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ABSTRACT

The Fattened Davis Complex and the

Weighted L2–(co)homology of Coxeter Groups

by

Wiktor J. Mogilski

The University of Wisconsin–Milwaukee, 2015
Under the Supervision of Boris L. Okun

Associated to a Coxeter system (W,S) there is a contractible simplicial complex

Σ called the Davis complex on which W acts properly and cocompactly by reflec-

tions. Given a positive real multiparameter q indexed by S, one can define the

weighted L2–(co)homology groups of Σ and associate to them a nonnegative real

number called the weighted L2–Betti number. Unfortunately, not much is known

about the behavior of these groups when q lies outside a certain restricted range,

and weighted L2–Betti numbers have proven difficult to compute. We propose a

program to compute the weighted L2–(co)homology of Σ by introducing a thick-

ened version of this complex which we call the fattened Davis complex. A salient

feature of this complex is that our construction produces a homology manifold with

boundary possessing Σ as a W–equivariant retract. This allows us to use many

standard algebraic topology tools such as Poincaré duality for computing the L2–

(co)homology of Σ, and we successfully perform computations for many examples

of Coxeter groups.

Within the spectrum of weighted L2–(co)homology there is a conjecture of in-

terest called the Weighted Singer Conjecture. The conjecture claims that if Σ is an

n–manifold (equivalently, the nerve of the corresponding Coxeter group is an (n−1)–

sphere), then the weighted L2–(co)homology groups of Σ vanish above dimension n
2

ii



whenever q ≤ 1. We present a proof of the conjecture in dimension three that en-

compasses all but nine Coxeter groups. Then, under some restrictions on the nerve

of the Coxeter group, we obtain partial results whenever n = 4 (in particular, the

conjecture holds for n = 4 if the nerve of the corresponding Coxeter group is a flag

complex). We also prove a version of this conjecture in dimensions three and four

whenever Σ is a manifold with (nonempty) boundary, and then extend our results

in dimension four to prove a general version of the conjecture for the case where the

nerve of the Coxeter group is assumed to be a flag triangulation of a 3–manifold.
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Chapter 1

Introduction

A recurring theme in geometric group theory is the investigation of properties of a

group by studying a space on which the group acts on (or vice-versa). This space is

usually reasonably nice (for example, a metric space), hence geometric group theory

closely interacts with algebraic topology, discrete geometry, and geometric topology.

The groups that this thesis focuses on are Coxeter groups, and a construction by

Davis equips us with a natural simplicial complex called the Davis complex (denoted

by Σ) on which the Coxeter group acts on.

Within the spectrum of Coxeter groups is the theory of weighted L2–(co)homology

of Coxeter groups, which is the central subject of this thesis. The main idea is to

use the Davis complex to attach to the Coxeter group an equivariant cohomology

theory where the objects are Hilbert spaces. Let S denote the generating set of the

Coxeter group W and begin with an S–tuple q = (qs)s∈S of positive real numbers,

where qs = qt if s and t are conjugate in W . One uses the S–tuple q to assign weights

(real numbers) to each of the cells of Σ in a way that is compatible with the W–

action. Elements of L2
qCk(Σ) are then infinite W–equivariant real valued k–chains

that are square-summable with respect to the weights. In other words, they are real

valued functions on the k–cells that are square-summable when taking into account

the weights on the k–cells. These spaces are Hilbert spaces, and there is a weighted

boundary operator which is adjoint to the ordinary coboundary operator with re-

spect to the inner product (these operators are bounded). One then defines the
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reduced L2–(co)homology spaces L2
qH∗(Σ) (the homology and cohomology spaces

are isomorphic as Hilbert spaces).

These cohomology groups are generally infinite dimensional when nonzero, but

a striking feature of this cohomology theory is that one can assign to these groups

a nonnegative real number called the weighted L2–Betti number (hence they are

distinguishable). The predominant goal of this subject is to completely determine

the weighted L2–Betti numbers L2
qb∗(Σ) for any Coxeter group. Weighted L2–Betti

numbers not only tie the theory of weighted L2–(co)homology to algebraic proper-

ties of the Coxeter group, but they also intertwine it with many other topics such

as Hecke algebras, growth series, the Euler characteristic conjecture, and operator

theory. Outside of the ties to these topics, one of the most important applications

of weighted L2–Betti numbers is that they can be used to compute the ordinary

L2–Betti numbers of buildings of finite thickness.

Weighted L2–Betti numbers are also notoriously difficult to compute, very little

being known when q ∉ R̄ ∪ R̄−1, where R denotes the region of convergence of the

growth series of the Coxeter group. In fact, just computing the ordinary L2–Betti

numbers of Coxeter groups still proves troublesome to this day. To illustrate the

difficult nature of these invariants, a formula of Atiyah shows that ordinary L2–

Betti numbers can be used to compute the orbihedral Euler characteristic. So,

if one considers the fundamental group of a closed aspherical n–manifold, with n

even, then knowing the vanishing of the L2–(co)homology groups of the universal

cover outside of the middle dimension implies the Hopf conjecture on the sign of the

Euler characteristic of that manifold. Thus L2–(co)homology theory can be thought

of as a formidable attack on the Euler characteristic conjecture and has proven

to be successful in many situations (for example, in the case of locally symmetric

manifolds).

This thesis is structured as follows. In Chapter 2, we introduce some prelimi-

naries and definitions needed for the content of the thesis. For example, we discuss

Coxeter groups, growth series, and explain how to construct the Davis complex. To

construct the Davis complex, one needs a notion due to Davis called the basic con-
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struction. The idea is to start with a certain type of space X called a mirrored space

and use a Coxeter group W to build a new space on which the Coxeter group acts

on. An important result of this chapter is that we give new conditions on X so that

the basic construction produces a homology manifold with boundary with a proper

and cocompact Coxeter group action. This result will be especially important in

Chapter 6.

Chapter 3 is dedicated to weighted L2–(co)homology theory. We first introduce

the weighted L2–(co)homology groups and define weighted L2–Betti numbers. We

then introduce an alternate definition of weighted L2–Betti numbers and discuss

some previous results for the weighted L2–(co)homology theory of the Davis com-

plex. The new results of this chapter are as follows. We first observe that it is

possible to use any acyclic complex on which the Coxeter group acts properly and

cocompactly by reflections to compute the weighted L2–Betti numbers of Coxeter

groups. In particular, we can use a vcdW–dimensional complex of Bestvina to

compute weighted L2–Betti numbers. An immediate consequence of this is that

L2
qbk(Σ) = 0 for k > vcdW , and in many cases this allows us to obtain vanishing

of high-dimensional L2
q–Betti numbers, as Bestvina’s complex is usually of much

lower dimension than the Davis complex. We then show that top-dimensional L2
q–

Betti numbers behave monotonically in q. More precisely, we show that if the

top-dimensional L2
q–Betti vanishes for q = 1, then it must have been zero for all

q ≤ 1. This later allows us to “push” many of our computations (as well as previ-

ously known computations) from q = 1 to q ≤ 1.

Chapter 4 focuses on specific W–stable subcomplexes of the Davis complex called

ruins, which were used in proofs by Davis, Dymara, Januszkiewicz, and Okun in [8].

By considering a particular exact sequence for the L2
q–(co)homology involving these

complexes (also used in [8]), we are able to show new concentration theorems for

the L2
q–(co)homology of ruins. Using a spectral sequence appearing in [10], we are

then able to show that for a certain range of q, L2
qH∗(Σ,Σ(k)) is concentrated in

dimension k + 1 (here Σ(k) denotes the k–skeleton of Σ). We then proceed derive

some consequences, one being that we are able to generalize a theorem of Dymara
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[12, Theorem 10.3] which states that if q ∈ R, then L2
qH∗(Σ) is concentrated in

dimension zero.

In Chapter 5 we consider the Weighted Singer Conjecture, which was formulated

in [8]. It states that if Σ is an n–manifold and q ≤ 1, then L2
qHk(Σ) vanishes for

k > n
2 . We first discuss progress on this conjecture, and then we use the results of

Chapter 3 to prove that L2
qHk(Σ) = 0 whenever k ≥ n − 1 and Σ is an n–manifold

with (nonempty) boundary. For the case when n = 3,4, this proves a version of

the Weighted Singer Conjecture whenever Σ is an n–manifold with (nonempty)

boundary. We then adapt an argument appearing in [8] and combine it with our

results to prove the Weighted Singer Conjecture in dimension three. Then, we prove

the conjecture in dimension four under some additional restrictions on the nerve of

the corresponding Coxeter group. A consequence of this is that the conjecture holds

in dimension four if the nerve is assumed to be flag complex. Lastly, we generalize

the result in dimension four and show that L2
qHk(Σ) = 0 for k > 2 whenever the

nerve is a flag triangulation of any 3–manifold.

In Chapter 6, we construct a complex that we call the fattened Davis complex.

The idea is to “fatten” the Davis complex to a (homology) manifold with boundary

so that we have standard algebraic topology tools (such as Poincaré duality) at

our disposal. We carefully perform this fattening in such a way so that we can

understand the weighted L2–(co)homology of the boundary. In fact, understanding

the weighted L2–(co)homology of the boundary will simply amount to understanding

the weighted L2–(co)homology of certain infinite special subgroups of W . A large

portion of this chapter is dedicated to studying the structure and algebraic topology

of the fattened Davis complex. In Chapter 7, we then use the fattened Davis complex

(combined with results from previous chapters) to perform new computations of L2
q–

Betti numbers for many examples of Coxeter groups. Of note is that mostly all of

the computations are performed for q ≥ 1, and hence they compute the ordinary L2–

(co)homology of buildings associated to these Coxeter groups with integer thickness

vector q.
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Chapter 2

Coxeter Groups and Preliminaries

2.1 Coxeter systems and Coxeter groups

A Coxeter matrix M = (mst) on a set S is an S × S symmetric matrix with entries

in N ∪ {∞} such that

mst =

⎧⎪⎪
⎨
⎪⎪⎩

1 if s = t

≥ 2 otherwise.

