex B_{W}. In particular, $L_{\mathbf{q}}^{2} b_{n}(W)=L_{\mathbf{q}}^{2} b_{n}\left(B_{W}\right)$ and we can choose a nontrivial element $\psi \in L_{\mathbf{q}}^{2} H_{n}\left(B_{W}\right)$. Thus ψ is a cycle under the weighted boundary map $\partial^{\mathbf{q}}$. Consider the isomorphism of Hilbert spaces

$$
m_{\mathbf{q}}: L_{\mathbf{q}}^{2} C_{n}\left(B_{W}\right) \rightarrow L_{\mathbf{q}^{-1}}^{2} C_{n}\left(B_{W}\right)
$$

defined by $m_{\mathbf{q}}(f(\sigma))=\mu_{\mathbf{q}}(\sigma) f(\sigma)$. In particular, $m_{\mathbf{q}} \psi \in L_{\mathbf{q}^{-1}}^{2} C_{n}\left(B_{W}\right)$ and since $\mathrm{q}^{-1}>1$,

$$
\left\|m_{\mathbf{q}} \psi\right\|_{\mathbf{1}} \leq\left\|m_{\mathbf{q}} \psi\right\|_{\mathbf{q}^{-1}}<\infty .
$$

Hence $m_{\mathbf{q}} \psi \in L_{\mathbf{1}}^{2} C_{n}\left(B_{W}\right)$.

Figure 3.3: Schematic for the proof of Lemma 3.3.8

Now, a simple computation shows that $\partial=m_{\mathbf{q}} \partial^{\mathbf{q}} m_{\mathbf{q}}^{-1}$ and since ψ is a cycle under $\partial^{\mathbf{q}}, m_{\mathbf{q}} \psi$ is a cycle under ∂, the standard L^{2}-boundary operator. Moreover, since B_{W} is n-dimensional, $m_{\mathbf{q}} \psi$ is trivially a cocycle. Thus we have produced a nontrivial element of $L_{\mathbf{1}}^{2} H_{n}\left(B_{W}\right)$, a contradiction.

Remark 3.3.9. Note that the statement of Lemma 3.3.8 holds in the more general setting for $L_{\mathbf{q}}^{2} b_{n}(\mathcal{U}(W, X))$ (here X is finite and $\left.n=\operatorname{dim} X\right)$. In fact, we obtain the same statement for relative $L_{\mathbf{q}}^{2}-(\mathrm{co})$ homology as long as we are working in the top dimension.

Chapter 4

Ruins and Weighted L^{2}-(co)homology

4.1 Some Hilbert $\mathcal{N}_{\mathbf{q}}(W)$-submodules of $L_{\mathbf{q}}^{2}(W)$

We begin by considering the following self-adjoint idempotents in $\mathcal{N}_{\mathbf{q}}(W)$:
Lemma 4.1.1 ([6, Lemma 19.2.6]). Given a subset $T \subset S$ and and $\mathbf{q} \in \mathcal{R}_{T}^{-1}$, there is an idempotent $h_{T} \in \mathcal{N}_{\mathbf{q}}(W)$ defined by

$$
h_{T}:=\frac{1}{W_{T}\left(\mathbf{q}^{-1}\right)} \sum_{w \in W_{T}} \varepsilon_{w} q_{w}^{-1} e_{w}
$$

where $\varepsilon_{w}=(-1)^{l(w)}$.
Thus the maps defined by $x \rightarrow h_{T} x$ are orthogonal projections (whenever h_{T} is defined) from $L_{\mathbf{q}}^{2}(W)$ onto Hilbert $\mathcal{N}_{\mathbf{q}}(W)$-submodules, denoted by H_{T}. Note that, by [6, Lemma 19.2.13],

$$
H_{T}=\bigcap_{s \in T} H_{s} .
$$

Using these submodules, we define a chain complex as follows. For a spherical subset of cardinality $k, T \in \mathcal{S}^{(k)}$, put

$$
C_{i}\left(H_{T}\right):=\bigoplus_{U \epsilon\left(\mathcal{S}_{\geq T}\right)^{(i+k)}} H_{U} .
$$

Fix some ordering of $\{s \in S-T \mid T \cup\{s\} \in \mathcal{S}\}$. Whenever $U \subset V$, we have an inclusion $i_{V}^{U}: H_{V} \rightarrow H_{U}$, and thus the boundary map $\partial: C_{i+1}\left(H_{T}\right) \rightarrow C_{i}\left(H_{T}\right)$ corresponds to a matrix $\left(\partial_{U V}\right)$, where $\partial_{U V}=0$ unless $U \subset V$, and is equal to $(-1)^{j} i_{V}^{U}$ if U is obtained by deleting the $j^{\text {th }}$ element of V. This turns $C_{*}\left(H_{T}\right)$ into a chain complex of Hilbert $\mathcal{N}_{\mathbf{q}}(W)$-modules. Similarly, whenever $U \subset V$ we have the projection $p_{V}^{U}: H_{U} \rightarrow H_{V}$. Thus we have a coboundary map where the matrix entries consist of projections, and we get a cochain complex $C^{*}\left(H_{T}\right)$ of Hilbert $\mathcal{N}_{\mathbf{q}}(W)$-modules.

4.2 Ruins

As before, $\Sigma_{c c}$ is Σ_{L} with the Coxeter cellulation. Let (W, S) be a Coxeter system and for $U \subset S$, set $\mathcal{S}(U):=\{T \in \mathcal{S} \mid T \subset U\}$. Define $\Sigma(U)$ to be the subcomplex of $\Sigma_{c c}$ consisting of all (closed) Coxeter cells of type T with $T \in \mathcal{S}(U)$. Note that $\Sigma(U)=W \times_{W_{U}} \Sigma_{U}$, where Σ_{U} is the Davis complex corresponding to the group W_{U}. Given $T \in \mathcal{S}(U)$, we define the following subcomplexes of $\Sigma(U)$:
$\Omega_{U T}$: the union of closed cells of type T^{\prime}, with $T^{\prime} \in \mathcal{S}(U)_{\geq T}$, $\partial \Omega_{U T}$: the cells of $\Omega_{U T}$ of type $T^{\prime \prime}$, with $T^{\prime \prime} \notin \mathcal{S}(U)_{\geq T}$.

The pair $\left(\Omega_{U T}, \partial \Omega_{U T}\right)$ is the (U, T)-ruin. Note that if $T=\varnothing$, then $\Omega_{U T}=\Sigma(U)$ and $\partial \Omega_{U T}=\varnothing$. Ruins can also be expressed in terms of the basic construction. Define $K(U, T):=\Omega_{U T} \cap K$ and $\partial K(U, T):=\partial \Omega_{U T} \cap K$, where K is the Davis chamber. Then $K(U, T)$ and $\partial K(U, T)$ have an induced mirror structure, and it follows that

$$
\Omega_{U T}=\mathcal{U}(W, K(U, T))
$$

and

$$
\partial \Omega_{U T}=\mathcal{U}(W, \partial K(U, T))
$$

The (S, T)-ruin has a chain complex that looks like this:

Proposition 4.2.1 ([6, Lemma 20.6.21]). For $T \in \mathcal{S}^{(k)}$, the chain complexes $C_{*}\left(H_{T}\right)$ and $L_{\mathbf{q}}^{2} C_{*+k}\left(\Omega_{S T}, \partial \Omega_{S T}\right)$ of $\mathcal{N}_{\mathbf{q}}(W)$-modules are isomorphic. In particular,

$$
L_{\mathbf{q}}^{2} C_{m}\left(\Omega_{S T}, \partial \Omega_{S T}\right)=0 \text { for } m<k .
$$

For brevity, we write $\left(\Omega_{U T}, \partial\right)$. For $s \in T$, set $U^{\prime}=U-s$ and $T^{\prime}=T-s$. As in [8, Proof of Theorem 8.3], we have the following weak exact sequence:

$$
\begin{equation*}
\cdots \longrightarrow L_{\mathbf{q}}^{2} H_{*}\left(\Omega_{U^{\prime} T^{\prime}}, \partial\right) \longrightarrow L_{\mathbf{q}}^{2} H_{*}\left(\Omega_{U T^{\prime}}, \partial\right) \longrightarrow L_{\mathbf{q}}^{2} H_{*}\left(\Omega_{U T}, \partial\right) \longrightarrow \cdots \tag{4.1}
\end{equation*}
$$

For the special case when $U=S$ and $T=\{s\}$ the above sequence becomes:

$$
\cdots \longrightarrow L_{\mathbf{q}}^{2} H_{*}(\Sigma(S-s)) \longrightarrow L_{\mathbf{q}}^{2} H_{*}(\Sigma(S)) \longrightarrow L_{\mathbf{q}}^{2} H_{*}\left(\Omega_{S\{s\}}, \partial\right) \longrightarrow \cdots
$$

$4.3 \quad L_{\mathrm{q}}^{2}-(\mathrm{co})$ homology of ruins

Given a Coxeter system (W, S), for $T \in \mathcal{S}$ and $T \subseteq V \subseteq S$, define

$$
S t(T, V):=\bigcup_{\substack{U \subseteq V \\ U \cup T \in \mathcal{S}}} U,
$$

and

$$
\operatorname{Lk}(T, V):=S t(T, V) \backslash T .
$$

If $V=S$, then we write $S t(T)$ and $\operatorname{Lk}(T)$ instead of $S t(T, S)$ and $L k(T, S)$. If $T=\varnothing$, we make the convention that $S(T, U)=U$.

Lemma 4.3.1. Suppose that (W, S) is right-angled. Then for $T \in \mathcal{S}$,

$$
\begin{gathered}
\Omega_{S T}=\Sigma(L k(T)) \times \Sigma(T), \\
\partial \Omega_{S T}=\Sigma(L k(T)) \times \partial \Sigma(T) .
\end{gathered}
$$

Proof. For $U \in \mathcal{S}$, recall the Coxeter cell c_{U} from Section 2.8.3. As W is right-angled, all Coxeter cells are cubes of appropriate dimension, and thus it follows that c_{U} is just a direct product of all the Coxeter cells c_{s} with $s \in U$.

Now, by definition,

$$
\begin{gathered}
K(S, T)=\Omega_{S T} \cap K=\bigcup_{U \in \mathcal{S}_{2 T}} c_{U} \cap K, \\
K(L k(T))=\Sigma(L k(T)) \cap K=\bigcup_{U \in \mathcal{S}(L k(T))} c_{U} \cap K,
\end{gathered}
$$

and

$$
K(T)=\Sigma(T) \cap K=c_{T} \cap K .
$$

Now, let $U \in \mathcal{S}_{\geq T}$. Then

$$
c_{U}=c_{T} \times c_{U-T} .
$$

Since $U \in \mathcal{S}_{\geq T}$, it follows that $U \subset S t(T)$, as $U \cup T=U \in \mathcal{S}$. Thus $U-T \subset \mathcal{S}(\operatorname{Lk}(T))$. Therefore

$$
K(S, T) \subseteq K(L k(T)) \times K(T)=\bigcup_{U \in \mathcal{S}(L k(T))}\left(c_{T} \times c_{U}\right) \cap K
$$

For the reverse inclusion, let $U \in \mathcal{S}(\operatorname{Lk}(T))$. Then $U \cup T \in \mathcal{S}_{\geq T}$. This is because the only way that $U \cup T$ could fail to be spherical is if there would exist $u \in U$ and $t \in T$ with $m_{t u}=\infty$ (W is right-angled), and if this happened then it would contradict the fact that $U \subset \operatorname{Lk}(T)$. Therefore we have shown that

$$
K(S, T)=K(L k(T)) \times K(T)
$$

and thus

$$
\Omega_{S T}=\mathcal{U}(W, K(S, T))=\mathcal{U}(W, K(L k(T))) \times \mathcal{U}(W, K(T))=\Sigma(L k(T)) \times \Sigma(T) .
$$

The proof for $\partial \Omega_{S T}$ follows a similar unwinding of definitions. Begin by noting that:

$$
\partial \Omega_{S T} \cap K=\bigcup_{\substack{V \notin \mathcal{S}_{\geq T} \\ V \subset U \in \mathcal{S}_{\geq T}}} c_{V} \cap K
$$

and

$$
\partial \Sigma(T) \cap K=\bigcup_{U \mp T} c_{U} \cap K .
$$

To conclude the proof, observe that for W right-angled, a subset V satisfying $V \notin \mathcal{S}_{\geq T}$ and $V \subset U \in \mathcal{S}_{\geq T}$ is a disjoint union $V=A \sqcup B$, where $A \in \mathcal{S}(\operatorname{Lk}(T))$ and $B \mp T$. Conversely, any such disjoint union $A \sqcup B \notin \mathcal{S}_{\geq T}$ (by definition it cannot contain T), and satisfies $A \sqcup B \subset A \cup T \in \mathcal{S}_{\geq T}$.

Theorem 4.3.2 (Compare [6, Theorem 20.6.22]). Suppose that $T \in \mathcal{S}^{(k)}$ and that $\mathbf{q} \in \mathcal{R}_{S t(T)}$. Then $L_{\mathbf{q}}^{2} H_{*}\left(\Omega_{S T}, \partial \Omega_{S T}\right)$ is concentrated in dimension k. If (W, S) is assumed to be right-angled, then the same statement holds if we replace $\mathcal{R}_{S t(T)}$ by $\mathcal{R}_{\text {Lk(T) }}$.

Proof. For the proof we temporarily switch notation and denote the (U, T)-ruin by $\Omega(U, T)$. We first make an observation about ruins. We note that for every $V \subseteq S$, $\Omega(V, T)=\Omega(S t(T, V), T)$, the point being that $\Omega(V, T)$ consists of Coxeter cells corresponding to spherical subsets of V containing T, and $S t(T, V)$ is the union of all such subsets. In particular, $\Omega(U, T)=\Omega(S t(T, U), T))$, and hence $\Omega(U, T)$ is a subcomplex of $\Sigma(S t(T, U))$.

The proof is now by induction on k. We will show that for $U \subset S$ and $T \in \mathcal{S}(U)^{(k)}$, $L_{\mathbf{q}}^{2} H_{\star}(\Omega(U, T), \partial)$ is concentrated in dimension k. For the base case $k=0$, note that $S t(\varnothing, U)=U, \Omega(U, \varnothing)=\Sigma(U)$, and $\partial \Omega(U, \varnothing)=\varnothing$. Hence, for $k=0$, the theorem asserts that for $\mathbf{q} \in \mathcal{R}_{U}, L_{\mathbf{q}}^{2} H_{*}(\Sigma(U))$ is concentrated in dimension 0 , which is Proposition 3.3.1.

Now, suppose the theorem is true for $k-1$ and let $T \in \mathcal{S}(U)^{(k)}$. Let $s \in T$, $V=T-s$ and consider the long exact sequence:

$$
L_{\mathbf{q}}^{2} H_{*}(\Omega(S t(T, U)-s, V), \partial) \longrightarrow L_{\mathbf{q}}^{2} H_{*}(\Omega(S t(T, U), V), \partial) \longrightarrow L_{\mathbf{q}}^{2} H_{*}(\Omega(S t(T, U), T), \partial)
$$

Note that

$$
\Omega(S t(T, U), V)=\Omega(S t(V, S t(T, U)), V)
$$

and

$$
\Omega(S t(T, U)-s, V)=\Omega(S t(V, S t(T, U)-s), V)
$$

Since $S t(V, S t(T, U)) \subseteq S t(T, U)$ and $S t(V, S t(T, U)-s) \subseteq S t(T, U)$, it follows that $\mathcal{R}_{S t(T, U)} \subseteq \mathcal{R}_{S t(V, S t(T, U))}$ and $\mathcal{R}_{S t(T, U)} \subseteq \mathcal{R}_{S t(V, S t(T, U)-s)}$. Since $\mathbf{q} \in \mathcal{R}_{S t(T, U)}$, it follows by induction that the left-hand term and the middle term of the exact sequence are both concentrated in dimension $k-1$. Since $L_{\mathbf{q}}^{2} H_{*}(\Omega(S t(T, U), T), \partial)$ vanishes for $*<k$ (Proposition 4.2.1), it follows that $L_{\mathbf{q}}^{2} H_{*}(\Omega(S t(T, U), T), \partial)=$ $L_{\mathbf{q}}^{2} H_{*}(\Omega(U, T), \partial)$ is concentrated in dimension k.

Now, suppose that (W, S) is right-angled. Consider the long exact sequence of the pair $(\Omega(S, T), \partial \Omega(S, T))$:

$$
\cdots \longrightarrow L_{\mathbf{q}}^{2} H_{*}(\partial \Omega(S, T)) \longrightarrow L_{\mathbf{q}}^{2} H_{*}(\Omega(S, T)) \longrightarrow L_{\mathbf{q}}^{2} H_{*}(\Omega(S, T), \partial) \longrightarrow \cdots
$$

Since W is right-angled, it follows from Lemma 4.3.1 that $\Omega(S, T)=\Sigma(L k(T)) \times$ $\Sigma(T)$ and $\partial \Omega(S, T)=\Sigma(L k(T)) \times \partial \Sigma(T)$. By the the Künneth formula,

$$
\begin{gathered}
L_{\mathbf{q}}^{2} b_{m}(\Omega(S, T))=\sum_{i+j=m} L_{\mathbf{q}}^{2} b_{i}(\Sigma(L k(T))) \cdot L_{\mathbf{q}}^{2} b_{j}(\Sigma(T)), \\
L_{\mathbf{q}}^{2} b_{m}(\partial \Omega(S, T))=\sum_{i+j=m} L_{\mathbf{q}}^{2} b_{i}(\Sigma(L k(T))) \cdot L_{\mathbf{q}}^{2} b_{j}(\partial \Sigma(T)) .
\end{gathered}
$$

Since W_{T} is finite and $\mathbf{q} \in \mathcal{R}_{L k(T)}$, Proposition 3.3.1 implies that $L_{\mathbf{q}}^{2} b_{*}(\Sigma(L k(T)))$ and $L_{\mathbf{q}}^{2} b_{*}(\Sigma(T))$ are both concentrated in degree 0 , and hence $L_{\mathbf{q}}^{2} H_{*}(\Omega(S, T))$ is concentrated in dimension 0 . Similarly, $L_{\mathbf{q}}^{2} H_{*}(\partial \Omega(S, T))$ vanishes above dimension $k-1$ (this is because, since W_{T} is finite, $\Sigma(T)$ is topologically a disjoint collection of k-disks with boundary $\partial \Sigma(T))$. As Proposition 4.2.1 implies that $L_{\mathbf{q}}^{2} H_{*}(\Omega(S t(T, U), T), \partial)$ vanishes for $*<k$, the long exact sequence for the pair implies that $L_{\mathbf{q}}^{2} H_{\star}(\Omega(S, T), \partial)$ is concentrated in dimension k.

Remark 4.3.3. Suppose that $T \in \mathcal{S}$ and that $\mathbf{q} \in \mathcal{R}_{S t(T)}$. Then, for $U \in \mathcal{S}_{\geq T}$, Theorem 4.3.2 implies that $L_{\mathbf{q}}^{2} H_{*}(\Omega(S, U), \partial)$ is concentrated in dimension $|U|$. This is because, if $T \subset U$, then $S t(U) \subset S t(T)$ (similarily, $L k(U) \subset L k(T)$). Therefore
$\mathbf{q} \in \mathcal{R}_{S t(T)} \subseteq \mathcal{R}_{S t(U)}$. The analogous statements hold when W is assumed to be right-angled and $\mathbf{q} \in \mathcal{R}_{L k(T)}$.

Given a subset $T \subset S$, define

$$
W^{T}:=\{w \in W \mid l(w s)<l(w) \text { for } s \in T\}
$$

and

$$
W^{T}(\mathbf{t})=\sum_{w \in W^{T}} t_{w} .
$$

The following is now a consequence of Theorem 4.3.2 and [6, Corollary 20.6.6].
Corollary 4.3.4. Suppose that $T \in \mathcal{S}^{(k)}$ and that $\mathbf{q} \in \mathcal{R}_{S t(T)}$. Then $L_{\mathbf{q}}^{2} H_{*}(\Omega(S, T), \partial)$ is concentrated in dimension k and

$$
L_{\mathbf{q}}^{2} b_{k}(\Omega(S, T), \partial)=\frac{W^{T}(\mathbf{q})}{W(\mathbf{q})}
$$

If (W, S) is assumed to be right-angled, then the same statement holds if we replace $\mathcal{R}_{S t(T)}$ by $\mathcal{R}_{L k(T)}$.