One can associate to M a presentation for a group W as follows. Let S be the set

of generators and let I = {(s, t) ∈ S × S ∣mst ≠ ∞}. The set of relations for W is

R = {(st)mst}(s,t)∈I .

The group defined by the presentation ⟨S,R⟩ is a Coxeter group and the pair (W,S)

is a Coxeter system. If all off-diagonal entries of M are either 2 or ∞, then W is

right-angled.

Given a subset T ⊂ S, define WT to be the subgroup of W generated by the

elements of T . Then (WT , T ) is a Coxeter system. Subgroups of this form are

special subgroups. WT is a spherical subgroup if WT is finite and, in this case, T is a

spherical subset. If WT is infinite, then T is non-spherical. We will let S denote the

poset of spherical subsets (the partial order being inclusion).

Given w ∈ W , call an expression w = s1s2⋯sn reduced if there exists no integer

k < n with w = s′1s
′
2⋯s

′
k. We define the length of w, denoted by l(w), to be the

integer n so that w = s1s2⋯sn is a reduced expression for w. Given a subset T ⊂ S
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and an element w ∈W , the special coset wWT contains a unique element of shortest

length. This element is said to be (∅, T )–reduced.

2.2 Growth series

Suppose that (W,S) is a Coxeter system. Let t ∶= (ts)s∈S denote an S–tuple of

indeterminates, where ts = ts′ if s and s′ are conjugate in W . If s1s2⋯sn is a reduced

expression for w, define tw to be the monomial

tw ∶= ts1ts2⋯tsn .

Note that tw is independent of choice of reduced expression due to Tits’ solution

to the word problem for Coxeter groups (see the discussion at the beginning of [6,

Chapter 17]). The growth series of W is the power series in t defined by

W (t) = ∑
w∈W

tw.

The region of convergence R for W (t) is defined to be

R ∶= {t ∈ (0,+∞)S ∣W (t) converges}.

For each T ⊂ S, we denote the growth series of the special subgroup WT by

WT (t), the respective region of convergence by RT , and define t−1 ∶= (t−1s )s∈S. We

record the following formula for later computations.

Theorem 2.2.1 ([6, Theorem 17.1.9]).

1

W (t)
=∑
T ∈S

(−1)∣T ∣

WT (t−1)
.

Note that if W is finite, then W (t) is a polynomial with integral coefficients.

Thus an immediate consequence of the above formula is that W (t) is a rational

function in t.
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2.3 Homology manifolds

A space X is a homology n–manifold if it has the same local homology groups as

Rn, i.e. that for each x ∈X

Hk(X,X − x) =

⎧⎪⎪
⎨
⎪⎪⎩

Z if k = n

0 otherwise.

The pair (X,∂X) with ∂X closed in X is a homology n–manifold with boundary if

it has the same local homology groups as does a manifold with boundary, i.e., the

following conditions hold:

• X − ∂X is a homology n–manifold,

• ∂X is a homology (n − 1)–manifold,

• for each x ∈ ∂X, the local homology groups H∗(X,X − x) all vanish.

X is a generalized homology n–sphere, abbreviated GHSn, if it is a homology n–

manifold with the same homology as Sn. Similarly, the pair (X,∂X) is a generalized

homology n–disk, abbreviated GHDn, if it is a homology n–manifold with boundary

with the same homology as the pair (Dn, Sn−1). Note that the cone on a generalized

homology sphere is a generalized homology disk.

2.4 Mirrored spaces

A mirror structure over a set S on a space X is a family of subspaces (Xs)s∈S indexed

by S. Then X is a mirrored space over S. Put X∅ = X, and for each nonempty

subset T ⊆ S, define the following subspaces of X:

XT ∶= ⋂
s∈T

Xs, X
T ∶= ⋃

s∈T
Xs.

If (W,S) is a Coxeter system and X is a mirrored space over S, then the mirror

structure (Xs)s∈S is W–finite if XT = ∅ for all non-spherical T ⊆ S.



8

2.4.1 Mirrored homology manifolds with corners

Suppose that X is a mirrored space over a finite set S. X is an S–mirrored homology

n–manifold with corners if every nonempty XT is a homology (n−∣T ∣)–manifold with

boundary ∂XT = ⋃U⊋T XU . By taking T = ∅, this definition implies that the pair

(X,∂X) is a homology n–manifold with boundary.

Given a Coxeter system (W,S), we set S′ = S ∪ {e}, where e is the identity

element of W . We now say that T ⊆ S′ is spherical if and only if T −{e} is spherical.

A mirrored space X over the set S′ with W–finite mirror structure (Xs)s∈S′ is a

partially S–mirrored homology n–manifold with corners if every nonempty XT is

a homology (n − ∣T ∣)–manifold with boundary ∂XT = ⋃U⊋T XU . To summarize,

we simply have defined the non–S–mirrored part of X to be an auxiliary mirror

corresponding to the identity element of W .

2.5 Basic construction

Suppose that (W,S) is a Coxeter system and that X is a mirrored space over S. As

before, for each nonempty subset T ⊂ S, let WT be the subgroup of W generated

by T ⊂ S. Put S(x) ∶= {s ∈ S ∣ x ∈ Xs}. Define an equivalence relation ∼ on W ×X

by (w,x) ∼ (w′, y) if and only if x = y and w−1w′ ∈WS(x). Give W ×X the product

topology and let U(W,X) denote the quotient space:

U(W,X) = (W ×X)/ ∼ .

U(W,X) is the basic construction and X is the fundamental chamber. There is

a natural W–action on W ×X, and this action respects the equivalence relation,

hence the W–action on W ×X descends to a W–action on U(W,X).

We will be interested in conditions on X which guarantee that the basic con-

struction produces a homology n–manifold with boundary. But first, we consider

the following proposition, as the proof is similar to the main result of this subsection.

Proposition 2.5.1 (Compare [6, Proposition 10.7.5]). Suppose that (W,S) is a

Coxeter system and that X is an S–mirrored homology n–manifold with corners
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with W–finite mirror structure. Then U(W,X) is a homology n–manifold.

Proof. Without loss of generality suppose that x ∈X. By excision, we need to show

that the local homology groups H∗(U,U − x) are correct for some neighborhood U

of x in U(W,X). If x ∈ X − ∂X then we are done since X − ∂X is a homology

n–manifold and x does not lie in any mirror. As before, set S(x) = {s ∈ S ∣ x ∈ Xs}

and suppose that ∣S(x)∣ ≥ 1.

Let V be a neighborhood of x in X. For each s ∈ S(x), set Vs = V ∩Xs, and

give V the mirror structure {Vs}s∈S(x). Note that, for each T ⊆ S(x), VT = V ∩XT ,

where as before, XT = ⋂s∈T Xs. Now, x ∈ XS(x), so for each T ⊂ S(x), x ∈ ∂XT (XT

is by assumption a homology (n − ∣T ∣)–manifold with boundary and XS(x) ⊆ ∂XT ).

Furthermore, x does not lie in ∂XS(x). Therefore by excision, it follows that for each

T ⊂ S(x), the local homology groups H∗(VT , VT −x) vanish, and H∗(VS(x), VS(x)−x)

is concentrated in dimension n − ∣S(x)∣ and Z in that dimension.

Now, define

Z ∶= V ∪Cone(V − x)

Zs ∶= Vs ∪Cone(Vs − x)

So, Z has the mirror structure {Zs}s∈S(x). Since V is a neighborhood of x in

X, and x ∈ ∂X, it follows that the local homology groups H∗(V,V − x) vanish.

In particular, H∗(V ) ≅ H∗(V − x), and the Mayer–Vietoris sequence, along with

the five lemma, implies that Z is acyclic. Similarly, for each T ⊂ S(x), since the

local homology groups H∗(VT , VT − x) vanish, it follows that ZT is acyclic. Since

H∗(VS(x), VS(x)−x) is concentrated in dimension n−∣S(x)∣ and Z in that dimension,

that Mayer–Vietoris sequence again implies that the same is true for H∗(ZS(x)). In

particular, ZS(x) has the same homology as Sn−∣S(x)∣.

We now finish the proof by applying the following lemma:

Lemma 2.5.2 ([6, Corollary 8.2.5]). U(WS(x), Z) has the same homology as Sn if

and only if there is a unique spherical subset R ⊆ S(x) satisfying the following three

conditions:
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(a) WS(x) decomposes as WS(x) =WR ×WS(x)−R.

(b) For all spherical T ′ ⊆ S(x) with T ′ ≠ R, (Z,ZT ′) is acyclic.

(c) (Z,ZR) has the same homology as (Dn, Sn−1).

We apply the lemma to R = S(x). Condition (a) is then satisfied vacuously, so

we wish to show (b) and (c). For T ⊆ R, consider the cover of ZT by the mirrors

{Zs}s∈T . Note that for each U ⊂ R, the intersection of mirrors ZU is acyclic. The

nerve of this cover is a simplex on U , and in particular is contractible. The Acyclic

Covering Lemma [3, Theorem 4.4, Ch VII] then implies that ZU is acyclic. Note

that ZR has the same homology as Sn−∣R∣, so a similar spectral sequence argument

also implies that ZR has the same homology as Sn−1.

Now, set U = U(WR, V ). Since U(WR, Z) = U ∪Cone(U − x) and U(WR, Z) has

the same homology as Sn, it follows that H∗(U,U −x) is concentrated in dimension

n and Z in that dimension. Therefore U is our desired neighborhood. ∎

Proposition 2.5.3. Suppose that (W,S) is a Coxeter system and suppose that X

is a partially S–mirrored homology n–manifold with corners. Set Y = Xe and give

Y the induced mirror structure (Ys)s∈S, where Ys ∶= Y ∩ Xs. Then U(W,X) is a

homology n–manifold with boundary ∂U(W,X) = U(W,Y ).

Proof. Set U = U(W,X) and ∂U = U(W,Y ). Proposition 2.5.1 guarantees that

∂U is a homology (n − 1)–manifold. This is because Y = Xe, and Xe (with its

induced S–mirror structure) is an S–mirrored homology (n− 1)–manifold with cor-

ners. Similarly, Proposition 2.5.1 implies that U − ∂U is a homology n–manifold,

since U − ∂U = U(W,Z), where Z = X − Y (with its induced S–mirror structure) is

an S–mirrored homology n–manifold with corners. It remains to show that for each

x ∈ ∂U , the local homology groups H∗(U ,U − x) vanish.