4.4 A spectral sequence

In this section, we define a spectral sequence following the line laid down in $[10, \S$ $2]$.

A poset of coefficients is a contravariant functor \mathcal{A} from a poset \mathcal{P} to the category of abelian groups. In other words, it is a collection $\{\mathcal{A}\}_{a \in \mathcal{P}}$ of abelian groups together with homomorphisms $\phi_{b a}: \mathcal{A}_{a} \rightarrow \mathcal{A}_{b}$, defined whenever $a>b$, such that $\phi_{c a}=\phi_{c b} \phi_{b a}$, whenever $a>b>c$. The functor \mathcal{A} gives us a system of coefficients on the cell complex $\operatorname{Flag}(\mathcal{P})$: it associates to the simplex σ the abelian group $\mathcal{A}_{\min (\sigma)}$. Hence, we get a cochain complex

$$
C^{j}(\operatorname{Flag}(\mathcal{P}) ; \mathcal{A}):=\bigoplus_{\sigma \in \operatorname{Flag}(\mathcal{P})^{(j)}} \mathcal{A}_{\min (\sigma)},
$$

where $\operatorname{Flag}(\mathcal{P})^{(j)}$ denotes the set of j-simplices in $\operatorname{Flag}(\mathcal{P})$.

Let Y be a CW complex. A poset of spaces in Y over \mathcal{P} is a cover $\mathcal{V}=\left\{Y_{a}\right\}_{a \in \mathcal{P}}$ of Y by subcomplexes indexed by \mathcal{P} so that if $N(\mathcal{V})$ denotes the nerve of the cover, then
(i) $a<b \Longrightarrow Y_{a} \subset Y_{b}$,
(ii) the vertex set $\operatorname{Vert}(\sigma)$ of each simplex in $N(\mathcal{V})$ has the greatest lower bound $\wedge \sigma$ in \mathcal{P}, and
(iii) \mathcal{V} is closed under taking finite nonempty intersections, i.e., for any simplex σ of $N(\mathcal{V})$,

$$
\bigcap_{a \in \sigma} Y_{a}=Y_{\wedge \sigma} .
$$

Note that any cover leads to a poset of spaces by taking all nonempty intersections as elements of the new cover and removing duplicates. The resulting poset is the set of all nonempty intersections, ordered by inclusion.

The following lemmas appearing in [10] define a spectral sequence associated to a poset of spaces, and give conditions for the sequence to degenerate.

Lemma 4.4.1 ([10, Lemma 2.1]). Suppose $\mathcal{V}=\left\{Y_{a}\right\}_{a \in \mathcal{P}}$ is a poset of spaces for Y over \mathcal{P}. There is a Mayer-Vietoris type spectral sequence converging to $H^{*}(Y)$ with E_{1}-term:

$$
E_{1}^{i, j}=C^{i}\left(\operatorname{Flag}(\mathcal{P}) ; \mathcal{H}^{j}(\mathcal{V})\right)
$$

and E_{2}-term:

$$
E_{2}^{i, j}=H^{i}\left(\operatorname{Flag}(\mathcal{P}) ; \mathcal{H}^{j}(\mathcal{V})\right)
$$

where the coefficient system $\mathcal{H}^{j}(\mathcal{V})$ is given by $\mathcal{H}^{j}(\mathcal{V})(\sigma)=H^{j}\left(Y_{\min (\sigma)}\right)$.
Lemma 4.4.2 ([10, Lemma 2.2]). Suppose that $\mathcal{V}:=\left\{Y_{a}\right\}_{a \in \mathcal{P}}$ is a poset of spaces for Y over \mathcal{P}. If for every $a \in \mathcal{P}$, the induced homomorphism $H^{*}\left(Y_{a}\right) \rightarrow H^{*}\left(Y_{<a}\right)$ is the zero map, then the spectral sequence degenerates at E_{2} and

$$
H^{*}(Y)=\bigoplus_{a \in \mathcal{P}} H^{i}\left(\operatorname{Flag}\left(\mathcal{P}_{\geq a}\right), \operatorname{Flag}\left(\mathcal{P}_{>a}\right), H^{j}\left(Y_{a}\right)\right)
$$

$4.5 \quad L_{\mathrm{q}}^{2}-(\mathrm{co})$ homology of $\left(\Sigma, \Sigma^{(k-1)}\right)$

To simplify notation, write Σ for $\Sigma_{c c}$ and let $\Sigma^{(k-1)}$ denote the $(k-1)$-skeleton of $\Sigma_{c c}$. For the proofs in this section, we will also write $H_{\mathbf{q}}^{*}(\mathcal{U})$ for $H_{W}^{*}\left(\mathcal{U}, \mathcal{N}_{\mathbf{q}}(W)\right)$ (see Section 3.2.2 for the definition of $H_{W}^{*}\left(\mathcal{U}, \mathcal{N}_{\mathbf{q}}(W)\right)$).

Lemma 4.5.1. Let Δ denote the standard n-simplex and let $\Delta^{(k)}$ be its k-skeleton, $k<n$. Then the reduced homology $\tilde{H}_{*}\left(\Delta^{(k)}\right)$ (with coefficients in \mathbb{R}) is concentrated in dimension k. Furthermore, $b_{k}\left(\Delta^{(k)}\right)=\binom{n}{k+1}$.

Proof. Δ is contractible, so it follows that the augmented chain complex $C_{*}(\Delta)$ is exact. In particular, $C_{*}\left(\Delta^{(k)}\right)$ has the same homology as $C_{*}(\Delta)$ whenever $l<k$, so $\tilde{H}_{l}\left(\Delta^{(k)}\right)=0$ whenever $l<k$. We now must show that $\tilde{H}_{k}\left(\Delta^{(k)}\right)$ has the claimed dimension. First, note that $C_{k}\left(\Delta^{(k)}\right)=C_{k}(\Delta)$ has dimension $\binom{n+1}{k+1}$, as there is a k-simplex for each set of $k+1$ vertices. We now proceed by induction on k. If $k=0$, then $\Delta^{(0)}$ is just $n+1$ vertices, so $\tilde{H}_{0}\left(\Delta^{(0)}\right)$ has dimension $\binom{n}{1}=n$. Suppose that the claim is true for $k-1$, and consider the chain complex:

$$
0 \longrightarrow C_{k}(\Delta) \longrightarrow C_{k-1}(\Delta) \longrightarrow \cdots
$$

By induction, ker ∂_{k-1} is has dimension $\binom{n}{k}$. Since $\tilde{H}_{k-1}(\Delta)=0$, it follows that $\operatorname{im} \partial_{k}$ also has dimension $\binom{n}{k}$. So, ker ∂_{k} has dimension $\binom{n+1}{k+1}-\binom{n}{k}=\binom{n}{k+1}$.

Theorem 4.5.2. Let $k \geq 1$. Suppose that for every $T \in \mathcal{S}^{(k)}, \mathbf{q} \in \mathcal{R}_{S t(T)}$, and let $\Sigma^{(k-1)}$ denote the $(k-1)$-skeleton of Σ. Then $L_{\mathbf{q}}^{2} H_{*}\left(\Sigma, \Sigma^{(k-1)}\right)$ is concentrated in dimension k. Furthermore,

$$
L_{\mathbf{q}}^{2} b_{k}\left(\Sigma, \Sigma^{(k-1)}\right)=\sum_{U \in \mathcal{S}(2 k)}\binom{|U|-1}{k-1} L_{\mathbf{q}}^{2} b_{|U|}\left(\Omega_{U}, \partial\right) .
$$

If (W, S) is assumed to be right-angled, then the same statement holds if we replace $\mathcal{R}_{S t(T)}$ by $\mathcal{R}_{L k(T)}$.

Proof. We will show that $H_{\mathbf{q}}^{*}\left(\Sigma, \Sigma^{(k-1)}\right)$ is concentrated in dimension k.

Consider the relative cochain complex $L_{\mathbf{q}}^{2} C^{*}\left(\Sigma, \Sigma^{(k-1)}\right)$. We have that

$$
L_{\mathbf{q}}^{2} C^{i}\left(\Sigma, \Sigma^{(k-1)}\right)= \begin{cases}0, & i \leq k-1 \\ \oplus_{U \epsilon \mathcal{S}^{(i)}} H_{U}, & i>k-1\end{cases}
$$

Set $C_{-i}\left(\Sigma, \Sigma^{(k-1)}\right)=L_{\mathbf{q}}^{2} C^{i}\left(\Sigma, \Sigma^{(k-1)}\right)$. Then $C_{*}\left(\Sigma, \Sigma^{(k-1)}\right)$ is a chain complex. Now, for every $T \in \mathcal{S}$, set $\tilde{\Omega}_{T}=\Omega_{S T} / \partial \Omega_{S T}$ and set $C_{-i}\left(\tilde{\Omega}_{T}\right)=L_{\mathbf{q}}^{2} C^{i}\left(\tilde{\Omega}_{T}\right)=L_{\mathbf{q}}^{2} C^{i}\left(\Omega_{S T}, \partial \Omega_{S T}\right)$. In this way, we have made the cochain complex of every (S, T)-ruin a subcomplex of the re-indexed relative cochain complex $C_{*}\left(\Sigma, \Sigma^{(k-1)}\right)$ (a similar trick works using ordinary cochain complexes).

Let \mathcal{P} be the poset $\mathcal{S}(\geq k)$ with the order reversed. By the above re-indexing of cochain complexes, $\left\{\tilde{\Omega}_{T}\right\}_{T \epsilon \mathcal{P}}$ is a poset of spaces over $Y=\Sigma / \Sigma^{(k-1)}$, and hence we have the spectral sequence of Lemma 4.4.1.

We first establish the condition of Lemma 4.4.2. So, we claim that for every $U \in \mathcal{P}$, the induced map $H_{\mathbf{q}}^{*}\left(\tilde{\Omega}_{U}\right) \rightarrow H_{\mathbf{q}}^{*}\left(\tilde{\Omega}_{<U}\right)$ is the zero map. To prove the claim we will show that $H_{\mathbf{q}}^{-|U|}\left(\tilde{\Omega}_{<U}\right)=0$, as this implies $H_{\mathbf{q}}^{*}\left(\tilde{\Omega}_{U}\right) \rightarrow H_{\mathbf{q}}^{*}\left(\tilde{\Omega}_{<U}\right)$ is the zero map since $H_{\mathbf{q}}^{*}\left(\tilde{\Omega}_{U}\right)$ is concentrated in dimension $-|U|$ (see Remark 4.3.3). Recall that $\tilde{\Omega}_{<U}=\bigcup_{T \in \mathcal{P}_{<U}} \tilde{\Omega}_{T}$. The proof is by induction on the number of elements in the union. For the base case, note that for every spherical V properly containing U, the induced map $H_{\mathbf{q}}^{*}\left(\tilde{\Omega}_{U}\right) \rightarrow H_{\mathbf{q}}^{*}\left(\tilde{\Omega}_{V}\right)$ is the zero map. This is because of Theorem 4.3.2, which states that $H_{\mathbf{q}}^{*}\left(\tilde{\Omega}_{U}\right)$ and $H_{\mathbf{q}}^{*}\left(\tilde{\Omega}_{V}\right)$ are concentrated in dimension - $|U|$ and $-|V|$, respectively, and $-|V|<-|U|$. Now, let \mathcal{C} be a subcollection of elements of $\mathcal{P}_{<U}$ and let $B=\cup_{T \in \mathcal{C}} \tilde{\Omega}_{T}$. We wish to show that $H_{\mathbf{q}}^{-|U|}(B)=0$. Write $B=A \cup \tilde{\Omega}_{V}$, where $V \in \mathcal{C}$ and $A=\bigcup_{\substack{T \in \mathcal{C} \\ T F V}} \tilde{\Omega}_{T}$. Then we have the Mayer-Vietoris sequence:

$$
H_{\mathbf{q}}^{-|U|-1}\left(A \cap \tilde{\Omega}_{V}\right) \longrightarrow H_{\mathbf{q}}^{-|U|}(B) \longrightarrow H_{\mathbf{q}}^{-|U|}(A) \oplus H_{\mathbf{q}}^{-|U|}\left(\tilde{\Omega}_{V}\right)
$$

By induction, $H_{\mathbf{q}}^{*}(A)$ vanishes for $* \geq-|U|-1$, and by Theorem 4.3.2, $H_{\mathbf{q}}^{*}\left(\tilde{\Omega}_{V}\right)$ is concentrated in $-|V|<-|U|$. We now claim $H_{\mathbf{q}}^{*}\left(A \cap \tilde{\Omega}_{V}\right)$ vanishes for $* \geq-|U|-1$, as this implies $H_{\mathbf{q}}^{-|U|}(B)=0$. We observe that

$$
\begin{aligned}
A \cap \tilde{\Omega}_{V} & =\bigcup_{\substack{T \in \mathcal{C} \\
T V V}} \tilde{\Omega}_{T} \cap \tilde{\Omega}_{V} \\
& =\bigcup_{\substack{T \in \mathcal{C} \\
T \cup V \in \mathcal{S}}} \tilde{\Omega}_{T \cup V}
\end{aligned}
$$

The last inequality follows from the fact that $H_{T} \cap H_{V}=H_{T \cup V}$ whenever $T \cup V$ is spherical (see Section 4.1). Thus $A \cap \tilde{\Omega}_{V}$ is the union of elements corresponding to a subcollection of \mathcal{C}. Therefore the claim follows by induction.

We have established the condition in Lemma 4.4.2, and hence

$$
\begin{equation*}
H_{\mathbf{q}}^{-n}(Y)=\bigoplus_{U \in \mathcal{P}} H^{|U|-n}\left(\operatorname{Flag}\left(\mathcal{P}_{\geq U}\right), \operatorname{Flag}\left(\mathcal{P}_{>U}\right) ; H_{\mathbf{q}}^{-|U|}\left(\tilde{\Omega}_{U}\right)\right) \tag{4.2}
\end{equation*}
$$

The strategy of the proof now is as follows. By Theorem 4.3.2, for every $U \in \mathcal{P}$, $H_{\mathbf{q}}^{*}\left(\tilde{\Omega}_{U}\right)$ is concentrated in dimension $-|U|$. So, we are done if we show that for every $U \in \mathcal{P}, H^{*}\left(\operatorname{Flag}\left(\mathcal{P}_{\geq U}\right), \operatorname{Flag}\left(\mathcal{P}_{>U}\right)\right)$ is concentrated in dimension $|U|-k$. This implies $E_{2}^{i, j}=0$ unless $i+j=-k$, and by (4.2), $H_{\mathbf{q}}^{*}(Y)$ is concentrated in dimension $-k$. Re-indexing our complexes, it follows that the cohomology of the complex $L_{\mathbf{q}}^{2} C^{*}\left(\Sigma, \Sigma^{(k-1)}\right)$ is concentrated in dimension k.

We now claim that for $U \in \mathcal{P}$ with $m=|U|, H^{*}\left(\operatorname{Flag}\left(\mathcal{P}_{\geq U}\right), \operatorname{Flag}\left(\mathcal{P}_{>U}\right)\right)$ is concentrated in dimension $m-k$ and free of rank $\binom{m-1}{k-1}$. Since the geometric realization of $\operatorname{Flag}\left(\mathcal{P}_{\geq U}\right)$ is contractible, by the long exact sequence for the pair it suffices to show that the reduced cohomology $\tilde{H}^{*}\left(\operatorname{Flag}\left(\mathcal{P}_{>U}\right)\right)$ is concentrated in dimension $m-k-1$. Note that if $m=k$, then we are done $\operatorname{since} \operatorname{Flag}\left(\mathcal{P}_{>U}\right)=\varnothing$. Also, note that for the special case where $m-k=1$, the map $H^{0}\left(\operatorname{Flag}\left(\mathcal{P}_{\geq U}\right)\right) \rightarrow H^{0}\left(\operatorname{Flag}\left(\mathcal{P}_{>U}\right)\right)$ in the long exact sequence for the pair $\left(\operatorname{Flag}\left(\mathcal{P}_{\geq U}\right), \operatorname{Flag}\left(\mathcal{P}_{>U}\right)\right)$ is injective $\left(\operatorname{Flag}\left(\mathcal{P}_{\geq U}\right)\right.$ is the cone on $\operatorname{Flag}\left(\mathcal{P}_{>U}\right)$), so showing $\tilde{H}^{*}\left(\operatorname{Flag}\left(\mathcal{P}_{>U}\right)\right)$ is concentrated in dimension $m-k-1=0$ does in fact suffice.

Consider the poset $\mathcal{S}^{o p}$, which is the poset \mathcal{S} of spherical subsets with order reversed. Note that $\operatorname{Flag}\left(\mathcal{S}_{>U}^{o p}\right) \cong \operatorname{Flag}\left(\mathcal{S}_{<U}\right)$. The geometric realization of $\operatorname{Flag}\left(\mathcal{S}_{<U}\right)$ is $b \Delta$, where $b \Delta$ is the barycentric subdivision of the $(m-1)$-dimensional simplex Δ. This is because $\mathcal{S}_{<U}$ is the poset of proper subsets of U. Note that $\operatorname{Flag}\left(\mathcal{P}_{>U}\right)$ is a
subcomplex of Flag $\left(\mathcal{S}_{>U}^{o p}\right)$, and more precisely, the geometric realization of $\operatorname{Flag}\left(\mathcal{P}_{>U}\right)$ is the subcomplex of barycentric subdivision of $\partial \Delta$ (recall that $k \geq 1$) obtained by removing barycenters corresponding to spherical subsets of cardinality less than k.

$\operatorname{Flag}\left(\mathcal{S}_{>U}^{o p}\right)$

$\operatorname{Flag}\left(\mathcal{P}_{>U}\right), k=1$

$\operatorname{Flag}\left(\mathcal{P}_{>U}\right), k=2$

Figure 4.1: Geometric realizations when $U=\{s, t, u\}$

These barycenters correspond to faces of $\partial \Delta$ of dimension less than or equal to $k-2$. Hence

$$
\tilde{H}^{*}\left(\operatorname{Flag}\left(\mathcal{P}_{>U}\right)\right) \cong \tilde{H}^{*}\left(\partial \Delta-\Delta^{(k-2)}\right)
$$

where $\Delta^{(k-2)}$ denotes the $(k-2)$-skeleton of Δ. Note that if $k=1$, then $\Delta^{(k-2)}=\varnothing$, and we are done as the reduced homology $\tilde{H}^{*}(\partial \Delta)$ is concentrated in dimension $m-2$. So, suppose $k>1$. By Alexander Duality,

$$
\tilde{H}_{\star}\left(\Delta^{(k-2)}\right) \cong \tilde{H}^{m-*-3}\left(\partial \Delta-\Delta^{(k-2)}\right)
$$

By Lemma 4.5.1, the reduced homology $\tilde{H}_{*}\left(\Delta^{(k-2)}\right)$ is concentrated in dimension $k-2$. Furthermore, $\tilde{H}_{*}\left(\Delta^{(k-2)}\right)$ has dimension $\binom{m-1}{k-1}$. It follows that $\tilde{H}^{*}\left(\partial \Delta-\Delta^{(k-2)}\right)$ is concentrated in dimension $m-k-1$ and of dimension $\binom{m-1}{k-1}$, and therefore the same holds for $\tilde{H}^{*}\left(\operatorname{Flag}\left(\mathcal{P}_{>U}\right)\right)$.

Thus, we have shown that $H_{\mathbf{q}}^{*}(Y)$ is concentrated in dimension $-k$ and by (4.2)

$$
H_{\mathbf{q}}^{-k}(Y)=\bigoplus_{U \in \mathcal{P}} H^{|U|-k}\left(\operatorname{Flag}\left(\mathcal{P}_{\geq U}\right), \operatorname{Flag}\left(\mathcal{P}_{>U}\right) ; H_{\mathbf{q}}^{-|U|}\left(\tilde{\Omega}_{U}\right)\right)
$$

In particular, since $H^{|U|-k}\left(\operatorname{Flag}\left(\mathcal{P}_{\geq U}\right), \operatorname{Flag}\left(\mathcal{P}_{>U}\right)\right)$ is free and of dimension $\binom{|U|-1}{k-1}$,

$$
\begin{aligned}
L_{\mathbf{q}}^{2} b_{-k}(Y) & =\sum_{U \in \mathcal{P}} b^{|U|-k}\left(\operatorname{Flag}\left(\mathcal{P}_{\geq U}\right), \operatorname{Flag}\left(\mathcal{P}_{>U}\right)\right) \cdot L_{\mathbf{q}}^{2} b_{-|U|}\left(\tilde{\Omega}_{U}\right) \\
& =\sum_{U \in \mathcal{P}}\binom{|U|-1}{k-1} L_{\mathbf{q}}^{2} b_{-|U|}\left(\tilde{\Omega}_{U}\right) .
\end{aligned}
$$

The assertion now follows after recalling that we are making computations with respect to re-indexed complexes. Specifically, $L_{\mathbf{q}}^{2} b_{-k}(Y)=L_{\mathbf{q}}^{2} b_{k}\left(\Sigma, \Sigma^{(k-1)}\right)$ and $L_{\mathbf{q}}^{2} b_{-|U|}\left(\tilde{\Omega}_{U}\right)=L_{\mathbf{q}}^{2} b_{|U|}\left(\Omega_{U}, \partial\right)$.

Using Corollary 4.3.4, we obtain the following formula for $L_{\mathbf{q}}^{2}$-Betti numbers.
Corollary 4.5.3. Let $k \geq 1$. Suppose that for every $T \in \mathcal{S}^{(k)}, \mathbf{q} \in \mathcal{R}_{S t(T)}$. Then

$$
L_{\mathbf{q}}^{2} b_{n}\left(\Sigma, \Sigma^{(k-1)}\right)= \begin{cases}\sum_{U \in \mathcal{S}(2 k)}\binom{|U|-1}{k-1} \frac{W^{U}(\mathbf{q})}{W(\mathbf{q})}, & n=k ; \\ 0, & \text { otherwise } .\end{cases}
$$

If (W, S) is assumed to be right-angled, then the same statement holds if we replace $\mathcal{R}_{S t(T)}$ by $\mathcal{R}_{L k(T)}$.

Remark 4.5.4. Note that a formula for $L_{\mathbf{q}}^{2} b_{k}\left(\Sigma, \Sigma^{(k-1)}\right)$ could also be derived from an Euler characteristic argument, and it is the same as the formula above by [6, Lemma 17.1.8].

4.6 Some Consequences

Corollary 4.6.1. Suppose that for every $T \in \mathcal{S}^{(k)}, \mathbf{q} \in \mathcal{R}_{S t(T)}$. Then

$$
L_{\mathbf{q}}^{2} H_{n}(\Sigma)=0 \text { for } n>k .
$$

If (W, S) is assumed to be right-angled, then the same statement holds if we replace $\mathcal{R}_{S t(T)}$ by $\mathcal{R}_{L k(T)}$.

Proof. For the case where $k=0$, this is just Proposition 3.3.1, so suppose $k \geq 1$. By Theorem 4.5.2, $L_{\mathbf{q}}^{2} H_{*}\left(\Sigma, \Sigma^{(k-1)}\right)$ is concentrated in dimension k. Therefore the long exact sequence for the pair $\left(\Sigma, \Sigma^{(k-1)}\right)$ implies the assertion.

Example 4.6.2. Suppose that (W, S) is right-angled and that the corresponding nerve L is a flag triangulation of S^{2}. Furthermore, suppose that $\mathbf{q}=q$, a positive real number. Let ρ and ρ_{T} denote the radii of convergence of the growth series $W(t)$ and $W_{T}(t)$, respectively. In [6, Example 17.4.3], it was computed that

$$
\rho=\frac{\left(f_{0}-4\right)-\sqrt{\left(f_{0}-4\right)^{2}-4}}{2}
$$

where f_{0} is the number of vertices of L (note that since L is flag, $f_{0} \geq 6$).
The link of every vertex of l is a $k-$ gon, with $k \geq 4$ and $k<f_{0}$. If $W_{L k(v)}$ denotes the special subgroup corresponding the the link of a vertex v, and $L k(v)$ has k vertices, then by an easy computation (see [6, Example 17.1.15]) we have that

$$
\rho_{L k(v)}=\frac{(k-2)-\sqrt{k^{2}-4 k}}{2} .
$$

Note that $\rho_{L k(v)}$ is a decreasing function of k when $k \geq 4$. If v_{0} is the vertex of L whose link has the most vertices, then Corollary 4.6.1 implies that $L_{q}^{2} H_{*}\left(\Sigma_{L}\right)$ is concentrated in dimension 1 whenever $\rho<q<\rho_{L k\left(v_{0}\right)}$. This is was already known, as $L_{q}^{2} b_{2}\left(\Sigma_{L}\right)=0$ for $q \leq 1$ [8, Theorem 16.13].

We present some further consequences of Theorem 4.5.2. But first, some definitions. A locally finite cell complex Λ is an n-dimensional pseudomanifold if each maximal cell of Λ is n-dimensional and each $(n-1)$-cell is a face of precisely two n-cells. A pseudomanifold Λ is orientable if one can choose orientations for the top-dimensional cells so that their sum is a (possibly infinite) cycle. We now say that a Coxeter system (W, S) is type $P M^{n}$ if its nerve L is an orientable ($n-1$)-dimensional pseudomanifold with the property that the complement of the codimension-two skeleton of L is connected.

Corollary 4.6.3. Suppose that (W, S) is right-angled and of type $P M^{n}$. Then for $\mathrm{q} \leq 1$,

$$
L_{\mathbf{q}}^{2} b_{k}\left(\Sigma^{(n-2)}\right)= \begin{cases}\sum_{U \epsilon \mathcal{S}(2 n-1)}\binom{|U|-1}{n-2} \frac{W^{U}(\mathbf{q})}{W(\mathbf{q})}+L_{\mathbf{q}}^{2} b_{n-2}(\Sigma)-L_{\mathbf{q}}^{2} b_{n-1}(\Sigma), & k=n-2 ; \\ L_{\mathbf{q}}^{2} b_{k}(\Sigma), & \text { otherwise } .\end{cases}
$$

Proof. Since (W, S) is of type $P M^{n}$, the nerve L is a $(n-1)$-pseudomanifold. Let $T \in \mathcal{S}^{n-1}$. Then the corresponding geometric simplex σ_{T} in L has dimension $n-2$, and since L is an $(n-1)$-pseudomanifold, it follows that σ_{T} is contained in precisely two ($n-1$)-simplices σ_{U} and σ_{V}, where $U=T \cup\{s\}$ and $V=T \cup\{t\}$ for some $s, t \in S$. Since L has dimension $n-1$ and (W, S) is right-angled, it follows that $m_{s t}=\infty$ (otherwise, $U \cup V$ would span an n-simplex in L). It follows that $L k(T)=\{s, t\}$, and that $W_{L k(T)}=D_{\infty}$. Thus, if $\mathbf{q} \in \mathcal{R}_{L k(T)}$, then $\mathbf{q}<\mathbf{1}$. Since $T \in \mathcal{S}^{n-1}$ was arbitrary, it follows that if for every $T \in \mathcal{S}^{n-1}, \mathbf{q} \in \mathcal{R}_{L k(T)}$, then $\mathbf{q}<\mathbf{1}$.

By Theorem 4.5.2, $L_{\mathbf{q}}^{2} H_{*}\left(\Sigma, \Sigma^{(n-2)}\right)$ is concentrated in dimension $n-1$. Consider the long exact sequence for the pair $\left(\Sigma, \Sigma^{(n-2)}\right)$:

$$
0 \longrightarrow L_{\mathbf{q}}^{2} H_{n-1}(\Sigma) \longrightarrow L_{\mathbf{q}}^{2} H_{n-1}\left(\Sigma, \Sigma^{(n-2)}\right) \longrightarrow L_{\mathbf{q}}^{2} H_{n-2}\left(\Sigma^{(n-2)}\right) \longrightarrow L_{\mathbf{q}}^{2} H_{n-2}(\Sigma) \longrightarrow 0
$$

A dimension count and continuity of weighted $L_{\mathbf{q}}^{2}-$ Betti numbers now implies the assertion.

When (W, S) is of type $P M^{3}$, we have the following computation thanks to Corollary 4.6.3. Recall, that $\Sigma^{(1)}$ is the Cayley graph of W (Proposition 2.8.1), so the following corollary gives a formula for weighted L^{2}-Betti numbers of the Cayley graph when W is of type $P M^{3}$.

Corollary 4.6.4. Suppose that (W, S) is right-angled and of type $P M^{3}$. Furthermore, suppose that $\mathbf{q} \leq \mathbf{1}$ and $\mathbf{q} \notin \mathcal{R}$. Then

$$
L_{\mathbf{q}}^{2} b_{1}\left(\Sigma^{(1)}\right)=-\frac{1}{W(\mathbf{q})}+\sum_{U \epsilon \mathcal{S}(\geq 2)}(|U|-1) \frac{W^{U}(\mathbf{q})}{W(\mathbf{q})}
$$

Proof. Since Σ is a pseudomanifold, it follows that $L_{\mathbf{q}}^{2} b_{3}(\Sigma)=0$ and since $\mathbf{q} \notin \mathcal{R}$, $L_{\mathbf{q}}^{2} b_{0}(\Sigma)=0$. The assertion follows from Corollary 4.6.3, as $\chi_{\mathbf{q}}(\Sigma)=L_{\mathbf{q}}^{2} b_{2}(\Sigma)-$ $L_{\mathbf{q}}^{2} b_{1}(\Sigma)=\frac{1}{W(\mathbf{q})}$.

Example 4.6.5. Suppose that (W, S) is right-angled and of type $P M^{3}$, and let $\mathbf{q}=q$, a positive real number. Recall the f-polynomial $f_{L}(t)$ of L. It is defined by

$$
f_{L}(t):=\sum_{i=0}^{3} f_{i-1} t^{i}
$$

where f_{m} is the number of m-simplices of L and $f_{-1}=1$. By [6 , Proposition 17.4.2], we have the following formula:

$$
\frac{1}{W(t)}=(1+t)^{3} f_{L}\left(\frac{-t}{1+t}\right) .
$$

This simplifies to

$$
\begin{aligned}
\frac{1}{W(t)} & =1-\left(f_{0}-3\right) t+\left(f_{1}-2 f_{0}+3\right) t^{2}-\left(f_{0}-f_{1}+f_{2}-1\right) t^{3} \\
& =1-\left(f_{0}-3\right) t+\left(f_{0}+3-3 \chi(L)\right) t^{2}-(\chi(L)-1) t^{3} .
\end{aligned}
$$

Here $\chi(L)$ is the Euler characteristic of L. Note that the second equality follows by using the facts that $\chi(L)=f_{0}-f_{1}+f_{2}$ and $3 f_{2}=2 f_{1}$ (this second formula holds because each edge is contained in exactly two 2 -simplices, and each 2 -simplex contains exactly three edges).

The radius of convergence ρ of $W(t)$ is the smallest modulus of a root of the above polynomial. Since W is of type $P M^{3}$, the link of every vertex of L is 1pseudomanifold (in particular, just homeomorphic to S^{1}). Thus, just as in Example 4.6.2, the radius of convergence $\rho_{L k(v)}$ of the special subgroup $W_{L k(v)}$ has the formula:

$$
\rho_{L k(v)}=\frac{(k-2)-\sqrt{k^{2}-4 k}}{2},
$$

where $L k(v)$ is the link of the vertex v and k is the number of vertices in $L k(v)$. If v_{0} is the vertex of L whose link has the maximal number of vertices, then Corollary 4.6.1 implies that $L_{q}^{2} H_{*}\left(\Sigma_{L}\right)=0$ is concentrated in dimension 1 whenever $\rho<q<$ $\rho_{L k\left(v_{0}\right)}$.

The main point is that ρ is explicitly computable. For example, if L is a flag triangulation of a torus (or, more generally, a flag triangulation of a surface of genus $g \geq 1$), it is still an open conjecture that $L_{q}^{2} b_{*}\left(\Sigma_{L}\right)=0$ is concentrated in degree 2
for $q=1$ (see [9, Conjecture 11.5.1]), but on the other hand Corollary 4.6.1 allows us to conclude that $L_{q}^{2} b_{2}\left(\Sigma_{L}\right)=0$ for $q<\rho_{L k\left(v_{0}\right)}$.

Chapter 5

The Weighted Singer Conjecture

Appearing in [8], the following is the appropriate reformulation of the the Singer Conjecture for Coxeter groups [9] for weighted $L^{2}-(c o) h o m o l o g y: ~$

Conjecture 5.0.1 (Weighted Singer Conjecture). Suppose that the nerve L is a triangulation of S^{n-1}. Then

$$
L_{\mathbf{q}}^{2} H_{k}\left(\Sigma_{L}\right)=0 \text { for } k>\frac{n}{2} \text { and } \mathbf{q} \leq \mathbf{1} .
$$

By weighted Poincaré duality, this is equivalent to the conjecture that if $\mathbf{q} \geq \mathbf{1}$ and $k<\frac{n}{2}$, then $L_{\mathbf{q}}^{2} H_{k}(\Sigma)$ vanishes. The conjecture is known for elementary reasons for $n \leq 2$, and in [8], it is proved for the case where W is right-angled and $n \leq$ 4. Furthermore, it was shown in in [8] that Conjecture 5.0.1 for n odd implies Conjecture 5.0.1 for n even, under the assumption that W is right-angled.

The original Singer Conjecture for Coxeter groups was formulated for $\mathbf{q}=\mathbf{1}$ in [9] and concluded that the $L^{2}-(c o)$ homology is concentrated in dimension $\frac{n}{2}$. The original conjecture is known for elementary reasons for $n \leq 2$ and holds by a result of Lott and Lück [14], in conjunction with the validity of the Geometrization Conjecture for 3 -manifolds [17], for $n=3$. It was proved by Davis-Okun [9] for the case where W is right-angled and $n \leq 4$. It was later proved for the case where W is an even Coxeter group and $n \leq 4$ by Schroeder [18], under the assumption that the nerve L is a flag complex. Due to recent work of Okun-Schreve [16, Theorem 4.9], the conjecture is now known in full generality whenever $\mathbf{q}=\mathbf{1}$ and $n \leq 4$. In
fact, using induction and [16, Theorem 4.5, Lemma 4.6, Corollary 4.7] proves the following theorem.

Theorem 5.0.2. Suppose that the nerve L is an $(n-1)$-sphere or an $(n-1)$-disk. Then

$$
L_{1}^{2} H_{k}\left(\Sigma_{L}\right)=0 \text { for } k \geq n-1
$$

In this chapter, we present a proof of Conjecture 5.0.1 in dimension three that encompasses all but nine Coxeter groups. Then, under some restrictions on the nerve of the Coxeter group, we obtain partial results whenever $n=4$ (in particular, the conjecture holds for $n=4$ if the nerve of the corresponding Coxeter group is a flag complex). We then extend our results in dimension four to prove a general version of the conjecture for the case where the nerve of the Coxeter group is assumed to be a flag triangulation of a 3-manifold.

5.1 The case where L is a disk

Note that if L is a triangulation of the $(n-1)$-disk, then Σ_{L} is an n-manifold with boundary. We now obtain the following theorem, which whenever $n=3,4$ can be thought of as a version of Conjecture 5.0.1 for the case where Σ_{L} is an n-manifold with boundary.

Theorem 5.1.1. Suppose that the nerve L is an $(n-1)$-disk. Then

$$
L_{\mathbf{q}}^{2} H_{k}\left(\Sigma_{L}\right)=0 \text { for } k \geq n-1 \text { and } \mathbf{q} \leq 1 .
$$

Proof. By Theorem 5.0.2, we have that $L_{1}^{2} H_{k}\left(\Sigma_{L}\right)=0$ for $k \geq n-1$. Furthermore, Proposition 2.9.1 implies that $\operatorname{vcd} W \leq n-1$, and hence we are done by Lemma 3.3.8.

5.2 A cell structure on K

Suppose that L is the labeled nerve of a Coxeter system, homeomorphic to the n^{-} sphere. For every $T \in \mathcal{S}$, define K_{T} to be the geometric realization of the poset
$\mathcal{S}_{\geq T}=\{U \in \mathcal{S} \mid T \subseteq U\}$. In other words, K_{T} is the union of all closed simplices in $b L$ with minimum vertex T, so K_{T} is the cone on the barycentric subdivision of the link of T in L. If L is a triangulation of the n-sphere, then it follows that links of simplices T of L are spheres of dimension $n-|T|$. Thus it follows that each K_{T} is a $(n-|T|+1)$-disk, hence $\left\{K_{T}\right\}_{T \in \mathcal{S}}$ yields a cellulation of K. We denote K with this cellulation by K_{d}. Note that this cellulation extends to Σ_{L}, and the simplicial structure on Σ_{L} coincides with the barycentric subdivision of this cell structure.

The codimension-one faces of K_{d} correspond to vertices of L, and we assign dihedral angles to K_{d} as follows. If $\{s, t\}$ is an edge of L, then we assign the dihedral angle $\pi / m_{s t}$ between the faces K_{s} and K_{t}.

Figure 5.1: K_{d} when W is right-angled and the labeled nerve L is the boundary complex of an octahedron

5.3 Andreev's theorem

In [1], Andreev listed necessary and sufficient conditions for abstract three-dimensional polytopes with assigned dihedral angles ($0, \frac{\pi}{2}$] to be realized as convex polytopes in \mathbb{H}^{3}. For these polytopes to tile \mathbb{H}^{3}, these angles must be integer submultiples of π. We now state the theorem.

Theorem 5.3.1 ([1, Theorem 2]). Let P be an abstract three-dimensional simple polyhedron, not a simplex. The following conditions are necessary and sufficient for the existence in \mathbb{H}^{3} of a convex polytope of finite volume of the combinatorial type
P with the dihedral angles $\alpha_{i j} \leq \frac{\pi}{2}$ (where $\alpha_{i j}$ is the dihedral angle between the faces $\left.F_{i}, F_{j}\right):$
(i) If F_{1}, F_{2} and F_{3} are all the faces meeting at a vertex of P, then $\alpha_{12}+\alpha_{23}+\alpha_{31}>$ π.
(ii) If three faces intersect pairwise but do not have a common vertex, then the angles at the three edges of the intersection satisfy $\alpha_{12}+\alpha_{23}+\alpha_{31}<\pi$.
(iii) Four faces cannot intersect cyclically with all four angles $=\frac{\pi}{2}$ unless two of the opposite faces intersect.
(iv) If P is a triangular prism, then the angles along the base and the top cannot all be $\frac{\pi}{2}$.

Our goal is to use the above theorem to formulate conditions on the labeled nerve L so that $\Sigma_{L}=\mathbb{H}^{3}$. Note that, for the rest of this thesis, we use the notation $\Sigma_{L}=X$ whenever Σ_{L} admits a W_{L}-invariant metric making it isometric to X.

We say that a vertex in L is a Euclidean 3-vertex if its link has three pairwise connected vertices, and if v_{0}, v_{1}, v_{2} are the vertices, then the labelings on the corresponding edges satisfy:

$$
\frac{\pi}{m_{v_{0} v_{1}}}+\frac{\pi}{m_{v_{0} v_{2}}}+\frac{\pi}{m_{v_{1} v_{2}}}=\pi .
$$

Similarly, we say a vertex v in L is a Euclidean 4-vertex if $L k(v)$ is a 4-gon with all edges labeled by 2 .

Let C be an empty circuit in L and suppose that C is not the link of some vertex of L. If C consists of three vertices v_{0}, v_{1}, v_{2}, then we say that C is a Euclidean 3 -circuit if the labelings on the edges of C satisfy:

$$
\frac{\pi}{m_{v_{0} v_{1}}}+\frac{\pi}{m_{v_{0} v_{2}}}+\frac{\pi}{m_{v_{1} v_{2}}}=\pi .
$$

Similarly, if C consists of four vertices and is not the boundary of two adjacent simplices, then we say that C is a Euclidean 4 -circuit if the labels on the edges of C are all equal to 2 .

Figure 5.2: The two figures on the left show Euclidean vertices, while the far right is not a Euclidean circuit

The nerve L of a Coxeter system (W, S) has a natural piecewise spherical structure, and under this structure, if $s, t \in S$ are connected by an edge in L, then the edge has length $\pi-\pi / m_{s t}$, where $(s t)^{m_{s t}}=1$. Hence L inherits the structure of a metric flag complex [6, Lemma 12.3.1], meaning that any collection of pairwise connected edges of L spans a simplex if and only if there exists a spherical simplex with the corresponding edge lengths. It follows that if v is a Euclidean 3 - or 4-vertex, then $L k(v)$ is a full subcomplex of L. Similarly, Euclidean circuits are full subcomplexes. Thus the corresponding subgroups are in fact special subgroups of W.