Suppose that x ∈ ∂U . Without loss of generality, we can assume that x ∈ Y ⊂ ∂X.

If x does not lie in any mirror (Xs)s∈S, then we are done by excision. So, suppose

∣S(x)∣ ≥ 1 (recall S(x) = {s ∈ S ∣ x ∈Xs}) and let V be a neighborhood of x in X. We

now give V the S–mirror structure as in the proof of Proposition 2.5.1, noting that
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the only difference between that proof and the current situation is the fact that the

local homology groups H∗(VS(x), VS(x) − x) vanish. This is because, since x ∈ Y and

∣S(x)∣ ≥ 1, it follows that x ∈ ∂XS(x). Now, following the proof of Proposition 2.5.1

line by line, the only difference now is that ZS(x) is acyclic (as opposed to having

the homology of Sn−1 as before). This then implies that U(WS(x), Z) is acyclic [6,

Corollary 8.2.8], which in turn implies that the local homology groups H∗(U ,U −x)

vanish. ∎

2.6 Posets, abstract simplicial complexes, and ge-

ometric realizations

A poset is a partially ordered set. Given a poset P and an element p ∈ P, set

P≥p ∶= {x ∈ P ∣ x ≥ p}.

Define P≤, P<, and P> similarly. The opposite or dual poset to P is the poset Pop

with the same underlying set but with the order relation reversed.

An abstract simplicial complex consists of a set S (called the vertex set) and a

collection S of finite subsets of S such that

(i) for each s ∈ S, {s} ∈ S and

(ii) if T ∈ S and if T ′ ⊂ T , then T ′ ∈ S.

An abstract simplicial complex S is a poset, the partial order being inclusion.

An element of S is called a simplex. If T is a simplex of S and T ′ ≤ T , then we call

T ′ a face of T . The dimension of a simplex T is defined by

dimT ∶= Card(T ) − 1.

A subset S ′ of an abstract simplicial complex S is a subcomplex if it is also an

abstract simplicial complex. The subcomplex S ′ is a full subcomplex if whenever

T ∈ S such that the vertices of T are contained in S ′, then T ∈ S ′.
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2.6.1 Flag complexes

An incidence relation is a symmetric and reflexive relation. Suppose that P is a

poset. We can symmetrize the partial order to obtain an incidence relation on P as

follows: two elements p, q ∈ P are incident if and only if p ≤ q or q ≤ p. Any set of

incident elements in a poset is totally ordered. A flag in P is a finite chain, i.e., a

totally ordered subset. When P is a poset, Flag(P) denotes the abstract simplicial

complex of all flags in P. It is called the flag complex of P.

2.6.2 Geometric realizations

Suppose that S is an abstract simplicial complex with vertex set S. Let RS denote

the vector space of all finitely supported functions S → R. For each s ∈ S let es

denote the characteristic function of {s}. The standard simplex on S, denoted by

∆S, is the convex hull of the standard basis {es}s∈S of RS.

For each nonempty finite subset T ⊂ S, let σT denote the face of ∆S spanned by

T . Define a subcomplex Geom(S) of ∆S by

σT ∈ Geom(S) if and only if T ∈ S>∅.

The simplicial complex Geom(S) is called the standard geometric realization of

S.

The geometric realization of a poset P is now defined to be the geometric real-

ization of the simplicial complex Flag(P). We use the notation

∣P∣ ∶= Geom(Flag(P)).

2.7 The (Λ, S)–chamber

A cell is the convex hull of finitely many points in Rn. A cell complex is a collection

of cells Λ where

(i) if C ∈ Λ and F is a face of C, then F ∈ Λ,
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(ii) for any two cells C1,C2 ∈ Λ, either C1 ∩C2 = ∅ or C1 ∩C2 is a common face of

C1 and C2,

(iii) Λ is locally finite, i.e. each cell in Λ is contained in only finitely many other

cells of Λ.

Suppose that Λ is a cell complex with vertex set S and let F(Λ) denote the

poset of cells of Λ, including the empty set. Let P ∶= ∣F(Λ)∣ denote the geometric

realization of the poset F(Λ). For each T ∈ F(Λ), define PT ∶= ∣F(Λ)≥T ∣ and

∂PT ∶= ∣F(Λ)>T ∣, so each PT is the cone on bLink(T,Λ), the barycentric subdvision

of Link(T,Λ). In particular, taking T = ∅, we have that P is the cone on bΛ, with

cone point corresponding to ∅. For each s ∈ S, put Ps ∶= P{s}. This endows P with

the mirror structure (Ps)s∈S. P is the (Λ, S)–chamber.

Figure 2.1: (Λ, S)–chamber when Λ is the boundary complex of an octahedron

Note that if Λ is a GHSn−1, then the link of every cell σ in Λ is a GHSn−dimσ−2.

It follows that P is a GHDn and that for each T ∈ F(Λ), the pair (PT , ∂PT ) is a

GHDn−dimσT−1, where σT is the geometric cell in Λ spanned by T .

2.7.1 Neighborhoods of faces

Let σT denote the geometric cell spanned by the vertex set T in Λ, and let bσT

denote its barycentric subdivision. By definition, bσT is the (∂σT , T )–chamber, and

in particular, σT has a natural mirror structure over T .

P is itself a flag simplicial complex, and for each T ∈ F(Λ), PT is a subcomplex

of P . Hence PT − ⋃U⊃T PU has a neighborhood of the form σT ∗ PT , the join of σT
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and PT . Following the join lines for a little while, it follows that PT − ⋃U⊃T PU has

neighborhoods of the form Cone(σT ) × PT . We record this fact, as we will use it in

an upcoming construction.

2.8 The Davis complex

Suppose that (W,S) is a Coxeter system and, as before, denote by S the poset of

all spherical subsets of S, partially ordered by inclusion. S is an abstract simplicial

complex with vertex set S. Let L be the geometric realization of the abstract

simplicial complex S and K be the (L,S)–chamber. In this special situation, K is

called the Davis chamber and L is called the nerve of (W,S).

For each s ∈ S define

Ks ∶= ∣S≥{s}∣.

So, Ks is the union of simplices in K with minimum vertex {s}. The family (Ks)s∈S

is a mirror structure on K.

The Davis complex ΣL associated to the nerve L is now defined to be ΣL ∶=

U(W,K).

Figure 2.2: ΣL whenever W = Z2 ∗Z2 ∗Z2
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Note that ΣL is naturally a simplicial complex, the simplicial structure of K

inducing a simplicial structure on ΣL, and moreover, it is proved in [7] that ΣL is

contractible. Furthermore, if L is a triangulation of an (n − 1)–sphere, then ΣL is

an n–manifold.

2.8.1 The labeled nerve

There is a natural way to label the edges of L so that the Coxeter system (W,S)

can be recovered (up to isomorphism) from L. Let E(L) denote the set of edges of

L. We define the labeling map m ∶ E(L) → {2,3, ...} by sending {s, t} →mst, where

mst ∈ N and (st)mst = 1. L with this labeling map is the labeled nerve.

2.8.2 Right-angled cones and suspensions

Let c denote a point and let L be the labeled nerve. Consider the join L′ = c ∗ L,

where all of the new edges are labeled by 2. L′ is called the right-angled cone on

L. Note that the corresponding Coxeter system to L′ is (W × Z2, S ∪ {c}), and

ΣL′ = ΣL × [−1,1].

If P is a collection of two points, not joined by an edge, then we call the right-

angled join P ∗ L the right-angled suspension of L. If the points of P are c1 and

c2, then the corresponding Coxeter system to the right-angled suspension of L is

(W ×D∞, S ∪ {c1, c2}), where D∞ is the infinite dihedral group.

2.8.3 The Coxeter cellulation

The Davis complex also admits a decomposition into Coxeter cells. For each T ∈

S, let vT denote the corresponding barycenter in K. Let cT denote the union of

simplices c ⊂ ΣL such that c ∩KT = vT . The boundary of cT is then cellulated by

wcU , where w ∈ WT and U ⊂ T . With its simplicial structure, the boundary ∂cT

is the Coxeter complex corresponding to the Coxeter system (WT , T ), which is a

sphere since WT is finite. It follows that cT and its translates are disks, which are

called Coxeter cells of type T . We denote ΣL with this decomposition into Coxeter

cells by Σcc. Note that Σcc is a regular CW complex with with poset of cells that can
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be identified with WS ∶= {wWU ∣ w ∈ W,T ∈ S}. The simplicial structure on ΣL is

the geometric realization of the poset WS, hence ΣL is the barycentric subdivision

of Σcc. The properties of the Coxeter cellulation can be summarized as follows:

Proposition 2.8.1 ([6, p.130, Proposition 7.3.4]). Σcc has the following properties:

(i) its vertex set is W , its 1–skeleton is the Cayley graph, Cay(W,S), and its

2–skeleton is a Cayley 2–complex,

(ii) the link of each vertex is isomorphic to L,

(iii) a subset of W is the vertex set of a cell if and only if it is a coset of a spherical

subgroup,

(iv) the poset of cells is WS.

2.8.4 Twisted products

Suppose that H acts on Y and that H is a subgroup of G. The twisted product

G ×H Y is the quotient space of G × Y by the action h(g, x) = (gh−1, hx). The

natural G–action on G×Y descends to a G–action on G×H Y . Hence one can view

G×H Y as a G–bundle over G/H, and if G/H is discrete, then it follows that G×H Y

is just a disjoint union of copies of Y , one for each element of G/H.

Now, suppose that (W,S) is a Coxeter system with Davis complex ΣL and that

T ⊂ S. Let ΣT denote the Davis complex corresponding to the subgroup WT . It

follows that the subcomplex of ΣL corresponding to WT is WΣT ∶= W ×WT
ΣT . In

particular, ΣL contains a copy of ΣT for every coset of WT .