Suppose that L is the labeled nerve of a Coxeter system, homeomorphic to S^{2}, and let K_{d} have the prescribed dihedral angles $\pi / m_{s t}$ as in 5.2. It follows that if K_{d} satisfies the conditions of Theorem 5.3.1, then $\Sigma_{L}=\mathbb{H}^{3}$. The following theorem now becomes a special case of Theorem 5.3.1.

Theorem 5.3.2. Suppose that L is the labeled nerve of a Coxeter system, homeomorphic to S^{2}, but not the boundary of a 3-simplex. Furthermore, suppose that

- L has no Euclidean 3- or 4-circuits.
- L has no Euclidean vertices.
- L is not the right-angled suspension of a 3-gon.

Then $\Sigma_{L}=\mathbb{H}^{3}$.

Proof. We must show that K_{d} satisfies the conditions of Theorem 5.3.1. First note that condition (i) is vacuous in our case. Condition (ii) on K_{d} is equivalent to saying
that L has no Euclidean 3-vertices and no Euclidean 3-circuits. Similarly, condition (iii) on K_{d} is equivalent to saying that L has no Euclidean 4-vertices or no Euclidean 4 -circuits. Finally, condition (iv) on K_{d} is equivalent to saying that L is not the right-angled suspension of a 3-gon.

For convenience we restate the above theorem in terms of special subgroups.
Theorem 5.3.3. Suppose that the nerve L is a triangulation of S^{2}, but not the boundary of a 3-simplex, and let (W, S) be the corresponding Coxeter system. Furthermore, suppose that

- For every $T \subset S, W_{T}$ is not a Euclidean reflection group.
- $W \neq W_{T} \times D_{\infty}$, where $T \subset S$ spans empty triangle in L and D_{∞} is the infinite dihedral group.

Then $\Sigma_{L}=\mathbb{H}^{3}$.

5.4 Equidistant hypersurfaces

Suppose that the Coxeter group W has nerve L that is a triangulation of S^{2} and that $\Sigma_{L}=\mathbb{H}^{3}$. Let D denote the Davis chamber (in \mathbb{H}^{3}) and let W_{M} be a special subgroup of W. We now consider the (possibly infinite) convex polytope $W_{M} D$ in \mathbb{H}^{3}.

For $t>0$, let S_{t} denote the t-distant surface from a component S of $\partial W_{M} D$. Then S_{t} is a smooth surface (see [4, Proposition II.2.2.1]). In fact, S_{t} is a union of pieces of which there are three types: hyperbolic, Euclidean, and spherical, each of which are the equidistant pieces from faces, edges, and vertices of S, respectively. The Euclidean pieces look like rectangles that are each adjacent to two hyperbolic pieces and two spherical pieces, and the spherical pieces are adjacent to Euclidean pieces.

As $W_{M} D$ is convex, the nearest point projection $p: \mathbb{H}^{3} \cup \partial \mathbb{H}^{3} \rightarrow W_{M} D$ is defined. If we fix $t>r>0$, then p induces a map $p_{t r}: S_{t} \rightarrow S_{r}$.

Lemma 5.4.1. The map $p_{t r}: S_{t} \rightarrow S_{r}$ induced by nearest point projection is $\frac{\tanh (t)}{\tanh (r)}-$ quasiconformal.

Proof. It suffices to check what $p_{t r}$ does on each of the three types of pieces. First, note that a face of S is simply the intersection of $\partial W_{M} D$ with a hyperbolic plane in \mathbb{H}^{3}. Thus $p_{t r}$ simply scales the corresponding hyperbolic pieces on S_{t} and S_{r} by a constant factor. Hence $p_{t r}$ is conformal there. Similarly, the map $p_{t r}$ is conformal on the spherical pieces.

Second, we consider the Euclidean piece in S_{t} equidistant from an edge of S. A Euclidean piece looks like a rectangle adjacent to two hyperbolic pieces at two parallel edges (parallel in the intrinsic Euclidean geometry), and the the map induced by nearest point projection $S_{t} \rightarrow S$ scales by a factor of $1 / \cosh (t)$ in the direction of those edges. The other two edges of the Euclidean piece are each adjacent to a spherical piece. An edge like this is the arc of a circle with radius t centered at a vertex in S. Thus the edge has length $\theta \sinh (t)$, where θ is the dihedral angle at the corresponding edge of S. Hence the map $p_{t r}$ scales by a factor of $\cosh (r) / \cosh (t)$ in the direction of the edges adjacent to the hyperbolic pieces, and scales the edges adjacent to the spherical pieces by a factor of $\sinh (r) / \sinh (t)$. Therefore $p_{t r}$ is $\frac{\tanh (t)}{\tanh (r)}$-quasiconformal on the Euclidean pieces.

5.5 The conjecture in dimension three

In this section, we prove the following theorem.
Theorem 5.5.1. Suppose that the nerve L of a Coxeter group is a triangulation of S^{2} not dual to a hyperbolic 3-simplex. Then

$$
L_{\mathbf{q}}^{2} H_{k}\left(\Sigma_{L}\right)=0 \text { for } k>1 \text { and } \mathbf{q} \leq \mathbf{1} .
$$

Suppose that M is a complete smooth Riemannian manifold. Given a a nonnegative measurable function $f: M \rightarrow[0, \infty)$, we define a new norm on the $C^{\infty} k$-forms called the L_{f}^{2} norm by

$$
\|\omega\|_{f}^{2}=\int_{M}\|\omega\|_{p}^{2} f(p) d V
$$

where $\|\omega\|_{p}^{2}$ is the pointwise norm and $d V$ is the volume form of M. Let $L_{f}^{2} \mathcal{C}^{*}(M)$ denote the weighted L^{2} de Rham complex defined using the L_{f}^{2} norm.

Lemma 5.5.2. Let M and N be smooth surfaces and suppose that $\phi: M \rightarrow N$ is a K-quasiconformal diffeomorphism. Let $g: N \rightarrow[0, \infty)$ be the function defined by $g(p)=f\left(\phi^{-1}(p)\right)$. Then for every $\omega \in L_{g}^{2} \mathcal{C}^{1}(N)$, we have that

$$
\frac{1}{K}\|\omega\|_{g}^{2} \leq\left\|\phi^{*}(\omega)\right\|_{f}^{2} \leq K\|\omega\|_{g}^{2}
$$

Proof. The pointwise norm of a 1 -form is $\|\omega\|_{p}=\sup _{x \in T_{p} M} \omega(x)$, where $T_{p} M$ is the tangent space of M at p. Since ϕ is K-quasiconformal, its differential $d \phi$ maps the circle $\left\{x \in T_{p} M \mid\|x\|=1\right\}$ to an ellipse with semi-axis $b(p) \leq a(p)$ satisfying $\frac{a(p)}{b(p)} \leq K$. Thus for any $\omega \in L_{\mathbf{q}}^{2} \mathcal{C}^{1}(N)$,

$$
b(p)\|\omega\|_{\phi(p)} \leq\left\|\phi^{*}(\omega)\right\|_{p} \leq a(p)\|\omega\|_{\phi(p)} .
$$

Now, let $d V_{M}$ and $d V_{N}$ be the respective volume forms of M and N. We have that

$$
\left(f d V_{M}\right)_{p}=\frac{\left(g(\phi) \phi^{*}\left(d V_{N}\right)\right)_{p}}{a(p) b(p)},
$$

so for L_{f}^{2} norms we have

$$
\begin{aligned}
\left\|\phi^{*}(\omega)\right\|_{f}^{2} & =\int_{M}\left\|\phi^{*}(\omega)\right\|_{p}^{2} f(p) d V_{M} \\
& \leq \int_{M} \frac{a(p)}{b(p)}\|\omega\|_{\phi(p)}^{2} g(\phi(p)) \phi^{*}\left(d V_{N}\right) \\
& \leq K \int_{M}\|\omega\|_{\phi(p)}^{2} g(\phi(p)) \phi^{*}\left(d V_{N}\right) \\
& =K \int_{N}\|\omega\|_{x}^{2} g(x) d V_{N}=K\|\omega\|_{g}^{2}
\end{aligned}
$$

The remaining inequality follows similarly.
Suppose that the nerve L of W is a triangulation of S^{2} and that $\Sigma_{L}=\mathbb{H}^{3}$. Define f to be the function $f(p)=q_{w}$, where $w \in W_{L}$ is a word of shortest length such that
$p \in w D$ (here D is the Davis chamber). Let $L_{\mathbf{q}}^{2} \mathcal{H}^{*}\left(\mathbb{H}^{3}\right)$ denote the weighted L^{2} de Rham cohomology defined using this f.

Let W_{M} be an infinite special subgroup of W and let S be one of the components of $\partial W_{M} D$. Put coordinates (x, t) on \mathbb{H}^{3} so that $t \in \mathbb{R}$ is the oriented distance from $p \in \mathbb{H}^{3}$ to the closest point $x \in S$. Fix $r>0$, and for $t \geq r$ let S_{t} denote the hypersurface consisting of points of (oriented) distance t from S. Let $p_{t r}: S_{t} \rightarrow S_{r}$ be the map induced by nearest point projection, and let $\phi_{t r}$ denote the inverse of $p_{t r}$. By Lemma 5.4.1, $p_{t r}$ is $K(t)$-quasiconformal, with $K(t)=\frac{\tanh (t)}{\tanh (r)}$, and hence so is its inverse $\phi_{t r}: S_{r} \rightarrow S_{t}$. Let $i_{r}: S_{r} \rightarrow \mathbb{H}^{3}$ and $i_{t}: S_{t} \rightarrow \mathbb{H}^{3}$ be the inclusions. Then i_{r} and $i_{t} \circ \phi_{t r}$ are properly homotopic.

We now adapt the argument after [8, Theorem 16.10] to prove the following lemma.

Lemma 5.5.3. If $\mathbf{q} \geq 1$, then the map $i_{r}^{*}: L_{\mathbf{q}}^{2} \mathcal{H}^{1}\left(\mathbb{H}^{3}\right) \rightarrow L_{\mathbf{q}}^{2} \mathcal{H}^{1}\left(S_{r}\right)$ induced by the inclusion i_{r} is the zero map.

Proof. Set $g(x, y)=f(x, 0)$, so $f(x, y) \geq g(x, y)$, and let ω be a closed $L_{f}^{2} 1$-form on \mathbb{H}^{3}. We now show that the restriction $i_{r}^{*}(\omega)$ to S_{r} represents the zero class in in reduced L_{f}^{2}-cohomology. For the remainder of the proof, we will use the notation $\|[\alpha]\|_{g}$ and $\|[\alpha]\|_{x}$ to denote the respective L_{g}^{2} norm and pointwise norm of the harmonic representative of the cohomology class $[\alpha]$.

Suppose for a contradiction that $\left[i_{r}^{*}(\omega)\right] \neq 0$. Then $\left\|i_{r}^{*}(\omega)\right\|_{g} \geq\left\|\left[i_{r}^{*}(\omega)\right]\right\|_{g}>0$. By Lemma 5.5.2, it follows that $\left\|\phi_{t r}^{*}\left(i_{t}^{*}(\omega)\right)\right\|_{g}^{2} \leq K(t)\left\|i_{t}^{*}(\omega)\right\|_{g}^{2}$, and since i_{r} and $i_{t} \circ \phi_{t r}$ are properly homotopic, $\left[i_{r}^{*}(\omega)\right]=\left[\phi_{t r}^{*}\left(i_{t}^{*}(\omega)\right)\right]$. Therefore

$$
K(t)\left\|i_{t}^{*}(\omega)\right\|_{g}^{2} \geq\left\|\left[i_{r}^{*}(\omega)\right]\right\|_{g}^{2}>0
$$

Now, $i_{t}^{*}(\omega)$ is just a restriction of ω, so we have the pointwise inequality $\|\omega\|_{x} \geq$ $\left\|i_{t}^{*}(\omega)\right\|_{x}$. Using Fubini's Theorem, we compute

$$
\begin{aligned}
\|\omega\|_{g}^{2} & =\int_{\mathbb{H}^{3}}\|\omega\|_{x}^{2} g(x, y) d V \geq \int_{r}^{\infty} \int_{S_{t}}\|\omega\|_{x}^{2} g(x, y) d A d t \geq \int_{r}^{\infty} \int_{S_{t}}\left\|i_{t}^{*}(\omega)\right\|_{x}^{2} g(x, y) d A d t \\
& =\int_{r}^{\infty}\left\|i_{t}^{*}(\omega)\right\|_{g}^{2} d t \geq \int_{r}^{\infty} \frac{\tanh (r)}{\tanh (t)}\left\|\left[i_{r}^{*}(\omega)\right]\right\|_{g}^{2} d t=\infty .
\end{aligned}
$$

Since $\|\omega\|_{f} \geq\|\omega\|_{g}$, this contradicts the assumption that the L_{f}^{2} norm of ω is finite.
Suppose that L is the nerve of a Coxeter group W_{L} and that A is a full subcomplex of L. For the proofs that follow, note that $\operatorname{dim}_{\mathbf{q}} L_{\mathbf{q}}^{2} H_{k}\left(W_{L} \Sigma_{A}\right)=L_{\mathbf{q}}^{2} b_{k}\left(\Sigma_{A}\right)$ (see [6, pg. 352 (vi)]).

Lemma 5.5.4. Suppose that the nerve L is a triangulation of S^{2} and that there exists a full subcomplex 1 -sphere M of L that separates L into two full 2-disks L_{1} and L_{2} with boundary M. Furthermore, suppose that one of the following holds:
(i) $\Sigma_{M}=\mathbb{R}^{2}$.
(ii) $\Sigma_{L}=\mathbb{H}^{3}$.

Then

$$
L_{\mathbf{q}}^{2} H_{k}\left(\Sigma_{L}\right) \text { for } k \geq 2 \text { and } \mathbf{q} \leq 1
$$

Proof. Since Σ_{L} is a 3-manifold, it follows that $L_{\mathbf{q}}^{2} b_{3}\left(\Sigma_{L}\right)=0$ [6, Proposition 20.4.1]. Hence we must show that $L_{\mathbf{q}}^{2} b_{2}\left(\Sigma_{L}\right)=0$. Consider the following Mayer-Vietoris sequence applied to $L=L_{1} \cup_{M} L_{2}$:

$$
\cdots \rightarrow L_{\mathbf{q}}^{2} H_{2}\left(W_{L} \Sigma_{L_{1}}\right) \oplus L_{\mathbf{q}}^{2} H_{2}\left(W_{L} \Sigma_{L_{2}}\right) \rightarrow L_{\mathbf{q}}^{2} H_{2}\left(\Sigma_{L}\right) \rightarrow L_{\mathbf{q}}^{2} H_{1}\left(W_{L} \Sigma_{M}\right) \rightarrow \cdots
$$

By Theorem 5.1.1, we have that $L_{\mathbf{q}}^{2} H_{2}\left(W_{L} \Sigma_{L_{1}}\right)=L_{\mathbf{q}}^{2} H_{2}\left(W_{L} \Sigma_{L_{2}}\right)=0$. If (i) holds, then Theorem 3.3.4 implies that $L_{\mathbf{q}}^{2} H_{1}\left(\Sigma_{M}\right)=0$, and we are done. If (ii) holds, we argue that the connecting homomorphism $\partial_{*}: L_{\mathbf{q}}^{2} H_{2}\left(\Sigma_{L}\right) \rightarrow L_{\mathbf{q}}^{2} H_{1}\left(W_{L} \Sigma_{M}\right)$ is the zero map. By [8, Lemma 16.2], we reduce the proof to showing that the map induced by inclusion $i_{*}: L_{\mathbf{q}^{-1}}^{2} H_{1}\left(W_{L} \Sigma_{M}\right) \rightarrow L_{\mathbf{q}^{-1}}^{2} H_{1}\left(\Sigma_{L}\right)$ is the zero map, and since $W_{L} \Sigma_{M}$ is a disjoint union of copies of Σ_{M}, it is enough to show that the restriction of i_{*} to one summand $L_{\mathbf{q}^{-1}}^{2} H_{1}\left(\Sigma_{M}\right)$ is zero.

Consider the infinite convex polytope $W_{M} D$, where D is the Davis chamber for W. We have that W_{M} acts properly and cocompactly on $W_{M} D$ by isometries. In particular, if S is one of the components of $\partial W_{M} D$, then W_{M} acts properly and
cocompactly on S, and therefore $L_{\mathbf{q}^{-1}}^{2} H^{*}\left(\Sigma_{M}\right) \cong L_{\mathbf{q}^{-1}}^{2} \mathcal{H}^{*}(S)$. Hence we are done if we show that map $i^{*}: L_{\mathbf{q}^{-1}}^{2} \mathcal{H}^{1}\left(\mathbb{H}^{3}\right) \rightarrow L_{\mathbf{q}^{-1}}^{2} \mathcal{H}^{1}(S)$ induced by the inclusion $i: S \rightarrow \mathbb{H}^{3}$ is the zero map.

Fix $r>0$, and let S_{r} be the r-distant surface from $S . S_{r}$ and S are properly homotopy equivalent, and this equivalence induces a weak isomorphism between $L_{\mathbf{q}^{-1}}^{2} \mathcal{H}^{*}(S)$ and $L_{\mathbf{q}^{-1}}^{2} \mathcal{H}^{*}\left(S_{r}\right)$. Thus we have reduced the proof to showing that the map $i_{r}^{*}: L_{\mathbf{q}^{-1}}^{2} \mathcal{H}^{1}\left(\mathbb{H}^{3}\right) \rightarrow L_{\mathbf{q}^{-1}}^{2} \mathcal{H}^{1}\left(S_{r}\right)$ induced by the inclusion $i_{r}: S_{r} \rightarrow \mathbb{H}^{3}$ is the zero map, and therefore we are done by Lemma 5.5.3.

Remark 5.5.5. In [8, Section 16] W is strictly assumed to be right-angled, but the proof of [8, Lemma 16.2] does not use this, as it only uses properties of weighted L^{2}-(co)homology.

Proof of Theorem 5.5.1. We first suppose that $\Sigma_{L}=\mathbb{H}^{3}$. We need to find a full subcomplex M of L satisfying the hypothesis of Lemma 5.5.4. First we suppose that L is a flag complex. Let v be a vertex of L and set $M=L k(v)$. Since L is flag, M is a full subcomplex of L, and since L is a triangulation of the $2-$ sphere, it follows that M is a 1 -sphere, and we are done. Now suppose that L is not flag. Since L is not the boundary of a 3 -simplex, there exists an empty 2 -simplex in L. Let M denote this empty 2 -simplex. Then M separates L into two full 2-disks, both with boundary M, and we are done. We now suppose that $\Sigma_{L} \neq \mathbb{H}^{3}$ and use Theorem 5.3.3 to perform a case-by-case analysis.

Case I: W contains a Euclidean special subgroup W_{T}. Let M be the full subcomplex of L corresponding to W_{T}. Then M separates L into two 2-disks both with boundary M and hence Lemma 5.5.4 (i) implies the assertion.

Case II: $W=W_{T} \times D_{\infty}$, where $T \subset S$ spans empty triangle in L. Either $\Sigma_{L}=\mathbb{R}^{3}$ or $\Sigma_{L}=\mathbb{H}^{2} \times \mathbb{R}$. In both cases we are done by the weighted Künneth formula.

Case III: L is the boundary of a 3-simplex. By assumption, L is not dual to a hyperbolic simplex, so $\Sigma_{L}=\mathbb{R}^{3}$. Therefore we are done by [8, Corollary 14.5].

5.6 The conjecture in dimension four

In dimension four, we prove the following case of the Weighted Singer Conjecture:
Theorem 5.6.1. Suppose that the nerve L of a Coxeter group is a triangulation of S^{3}. Furthermore, suppose that there exists a vertex of L such that its link is a full subcomplex of L and not dual to a hyperbolic 3-simplex. Then

$$
L_{\mathbf{q}}^{2} H_{k}\left(\Sigma_{L}\right)=0 \text { for } k>2 \text { and } \mathbf{q} \leq \mathbf{1} .
$$

Proof. In this case, Σ_{L} is a 4-manifold, and hence $L_{\mathbf{q}}^{2} b_{4}\left(\Sigma_{L}\right)=0[6$, Proposition 20.4.1]. It remains to show that $L_{\mathbf{q}}^{2} b_{3}\left(\Sigma_{L}\right)=0$. Suppose that the nerve L is a triangulation of S^{3} and let $s \in L$ be a vertex. We make the following observations:

- The nerve L_{S-s} of the Coxeter system $\left(W_{S-s}, S-s\right)$ is a 3-disk.
- The nerve $S t(s)$ of the Coxeter group $W_{S t(s)}$ is a 3-disk.
- The nerve $L k(s)$ of the Coxeter group $W_{L k(s)}$ is a 2 -sphere.