2.9 Virtual cohomological dimension

The cohomological dimension of a group Γ is

cd Γ ∶= sup{n ∣Hn(Γ;M) ≠ 0 for some ZΓ −module M}.

If Γ is virtually torsion free, then its virtual cohomological dimension, denoted by

vcd Γ, is the cohomological dimension of any torsion-free subgroup of finite index.
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Since Coxeter groups are virtually torsion free, it makes sense to talk about their

virtual cohomological dimension, denoted by vcdW . In fact, given a Coxeter system

(W,S), one can determine vcdW simply by looking at the nerve. Given a spherical

T ∈ S, let σT denote the corresponding closed simplex in the nerve L.

Proposition 2.9.1 ([6, Corollary 8.5.5]).

vcdW = max{n ∣H
n−1

(L − σT ) ≠ 0, for some T ∈ S}

Note that the dimension of ΣL is usually much larger than vcdW . For example,

when W is finite, dim ΣL = ∣S∣, while vcdW = 0.
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Chapter 3

Weighted L2–(co)homology

In this chapter we present a brief introduction to weighted L2–(co)homology. Further

details can be found in [6, 8, 12]. We then compile some new and old results

pertaining to the weighted L2–(co)homology of the Davis complex ΣL.

Let (W,S) be a Coxeter system. For the remainder of this thesis, let q = (qs)s∈S

denote an S–tuple of positive real numbers satisfying qs = qs′ whenever s and s′ are

conjugate in W . Set q−1 = (q−1s )s∈S. If w = s1⋯sn is a reduced expression for w ∈W ,

we define qw ∶= qs1⋯qsn .

3.1 Hecke–von Neumann algebras

Let R(W ) denote the group algebra of W and let {ew}w∈W denote the standard basis

on R(W ) (here ew denotes the characteristic function of {w}). Given a multiparam-

eter q of positive real numbers as above, we deform the standard inner product on

R(W ) to an inner product

⟨ew, ew′⟩q =

⎧⎪⎪
⎨
⎪⎪⎩

qw if w = w′

0 otherwise.

Using the multiparameter q, one can give R(W ) the structure of a Hecke algebra.

We will denote R(W ) with this inner product and Hecke algebra structure by

Rq(W ), and L2
q(W ) will denote the Hilbert space completion of Rq(W ) with respect

to ⟨ , ⟩q. There is a natural anti-involution on Rq(W ), which implies that there is
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an associated Hecke–von Neumann algebra Nq(W ) acting on the right on L2
q(W ).

It is the algebra of all bounded linear endomorphisms of L2
q(W ) which commute

with the left Rq(W )–action.

Define the von Neumann trace of φ ∈ Nq(W ) by trNq(φ) ∶= ⟨e1φ, e1⟩q, and simi-

larly for an (n×n)–matrix with coefficients in φ ∈ Nq(W ) by taking the sum of the

von Neumann traces of elements on the diagonal. This allows us to attribute an non-

negative real number called the von Neumann dimension for any closed subspace

of an n–fold direct sum of copies of L2
q(W ) which is stable under the Rq(W )–

action, called a Hilbert Nq–module. If V ⊆ (L2
q(W ))n is a Hilbert Nq–module,

and pV ∶ (L2
q(W ))n → (L2

q(W ))n is the orthogonal projection onto V (note that

pV ∈ Nq(W )), then define

dimNq V ∶= trNq(pV ).

3.1.1 Induced Hilbert Nq–modules

Suppose that T ⊂ S and that VT is a Hilbert Nq(WT )–module. The induced Hilbert

Nq–module V is defined to be the completion of the tensor product

L2
q(W ) ⊗Rq(WT ) VT .

A standard fact is that its dimension is given by

dimNq V = dimNq(WT ) VT .

3.2 Weighted L2–(co)homology

Suppose (W,S) is a Coxeter system and that X is a mirrored finite CW complex

over S. Set U = U(W,X). We first orient the cells of X and extend this orientation

to U in such a way so that if σ is a positively oriented cell of X, then wσ is positively

oriented for each w ∈W .

We define a measure on the W–orbit of an i–cell σ ∈X by

µq(wσ) = qu,
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where u is (∅, S(σ))–reduced and S(σ) ∶= {s ∈ S∣σ ⊆Xs}. This extends to a measure

on the i–cells U (i), which we also denote by µq.

q3

q2
q3

q2 q2

q

q3
q2

q3

q2

q2

q

q

q2

q
q2

qq

1

q2q

q2

q

q

1

1

Figure 3.1: Weights on the 1–cells of ΣL whenever W = Z2 ∗ Z2 ∗ Z2 and q = q, a
positive real number

Define the q–weighted i–dimensional L2–(co)chains on U to be the Hilbert space:

L2
qCi(U) = L

2
qC

i(U) = L2(U (i), µq).

These are infinite W–equivariant square summable (with respect to µq) real-valued

i–chains. The inner product is given by

⟨f, g⟩q = ∑
σ

f(σ)g(σ)µq(σ),

and we denote the induced norm by ∣∣ ∣∣q.

The boundary map ∂i ∶ L2
qCi(U) → L2

qCi−1(U) and coboundary map δi ∶ L2
qCi(U) →

L2
qCi+1(U) are defined by the usual formulas, however there is one caveat: they are

not adjoints with respect to this inner product whenever q ≠ 1. Thus one remedies

this issue by perturbing the boundary map ∂i to ∂qi :

∂qi (f)(σ
i−1) = ∑

σi−1⊂αi
[σ ∶ α]µq(α)µ

−1
q (σ)f(α).
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A simple computation shows that ∂qi is the adjoint of δi with respect to the

weighted inner product, hence (L2
qC∗(U), ∂

q
i ) is a chain complex. We now define

the reduced q–weighted L2–(co)homology by

L2
qHi(U) = Ker∂qi /Im∂

q
i+1,

L2
qH

i(U) = Kerδi/Imδi−1.
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Figure 3.2: An element of L2
1H1(ΣL) whenever W = Z2 ∗Z2 ∗Z2

The Hodge Decomposition implies that L2
qH

i(U) ≅ L2
qHi(U) ≅ ker∂qi ∩ker δi and

versions of Eilenberg–Steenrod axioms hold for this homology theory. There is also a

weighted version of Poincaré duality: If U is a locally compact homology n–manifold

with boundary ∂U , then

L2
qHi(U) ≅ L

2
q−1Hn−i(U , ∂U).

One can also assign the von Neumann dimension to each of the Hilbert spaces

L2
qHi(U) (as they are Hilbert Nq–modules). We denote this by L2

qbi(U) and call it

the i–th L2
q–Betti number of U . We then define the weighted Euler characteristic of

U :

χq(U) = ∑(−1)iL2
qbi(U).
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3.2.1 L2
q–Betti numbers and twisted products

Suppose that X is a mirrored finite CW complex and and let T ⊂ S. Recall the

twisted product W ×WT
U(WT ,X). It follows that the Nq–module

L2
qH∗(W ×WT

U(WT ,X))

is induced from the Nq(WT )–module L2
qH∗(U(WT ,X)). Thus

L2
qb∗(W ×WT

U(WT ,X)) = L2
qb∗(U(WT ,X)).

3.2.2 An alternate definition of L2
q–Betti numbers

As discussed in [10, §6], there is an alternate approach in defining L2
q–Betti numbers

using the ideas of Lück [15]. The main point is that there is an equivalence of

categories between the category of Hilbert Nq–modules and projective modules of

Nq. Hence one can define dimNq M for a finitely generated projective Nq–module

M which agrees with the dimension of the corresponding Hilbert Nq–module. So,

dimNq M for an arbitrary Nq–module is then defined to be the dimension of its

projective part.

As before, suppose (W,S) is a Coxeter system and that X is a mirrored finite

CW complex over S. Set U = U(W,X). As in [15], define HW
∗ (U ,Nq(W )) to be the

homology of the Nq(W )–chain complex

CW
∗ (U ,Nq(W )) ∶= Nq(W ) ⊗Rq(W ) C∗(U),

where C∗(U) is the cellular chain complex of U with the induced Rq(W )–structure.

Similarly, define the cohomology groups H∗
W (U ,Nq(W )) to be the cohomology of

the complex

C∗
W (U ,Nq(W )) ∶= HomW (C∗(U),Nq(W )).

It then follows that

L2
qbi(U) = dimNq H

W
i (U ,Nq(W )) = dimNq H

i
W (U ,Nq(W )).

The advantage of these definitions is that we do no need to take closures of images as

in the definition of reduced q–weighted L2–(co)homology (this is particularly useful

when dealing with spectral sequences).



23

3.3 New and old results for ΣL

In this section we begin by stating some previous results on the weighted L2–

(co)homology of ΣL. We start with the following result of Dymara, which explicitly

computes L2
qb0(ΣL).

Proposition 3.3.1 ([12, Theorem 7.1, Theorem 10.3]). L2
qb0(ΣL) ≠ 0 if and only if

q ∈ R. Moreover, when q ∈ R, L2
qbk(ΣL) = 0 for k > 0.

Dymara also computes the weighted Euler characteristic of ΣL, revealing the

connection between weighted L2–(co)homology of ΣL and the growth series of the

corresponding Coxeter group W .

Proposition 3.3.2 ([12, Corollary 3.4]).

χq(ΣL) =
1

W (q)
.

Recall that Σcc denotes ΣL with the Coxeter cellulation (see Section 2.8.3). The

following proposition states that if we compute the weighted L2–(co)homology with

respect to either cellulation, then we get the same answer.

Proposition 3.3.3 ([12, Theorem 5.5]).

L2
qH∗(ΣL) ≅ L

2
qH∗(Σcc).

In conjunction with Proposition 3.3.2, the following theorem explicitly computes

the weighted L2–(co)homology of Coxeter groups which act properly and cocom-

pactly by reflections on Euclidean space.

Theorem 3.3.4 ([8, Corollary 14.5]). Suppose that W is a Euclidean reflection

group with nerve L.

• If q ≤ 1, then L2
qH∗(ΣL) is concentrated in dimension 0.