This is because the subcomplexes $S t(s), L k(s)$, and L_{S-s} of L correspond to the closed star of the vertex s, link of the vertex s, and complement of the open star of s, respectively, which are all by assumption full subcomplexes of L.

Consider the following Mayer-Vietoris sequence:

$$
\cdots \rightarrow L_{\mathbf{q}}^{2} H_{3}\left(W_{L} \Sigma_{L_{S-s}}\right) \oplus L_{\mathbf{q}}^{2} H_{3}\left(W_{L} \Sigma_{S t(s)}\right) \rightarrow L_{\mathbf{q}}^{2} H_{3}\left(\Sigma_{L}\right) \rightarrow L_{\mathbf{q}}^{2} H_{2}\left(W_{L} \Sigma_{L k(s)}\right) \rightarrow \cdots
$$

By Theorem 5.1.1, $L_{\mathbf{q}}^{2} b_{3}\left(\Sigma_{S t(s)}\right)=0$ and $L_{\mathbf{q}}^{2} b_{3}\left(\Sigma_{L_{S-s}}\right)=0$, and by Theorem 5.5.1, $L_{\mathbf{q}}^{2} b_{2}\left(\Sigma_{L k(s)}\right)=0$. Therefore by the above sequence, $L_{\mathbf{q}}^{2} b_{3}\left(\Sigma_{L}\right)=0$.

We obtain the following corollary.
Corollary 5.6.2. Suppose that the nerve L of a Coxeter group is a flag triangulation of S^{3}. Then

$$
L_{\mathbf{q}}^{2} H_{k}\left(\Sigma_{L}\right)=0 \text { for } k>2 \text { and } \mathbf{q} \leq 1 .
$$

Proof. Since L is flag, it follows that the link of every vertex is a full subcomplex of L. Furthermore, the link of every vertex is not the boundary of a 3 -simplex (and in particular, not dual to a 3 -simplex). Theorem 5.6.1 now completes the proof.

5.7 The case where L is a 3-manifold

In this section, we prove the following generalization of Corollary 5.6.2.
Theorem 5.7.1. Suppose that L is a flag triangulation of a 3-manifold. Then

$$
L_{\mathbf{q}}^{2} H_{k}\left(\Sigma_{L}\right)=0 \text { for } k>2 \text { and } \mathbf{q} \leq \mathbf{1} .
$$

Note that, in this case, Σ_{L} is a 4 -pseudomanifold (i.e. every 3 -cell of Σ_{L} is contained in precisely two 4 -cells). We will prove the theorem using ruins.

Lemma 5.7.2. Suppose that L is a flag triangulation of a 3-manifold. Then for every $t \in L, L_{\mathbf{q}}^{2} H_{*}(\Omega(S, t), \partial \Omega(S, t))=0$ for $*>2$ and $\mathbf{q} \leq 1$.

Proof. First, for $t \in L$, recall that the (S, t)-ruin has the property that

$$
\Omega(S, t)=\Omega(S t(t), t)
$$

where $S t(t)=\left\{s \in S \mid m_{s t}<\infty\right\}$. Recall that $L k(t)=S t(t)-t$, and so we have the following weak exact sequence (see sequence (4.1)):

$$
\cdots \longrightarrow L_{\mathbf{q}}^{2} H_{*}(\Sigma(L k(t))) \longrightarrow L_{\mathbf{q}}^{2} H_{*}(\Sigma(S t(t))) \longrightarrow L_{\mathbf{q}}^{2} H_{*}(\Omega(S, t), \partial \Omega(S, t)) \longrightarrow \cdots
$$

Note that

$$
L_{\mathbf{q}}^{2} b_{*}(\Sigma(S t(t)))=L_{\mathbf{q}}^{2} b_{*}\left(\Sigma_{S t(t)}\right) \text { and } L_{\mathbf{q}}^{2} b_{*}(\Sigma(L k(t)))=L_{\mathbf{q}}^{2} b_{*}\left(\Sigma_{L k(t)}\right)
$$

where $\Sigma_{S t(t)}$ and $\Sigma_{L k(t)}$ are the Davis complexes corresponding to the subgroups $W_{S t(t)}$ and $W_{L k(t)}$, respectively. Since L is flag, the respective nerves of the groups $W_{S t(t)}$ and $W_{L k(t)}$ are a 3 -disk and a 2 -sphere. Furthermore, the nerve of $W_{L k(t)}$ is
not the boundary of a 3 -simplex (again, L is flag). By Theorem 5.1.1, $L_{\mathbf{q}}^{2} b_{k}\left(\Sigma_{S t(t)}\right)=$ 0 for $k>2$, and by Theorem 5.5.1, $L_{\mathbf{q}}^{2} b_{k}\left(\Sigma_{L k(t)}\right)=0$ for $k>1$. Therefore weak exactness of the sequence implies that $L_{\mathbf{q}}^{2} H_{*}(\Omega(S, t), \partial \Omega(S, t))=0$ for $*>2$.

We now adapt the argument of [18] to complete the proof of Theorem 5.7.1. The main point is that we are able to prove the following lemma for $\mathbf{q} \leq \mathbf{1}$.

Lemma 5.7.3 (Compare [18, Lemma 4.1]). For every $T \in \mathcal{S}^{(2)}$ and $U \subset S$ with $T \subset U$, we have $L_{\mathbf{q}}^{2} H_{4}(\Omega(U, T), \partial \Omega(U, T))=0$ for $\mathbf{q} \leq \mathbf{1}$.

Proof. Once we establish the lemma for $\mathbf{q}=\mathbf{1}$, we apply the argument in Lemma 3.3.8 to obtain the result for $\mathbf{q} \leq \mathbf{1}$ (see Remark 3.3.9).

Assume that $\Omega(U, T)$ contains 4-dimensional cells, otherwise we are done. Then every codimension-one face of a 4 -cell in $\Omega(U, T)$ is either free (not the face of another 4-cell) or contained in precisely one other 4-cell ($\Sigma_{c c}$ is a 4-pseudomanifold).

If every codimension-one face of a 4 -cell is free, then this cell has faces not contained in $\partial \Omega(U, T)$. Thus a relative cycle cannot be supported on this cell.

So, we assume that cells of type $T^{\prime} \in \mathcal{S}(U)_{>T}^{(4)}$ have a codimension-one face of type R that is not free. This face must be contained in another 4 -cell of type $T^{\prime \prime} \in \mathcal{S}(U)_{>T}^{(4)}$. Thus $T^{\prime}=R \cup\{t\}$ and $T^{\prime \prime}=R \cup\{s\}$ for some $s, t \in S$. Since L is flag and 3-dimensional, $m_{s t}=\infty$. Hence we obtain a sequence of adjacent 4 -cells $W_{T^{\prime}}, W_{T^{\prime \prime}}, s W_{T^{\prime}}, s t W_{T^{\prime \prime}}, s t s W_{T^{\prime}}, \ldots$. Furthermore, a relative 4 -cycle must be constant on adjacent cells of type T^{\prime} and $T^{\prime \prime}$, and since we have an infinite sequence of such adjacent cells, this constant must be zero.

The rest of the argument now follows [18] line by line. We repeat it for the sake of completeness.

Lemma 5.7.4 ([18, Proposition 4.2]). For every $t \in T$ and $U \subset S$ with $t \in U$, we have $L_{\mathbf{q}}^{2} H_{*}(\Omega(U, t), \partial \Omega(U, t))=0$ for $*>2$ and $\mathbf{q} \leq \mathbf{1}$.

Proof. The proof is by induction on $\operatorname{Card}(S-U)$, Lemma 5.7.2 serving as the base case. Let $s \in S$ and set $V=U \cup\{s\}$. If $m_{s t}=\infty$, then $\Omega(U, t)=\Omega(V, t)$ and we
are done by induction. Otherwise, consider the weak exact sequence (see sequence (4.1):

$$
\cdots \longrightarrow L_{\mathbf{q}}^{2} H_{*}(\Omega(U, t), \partial) \longrightarrow L_{\mathbf{q}}^{2} H_{*}(\Omega(V, t), \partial) \longrightarrow L_{\mathbf{q}}^{2} H_{*}(\Omega(V,\{s, t\}), \partial) \longrightarrow \cdots
$$

By Lemma 5.7.3, $L_{\mathbf{q}}^{2} H_{4}(\Omega(V,\{s, t\}), \partial)=0$ and by induction, $L_{\mathbf{q}}^{2} H_{*}(\Omega(V, t), \partial)=$ 0 for $*>2$. Therefore $L_{\mathbf{q}}^{2} H_{*}(\Omega(U, t), \partial)=0$ for $*>2$.

Proof of Theorem 5.7.1. For every $U \subset S$ and $t \in U$, we have the following weak exact sequence:

$$
\cdots \longrightarrow L_{\mathbf{q}}^{2} H_{*}(\Sigma(U-t)) \longrightarrow L_{\mathbf{q}}^{2} H_{*}(\Sigma(U)) \longrightarrow L_{\mathbf{q}}^{2} H_{*}(\Omega(U, t), \partial) \longrightarrow \cdots
$$

By Lemma 5.7.4, $L_{\mathbf{q}}^{2} H_{*}(\Omega(U, t), \partial)=0$ for $*>2$, and hence by weak exactness,

$$
L_{\mathbf{q}}^{2} H_{*}(\Sigma(U-t)) \cong L_{\mathbf{q}}^{2} H_{*}(\Sigma(U)) \text { for } *>2 .
$$

It follows that $L_{\mathbf{q}}^{2} H_{*}(\Sigma(S)) \cong L_{\mathbf{q}}^{2} H_{*}(\Sigma(\varnothing))$ for $*>2$, and hence the theorem.

Chapter 6

The Fattened Davis Complex

We will now construct a complex which is a "fattened" version of the Davis complex. This new thickened complex will be a homology manifold with boundary possessing the Davis complex as a W-equivariant retract. For the remainder of this thesis we suppose that W is an infinite Coxeter group.

6.1 Construction

Given a Coxeter system (W, S), we find a compact P with mirror structure $\left(P_{s}\right)_{s \in S}$ as follows. Let P^{*} be a cell complex with vertex set S that is a $G H S^{n-1}$, with $n-1>\operatorname{dim} L$, such that the nerve L is a subcomplex of P^{*}. Take P to be the (P^{*}, S)-chamber.

Denote by \mathcal{P} the collection of proper nonempty subsets T of S with $P_{T} \neq \varnothing$. We denote by \mathcal{N}_{P} the subcollection of \mathcal{P} corresponding to non-spherical subsets. For $T \in \mathcal{P}$, we denote a neighborhood of the face P_{T} by $N\left(P_{T}\right)$ and the corresponding closed neighborhood by $\bar{N}\left(P_{T}\right)$.

We begin by building a regular neighborhood of ∂P in P. Start by choosing neighborhoods of codimension $-n$ faces so that for any two codimension $-n$ faces P_{U} and P_{V} we have $\bar{N}\left(P_{U}\right) \cap \bar{N}\left(P_{V}\right)=\varnothing$. Then we choose neighborhoods of codimension- $(n-1)$ faces so that for any two codimension- $(n-1)$ faces P_{U} and P_{V} we have:

$$
\begin{equation*}
\bar{N}\left(P_{U}\right) \cap \bar{N}\left(P_{V}\right) \subset N\left(P_{U} \cap P_{V}\right) . \tag{6.1}
\end{equation*}
$$

If $U \cup V \notin \mathcal{P}$, then we take $N\left(P_{U} \cap P_{V}\right)=\varnothing$. We proceed inductively, employing condition (6.1) at each step until we obtain the collection $\left\{N\left(P_{T}\right)\right\}_{T \in \mathcal{P}}$. This collection gives us a regular neighborhood of ∂P.

Finally, we realize the neighborhoods $\left\{N\left(P_{T}\right)\right\}_{T \in \mathcal{P}}$ in the above construction as $\left\{N_{T} \times P_{T}\right\}_{T \in \mathcal{P}}$, where N_{T} is a neighborhood of the cone point in Cone $\left(\sigma_{T}\right)$ and σ_{T} is the geometric cell in P^{*} spanned by T (note that we can always do this, see the discussion in Section 2.7.1).

We now define

$$
K^{f}:=P-\bigcup_{T \in \mathcal{N}_{P}} N\left(P_{T}\right) .
$$

We call K^{f} the fattened Davis chamber.
Note that the mirror structure $\left(P_{s}\right)_{s \in S}$ on P induces a mirror structure $\left(K_{s}^{f}\right)_{s \in S}$ on K^{f}. Define $\Phi_{L}:=\mathcal{U}\left(W, K^{f}\right)$. We call Φ_{L} the fattened Davis complex.

Given a $T \in \mathcal{N}_{P}$, we denote by $K^{f}(T)$ the fattened Davis chamber corresponding to σ_{T} and Coxeter system $\left(W_{T}, T\right)$ (recall that the geometric cell σ_{T} has a natural W_{T} mirror structure).

Remark 6.1.1. For any Coxeter system (W, S), one can always find a P^{*} for the above construction: simply let P^{*} be the boundary of the standard $(|S|-1)-$ dimensional simplex $\Delta^{|S|-1}$. Then P is the barycentric subdivision of $\Delta^{|S|-1}$, and the Davis chamber K can then be viewed as a subcomplex of the barycentric subdivision of P spanned by the barycenters of spherical faces. One can see this using the language of posets. Note that K is the geometric realization of the poset \mathcal{S} and P is the geometric realization of the poset of proper subsets of S. The natural inclusion of posets now induces the desired inclusion of K into P. The mirror structure $\left(K_{s}\right)_{s \in S}$ on K is now induced by the mirror structure $\left(P_{s}\right)_{s \in S}$ on P. In this case $\mathcal{U}(W, P)$ is the traditional Coxeter complex, and we are essentially viewing Σ_{L} as a subcomplex of the barycentric subdivision of the Coxeter complex.

6.2 Properties of Φ_{L}

W is assumed to be infinite, so via the choice of P for construction, the Davis chamber is the subcomplex of P spanned by vertices of P corresponding to spherical faces. Hence we have the following inclusions: $K \subset K^{f} \subset P$ (See Figure 6.1).

Figure 6.1: $K \subset K^{f} \subset P$ when $W=D_{\infty} \times D_{\infty}$ and $P=\Delta^{3}$

Note that there is a face preserving deformation retraction of K^{f} onto K, thus we have the following:

Proposition 6.2.1. $\Phi_{L} W$-equivariantly deformation retracts onto Σ_{L}.
Proposition 6.2.2. Φ_{L} is a locally compact contractible homology n-manifold with boundary $\partial \Phi_{L}$.

Proof. Since Σ_{L} is contractible, it follows from Proposition 6.2.1 that Φ_{L} is contractible. Moreover, K^{f} is compact since it is closed in P (P is compact), so Φ_{L} is locally compact.

As before, give K^{f} the mirror structure $\left(K_{s}^{f}\right)_{s \in S}$ induced from P, and declare $K_{e}^{f}=\partial K^{f}-\cup_{T \in \mathcal{S}_{>\varnothing}}\left(K_{T}^{f}-\partial K_{T}^{f}\right)$, where e is the identity element of W. According to Proposition 2.5.3, it remains to show that K^{f} is a partially S-mirrored homology manifold with corners. Let $S^{\prime}=S \cup\{e\}$ and note that by construction $K_{T}^{f}=\varnothing$ if and only if T is not spherical. So, we are done if we show that for every spherical $T \subset S^{\prime}, K_{T}^{f}$ has dimension $n-|T|$.

If $e \notin T$, then we are done since $\left(P_{T}, \partial P_{T}\right)$ is a $G H D^{n-|T|}$. This is because P is by definition the $\left(P^{*}, S\right)$-chamber and the nerve L was assumed to be a subcomplex
of P^{*}. Hence, since T is spherical, σ_{T}, the geometric cell in P^{*} corresponding to T, is a simplex of dimension $|T|-1$. Therefore the dimension of P_{T} is equal to $n-\operatorname{dim} \sigma_{T}-1=n-|T|$.

If $e \in T$, then $U=T-\{e\}$ is spherical, and by the above discussion K_{U}^{f} has dimension $n-|U|=n-|T|+1$. Then $K_{T}^{f}=K_{U}^{f} \cap K_{e}^{f}=\partial K_{U}^{f}$ has dimension $n-|T|$.

Remark 6.2.3. If $P=\Delta^{|S|-1}$, then the Coxeter complex $\mathcal{U}(W, P)$ is a PL-manifold away from faces with infinite stabilizers. This is because the links of faces corresponding to spherical subsets T are homeomorphic to the Coxeter complex of the corresponding group W_{T}. Since W_{T} is finite, this Coxeter complex is homeomorphic to a sphere of appropriate dimension. Since we obtain Φ_{L} by removing neighborhoods of non-spherical faces (faces with infinite stabilizers), it follows that Φ_{L} is a PL-manifold with boundary.

6.3 The structure of $\partial \Phi_{L}$

The main goal of this section is to understand the structure of $\partial \Phi_{L}$. The first proposition will tell us that ∂K^{f} can be broken up into pieces, each of which has a nice product structure. This decomposition of ∂K^{f} then leads us to a cover of $\partial \Phi_{L}$ which will be used to study the algebraic topology of $\partial \Phi_{L}$.

For $T \in \mathcal{N}_{P}$ define

$$
\begin{gathered}
C_{T}=\partial N\left(P_{T}\right)-\bigcup_{U \in \mathcal{N}_{P}} N\left(P_{U}\right), \\
\Lambda_{T}=P_{T}-\bigcup_{\substack{U \in \mathcal{N}_{P} \\
T \subset U}} N\left(P_{U}\right) .
\end{gathered}
$$

Proposition 6.3.1. (i) Suppose that $U, V \in \mathcal{N}_{P}$. Then $C_{U} \cap C_{V} \neq \varnothing$ if and only if $U \subset V$ or $V \subset U$.
(ii) If $T \in \mathcal{N}_{P}$ then

$$
C_{T} \approx K^{f}(T) \times \Lambda_{T} .
$$

(iii) Suppose that $T_{1}, T_{2} \in \mathcal{N}_{P}$ with $T_{1} \subset T_{2}$. Then

$$
C_{T_{1}} \cap C_{T_{2}} \approx K^{f}\left(T_{1}\right) \times \Lambda_{T_{2}} .
$$

Proof. For (i), one implication is obvious. If $U \subset V$, then P_{V} is a face of P_{U}. Thus $C_{U} \cap C_{V} \neq \varnothing$. For the reverse implication, suppose that $U \notin V$ and $V \notin U$. By construction and condition (6.1), either $\bar{N}\left(P_{U}\right) \cap \bar{N}\left(P_{V}\right)=\varnothing$ or $\bar{N}\left(P_{U}\right) \cap \bar{N}\left(P_{V}\right) \subset$ $N\left(P_{U} \cap P_{V}\right)$. The former case immediately implies that $C_{U} \cap C_{V}=\varnothing$, and the latter case implies that the intersection $\partial N\left(P_{U}\right) \cap \partial N\left(P_{V}\right)$ is removed at some point in the construction of the fattened Davis chamber, hence $C_{U} \cap C_{V}=\varnothing$.

For (ii), recall that we have realized the collection $\left\{N\left(P_{T}\right)\right\}_{T \in \mathcal{N}_{P}}$ as neighborhoods $\left\{N_{T} \times P_{T}\right\}_{T \in \mathcal{N}_{P}}$, where N_{T} is a neighborhood of the cone point in Cone $\left(\sigma_{T}\right)$.