• If q ≥ 1, then L2
qH∗(ΣL) is concentrated in dimension n.
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The following lemma says that we can compute the weighted L2–Betti numbers

of any acyclic complex of the form U(W,X), with X finite, on which W acts prop-

erly, and get the same answer. Thus we will sometimes write L2
qbk(W ) instead of

L2
qbk(ΣL) to denote the k–th L2

q–Betti number of W .

Lemma 3.3.5. Let (W,S) be a Coxeter system and suppose that X and X ′ are

finite mirrored CW complexes with U(W,X) and U(W,X ′) both acyclic and both

admitting proper W–action. Then for every k ≥ 0,

L2
qbk(U(W,X)) = L2

qbk(U(W,X
′)).

Proof. Set U = U(W,X) and U ′ = U(W,X ′). Since U and U ′ are both acyclic, it

follows that the respective cellular chain complexes C∗(U) and C∗(U ′) are are chain

homotopic. This chain homotopy induces a chain homotopy of the chain complexes

CW
∗ (U ,Nq(W )) and CW

∗ (U ′,Nq(W )). ∎

In fact, Bestvina constructed such a complex for any finitely generated Coxeter

group.

Theorem 3.3.6 ([2]). Let W be a finitely generated Coxeter group. Then W acts

properly and cocompactly on an acyclic vcdW–dimensional complex of the form

U(W,X).

Corollary 3.3.7. Let (W,S) be a Coxeter system. Then

L2
qbk(W ) = 0 for k > vcdW.

Proof. We can use the acyclic vcdW–dimensional complex of Theorem 3.3.6 to

compute the weighted L2–Betti numbers of W . Lemma 3.3.5 now completes the

proof. ∎

We now prove a lemma which is crucial for later computations.

Lemma 3.3.8. Let n = vcdW and suppose and that L2
1bn(W ) = 0. Then

L2
qbk(W ) = 0 for k ≥ n and q ≤ 1.
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Proof. By Corollary 3.3.7, we obtain vanishing for k > n. Now, suppose for a

contradiction that L2
qbn(W ) ≠ 0 for q < 1. Let BW denote the complex of Theorem

3.3.6. Lemma 3.3.5 says that we can compute weighted L2–Betti numbers of W

with respect to the complex BW . In particular, L2
qbn(W ) = L2

qbn(BW ) and we can

choose a nontrivial element ψ ∈ L2
qHn(BW ). Thus ψ is a cycle under the weighted

boundary map ∂q. Consider the isomorphism of Hilbert spaces

mq ∶ L
2
qCn(BW ) → L2

q−1Cn(BW )

defined by mq(f(σ)) = µq(σ)f(σ). In particular, mqψ ∈ L2
q−1Cn(BW ) and since

q−1 > 1,

∣∣mqψ∣∣1 ≤ ∣∣mqψ∣∣q−1 < ∞.

Hence mqψ ∈ L2
1Cn(BW ).

0 q 1 q−1

mq

ψ mqψmqψ

Figure 3.3: Schematic for the proof of Lemma 3.3.8

Now, a simple computation shows that ∂ = mq∂qm−1
q and since ψ is a cycle

under ∂q, mqψ is a cycle under ∂, the standard L2–boundary operator. Moreover,

since BW is n–dimensional, mqψ is trivially a cocycle. Thus we have produced a

nontrivial element of L2
1Hn(BW ), a contradiction. ∎

Remark 3.3.9. Note that the statement of Lemma 3.3.8 holds in the more general

setting for L2
qbn(U(W,X)) (here X is finite and n = dimX). In fact, we obtain the

same statement for relative L2
q–(co)homology as long as we are working in the top

dimension.
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Chapter 4

Ruins and Weighted
L2–(co)homology

4.1 Some Hilbert Nq(W )–submodules of L2
q(W )

We begin by considering the following self-adjoint idempotents in Nq(W ):

Lemma 4.1.1 ([6, Lemma 19.2.6]). Given a subset T ⊂ S and and q ∈ R−1
T , there is

an idempotent hT ∈ Nq(W ) defined by

hT ∶=
1

WT (q−1)
∑

w∈WT

εwq
−1
w ew,

where εw = (−1)l(w).

Thus the maps defined by x → hTx are orthogonal projections (whenever hT is

defined) from L2
q(W ) onto Hilbert Nq(W )–submodules, denoted by HT . Note that,

by [6, Lemma 19.2.13],

HT = ⋂
s∈T

Hs.

Using these submodules, we define a chain complex as follows. For a spherical

subset of cardinality k, T ∈ S(k), put

Ci(HT ) ∶= ⊕
U∈(S≥T )(i+k)

HU .
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Fix some ordering of {s ∈ S − T ∣ T ∪ {s} ∈ S}. Whenever U ⊂ V , we have an

inclusion iUV ∶ HV ↪ HU , and thus the boundary map ∂ ∶ Ci+1(HT ) → Ci(HT ) corre-

sponds to a matrix (∂UV ), where ∂UV = 0 unless U ⊂ V , and is equal to (−1)jiUV if U

is obtained by deleting the jth element of V . This turns C∗(HT ) into a chain com-

plex of Hilbert Nq(W )–modules. Similarly, whenever U ⊂ V we have the projection

pUV ∶ HU → HV . Thus we have a coboundary map where the matrix entries consist

of projections, and we get a cochain complex C∗(HT ) of Hilbert Nq(W )–modules.

4.2 Ruins

As before, Σcc is ΣL with the Coxeter cellulation. Let (W,S) be a Coxeter system

and for U ⊂ S, set S(U) ∶= {T ∈ S ∣ T ⊂ U}. Define Σ(U) to be the subcomplex

of Σcc consisting of all (closed) Coxeter cells of type T with T ∈ S(U). Note that

Σ(U) =W ×WU
ΣU , where ΣU is the Davis complex corresponding to the group WU .

Given T ∈ S(U), we define the following subcomplexes of Σ(U):

ΩUT ∶ the union of closed cells of type T ′, with T ′ ∈ S(U)≥T ,

∂ΩUT ∶ the cells of ΩUT of type T ′′, with T ′′ /∈ S(U)≥T .

The pair (ΩUT , ∂ΩUT ) is the (U,T )–ruin. Note that if T = ∅, then ΩUT = Σ(U)

and ∂ΩUT = ∅. Ruins can also be expressed in terms of the basic construction.

Define K(U,T ) ∶= ΩUT ∩ K and ∂K(U,T ) ∶= ∂ΩUT ∩ K, where K is the Davis

chamber. Then K(U,T ) and ∂K(U,T ) have an induced mirror structure, and it

follows that

ΩUT = U(W,K(U,T )),

and

∂ΩUT = U(W,∂K(U,T )).

The (S,T )–ruin has a chain complex that looks like this:
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Proposition 4.2.1 ([6, Lemma 20.6.21]). For T ∈ S(k), the chain complexes C∗(HT )

and L2
qC∗+k(ΩST , ∂ΩST ) of Nq(W )–modules are isomorphic. In particular,

L2
qCm(ΩST , ∂ΩST ) = 0 for m < k.

For brevity, we write (ΩUT , ∂). For s ∈ T , set U ′ = U − s and T ′ = T − s. As in [8,

Proof of Theorem 8.3], we have the following weak exact sequence:

⋅ ⋅ ⋅ L2
qH∗(ΩU ′T ′ , ∂) L2

qH∗(ΩUT ′ , ∂) L2
qH∗(ΩUT , ∂) ⋅ ⋅ ⋅ (4.1)

For the special case when U = S and T = {s} the above sequence becomes:

⋅ ⋅ ⋅ L2
qH∗(Σ(S − s)) L2

qH∗(Σ(S)) L2
qH∗(ΩS{s}, ∂) ⋅ ⋅ ⋅

4.3 L2
q–(co)homology of ruins

Given a Coxeter system (W,S), for T ∈ S and T ⊆ V ⊆ S, define

St(T,V ) ∶= ⋃
U⊆V
U∪T ∈S

U,

and

Lk(T,V ) ∶= St(T,V ) ∖ T.

If V = S, then we write St(T ) and Lk(T ) instead of St(T,S) and Lk(T,S). If

T = ∅, we make the convention that S(T,U) = U .

Lemma 4.3.1. Suppose that (W,S) is right-angled. Then for T ∈ S,

ΩST = Σ(Lk(T )) ×Σ(T ),

∂ΩST = Σ(Lk(T )) × ∂Σ(T ).
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Proof. For U ∈ S, recall the Coxeter cell cU from Section 2.8.3. As W is right-angled,

all Coxeter cells are cubes of appropriate dimension, and thus it follows that cU is

just a direct product of all the Coxeter cells cs with s ∈ U .

Now, by definition,

K(S,T ) = ΩST ∩K = ⋃
U∈S≥T

cU ∩K,

K(Lk(T )) = Σ(Lk(T )) ∩K = ⋃
U∈S(Lk(T ))

cU ∩K,

and

K(T ) = Σ(T ) ∩K = cT ∩K.

Now, let U ∈ S≥T . Then

cU = cT × cU−T .

Since U ∈ S≥T , it follows that U ⊂ St(T ), as U ∪T = U ∈ S. Thus U −T ⊂ S(Lk(T )).

Therefore

K(S,T ) ⊆K(Lk(T )) ×K(T ) = ⋃
U∈S(Lk(T ))

(cT × cU) ∩K.

For the reverse inclusion, let U ∈ S(Lk(T )). Then U ∪ T ∈ S≥T . This is because

the only way that U ∪ T could fail to be spherical is if there would exist u ∈ U

and t ∈ T with mtu = ∞ (W is right-angled), and if this happened then it would

contradict the fact that U ⊂ Lk(T ). Therefore we have shown that

K(S,T ) =K(Lk(T )) ×K(T ),

and thus

ΩST = U(W,K(S,T )) = U(W,K(Lk(T ))) × U(W,K(T )) = Σ(Lk(T )) ×Σ(T ).

The proof for ∂ΩST follows a similar unwinding of definitions. Begin by noting

that:

∂ΩST ∩K = ⋃
V ∉S≥T

V ⊂U∈S≥T

cV ∩K
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and

∂Σ(T ) ∩K = ⋃
U⊊T

cU ∩K.