Now, for each $U \subset T$, let α_{U} denote the face in σ_{T} corresponding to P_{U}. More precisely, σ_{T} has a W_{T} mirror structure, and α_{U} is the intersection of mirrors corresponding to $U \subset T$. We can express the neighborhoods in the construction of $K^{f}(T)$ as neighborhoods $\left\{\alpha_{U} \times N_{U}^{\prime}\right\}_{\substack{U \in \mathcal{N}_{P} \\ U \subset T}}$, where N_{U}^{\prime} is a neighborhood of the cone point in Cone $\left(\operatorname{Lk}\left(\alpha_{U}, \sigma_{T}\right)\right)$. Here $\operatorname{Lk}\left(\alpha_{U}, \sigma_{T}\right)$ denotes the link of the face α_{U} in σ_{T}. In particular,

$$
K^{f}(T)=\sigma_{T}-\bigcup_{\substack{U \in \mathcal{N}_{P} \\ U \subset T}} \alpha_{U} \times N_{U}^{\prime}
$$

Now, we have that $\operatorname{Lk}\left(\alpha_{U}, \sigma_{T}\right) \approx \sigma_{U}$, so $N_{U}^{\prime} \approx N_{U}$. Hence

$$
K^{f}(T) \approx \sigma_{T}-\bigcup_{\substack{U \in \mathcal{N}_{P} \\ U \subset T}} P_{U} \times N_{U} .
$$

Moreover, we can write Λ_{T} and C_{T} as

$$
\begin{gathered}
\Lambda_{T}=P_{T}-\bigcup_{\substack{U \in \mathcal{N}_{P} \\
T \subset U}} P_{U} \times N_{U}, \\
C_{T}=\left(\sigma_{T} \times P_{T}\right)-\bigcup_{\substack{U \in \mathcal{N}_{P} \\
U \neq T}} P_{U} \times N_{U} .
\end{gathered}
$$

We now show that $C_{T} \approx K^{f}(T) \times \Lambda_{T}$. Note that $K^{f}(T) \times \Lambda_{T}=\left(K^{f}(T) \times P_{T}\right) \cap$ $\left(\sigma_{T} \times \Lambda_{T}\right)$, so we begin unwinding definitions. We first observe that

$$
K^{f}(T) \times P_{T} \approx\left(\sigma_{T}-\bigcup_{\substack{U \in \mathcal{N}_{P} \\ U \subset T}} P_{U} \times N_{U}\right) \times P_{T} \approx\left(\sigma_{T} \times P_{T}\right)-\bigcup_{\substack{U \in \mathcal{N}_{P} \\ U \subset T}} P_{U} \times N_{U}
$$

This is because P_{T} is a face of each of the P_{U} 's. Similarly, we have

$$
\sigma_{T} \times \Lambda_{T}=\sigma_{T} \times\left(P_{T}-\bigcup_{\substack{U \in \mathcal{N}_{P} \\ T \subset U}} P_{U} \times N_{U}\right) \approx\left(\sigma_{T} \times P_{T}\right)-\bigcup_{\substack{U \in \mathcal{N}_{P} \\ T \subset U}} P_{U} \times N_{U}
$$

This follows from the fact that P_{U} 's are faces of P_{T}. Thus we have shown that $K^{f}(T) \times \Lambda_{T}=\left(K^{f}(T) \times P_{T}\right) \cap\left(\sigma_{T} \times \Lambda_{T}\right) \approx C_{T}$, therefore proving (ii).

We now prove (iii). By (ii),

$$
C_{T_{1}} \cap C_{T_{2}} \approx\left(K^{f}\left(T_{1}\right) \cap K^{f}\left(T_{2}\right)\right) \times\left(\Lambda_{T_{1}} \cap \Lambda_{T_{2}}\right) .
$$

It now simply remains to unwind the definitions. Since $T_{1} \subset T_{2}$, it follows that $P_{T_{2}}$ is a face of $P_{T_{1}}$. In particular, $\sigma_{T_{1}} \cap \sigma_{T_{2}}=\sigma_{T_{1}}$ and hence

$$
\begin{aligned}
K^{f}\left(T_{1}\right) \cap K^{f}\left(T_{2}\right) & \approx \sigma_{T_{1}} \cap \sigma_{T_{2}}-\underset{\substack{U, \in \in \mathcal{N}_{P} \\
U \subset T_{1} \\
V \subset T_{2}}}{ } N\left(P_{U}\right) \cup N\left(P_{V}\right) \\
& \approx \sigma_{T_{1}}-\bigcup_{\substack{U \in \mathcal{N}_{P} \\
U \subset T_{1}}} N\left(P_{U}\right) \\
& \approx K^{f}\left(T_{1}\right)
\end{aligned}
$$

A similar computation shows that $\Lambda_{T_{1}} \cap \Lambda_{T_{2}} \approx \Lambda_{T_{2}}$, thus completing the proof of the proposition.

Proposition 6.3.2.

$$
\partial \Phi_{L}=\bigcup_{j} \bigsqcup_{T \in \mathcal{N}_{P}^{(j)}} \mathcal{U}\left(W, C_{T}\right)
$$

where $\mathcal{N}_{P}^{(j)}=\left\{T \in \mathcal{N}_{P} \mid \operatorname{Card}(T)=j\right\}$.
Proof. The fact that one can decompose $\partial \Phi_{L}$ in this way is clear by construction, and the second union is in fact a disjoint union by Proposition 6.3.1 (i).

6.4 Algebraic topology of Φ_{L} and $\partial \Phi_{L}$

We now turn our attention to studying the algebraic topology of Φ_{L} and $\partial \Phi_{L}$. We first begin with a corollary of Proposition 6.2.1.

Corollary 6.4.1.

$$
L_{\mathbf{q}}^{2} H_{\star}\left(\Phi_{L}\right) \cong L_{\mathbf{q}}^{2} H_{*}\left(\Sigma_{L}\right)
$$

Not only does Φ_{L} have the same weighted $L^{2}-(\mathrm{co})$ homology as Σ_{L}, but by Proposition $6.2 .2, \Phi_{L}$ is a locally compact homology manifold with boundary. Thus we have weighted Poincaré duality for Φ_{L} at our disposal. With this in mind, we prove the following lemma.

Lemma 6.4.2. Suppose that (W, S) is a Coxeter system with $\operatorname{vcd} W=m$ and that Φ_{L} is a homology n-manifold with boundary with $L_{\mathbf{q}}^{2} b_{1}\left(\partial \Phi_{L}\right)=0$.
(i) If $n-m=1$ and $L_{\mathbf{q}^{-1}}^{2} b_{m}\left(\Phi_{L}\right)=0$ then $L_{\mathbf{q}}^{2} b_{1}\left(\Sigma_{L}\right)=0$.
(ii) If $n-m \geq 2$ then $L_{\mathbf{q}}^{2} b_{1}\left(\Sigma_{L}\right)=0$.

Proof. Consider the long exact sequence for the pair ($\Phi_{L}, \partial \Phi_{L}$):

$$
\cdots \longrightarrow L_{\mathbf{q}}^{2} H_{1}\left(\partial \Phi_{L}\right) \longrightarrow L_{\mathbf{q}}^{2} H_{1}\left(\Phi_{L}\right) \longrightarrow L_{\mathbf{q}}^{2} H_{1}\left(\Phi_{L}, \partial \Phi_{L}\right) \longrightarrow \cdots
$$

By weighted Poincaré duality

$$
L_{\mathbf{q}}^{2} H_{1}\left(\Phi_{L}, \partial \Phi_{L}\right) \cong L_{\mathbf{q}^{-1}}^{2} H_{n-1}\left(\Phi_{L}\right)
$$

Now, by assumption $L_{\mathbf{q}}^{2} H_{1}\left(\partial \Phi_{L}\right)=0$, so by weak exactness we must show that $L_{\mathbf{q}^{-1}}^{2} H_{n-1}\left(\Phi_{L}\right)=0$. We will then be done by Corollary 6.4.1, which says that $L_{\mathbf{q}}^{2} H_{1}\left(\Sigma_{L}\right)=L_{\mathbf{q}}^{2} H_{1}\left(\Phi_{L}\right)=0$.

For (i), we have that $L_{\mathbf{q}^{-1}}^{2} b_{m}\left(\Phi_{L}\right)=0$. Since $n-m=1$, we have that $m=n-1$, so it follows that $L_{\mathbf{q}^{-1}}^{2} H_{n-1}\left(\Phi_{L}\right)=0$. For (ii), we have that $n-m \geq 2$, so $n-1 \geq m+1$. Since vcd $W=m$, Corollary 3.3.7 implies that

$$
L_{\mathbf{q}^{-1}}^{2} H_{n-1}\left(\Sigma_{L}\right)=L_{\mathbf{q}^{-1}}^{2} H_{n-1}\left(\Phi_{L}\right)=0 .
$$

We devote the remainder of the section to studying the algebraic topology of $\partial \Phi_{L}$. The following is a corollary of Proposition 6.3.1.

Corollary 6.4.3. (i) If $T \in \mathcal{N}_{P}$, then for every $k \geq 0$

$$
L_{\mathbf{q}}^{2} b_{k}\left(\mathcal{U}\left(W, C_{T}\right)\right)=L_{\mathbf{q}}^{2} b_{k}\left(\Phi_{L_{T}}\right)=L_{\mathbf{q}}^{2} b_{k}\left(\Sigma_{L_{T}}\right)
$$

where L_{T} is the subcomplex of L corresponding to the subgroup W_{T}.
(ii) Suppose that $T_{1}, T_{2} \in \mathcal{N}_{P}$ with $T_{1} \subset T_{2}$. Then for every $k \geq 0$

$$
L_{\mathbf{q}}^{2} b_{k}\left(\mathcal{U}\left(W, C_{T_{1}}\right) \cap \mathcal{U}\left(W, C_{T_{2}}\right)\right)=L_{\mathbf{q}}^{2} b_{k}\left(\Phi_{L_{T_{1}}}\right)=L_{\mathbf{q}}^{2} b_{k}\left(\Sigma_{L_{T_{1}}}\right),
$$

where $L_{T_{1}}$ is the subcomplex of L corresponding to the subgroup $W_{T_{1}}$.
Remark 6.4.4. The $L_{\mathbf{q}}^{2}-$ Betti numbers on the center and the right of the equations in (i) and (ii) are computed with respect to the special subgroups W_{T} (respectively $W_{T_{1}}$) of W, while the ones on the far left side of the equations are computed with respect to W.

Proof. We prove only (i) as the proof of (ii) is similar. Proposition 6.3.1 implies that $C_{T} \approx K^{f}(T) \times \Lambda_{T}$ as mirrored spaces, where Λ_{T} is contractible and has no mirror structure. Therefore $\mathcal{U}\left(W, C_{T}\right)$ is W-equivariantly homotopy equivalent to $\mathcal{U}\left(W, K^{f}(T)\right)$. Now, $L_{\mathbf{q}}^{2} H_{*}\left(\mathcal{U}\left(W, K^{f}(T)\right)\right)$ is just the completion of

$$
L_{\mathbf{q}}^{2}(W) \otimes_{\mathbb{R}_{\mathbf{q}}\left(W_{T}\right)} L_{\mathbf{q}}^{2} H_{*}\left(\mathcal{U}\left(W_{T}, K^{f}(T)\right)\right)
$$

so for every $k \geq 0$,

$$
L_{\mathbf{q}}^{2} b_{k}\left(\mathcal{U}\left(W, K^{f}(T)\right)\right)=L_{\mathbf{q}}^{2} b_{k}\left(\mathcal{U}\left(W_{T}, K^{f}(T)\right)\right)=L_{\mathbf{q}}^{2} b_{k}\left(\Phi_{L_{T}}\right) .
$$

Consider the cover $\mathcal{V}=\left\{\mathcal{U}\left(W, C_{T}\right)\right\}_{T \in \mathcal{N}_{P}}$ of $\partial \Phi_{L}$ in Proposition 6.3.2. The cover \mathcal{V} will have intersections of variable depth, so we obtain a spectral sequence following [3, Ch. VII, §3,4]:

Proposition 6.4.5. There is a Mayer-Vietoris type spectral sequence converging to $H_{*}^{W}\left(\partial \Phi_{L}, \mathcal{N}_{\mathbf{q}}(W)\right)$ with E_{1}-term:

$$
E_{1}^{i, j}=\underset{\substack{\sigma \in \operatorname{Fiag}\left(\mathcal{N}_{P}\right) \\ \operatorname{dim} \sigma=i}}{ } H_{j}^{W}\left(\mathcal{U}\left(W, C_{\min \sigma}\right), \mathcal{N}_{\mathbf{q}}(W)\right)
$$

Proof. Let $N(\mathcal{V})$ denote the nerve of the cover \mathcal{V}. It is the abstract simplicial complex whose vertex set is \mathcal{N}_{P} and whose simplices are the non-empty subsets $\sigma \subset \mathcal{N}_{P}$ such that the intersection $V_{\sigma}=\bigcap_{T \epsilon \sigma} \mathcal{U}\left(W, C_{T}\right)$ is non-empty. Following [3, Ch. VII, §3,4], there is a Mayer-Vietoris type spectral sequence converging to $H_{*}^{W}\left(\partial \Phi_{L}, \mathcal{N}_{\mathbf{q}}(W)\right)$ with E_{1}-term:

$$
E_{1}^{i, j}=\bigoplus_{\substack{\sigma \in N(\mathcal{V}) \\ \operatorname{dim} \sigma=i}} H_{j}^{W}\left(V_{\sigma}, \mathcal{N}_{\mathbf{q}}(W)\right) .
$$

We have that $V_{\sigma} \neq \varnothing$ if and only if $\bigcap_{T \epsilon \sigma} C_{T} \neq \varnothing$, and applying Proposition 6.3.1 inductively, this happens if and only if the vertices of σ form a chain $T_{i_{1}} \subset T_{i_{2}} \subset$ $\cdots \subset T_{i_{k}}$. This observation shows that $N(\mathcal{V})=\operatorname{Flag}\left(\mathcal{N}_{P}\right)$. Now, applying Proposition 6.3.1 inductively, it follows that $V_{\sigma} \approx \mathcal{U}\left(W, C_{T_{i_{1}}}\right)$. Hence $H_{*}^{W}\left(V_{\sigma}, \mathcal{N}_{\mathbf{q}}(W)\right)=$ $H_{*}^{W}\left(\mathcal{U}\left(W, C_{T_{i_{1}}}\right), \mathcal{N}_{\mathbf{q}}(W)\right)$, so the terms in the spectral sequence are the ones claimed.

For later computations, note that Corollary 6.4.3 implies:

$$
\begin{aligned}
L_{\mathbf{q}}^{2} b_{*}\left(\mathcal{U}\left(W, C_{\min \sigma}\right)\right) & =\operatorname{dim}_{\mathcal{N}_{\mathbf{q}}} H_{*}^{W}\left(\mathcal{U}\left(W, C_{\min \sigma}\right)\right) \\
& =L_{\mathbf{q}}^{2} b_{\star}\left(\Phi_{L_{\min } \sigma}\right) \\
& =L_{\mathbf{q}}^{2} b_{\star}\left(\Sigma_{L_{\min \sigma}}\right) .
\end{aligned}
$$

Chapter 7

Computations

In this section we will use the fattened Davis complex to make concrete computations. We first begin by considering the case where the nerve L of the Coxeter system (W, S) is a graph. Note that for this special case Σ_{L} is two-dimensional. We then briefly discuss how we can use our computations to produce examples of Coxeter groups for which the Weighted Singer Conjecture holds. We then direct our attention to quasi-Lánner groups, and finish with computations for 2-spherical Coxeter groups whose corresponding nerves are no longer restricted to be graphs.

Let K_{n} denote the complete graph on n vertices. Recall that a Coxeter system is 2 -spherical if the one-skeleton of its nerve is K_{n} for some n. For the purpose of figures and examples, we will distinguish the special case where the labeled nerve $L=K_{n}(3)$, where $K_{n}(3)$ denotes the complete graph on n vertices with every edge labeled by 3 .

Unless stated otherwise, the standing assumption in this chapter is that $\mathbf{q} \geq \mathbf{1}$.

7.1 The case where L is a graph

Suppose that the labeled nerve L is the one-skeleton of an n-dimensional cell complex Λ, where $n \geq 2$. We say that a 2 -cell of Λ is Euclidean if the corresponding special subgroup generated by the vertices of that cell is a Euclidean reflection group. Note that the only possible labels on a Euclidean cell are $m_{s t} \in\{2,3,4,6\}$.

Before proving the main theorem of this section, we begin with a lemma. The
special case of the lemma when $\mathbf{q}=\mathbf{1}$ is closely related to a result of Schroeder [19, Theorem 4.6]. We provide an argument which is analogous to that of Schroeder in his proof.

Lemma 7.1.1. Suppose that the labeled nerve L is the one-skeleton of a cellulation of S^{2}. Then

$$
L_{\mathbf{q}}^{2} b_{2}\left(\Sigma_{L}\right)=0 \text { for } \mathbf{q} \leq \mathbf{1}
$$

Proof. In light of Lemma 3.3.8, we must show that $L_{1}^{2} b_{2}\left(\Sigma_{L}\right)=0$. We begin by building L to a triangulation of S^{2} by coning on empty 2 -cells and labeling the new edges by 2 's, at each step keeping track of the $L_{1}^{2}-(c o)$ homology with a MayerVietoris sequence. More precisely, start with $T_{1} \subset S$ corresponding to an empty $2-$ cell $L_{T_{1}}$ in L and denote by $C L_{T_{1}}$ the right-angled cone on $L_{T_{1}}$. The corresponding special subgroup $W_{T_{1}}$ is infinite, and it acts properly and cocompactly by reflections on either \mathbb{R}^{2} or \mathbb{H}^{2}. In both cases $L_{1}^{2} H_{2}\left(\Sigma_{L_{T_{1}}}\right)=0$ and hence the Künneth formula implies that $L_{\mathbf{1}}^{2} H_{2}\left(\Sigma_{C L_{T_{1}}}\right)=0$. We have the following Mayer-Vietoris sequence:

$$
\cdots \longrightarrow L_{\mathbf{1}}^{2} H_{2}\left(\Sigma_{L_{T_{1}}}\right) \longrightarrow L_{\mathbf{1}}^{2} H_{2}\left(\Sigma_{C L_{T_{1}}}\right) \oplus L_{\mathbf{1}}^{2} H_{2}\left(\Sigma_{L}\right) \xrightarrow{f_{1}} L_{\mathbf{1}}^{2} H_{2}\left(\Sigma_{L \cup C L_{T_{1}}}\right) \longrightarrow \cdots
$$

In particular, the map f_{1} is injective. We then choose another $T_{2} \subset S$ corresponding to an empty 2 -cell $L_{T_{2}}$ in L and denote by $C L_{T_{2}}$ the right-angled cone on $L_{T_{2}}$. By a similar argument, the map f_{2} in the following Mayer-Vietoris sequence is injective:

$$
\cdots \longrightarrow L_{1}^{2} H_{2}\left(\Sigma_{C L_{T_{2}}}\right) \oplus L_{\mathbf{1}}^{2} H_{2}\left(\Sigma_{L \cup C L_{T_{2}}}\right) \xrightarrow{f_{2}} L_{\mathbf{1}}^{2} H_{2}\left(\Sigma_{L \cup C L_{T_{1}} \cup C L_{T_{2}}}\right) \longrightarrow \cdots
$$

Proceed inductively until all empty 2-cells have been coned off and denote the newly promoted nerve by L^{\prime}. The f_{i} 's yield a sequence of injective maps:

$$
L_{\mathbf{1}}^{2} H_{2}\left(\Sigma_{L}\right) \hookrightarrow L_{\mathbf{1}}^{2} H_{2}\left(\Sigma_{L \cup C L_{T_{1}}}\right) \hookrightarrow \cdots \hookrightarrow L_{\mathbf{1}}^{2} H_{2}\left(\Sigma_{L^{\prime}}\right)
$$

Since L^{\prime} is a triangulation of S^{2}, it follows that $\Sigma_{L^{\prime}}$ is a 3 -manifold. Now, a result of Lott and Luck [14], in conjunction with the validity of the Geometrization Conjecture for 3-manifolds [17], implies that $L_{1}^{2} H_{*}\left(\Sigma_{L^{\prime}}\right)$ vanishes in all dimensions. In particular, $L_{\mathbf{1}}^{2} b_{2}\left(\Sigma_{L}\right)=0$.

Remark 7.1.2. Schroeder proves a more general theorem for $\mathbf{q}=1$ [19, Theorem 4.6]. A metric flag complex L is planar if it can be embedded as a proper subcomplex of a triangulation of the 2 -sphere (see the discussion before Theorem 5.3.3 for the definition of metric flag complex). Schroeder proves that if the nerve L of a Coxeter system is planar, then $L_{1}^{2} b_{k}\left(\Sigma_{L}\right)=0$ for $k \geq 2$. If L is planar and W is the corresponding Coxeter group, then Proposition 2.9.1 implies that $\operatorname{vcd} W \leq 2$. Therefore we can use Lemma 3.3.8 to deduce that $L_{\mathbf{q}}^{2} b_{k}\left(\Sigma_{L}\right)=0$ for $k \geq 2$ and $\mathbf{q} \leq \mathbf{1}$.

Theorem 7.1.3. Suppose that the labeled nerve L is the one-skeleton of a cell complex that is a $G H S^{n}, n \geq 2$, where all 2 -cells are Euclidean, and let (W, S) denote the corresponding Coxeter system. Then $L_{\mathbf{q}}^{2} b_{*}\left(\Sigma_{L}\right)$ is concentrated in degree 2.

Furthermore,

$$
\begin{aligned}
L_{\mathbf{q}}^{2} b_{2}\left(\Sigma_{L}\right) & =1-\sum_{s \in S} \frac{q_{s}}{1+q_{s}}+\sum_{\substack{s, t \in S \\
m_{s t}=2}} \frac{q_{s} q_{t}}{1+q_{s}+q_{t}+q_{s} q_{t}}+\sum_{\substack{s, t \in S \\
m_{s t}=3}} \frac{q_{s}^{3}}{1+2 q_{s}+2 q_{s}^{2}+q_{s}^{3}}+ \\
& +\sum_{\substack{s, t \in S \\
m_{s t}=4}} \frac{q_{s}^{2} q_{t}^{2}}{1+q_{s}+q_{t}+2 q_{s} q_{t}+q_{s}^{2} q_{t}+q_{s} q_{t}^{2}+q_{s}^{2} q_{t}^{2}}+ \\
& +\sum_{\substack{s, t \in S \\
m_{s t}=6}} \frac{q_{s}^{3} q_{t}^{3}}{1+q_{s}+q_{t}+2 q_{s} q_{t}+q_{s}^{2} q_{t}+q_{s} q_{t}^{2}+2 q_{s}^{2} q_{t}^{2}+q_{s}^{2} q_{t}^{3}+q_{s}^{3} q_{t}^{2}+q_{s}^{3} q_{t}^{3}}
\end{aligned}
$$

Proof. Proposition 3.3.1 implies that $L_{\mathbf{q}}^{2} b_{0}\left(\Sigma_{L}\right)=0$. Proposition 3.3.2, along with Theorem 2.2.1, explicitly compute the formula for $L_{\mathbf{q}}^{2} b_{2}\left(\Sigma_{L}\right)$. We now turn our attention to showing $L_{\mathbf{q}}^{2} b_{1}\left(\Sigma_{L}\right)=0$. For the construction of the fattened Davis complex, we will use the given cell complex as P^{*}.

We prove the theorem by induction on n. For the base case $n=2$, first note that for every $T \in \mathcal{N}_{P}, \sigma_{T}$ is Euclidean. Hence Proposition 6.3.1 implies that each C_{T} appearing in ∂K^{f} corresponds to a set $T \in \mathcal{N}_{P}$ where W_{T} is Euclidean reflection
group. Thus Corollary 6.4.3 and Theorem 3.3.4 imply that $L_{\mathbf{q}}^{2} b_{1}\left(\mathcal{U}\left(W, C_{T}\right)\right)=0$. This and Proposition 3.3.1 imply that the $E_{1}^{0,1}$ and $E_{1}^{1,0}$ terms in the E_{1} sheet of the spectral sequence in Proposition 6.4.5 are zero, which in turn implies that $L_{\mathbf{q}}^{2} b_{1}\left(\partial \Phi_{L}\right)=0$. Now, note that Φ_{L} is three-dimensional and vcd $W=2$. Moreover, by Lemma 7.1.1, $L_{\mathbf{q}^{-1}}^{2} H_{2}\left(\Sigma_{L}\right)=0$. Therefore, via Lemma 6.4.2 (i), we reach the conclusion that $L_{\mathbf{q}}^{2} b_{1}\left(\Sigma_{L}\right)=0$.

Now, suppose the theorem is true for $m<n$. Since Σ_{L} is two-dimensional, Lemma 6.4 .2 (ii) tells us that we are done if we show that $L_{\mathbf{q}}^{2} b_{1}\left(\partial \Phi_{L}\right)=0$. Let $T \in \mathcal{N}_{P}$. Then σ_{T} is the $\left(\partial \sigma_{T}, T\right)$-chamber, where σ_{T} is the geometric cell in P^{*} spanned by T. In particular, $\partial \sigma_{T}$ is a cell complex that is $G H S^{m}, m<n$, and since all 2 -cells of P^{*} are Euclidean, it follows that all 2-cells of $\partial \sigma_{T}$ are Euclidean. Hence, by induction and Corollary 6.4.3, it follows that for every $T \in \mathcal{N}_{P}, L_{\mathbf{q}}^{2} b_{1}\left(\mathcal{U}\left(W, C_{T}\right)\right)=L_{\mathbf{q}}^{2} b_{1}\left(\Sigma_{L_{T}}\right)=0$. This and Proposition 3.3 .1 imply that the $E_{1}^{0,1}$ and $E_{1}^{1,0}$ terms in the E_{1} sheet of the spectral sequence in Proposition 6.4.5 are zero, which in turn implies that $L_{\mathbf{q}}^{2} b_{1}\left(\partial \Phi_{L}\right)=0$.

Consider the special case of Theorem 7.1.3 when $n=2$. In this case, Theorem 7.1.3, along with Lemma 7.1.1, explicitly compute the $L_{\mathbf{q}}^{2}-$ Betti numbers for all \mathbf{q} : they are always concentrated in a single dimension. We emphasize this in the following corollary.

Corollary 7.1.4. Suppose that the labeled nerve L is the one-skeleton of a cell complex that is a GHS ${ }^{2}$, where all 2-cells are Euclidean.

- If $\mathbf{q} \in \overline{\mathcal{R}}$, then $L_{\mathbf{q}}^{2} H_{*}\left(\Sigma_{L}\right)$ is concentrated in dimension 0 .
- If $\mathbf{q} \notin \mathcal{R}$ and $\mathbf{q} \leq \mathbf{1}$, then $L_{\mathbf{q}}^{2} H_{*}\left(\Sigma_{L}\right)$ is concentrated in dimension 1 .
- If $\mathbf{q} \geq \mathbf{1}$, then $L_{\mathbf{q}}^{2} H_{*}\left(\Sigma_{L}\right)$ is concentrated in dimension 2 .

Furthermore,

$$
\begin{aligned}
\chi_{\mathbf{q}}\left(\Sigma_{L}\right) & =1-\sum_{s \in S} \frac{q_{s}}{1+q_{s}}+\sum_{\substack{s, t \in S \\
m_{s t}=2}} \frac{q_{s} q_{t}}{1+q_{s}+q_{t}+q_{s} q_{t}}+\sum_{\substack{s, t \in S \\
m_{s t}=3}} \frac{q_{s}^{3}}{1+2 q_{s}+2 q_{s}^{2}+q_{s}^{3}}+ \\
& +\sum_{\substack{s, t \in S \\
m_{s t}=4}} \frac{q_{s}^{2} q_{t}^{2}}{1+q_{s}+q_{t}+2 q_{s} q_{t}+q_{s}^{2} q_{t}+q_{s} q_{t}^{2}+q_{s}^{2} q_{t}^{2}}+ \\
& +\sum_{\substack{s, t \in S \\
m_{s t}=6}} \frac{q_{s}^{3} q_{t}^{3}}{1+q_{s}+q_{t}+2 q_{s} q_{t}+q_{s}^{2} q_{t}+q_{s} q_{t}^{2}+2 q_{s}^{2} q_{t}^{2}+q_{s}^{2} q_{t}^{3}+q_{s}^{3} q_{t}^{2}+q_{s}^{3} q_{t}^{3}} .
\end{aligned}
$$

If we place some restrictions on either our labels or the cell complex, then the formulas in Theorem 7.1.3 become relatively simple, as illustrated by the following corollaries.

Corollary 7.1.5. Suppose that L is the one-skeleton of a cell complex that is a $G H S^{n}, n \geq 2$, where all 2 -cells are 2-simplices. Give L the labels $m_{s t}=3$. Then $L_{q}^{2} b_{*}\left(\Sigma_{L}\right)$ is concentrated in degree 2.

Furthermore,

$$
L_{q}^{2} b_{2}\left(\Sigma_{L}\right)=1-\frac{V q}{1+q}+\frac{E q^{3}}{1+2 q+2 q^{2}+q^{3}},
$$

where V and E are the number of vertices and edges of L, respectively.
Recall that an n-dimensional octahedron has $2 n$ vertices and $2 n(n-1)$ edges.
Corollary 7.1.6. Suppose that L the one skeleton of an n-dimensional octahedron with $n \geq 3$ and the labels $m_{s t}=3$. Then $L_{\mathbf{q}}^{2} b_{*}\left(\Sigma_{L}\right)$ is concentrated in degree 2 . Furthermore,

$$
L_{q}^{2} b_{2}\left(\Sigma_{L}\right)=1-\frac{2 n q}{1+q}+\frac{2 n(n-1) q^{3}}{\left(1+2 q+2 q^{2}+q^{3}\right)} .
$$

Corollary 7.1.7. Let $L=K_{n}(3)$ with $n \geq 3$. Then $L_{\mathbf{q}}^{2} b_{*}\left(\Sigma_{L}\right)$ is concentrated in degree 2. Furthermore,

$$
L_{q}^{2} b_{2}\left(\Sigma_{L}\right)=1-\frac{n q}{1+q}+\frac{n(n-1) q^{3}}{2\left(1+2 q+2 q^{2}+q^{3}\right)} .
$$

Remark 7.1.8. Note that under the hypothesis of the above corollaries, all generators in S are conjugate, so in this case $\mathbf{q}=q$, where $q \geq 1$ is a positive real number.

If we assume that W is right-angled, we have the following consequences of Theorem 7.1.3.

Corollary 7.1.9. Suppose that L is the one-skeleton of a cell complex that is a $G H S^{n}, n \geq 2$, where all 2 -cells are 2 -cubes. Give L the labels $m_{s t}=2$. Then $L_{\mathbf{q}}^{2} b_{*}\left(\Sigma_{L}\right)$ is concentrated in degree 2. Furthermore,

$$
L_{\mathbf{q}}^{2} b_{2}\left(\Sigma_{L}\right)=1-\sum_{s \in S} \frac{q_{s}}{1+q_{s}}+\sum_{\{s, t\} \in \mathcal{S}} \frac{q_{s} q_{t}}{1+q_{s}+q_{t}+q_{s} q_{t}} .
$$

Analogous to the case where $L=K_{n}(3)$, let $C_{n}(2)$ denote the one-skeleton of an n-cube with edges labeled by 2 . If we assume that $L=C_{n}(2)$ and that $\mathbf{q}=q$, where q is a positive real number, then we obtain simple formulas for the $L_{\mathbf{q}}^{2}-\operatorname{Betti}$ numbers. Recall that an n-cube has 2^{n} vertices and $n 2^{n-1}$ edges.

Corollary 7.1.10. Let $L=C_{n}(2)$ with $n \geq 2$. Then $L_{q}^{2} b_{*}\left(\Sigma_{L}\right)$ is concentrated in degree 2. Furthermore,

$$
L_{q}^{2} b_{2}\left(\Sigma_{L}\right)=1-\frac{2^{n} q}{1+q}+\frac{n 2^{n-1} q^{2}}{1+2 q+q^{2}}
$$

We can also allow ourselves to remove some edges from $L=K_{n}(3)$. We denote by $K_{n}^{l}(3)$ the complete graph on n vertices, labeled by 3 's and with l edges removed. We have the following consequence of Corollary 7.1.7.

Corollary 7.1.11. Suppose that $L=K_{n}^{l}(3)$, where $n \geq 5$ and $l \leq n-4$. Then $L_{q}^{2} b_{*}\left(\Sigma_{L}\right)$ is concentrated in degree 2. Furthermore,

$$
L_{q}^{2} b_{2}\left(\Sigma_{L}\right)=1-\frac{n q}{1+q}+\frac{n(n-1) q^{3}}{2\left(1+2 q+2 q^{2}+q^{3}\right)}-\frac{l q^{3}}{1+2 q+2 q^{2}+q^{3}} .
$$

Proof. We first note that removing an edge from $K_{n}(3)$ splits the graph into two copies of $K_{n-1}(3)$ intersecting at $K_{n-2}(3)$. Since $n \geq 5$ and $q \geq 1$ we have the following Mayer-Vietoris sequence:

$$
\cdots \longrightarrow L_{q}^{2} H_{1}\left(\Sigma_{K_{n-2}}\right) \longrightarrow L_{q}^{2} H_{1}\left(\Sigma_{K_{n-1}}\right) \oplus L_{q}^{2} H_{1}\left(\Sigma_{K_{n-1}}\right) \longrightarrow L_{q}^{2} H_{1}\left(\Sigma_{K_{n}^{1}}\right) \longrightarrow 0
$$

We first handle the case where $L=K_{5}^{1}(3)$. Removing an edge from $K_{5}(3)$ splits the graph into two copies of $K_{4}(3)$ intersecting at $K_{3}(3)$. Corollary 7.1.7 computes the $L_{q}^{2}-(\mathrm{co})$ homology of each of the pieces in this decomposition and applying the sequence (\star) now proves the assertion for the case $L=K_{5}^{1}(3)$.

The proof for $L=K_{n}^{l}(3)$ is now by induction, the above computation serving as the base case. Suppose that the theorem is true for $m<n$. Begin by removing an edge from $K_{n}(3)$, splitting it as two copies of $K_{n-1}(3)$ intersecting at $K_{n-2}(3)$. Now, we remove the remaining $l-1 \leq n-5$ edges from each of the graphs in the splitting, the worst case scenario being that we remove $l-1$ edges from $K_{n-2}(3)$ (which in turn removes $l-1$ edges from each copy of $K_{n-1}(3)$). Nevertheless, the inductive hypothesis is satisfied for each of the K_{n-1} 's in the splitting no matter how the remaining edges are removed. Applying a Mayer-Vietoris sequence analogous to (\star) now shows that the theorem holds for $L=K_{n}^{l}(3)$.

With the help of ruins (see Section 4.2), we are also able to make computations when we change some labels on $L=K_{n}(3)$.

Theorem 7.1.12. Let $L=K_{n}$, the complete graph on n vertices with $n \geq 5$. Let $k \leq n-4$, and suppose that we label k edges of L with $m_{s t} \in \mathbb{N}-\{1,3\}$ and label the remaining edges by 3. Then $L_{\mathbf{q}}^{2} b_{*}\left(\Sigma_{L}\right)$ is concentrated in degree 2 .

Proof. The proof is by induction on n. First consider the case where $L=K_{5}$ with one label $m_{s t} \in \mathbb{N}-\{1,3\}$. Then by Corollary 7.1.7, $L^{2} b_{1}(\Sigma(S-s))=L^{2} b_{1}\left(\Sigma_{K_{4}(3)}\right)=0$. According to sequence (4.1), it remains to show that $L_{\mathbf{q}}^{2} H_{1}\left(\Omega_{S\{s\}}, \partial\right)=0$. We turn our attention to sequence (4.1) with $U=S, T=\{s, t\}, U^{\prime}=S-t$, and $T^{\prime}=\{s\}$. By Proposition 4.2.1, $L_{\mathbf{q}}^{2} H_{1}\left(\Omega_{S T}, \partial\right)=0$, the point being that the relative chain complex of ($\Omega_{S T}, \partial \Omega_{S T}$) has no one-dimensional cells. So, by weak exactness, it remains to show that $L_{\mathbf{q}}^{2} H_{1}\left(\Omega_{U^{\prime} T^{\prime}}, \partial\right)=0$. We consider the following weak exact sequence:

$$
\cdots \longrightarrow L_{\mathbf{q}}^{2} H_{1}(\Sigma(S-\{s, t\})) \longrightarrow L_{\mathbf{q}}^{2} H_{1}(\Sigma(S-t)) \longrightarrow L_{\mathbf{q}}^{2} H_{1}\left(\Omega_{U^{\prime} T^{\prime}}, \partial\right) \longrightarrow \cdots
$$

Note that

$$
L_{\mathbf{q}}^{2} b_{0}(\Sigma(S-\{s, t\}))=L_{\mathbf{q}}^{2} b_{0}\left(\Sigma_{K_{3}(3)}\right)=0
$$

and

$$
L_{\mathbf{q}}^{2} b_{1}(\Sigma(S-t))=L_{\mathbf{q}}^{2} b_{1}\left(\Sigma_{K_{4}(3)}\right)=0
$$

by Theorem 3.3.4 and Corollary 7.1.7, respectively. By weak exactness, $L_{\mathbf{q}}^{2} H_{1}\left(\Omega_{U^{\prime} T^{\prime}}, \partial\right)=$ 0 , and hence $L_{\mathbf{q}}^{2} H_{1}\left(\Omega_{S\{s\}}, \partial\right)=0$, thus proving the assertion for $L=K_{5}$.

Now, suppose that the theorem is true for $L=K_{m}, m<n$. We wish to show the theorem is true for $L=K_{n}$. Begin by choosing an edge e with vertices s and t and label different from 3. We now observe that $L^{2} b_{1}(\Sigma(S-s))=L^{2} b_{1}\left(\Sigma_{K_{n-1}}\right)=0$ by the inductive hypothesis, since K_{n-1} now has at most $n-5$ edges with a label different from 3. Similarly, the inductive hypothesis implies $L_{\mathbf{q}}^{2} b_{1}(\Sigma(S-t))=0$ and $L_{\mathbf{q}}^{2} b_{0}(\Sigma(S-\{s, t\}))=0$. Hence the weak exact sequences used in the proof for the case $L=K_{5}$ allow us to conclude that $L_{\mathbf{q}}^{2} b_{1}\left(\Sigma_{L}\right)=L_{\mathbf{q}}^{2} b_{1}(\Sigma(S))=0$.

Remark 7.1.13. Note that in conjunction with Theorem 3.3.4 and Corollary 7.1.4, the above argument gives an alternate proof of Corollary 7.1.7.

7.2 Connection to the Weighted Singer Conjecture

We note that Theorem 7.1.3 provides convincing evidence for the validity of a weighted version of Theorem 5.0.2 when L is a triangulation of the $(n-1)$-sphere. Suppose that the labeled nerve L^{\prime} is the one-skeleton of a cellulation of a $G H S^{n-1}$, $n \geq 3$, where all 2-cells are Euclidean. Build L^{\prime} to a triangulation that is a $G H S^{n-1}$ by coning on each empty cell and labeling new edges by 2 . In other words, perform the following sequence of right-angled cones. First begin by coning on each empty 2 -cell, then on each empty 3 -cell, and so on, until each empty cell has been coned off (if $n=3$, this process stops when each empty $2-$ cell has been coned off).

Theorem 7.2.1. Suppose that the nerve L a $G H S^{n-1}, n \geq 3$, obtained via the above construction and suppose that $\mathbf{q} \geq 1$. Then

$$
L_{\mathbf{q}}^{2} b_{k}\left(\Sigma_{L}\right)=0 \text { for } k \leq 1 .
$$

Proof. The proof of the theorem follows the strategy of Lemma 7.1.1: one performs careful book-keeping using Mayer-Vietoris sequences when constructing L from L^{\prime}. Theorem 7.1.3 tells us that L^{\prime} originally satisfies $L_{\mathbf{q}}^{2} b_{1}\left(\Sigma_{L^{\prime}}\right)=0$. To construct L from L^{\prime}, we first began by coning empty 2 -cells, then successively coning higher dimensional cells, labeling new edges by 2 . If at each step of this process we employ a Mayer-Vietoris sequence, then Theorem 7.1.3, in conjunction with the fact that right-angled cones will not develop new homology below dimension 2, implies that $L_{\mathbf{q}}^{2} b_{1}\left(\Sigma_{L}\right)=0$.

7.3 Quasi-Lánner groups

A 2-spherical Coxeter group W is quasi-Lánner if it acts properly (but not cocompactly) on hyperbolic space \mathbb{H}^{n} by reflections with fundamental chamber an n-simplex of finite volume. For brevity, we say that W is of type $Q L_{n}$. QuasiLánner groups have been classified and only exist in dimensions 3 through 10. For a complete list, see $[13, \S 6.9]$. We note that the Coxeter group with corresponding nerve $L=K_{4}(3)$ is on the list.