To conclude the proof, observe that for W right-angled, a subset V satisfying

V ∉ S≥T and V ⊂ U ∈ S≥T is a disjoint union V = A ⊔B, where A ∈ S(Lk(T )) and

B ⊊ T . Conversely, any such disjoint union A ⊔ B ∉ S≥T (by definition it cannot

contain T ), and satisfies A ⊔B ⊂ A ∪ T ∈ S≥T .

∎

Theorem 4.3.2 (Compare [6, Theorem 20.6.22]). Suppose that T ∈ S(k) and that

q ∈ RSt(T ). Then L2
qH∗(ΩST , ∂ΩST ) is concentrated in dimension k. If (W,S) is

assumed to be right-angled, then the same statement holds if we replace RSt(T ) by

RLk(T ).

Proof. For the proof we temporarily switch notation and denote the (U,T )–ruin by

Ω(U,T ). We first make an observation about ruins. We note that for every V ⊆ S,

Ω(V,T ) = Ω(St(T,V ), T ), the point being that Ω(V,T ) consists of Coxeter cells

corresponding to spherical subsets of V containing T , and St(T,V ) is the union of

all such subsets. In particular, Ω(U,T ) = Ω(St(T,U), T )), and hence Ω(U,T ) is a

subcomplex of Σ(St(T,U)).

The proof is now by induction on k. We will show that for U ⊂ S and T ∈ S(U)(k),

L2
qH∗(Ω(U,T ), ∂) is concentrated in dimension k. For the base case k = 0, note that

St(∅, U) = U , Ω(U,∅) = Σ(U), and ∂Ω(U,∅) = ∅. Hence, for k = 0, the theorem

asserts that for q ∈ RU , L2
qH∗(Σ(U)) is concentrated in dimension 0, which is

Proposition 3.3.1.

Now, suppose the theorem is true for k − 1 and let T ∈ S(U)(k). Let s ∈ T ,

V = T − s and consider the long exact sequence:

L2
qH∗(Ω(St(T,U) − s, V ), ∂) L2

qH∗(Ω(St(T,U), V ), ∂) L2
qH∗(Ω(St(T,U), T ), ∂)

Note that

Ω(St(T,U), V ) = Ω(St(V,St(T,U)), V )
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and

Ω(St(T,U) − s, V ) = Ω(St(V,St(T,U) − s), V ).

Since St(V,St(T,U)) ⊆ St(T,U) and St(V,St(T,U) − s) ⊆ St(T,U), it follows

that RSt(T,U) ⊆ RSt(V,St(T,U)) and RSt(T,U) ⊆ RSt(V,St(T,U)−s). Since q ∈ RSt(T,U),

it follows by induction that the left-hand term and the middle term of the exact

sequence are both concentrated in dimension k − 1. Since L2
qH∗(Ω(St(T,U), T ), ∂)

vanishes for ∗ < k (Proposition 4.2.1), it follows that L2
qH∗(Ω(St(T,U), T ), ∂) =

L2
qH∗(Ω(U,T ), ∂) is concentrated in dimension k.

Now, suppose that (W,S) is right-angled. Consider the long exact sequence of

the pair (Ω(S,T ), ∂Ω(S,T )):

⋅ ⋅ ⋅ L2
qH∗(∂Ω(S,T )) L2

qH∗(Ω(S,T )) L2
qH∗(Ω(S,T ), ∂) ⋅ ⋅ ⋅

Since W is right-angled, it follows from Lemma 4.3.1 that Ω(S,T ) = Σ(Lk(T ))×

Σ(T ) and ∂Ω(S,T ) = Σ(Lk(T )) × ∂Σ(T ). By the the Künneth formula,

L2
qbm(Ω(S,T )) = ∑

i+j=m
L2
qbi(Σ(Lk(T ))) ⋅L2

qbj(Σ(T )),

L2
qbm(∂Ω(S,T )) = ∑

i+j=m
L2
qbi(Σ(Lk(T ))) ⋅L2

qbj(∂Σ(T )).

Since WT is finite and q ∈ RLk(T ), Proposition 3.3.1 implies that L2
qb∗(Σ(Lk(T )))

and L2
qb∗(Σ(T )) are both concentrated in degree 0, and hence L2

qH∗(Ω(S,T )) is

concentrated in dimension 0. Similarly, L2
qH∗(∂Ω(S,T )) vanishes above dimen-

sion k − 1 (this is because, since WT is finite, Σ(T ) is topologically a disjoint

collection of k–disks with boundary ∂Σ(T )). As Proposition 4.2.1 implies that

L2
qH∗(Ω(St(T,U), T ), ∂) vanishes for ∗ < k, the long exact sequence for the pair

implies that L2
qH∗(Ω(S,T ), ∂) is concentrated in dimension k. ∎

Remark 4.3.3. Suppose that T ∈ S and that q ∈ RSt(T ). Then, for U ∈ S≥T ,

Theorem 4.3.2 implies that L2
qH∗(Ω(S,U), ∂) is concentrated in dimension ∣U ∣. This

is because, if T ⊂ U , then St(U) ⊂ St(T ) (similarily, Lk(U) ⊂ Lk(T )). Therefore
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q ∈ RSt(T ) ⊆ RSt(U). The analogous statements hold when W is assumed to be

right-angled and q ∈ RLk(T ).

Given a subset T ⊂ S, define

W T ∶= {w ∈W ∣ l(ws) < l(w) for s ∈ T}

and

W T (t) = ∑
w∈WT

tw.

The following is now a consequence of Theorem 4.3.2 and [6, Corollary 20.6.6].

Corollary 4.3.4. Suppose that T ∈ S(k) and that q ∈ RSt(T ). Then L2
qH∗(Ω(S,T ), ∂)

is concentrated in dimension k and

L2
qbk(Ω(S,T ), ∂) =

W T (q)

W (q)
.

If (W,S) is assumed to be right-angled, then the same statement holds if we replace

RSt(T ) by RLk(T ).

4.4 A spectral sequence

In this section, we define a spectral sequence following the line laid down in [10, §

2].

A poset of coefficients is a contravariant functor A from a poset P to the category

of abelian groups. In other words, it is a collection {A}a∈P of abelian groups together

with homomorphisms φba ∶ Aa → Ab, defined whenever a > b, such that φca = φcbφba,

whenever a > b > c. The functor A gives us a system of coefficients on the cell

complex Flag(P): it associates to the simplex σ the abelian group Amin(σ). Hence,

we get a cochain complex

Cj(Flag(P);A) ∶= ⊕
σ∈Flag(P)(j)

Amin(σ),

where Flag(P)(j) denotes the set of j–simplices in Flag(P).



33

Let Y be a CW complex. A poset of spaces in Y over P is a cover V = {Ya}a∈P

of Y by subcomplexes indexed by P so that if N(V) denotes the nerve of the cover,

then

(i) a < bÔ⇒ Ya ⊂ Yb,

(ii) the vertex set Vert(σ) of each simplex in N(V) has the greatest lower bound

∧σ in P, and

(iii) V is closed under taking finite nonempty intersections, i.e., for any simplex σ

of N(V),

⋂
a∈σ
Ya = Y∧σ.

Note that any cover leads to a poset of spaces by taking all nonempty intersec-

tions as elements of the new cover and removing duplicates. The resulting poset is

the set of all nonempty intersections, ordered by inclusion.

The following lemmas appearing in [10] define a spectral sequence associated to

a poset of spaces, and give conditions for the sequence to degenerate.

Lemma 4.4.1 ([10, Lemma 2.1]). Suppose V = {Ya}a∈P is a poset of spaces for Y

over P. There is a Mayer–Vietoris type spectral sequence converging to H∗(Y ) with

E1–term:

Ei,j
1 = Ci(Flag(P);Hj(V)),

and E2–term:

Ei,j
2 =H i(Flag(P);Hj(V)),

where the coefficient system Hj(V) is given by Hj(V)(σ) =Hj(Ymin(σ)).

Lemma 4.4.2 ([10, Lemma 2.2]). Suppose that V ∶= {Ya}a∈P is a poset of spaces for

Y over P. If for every a ∈ P, the induced homomorphism H∗(Ya) →H∗(Y<a) is the

zero map, then the spectral sequence degenerates at E2 and

H∗(Y ) = ⊕
a∈P

H i(Flag(P≥a),Flag(P>a),H
j(Ya)).
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4.5 L2
q–(co)homology of (Σ,Σ(k−1))

To simplify notation, write Σ for Σcc and let Σ(k−1) denote the (k − 1)–skeleton of

Σcc. For the proofs in this section, we will also write H∗
q(U) for H∗

W (U ,Nq(W ))

(see Section 3.2.2 for the definition of H∗
W (U ,Nq(W ))).

Lemma 4.5.1. Let ∆ denote the standard n–simplex and let ∆(k) be its k–skeleton,

k < n. Then the reduced homology H̃∗(∆(k)) (with coefficients in R) is concentrated

in dimension k. Furthermore, bk(∆(k)) = (
n
k+1).

Proof. ∆ is contractible, so it follows that the augmented chain complex C∗(∆) is

exact. In particular, C∗(∆(k)) has the same homology as C∗(∆) whenever l < k, so

H̃l(∆(k)) = 0 whenever l < k. We now must show that H̃k(∆(k)) has the claimed

dimension. First, note that Ck(∆(k)) = Ck(∆) has dimension (
n+1
k+1), as there is a

k–simplex for each set of k+1 vertices. We now proceed by induction on k. If k = 0,

then ∆(0) is just n + 1 vertices, so H̃0(∆(0)) has dimension (
n
1
) = n. Suppose that

the claim is true for k − 1, and consider the chain complex:

0 Ck(∆) Ck−1(∆) ⋅ ⋅ ⋅

By induction, ker∂k−1 is has dimension (
n
k
). Since H̃k−1(∆) = 0, it follows that

im∂k also has dimension (
n
k
). So, ker∂k has dimension (

n+1
k+1) − (

n
k
) = (

n
k+1). ∎

Theorem 4.5.2. Let k ≥ 1. Suppose that for every T ∈ S(k), q ∈ RSt(T ), and let

Σ(k−1) denote the (k − 1)–skeleton of Σ. Then L2
qH∗(Σ,Σ(k−1)) is concentrated in

dimension k. Furthermore,

L2
qbk(Σ,Σ

(k−1)) = ∑
U∈S(≥k)

(
∣U ∣ − 1

k − 1
)L2

qb∣U ∣(ΩU , ∂).