All non-spherical proper special subgroups of a quasi-Lánner group are Euclidean and on the list appearing in [13, pg. 34]. Moreover, if W is of type $Q L_{n}$, then the only proper infinite special subgroups are those W_{T} with $|T|=n-1$. Hence, by Proposition 2.9.1, if W is of type $Q L_{n}$, then $\operatorname{vcd} W=n-1$. With this observation, we prove the following theorem.

Theorem 7.3.1. Suppose that W is of type $Q L_{n}$. Then $L_{\mathbf{q}}^{2} b_{k}\left(\Sigma_{L}\right)=0$ whenever $k \geq n-1$ and $\mathbf{q} \leq 1$, or $k \leq 1$ and $\mathbf{q} \geq \mathbf{1}$.

Proof. We first suppose that $\mathbf{q}=1$. Since W is of type $Q L_{n}$, we can realize a finite volume n-simplex in hyperbolic space \mathbb{H}^{n}, with W acting by reflections along codimension-one faces (note that this simplex has some ideal vertices). By a theorem of Cheeger-Gromov [5], $L_{\mathbf{1}}^{2} H_{k}\left(\Sigma_{L}\right) \cong L_{\mathbf{1}}^{2} \mathcal{H}^{k}\left(\mathbb{H}^{n}\right)$, where $L_{\mathbf{1}}^{2} \mathcal{H}^{k}$ denotes the L^{2} de Rham cohomology. By a theorem of Dodziuk [11], $L_{\mathbf{1}}^{2} \mathcal{H}^{k}\left(\mathbb{H}^{n}\right)=0$ for all $k \geq 0$ if n is
odd, and is concentrated in dimension $\frac{n}{2}$ if n is even. In particular, $L_{\mathbf{1}}^{2} b_{n-1}\left(\Sigma_{L}\right)=0$. The result for $\mathbf{q} \leq \mathbf{1}$ now follows by Lemma 3.3.8 and the fact that $\operatorname{vcd} W=n-1$.

Now, suppose that $\mathbf{q} \geq \mathbf{1}$. Consider the fattened Davis complex Φ_{L} with respect to $P=\Delta^{n}$, the standard n-simplex (see Remark 6.1.1 and Figure 7.1).

Figure 7.1: K^{f} when $L=K_{4}(3)$

Weighted Poincaré duality implies that

$$
L_{\mathbf{q}}^{2} H_{1}\left(\Phi_{L}, \partial \Phi_{L}\right) \cong L_{\mathbf{q}^{-1}}^{2} H_{n-1}\left(\Phi_{L}\right) \cong L_{\mathbf{q}^{-1}}^{2} H_{n-1}\left(\Sigma_{L}\right)=0
$$

so by the long exact sequence for the pair $\left(\Phi_{L}, \partial \Phi_{L}\right)$ it remains to show $L_{\mathbf{q}}^{2} H_{1}\left(\partial \Phi_{L}\right)=$ 0. Proposition 6.3.2 implies that each C_{T} appearing in ∂K^{f} corresponds to a set $T \in \mathcal{N}_{P}$ with W_{T} a Euclidean reflection group. In particular, Corollary 6.4.3 and Theorem 3.3.4 imply that $L_{\mathbf{q}}^{2} b_{1}\left(\mathcal{U}\left(W, C_{T}\right)\right)=0$. Hence the $E_{1}^{0,1}$ term in the E_{1} sheet of the spectral sequence of Proposition 6.4.5 is zero. By Proposition 3.3.1, the first row of the E_{1} sheet is also zero, and in particular $E_{1}^{1,0}$ is zero. Therefore $L_{\mathbf{q}}^{2} b_{1}\left(\partial \Phi_{L}\right)=0$.

Of important note is the case when W is $Q L_{3}$. In this special case, Theorem 7.3.1 explicitly computes the $L_{\mathbf{q}}^{2}-$ Betti numbers for all \mathbf{q} : they are always concentrated in a single dimension.

Corollary 7.3.2. Suppose that W is of type $Q L_{3}$. Then

- If $\mathbf{q} \in \overline{\mathcal{R}}$, then $L_{\mathbf{q}}^{2} H_{*}\left(\Sigma_{L}\right)$ is concentrated in dimension 0 .
- If $\mathbf{q} \notin \mathcal{R}$ and $\mathbf{q} \leq \mathbf{1}$, then $L_{\mathbf{q}}^{2} H_{*}\left(\Sigma_{L}\right)$ is concentrated in dimension 1 .
- If $\mathbf{q} \geq \mathbf{1}$, then $L_{\mathbf{q}}^{2} H_{*}\left(\Sigma_{L}\right)$ is concentrated in dimension 2.

Since the $L_{\mathbf{q}}^{2-(c o) h o m o l o g y ~ i s ~ a l w a y s ~ c o n c e n t r a t e d ~ i n ~ a ~ s i n g l e ~ d i m e n s i o n, ~ o n e ~ c a n ~}$ use Proposition 3.3.2, along with Theorem 2.2.1, to obtain explicit formulas for the $L_{\mathbf{q}}^{2}-$ Betti numbers.

7.4 Other 2-spherical groups

We now perform computations for other 2 -spherical groups, removing the restriction that the nerve L is a graph. Given a Coxeter system (W, S), we make a particular choice of P for the construction of Φ_{L}, namely $P=\Delta^{|S|-1}$, the standard $(|S|-1)-$ simplex (see Remark 6.1.1).

While one could argue the following lemma using the spectral sequence, we use a simple Mayer-Vietoris sequence argument to illustrate the technique behind the machinery.

Lemma 7.4.1. Suppose that (W, S) is infinite 2 -spherical with $|S|=5$ and vcd $W \leq$ 3. Furthermore, suppose that every infinite special subgroup W_{T}, with $|T|=3,4$, is Euclidean or $Q L_{3}$, and that $L_{\mathbf{1}}^{2} b_{3}\left(\Sigma_{L}\right)=0$. Then $L_{\mathbf{q}}^{2} b_{k}\left(\Sigma_{L}\right)=0$ for $k<2$.

Proof. We wish to reduce the proof to showing that $L_{\mathbf{q}}^{2} b_{1}\left(\partial \Phi_{L}\right)=0$. If $\operatorname{vcd} W=2$, then this is accomplished by Lemma 6.4 .2 (ii). If $\operatorname{vcd} W=3$, then according to Lemma 6.4.2 (i), we reduce the proof to showing $L_{\mathbf{q}}^{2} b_{1}\left(\partial \Phi_{L}\right)=0$ if we show that $L_{\mathbf{q}^{-1}}^{2} b_{3}\left(\Sigma_{L}\right)=0$. By Lemma 3.3.8, we reach this conclusion since by assumption $L_{\mathbf{1}}^{2} b_{3}\left(\Sigma_{L}\right)=0$. So, to complete the proof, we must show that $L_{\mathbf{q}}^{2} b_{1}\left(\partial \Phi_{L}\right)=0$.

Let $\mathcal{N}_{P}^{(j)}=\left\{T \in \mathcal{N}_{P} \mid \operatorname{Card}(T)=j\right\}$ and set

$$
A_{j}=\bigsqcup_{T \in \mathcal{N}_{P}^{(j)}} \mathcal{U}\left(W, C_{T}\right) .
$$

Note that $|S|=5$ and all proper non-spherical subsets T have order 3 or 4 , so by Proposition 6.3.2, $\partial \Phi_{L}=A_{3} \cup A_{4}$. Figure 7.2 illustrates the chamber for $\partial \Phi_{L}$ for the case where $L=K_{5}(3)$.

Figure 7.2: Fundamental chamber for $\partial \Phi_{L}$ when $L=K_{5}(3)$

By Proposition 6.3.1 (i),

$$
A_{3} \cap A_{4}=\bigsqcup_{\substack{U \in \mathcal{N}_{P}^{(3)} \\ V \in \mathcal{N}_{P}^{(4)} \\ U \subset V}} \mathcal{U}\left(W, C_{U}\right) \cap \mathcal{U}\left(W, C_{V}\right)
$$

By Corollary 6.4.3,

$$
\begin{aligned}
L_{\mathbf{q}}^{2} b_{k}\left(A_{j}\right) & =\sum L_{\mathbf{q}}^{2} b_{k}\left(\mathcal{U}\left(W, C_{T}\right)\right) \\
& =\sum L_{\mathbf{q}}^{2} b_{k}\left(\Phi_{L_{T}}\right)
\end{aligned}
$$

and

$$
\begin{aligned}
L_{\mathbf{q}}^{2} b_{k}\left(A_{3} \cap A_{4}\right) & =\sum L_{\mathbf{q}}^{2} b_{k}\left(\mathcal{U}\left(W, C_{T}\right)\right) \\
& =\sum L_{\mathbf{q}}^{2} b_{k}\left(\Phi_{L_{T}}\right)
\end{aligned}
$$

Here L_{T} is the subcomplex of L corresponding to the infinite subgroup W_{T}, which is either Euclidean or of type $Q L_{3}$. By Theorem 3.3.4 and Theorem 7.3.1,
$L_{\mathbf{q}}^{2} b_{k}\left(\Phi_{L_{T}}\right)=0$ for $k<2$. Hence

$$
L_{\mathbf{q}}^{2} H_{k}\left(A_{j}\right)=0 \text { for } j=3,4 \text { and } L_{\mathbf{q}}^{2} H_{k}\left(A_{3} \cap A_{4}\right)=0 \text { for } k<2 .
$$

Now, consider the Mayer-Vietoris sequence:

$$
\cdots \longrightarrow L_{\mathbf{q}}^{2} H_{k}\left(A_{3} \cap A_{4}\right) \longrightarrow L_{\mathbf{q}}^{2} H_{k}\left(A_{3}\right) \oplus L_{\mathbf{q}}^{2} H_{k}\left(A_{4}\right) \longrightarrow L_{\mathbf{q}}^{2} H_{k}\left(\partial \Phi_{L}\right) \longrightarrow \cdots
$$

Inputting (\diamond) into this sequence yields

$$
L_{\mathbf{q}}^{2} H_{k}\left(\partial \Phi_{L}\right)=0 \text { for } k<2 .
$$

Lemma 6.4.2 now concludes that $L_{\mathbf{q}}^{2} b_{1}\left(\Sigma_{L}\right)=0$.
Theorem 7.4.2. Suppose that (W, S) is infinite 2 -spherical with $|S| \geq 5$. Suppose furthermore that:

1. For every $T \subseteq S$ with $|T| \geq 5$, $\operatorname{vcd} W_{T} \leq|T|-2$.
2. $L_{1}^{2} b_{|S|-2}\left(\Sigma_{L}\right)=0$.
3. Every infinite subgroup W_{T}, with $|T|=3,4$, is Euclidean or $Q L_{3}$.

Then $L_{\mathbf{q}}^{2} b_{k}\left(\Sigma_{L}\right)=0$ for $k<2$.
Proof. The statement for $L_{\mathbf{q}}^{2} b_{0}\left(\Sigma_{L}\right)$ follows from Proposition 3.3.1. So, we turn our attention to showing $L_{\mathbf{q}}^{2} b_{1}\left(\Sigma_{L}\right)=0$. The proof of the theorem is now by induction on $|S|$, Lemma 7.4.1 serving as the base case. By Lemma 3.3.8, since vcd $W \leq|S|-2$, it follows that $L_{\mathbf{q}^{-1}}^{2} b_{|S|-2}\left(\Sigma_{L}\right)=0$. Furthermore, Φ_{L} has dimension $|S|-1$, so by Lemma 6.4.2 it now suffices to show that $L_{\mathbf{q}}^{2} b_{1}\left(\partial \Phi_{L}\right)=0$. By assumption, every nonspherical special subgroup W_{U} with $|U|=3,4$ is Euclidean or $Q L_{3}$. Thus every nonspherical special subgroup W_{U}, with $4<|U|<|S|$ satisfies the inductive hypothesis. Therefore by induction, Theorem 3.3.4, and Theorem 7.3.1, for any $T \in \mathcal{N}_{P}$ we have that $L_{\mathbf{q}}^{2} b_{1}\left(\Sigma_{L_{T}}\right)=0$ (Here L_{T} is the subcomplex of L corresponding to the special subgroup $\left.W_{T}\right)$.

Hence by Corollary 6.4 .3 (i), for every $T \in \mathcal{N}_{P}$

$$
L_{\mathbf{q}}^{2} b_{1}\left(\mathcal{U}\left(W, C_{T}\right)\right)=L_{\mathbf{q}}^{2} b_{1}\left(\Sigma_{L_{T}}\right)=0 .
$$

This implies that the $E_{1}^{0,1}$ term in the E_{1} sheet of the spectral sequence of Proposition 6.4.5 is zero. By Proposition 3.3.1, the first row of the E_{1} sheet is also zero, and in particular $E_{1}^{1,0}$ is zero. Therefore $L_{\mathbf{q}}^{2} b_{1}\left(\partial \Phi_{L}\right)=0$.

With the help of Theorem 5.0.2, we drop condition 2 in Theorem 7.4.2.
Corollary 7.4.3. Suppose that (W, S) is infinite 2 -spherical with $|S| \geq 5$. Suppose furthermore that:

1. For every $T \subseteq S$ with $|T| \geq 5$, $\operatorname{vcd} W_{T} \leq|T|-2$.
2. Every infinite subgroup W_{T}, with $|T|=3,4$, is Euclidean or $Q L_{3}$.

Then $L_{\mathbf{q}}^{2} b_{k}\left(\Sigma_{L}\right)=0$ for $k<2$.
Proof. Note that condition 2 in Theorem 7.4.2 is vacuously satisfied if ved $W \leq|S|-3$, so we suppose that $\operatorname{vcd} W=|S|-2$. We must show that $L_{1}^{2} b_{|S|-2}\left(\Sigma_{L}\right)=0$, and to do this, we use an argument analogous to the one in Lemma 7.1.1. We first begin by coning empty 2 -simplices of L, and then empty 3 -simplices, and so on, until all empty simplices have been coned off. We then label all new edges by 2 . In this way we obtain a newly promoted nerve L^{\prime} which is a triangulation of $S^{|S|-2}$, and in particular, $\Sigma_{L^{\prime}}$ is an $(|S|-1)$-manifold. By Theorem 5.0.2, $L_{1}^{2} b_{|S|-2}\left(\Sigma_{L^{\prime}}\right)=0$, and using the arguments of Lemma 7.1.1, we can conclude that $L_{1}^{2} b_{|S|-2}\left(\Sigma_{L}\right)=0$.

As a corollary to Theorem 7.4.2, we also obtain a specialized version of Conjecture 5.0.1 where $n=4$ and W is $2-$ spherical.

Corollary 7.4.4. Suppose that (W, S) is 2 -spherical with $|S| \geq 6$ and that the nerve L is a triangulation of S^{3}. Furthermore, suppose that every infinite special subgroup W_{T}, with $|T|=3,4$, is Euclidean or $Q L_{3}$. Then

$$
L_{\mathbf{q}}^{2} b_{k}\left(\Sigma_{L}\right)=0 \text { for } k<2 .
$$

Proof. Since L is a triangulation of S^{3}, it follows that $\operatorname{vcd} W=4$. In particular, W satisfies the hypothesis of Theorem 7.4.2.

Remark 7.4.5. Figure 7.3 gives examples of Coxeter diagrams whose corresponding Coxeter system (W, S) has $|S|=6$ and satisfies the hypothesis of Corollary 7.4.4 (if two vertices are not connected, then the implied label between them is 2). The author does not know whether there exist examples whenever $|S| \geq 7$.

$\frac{1}{q}+\frac{1}{r}+\frac{1}{s}=1, \quad \frac{1}{t}+\frac{1}{u}+\frac{1}{v}=1, \quad m=2,3,4$

- If $m=3$, then $s, r, u, t \neq 6$ and either $s, r \neq 4$ or $u, t \neq 4$.
- If $m=4$, then $s, r, u, t \neq 4,6$.

Figure 7.3: 2-spherical Coxeter diagrams satisfying the hypothesis of Corollary 7.4.4

Bibliography

[1] E. M. Andreev, On convex polyhedra of finite volume in Lobačcevskiï space, Math. USSR Sbornik, 12(2):255-259, 1970.
[2] M. Bestvina, The virtual cohomological dimension of Coxeter groups, Geometric Group Theory Vol 1, LMS Lecture Notes 181, 19-23. MR 94g:20056
[3] K.S. Brown, Cohomology of Groups, Springer-Verlag, Berlin and New York, 1982.
[4] R. D. Canary, A. Marden, D. B. A. Epstein, Fundamentals of Hyperbolic Manifolds: Selected Expositions, London Mathematical Society Lecture Note Series 328, 2006.
[5] J. Cheeger and M. Gromov, L_{2}-cohomology and group cohomology, Topology Vol. 2, No. 2 (1986), 189-215.
[6] M.W. Davis, The Geometry and Topology of Coxeter Groups, Princeton University Press, Princeton, 2007.
[7] M.W. Davis, Groups generated by reflections and aspherical manifolds not covered by Euclidean space, Ann. of Math. 117 (1983) 293-324.
[8] M.W. Davis, J. Dymara, T. Januszkiewicz, B. Okun, Weighted L^{2}-cohomology of Coxeter groups, Geometry \& Topology 11 (2007), 47-138.
[9] M.W. Davis and B. Okun, Vanishing theorems and conjectures for the $\ell^{2}-$ homology of right-angled Coxeter groups, Geometry \& Topology, 5:7-74, 2001.
[10] M.W. Davis and B. Okun, Cohomology computations for Artin groups, Bestvina-Brady groups, and graph products, Groups Geom. Dyn. 6 (3) 2012, pp. 485-53.
[11] J. Dodziuk, L^{2}-harmonic forms on rotationally symmetric Riemannian manifolds, Proceedings of the American Mathematical Society, 77:395-400, 1979.
[12] J. Dymara, Thin buildings, Geometry \& Topology, 10:667-694, 2006.
[13] J. Humphreys, Reflection Groups and Coxeter Groups, Cambridge University Press, Cambridge, 1990.
[14] J. Lott and W. Lück, L^{2}-topological invariants of 3-manifolds, Invent. Math. 120 (1995), 15-60.
[15] W. Lück, L^{2}-invariants: theory and applications to geometry and K-theory. Ergeb Math Grenzgeb. (3) 44, Springer-Verlag, Berlin 2002. Zbl 1009.55001 MR 1926649.
[16] B. Okun and K. Schreve, The $L^{2}-(c o) h o m o l o g y ~ o f ~ g r o u p s ~ w i t h ~ h i e r a r c h i e s, ~$ arXiv:1407.1340 [math.GT] (2014).
[17] G. Perelman, Finite extinction time for the solutions to the Ricci flow on certain three-manifolds, arXiv:math.DG/0307245 (2003).
[18] T.A. Schroeder, The ℓ^{2}-homology of even Coxeter groups, Algebraic \& Geometric Topology, 9(2):1089-1104, 2009. DOI number: 10.2140/agt.2009.9.1089.
[19] T.A. Schroeder, ℓ^{2}-homology and planar graphs, 2013, DOI: 10.4064/cm131-111, pp. 129-139.

Curriculum Vitae

Place of Birth: Warsaw, Poland

Education:

2009 M.S. Mathematics, University of Texas at Brownsville, Advisor: Dr. Oleg Musin.
2006 B.S. Mathematics, summa cum laude, University of Texas at Brownsville.

Employment:

- Graduate Teaching Assistant, Department of Mathematics, University of WisconsinMilwaukee (2009-Present).
- Post-Graduate/Graduate Research/Teaching Assistant, Department of Mathematics, University of Texas at Brownsville (2006-2009).

Publications:

- W.J. Mogilski, The weighted Singer conjecture for Coxeter groups in dimensions three and four, arXiv:1503.02518 [math.AT] (2015).
- W.J. Mogilski, The fattened Davis complex and weighted L^{2}-(co)homology of Coxeter groups, arXiv:1502.07783 [math.AT] (2015).
- W.J. Mogilski, Polygon Vertex Extremality and Decomposition of Polygons, Discrete Mathematics 310 (2010) 2231-2237.
- W.J. Mogilski, The Four-Vertex Theorem, The Evolute, and The Decomposition of Polygons, arXiv:0906.2388 [math.MG] (2009).

Fields of Study:

Major Field: Mathematics

Specialization: Geometric Group Theory, Algebraic Topology, Discrete Geometry