If (W,S) is assumed to be right-angled, then the same statement holds if we

replace RSt(T ) by RLk(T ).

Proof. We will show that H∗
q(Σ,Σ

(k−1)) is concentrated in dimension k.
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Consider the relative cochain complex L2
qC

∗(Σ,Σ(k−1)). We have that

L2
qC

i(Σ,Σ(k−1)) = {
0, i ≤ k − 1;

⊕U∈S(i)HU , i > k − 1.

Set C−i(Σ,Σ(k−1)) = L2
qC

i(Σ,Σ(k−1)). Then C∗(Σ,Σ(k−1)) is a chain complex. Now,

for every T ∈ S, set Ω̃T = ΩST /∂ΩST and set C−i(Ω̃T ) = L2
qC

i(Ω̃T ) = L2
qC

i(ΩST , ∂ΩST ).

In this way, we have made the cochain complex of every (S,T )–ruin a subcomplex

of the re-indexed relative cochain complex C∗(Σ,Σ(k−1)) (a similar trick works using

ordinary cochain complexes).

Let P be the poset S(≥k) with the order reversed. By the above re-indexing of

cochain complexes, {Ω̃T}T ∈P is a poset of spaces over Y = Σ/Σ(k−1), and hence we

have the spectral sequence of Lemma 4.4.1.

We first establish the condition of Lemma 4.4.2. So, we claim that for every

U ∈ P, the induced map H∗
q(Ω̃U) → H∗

q(Ω̃<U) is the zero map. To prove the claim

we will show that H
−∣U ∣
q (Ω̃<U) = 0, as this implies H∗

q(Ω̃U) → H∗
q(Ω̃<U) is the zero

map since H∗
q(Ω̃U) is concentrated in dimension −∣U ∣ (see Remark 4.3.3). Recall

that Ω̃<U = ⋃T ∈P<U Ω̃T . The proof is by induction on the number of elements in the

union. For the base case, note that for every spherical V properly containing U ,

the induced map H∗
q(Ω̃U) → H∗

q(Ω̃V ) is the zero map. This is because of Theorem

4.3.2, which states that H∗
q(Ω̃U) and H∗

q(Ω̃V ) are concentrated in dimension −∣U ∣

and −∣V ∣, respectively, and −∣V ∣ < −∣U ∣. Now, let C be a subcollection of elements of

P<U and let B = ⋃T ∈C Ω̃T . We wish to show that H
−∣U ∣
q (B) = 0. Write B = A ∪ Ω̃V ,

where V ∈ C and A = ⋃T ∈C
T≠V

Ω̃T . Then we have the Mayer–Vietoris sequence:

H
−∣U ∣−1
q (A ∩ Ω̃V ) H

−∣U ∣
q (B) H

−∣U ∣
q (A) ⊕H

−∣U ∣
q (Ω̃V )

By induction, H∗
q(A) vanishes for ∗ ≥ −∣U ∣ − 1, and by Theorem 4.3.2, H∗

q(Ω̃V )

is concentrated in −∣V ∣ < −∣U ∣. We now claim H∗
q(A ∩ Ω̃V ) vanishes for ∗ ≥ −∣U ∣ − 1,

as this implies H
−∣U ∣
q (B) = 0. We observe that
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A ∩ Ω̃V = ⋃
T ∈C
T≠V

Ω̃T ∩ Ω̃V

= ⋃
T ∈C

T∪V ∈S

Ω̃T∪V

The last inequality follows from the fact that HT ∩HV = HT∪V whenever T ∪ V

is spherical (see Section 4.1). Thus A ∩ Ω̃V is the union of elements corresponding

to a subcollection of C. Therefore the claim follows by induction.

We have established the condition in Lemma 4.4.2, and hence

H−n
q (Y ) = ⊕

U∈P
H ∣U ∣−n(Flag(P≥U),Flag(P>U);H

−∣U ∣
q (Ω̃U)) (4.2)

The strategy of the proof now is as follows. By Theorem 4.3.2, for every U ∈ P,

H∗
q(Ω̃U) is concentrated in dimension −∣U ∣. So, we are done if we show that for

every U ∈ P, H∗(Flag(P≥U),Flag(P>U)) is concentrated in dimension ∣U ∣ − k. This

implies Ei,j
2 = 0 unless i + j = −k, and by (4.2), H∗

q(Y ) is concentrated in dimension

−k. Re-indexing our complexes, it follows that the cohomology of the complex

L2
qC

∗(Σ,Σ(k−1)) is concentrated in dimension k.

We now claim that for U ∈ P with m = ∣U ∣, H∗(Flag(P≥U),Flag(P>U)) is concen-

trated in dimension m− k and free of rank (
m−1
k−1). Since the geometric realization of

Flag(P≥U) is contractible, by the long exact sequence for the pair it suffices to show

that the reduced cohomology H̃∗(Flag(P>U)) is concentrated in dimension m−k−1.

Note that if m = k, then we are done since Flag(P>U) = ∅. Also, note that for

the special case where m − k = 1, the map H0(Flag(P≥U)) → H0(Flag(P>U)) in the

long exact sequence for the pair (Flag(P≥U),Flag(P>U)) is injective (Flag(P≥U) is

the cone on Flag(P>U)), so showing H̃∗(Flag(P>U)) is concentrated in dimension

m − k − 1 = 0 does in fact suffice.

Consider the poset Sop, which is the poset S of spherical subsets with order

reversed. Note that Flag(Sop>U) ≅ Flag(S<U). The geometric realization of Flag(S<U)

is b∆, where b∆ is the barycentric subdivision of the (m − 1)–dimensional simplex

∆. This is because S<U is the poset of proper subsets of U . Note that Flag(P>U) is a
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subcomplex of Flag(Sop>U), and more precisely, the geometric realization of Flag(P>U)

is the subcomplex of barycentric subdivision of ∂∆ (recall that k ≥ 1) obtained by

removing barycenters corresponding to spherical subsets of cardinality less than k.

∅

{s} {s, t} {t}

{u}

{t, u}{s, u}

{s} {s, t} {t}

{u}

{t, u}{s, u}

{s, t}

{t, u}{s, u}

Flag(Sop>U) Flag(P>U), k = 1 Flag(P>U), k = 2

Figure 4.1: Geometric realizations when U = {s, t, u}

These barycenters correspond to faces of ∂∆ of dimension less than or equal to

k − 2. Hence

H̃∗(Flag(P>U)) ≅ H̃
∗(∂∆ −∆(k−2)),

where ∆(k−2) denotes the (k − 2)–skeleton of ∆. Note that if k = 1, then ∆(k−2) = ∅,

and we are done as the reduced homology H̃∗(∂∆) is concentrated in dimension

m − 2. So, suppose k > 1. By Alexander Duality,

H̃∗(∆
(k−2)) ≅ H̃m−∗−3(∂∆ −∆(k−2)).

By Lemma 4.5.1, the reduced homology H̃∗(∆(k−2)) is concentrated in dimension

k−2. Furthermore, H̃∗(∆(k−2)) has dimension (
m−1
k−1). It follows that H̃∗(∂∆−∆(k−2))

is concentrated in dimension m − k − 1 and of dimension (
m−1
k−1), and therefore the

same holds for H̃∗(Flag(P>U)).

Thus, we have shown that H∗
q(Y ) is concentrated in dimension −k and by (4.2)

H−k
q (Y ) = ⊕

U∈P
H ∣U ∣−k(Flag(P≥U),Flag(P>U);H

−∣U ∣
q (Ω̃U)).

In particular, since H ∣U ∣−k(Flag(P≥U),Flag(P>U)) is free and of dimension (
∣U ∣−1
k−1 ),
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L2
qb−k(Y ) = ∑

U∈P
b∣U ∣−k(Flag(P≥U),Flag(P>U)) ⋅L

2
qb−∣U ∣(Ω̃U)

= ∑
U∈P

(
∣U ∣ − 1

k − 1
)L2

qb−∣U ∣(Ω̃U).

The assertion now follows after recalling that we are making computations

with respect to re-indexed complexes. Specifically, L2
qb−k(Y ) = L2

qbk(Σ,Σ
(k−1)) and

L2
qb−∣U ∣(Ω̃U) = L2

qb∣U ∣(ΩU , ∂). ∎

Using Corollary 4.3.4, we obtain the following formula for L2
q–Betti numbers.

Corollary 4.5.3. Let k ≥ 1. Suppose that for every T ∈ S(k), q ∈ RSt(T ). Then

L2
qbn(Σ,Σ

(k−1)) = {
∑U∈S(≥k) (

∣U ∣−1
k−1 )

WU (q)
W (q) , n = k;

0, otherwise.

If (W,S) is assumed to be right-angled, then the same statement holds if we

replace RSt(T ) by RLk(T ).

Remark 4.5.4. Note that a formula for L2
qbk(Σ,Σ

(k−1)) could also be derived from

an Euler characteristic argument, and it is the same as the formula above by [6,

Lemma 17.1.8].

4.6 Some Consequences

Corollary 4.6.1. Suppose that for every T ∈ S(k), q ∈ RSt(T ). Then

L2
qHn(Σ) = 0 for n > k.

If (W,S) is assumed to be right-angled, then the same statement holds if we replace

RSt(T ) by RLk(T ).

Proof. For the case where k = 0, this is just Proposition 3.3.1, so suppose k ≥ 1. By

Theorem 4.5.2, L2
qH∗(Σ,Σ(k−1)) is concentrated in dimension k. Therefore the long

exact sequence for the pair (Σ,Σ(k−1)) implies the assertion. ∎
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Example 4.6.2. Suppose that (W,S) is right-angled and that the corresponding

nerve L is a flag triangulation of S2. Furthermore, suppose that q = q, a positive

real number. Let ρ and ρT denote the radii of convergence of the growth series W (t)

and WT (t), respectively. In [6, Example 17.4.3], it was computed that

ρ =
(f0 − 4) −

√
(f0 − 4)2 − 4

2
,

where f0 is the number of vertices of L (note that since L is flag, f0 ≥ 6).

The link of every vertex of l is a k–gon, with k ≥ 4 and k < f0. If WLk(v) denotes

the special subgroup corresponding the the link of a vertex v, and Lk(v) has k

vertices, then by an easy computation (see [6, Example 17.1.15]) we have that

ρLk(v) =
(k − 2) −

√
k2 − 4k

2
.

Note that ρLk(v) is a decreasing function of k when k ≥ 4. If v0 is the vertex of

L whose link has the most vertices, then Corollary 4.6.1 implies that L2
qH∗(ΣL) is

concentrated in dimension 1 whenever ρ < q < ρLk(v0). This is was already known,

as L2
qb2(ΣL) = 0 for q ≤ 1 [8, Theorem 16.13].

We present some further consequences of Theorem 4.5.2. But first, some def-

initions. A locally finite cell complex Λ is an n–dimensional pseudomanifold if

each maximal cell of Λ is n–dimensional and each (n − 1)–cell is a face of pre-

cisely two n–cells. A pseudomanifold Λ is orientable if one can choose orientations

for the top-dimensional cells so that their sum is a (possibly infinite) cycle. We

now say that a Coxeter system (W,S) is type PMn if its nerve L is an orientable

(n − 1)–dimensional pseudomanifold with the property that the complement of the

codimension-two skeleton of L is connected.

Corollary 4.6.3. Suppose that (W,S) is right-angled and of type PMn. Then for

q ≤ 1,

L2
qbk(Σ

(n−2)) = {
∑U∈S(≥n−1) (

∣U ∣−1
n−2 )

WU (q)
W (q) +L

2
qbn−2(Σ) −L2

qbn−1(Σ), k = n − 2;

L2
qbk(Σ), otherwise.
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Proof. Since (W,S) is of type PMn, the nerve L is a (n − 1)–pseudomanifold. Let

T ∈ Sn−1. Then the corresponding geometric simplex σT in L has dimension n − 2,

and since L is an (n−1)–pseudomanifold, it follows that σT is contained in precisely

two (n−1)–simplices σU and σV , where U = T ∪{s} and V = T ∪{t} for some s, t ∈ S.

Since L has dimension n − 1 and (W,S) is right-angled, it follows that mst = ∞

(otherwise, U ∪ V would span an n–simplex in L). It follows that Lk(T ) = {s, t},

and that WLk(T ) =D∞. Thus, if q ∈ RLk(T ), then q < 1. Since T ∈ Sn−1 was arbitrary,

it follows that if for every T ∈ Sn−1, q ∈ RLk(T ), then q < 1.

By Theorem 4.5.2, L2
qH∗(Σ,Σ(n−2)) is concentrated in dimension n−1. Consider

the long exact sequence for the pair (Σ,Σ(n−2)):

0 L2
qHn−1(Σ) L2

qHn−1(Σ,Σ(n−2)) L2
qHn−2(Σ(n−2)) L2

qHn−2(Σ) 0

A dimension count and continuity of weighted L2
q–Betti numbers now implies

the assertion. ∎

When (W,S) is of type PM3, we have the following computation thanks to

Corollary 4.6.3. Recall, that Σ(1) is the Cayley graph of W (Proposition 2.8.1), so

the following corollary gives a formula for weighted L2–Betti numbers of the Cayley

graph when W is of type PM3.

Corollary 4.6.4. Suppose that (W,S) is right-angled and of type PM3. Further-

more, suppose that q ≤ 1 and q /∈ R. Then

L2
qb1(Σ

(1)) = −
1

W (q)
+ ∑
U∈S(≥2)

(∣U ∣ − 1)
WU(q)

W (q)

Proof. Since Σ is a pseudomanifold, it follows that L2
qb3(Σ) = 0 and since q /∈ R,

L2
qb0(Σ) = 0. The assertion follows from Corollary 4.6.3, as χq(Σ) = L2

qb2(Σ) −

L2
qb1(Σ) = 1

W (q) . ∎
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Example 4.6.5. Suppose that (W,S) is right-angled and of type PM3, and let

q = q, a positive real number. Recall the f–polynomial fL(t) of L. It is defined by

fL(t) ∶=
3

∑
i=0
fi−1t

i,

where fm is the number of m–simplices of L and f−1 = 1. By [6, Proposition 17.4.2],

we have the following formula:

1

W (t)
= (1 + t)3fL (

−t

1 + t
) .

This simplifies to

1

W (t)
= 1 − (f0 − 3)t + (f1 − 2f0 + 3)t2 − (f0 − f1 + f2 − 1)t3

= 1 − (f0 − 3)t + (f0 + 3 − 3χ(L))t2 − (χ(L) − 1)t3.

Here χ(L) is the Euler characteristic of L. Note that the second equality follows

by using the facts that χ(L) = f0 − f1 + f2 and 3f2 = 2f1 (this second formula

holds because each edge is contained in exactly two 2–simplices, and each 2–simplex

contains exactly three edges).

The radius of convergence ρ of W (t) is the smallest modulus of a root of the

above polynomial. Since W is of type PM3, the link of every vertex of L is 1–

pseudomanifold (in particular, just homeomorphic to S1). Thus, just as in Example

4.6.2, the radius of convergence ρLk(v) of the special subgroupWLk(v) has the formula:

ρLk(v) =
(k − 2) −

√
k2 − 4k

2
,

where Lk(v) is the link of the vertex v and k is the number of vertices in Lk(v).

If v0 is the vertex of L whose link has the maximal number of vertices, then Corollary

4.6.1 implies that L2
qH∗(ΣL) = 0 is concentrated in dimension 1 whenever ρ < q <

ρLk(v0).

The main point is that ρ is explicitly computable. For example, if L is a flag

triangulation of a torus (or, more generally, a flag triangulation of a surface of genus

g ≥ 1), it is still an open conjecture that L2
qb∗(ΣL) = 0 is concentrated in degree 2
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for q = 1 (see [9, Conjecture 11.5.1]), but on the other hand Corollary 4.6.1 allows

us to conclude that L2
qb2(ΣL) = 0 for q < ρLk(v0).
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Chapter 5

The Weighted Singer Conjecture

Appearing in [8], the following is the appropriate reformulation of the the Singer

Conjecture for Coxeter groups [9] for weighted L2–(co)homology:

Conjecture 5.0.1 (Weighted Singer Conjecture). Suppose that the nerve L is a

triangulation of Sn−1. Then

L2
qHk(ΣL) = 0 for k >

n

2
and q ≤ 1.

By weighted Poincaré duality, this is equivalent to the conjecture that if q ≥ 1

and k < n
2 , then L2

qHk(Σ) vanishes. The conjecture is known for elementary reasons

for n ≤ 2, and in [8], it is proved for the case where W is right-angled and n ≤

4. Furthermore, it was shown in in [8] that Conjecture 5.0.1 for n odd implies

Conjecture 5.0.1 for n even, under the assumption that W is right-angled.

The original Singer Conjecture for Coxeter groups was formulated for q = 1

in [9] and concluded that the L2–(co)homology is concentrated in dimension n
2 .

The original conjecture is known for elementary reasons for n ≤ 2 and holds by a

result of Lott and Lück [14], in conjunction with the validity of the Geometrization

Conjecture for 3–manifolds [17], for n = 3. It was proved by Davis–Okun [9] for the

case where W is right-angled and n ≤ 4. It was later proved for the case where W

is an even Coxeter group and n ≤ 4 by Schroeder [18], under the assumption that

the nerve L is a flag complex. Due to recent work of Okun–Schreve [16, Theorem

4.9], the conjecture is now known in full generality whenever q = 1 and n ≤ 4. In
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fact, using induction and [16, Theorem 4.5, Lemma 4.6, Corollary 4.7] proves the

following theorem.

Theorem 5.0.2. Suppose that the nerve L is an (n− 1)–sphere or an (n− 1)–disk.

Then

L2
1Hk(ΣL) = 0 for k ≥ n − 1.

In this chapter, we present a proof of Conjecture 5.0.1 in dimension three that

encompasses all but nine Coxeter groups. Then, under some restrictions on the nerve

of the Coxeter group, we obtain partial results whenever n = 4 (in particular, the

conjecture holds for n = 4 if the nerve of the corresponding Coxeter group is a flag

complex). We then extend our results in dimension four to prove a general version

of the conjecture for the case where the nerve of the Coxeter group is assumed to

be a flag triangulation of a 3–manifold.

5.1 The case where L is a disk

Note that if L is a triangulation of the (n− 1)–disk, then ΣL is an n–manifold with

boundary. We now obtain the following theorem, which whenever n = 3,4 can be

thought of as a version of Conjecture 5.0.1 for the case where ΣL is an n–manifold

with boundary.

Theorem 5.1.1. Suppose that the nerve L is an (n − 1)–disk. Then

L2
qHk(ΣL) = 0 for k ≥ n − 1 and q ≤ 1.

Proof. By Theorem 5.0.2, we have that L2
1Hk(ΣL) = 0 for k ≥ n − 1. Furthermore,

Proposition 2.9.1 implies that vcdW ≤ n − 1, and hence we are done by Lemma

3.3.8. ∎

5.2 A cell structure on K

Suppose that L is the labeled nerve of a Coxeter system, homeomorphic to the n–

sphere. For every T ∈ S, define KT to be the geometric realization of the poset
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S≥T = {U ∈ S ∣ T ⊆ U}. In other words, KT is the union of all closed simplices in

bL with minimum vertex T , so KT is the cone on the barycentric subdivision of the

link of T in L. If L is a triangulation of the n–sphere, then it follows that links of

simplices T of L are spheres of dimension n − ∣T ∣. Thus it follows that each KT is

a (n − ∣T ∣ + 1)–disk, hence {KT}T ∈S yields a cellulation of K. We denote K with

this cellulation by Kd. Note that this cellulation extends to ΣL, and the simplicial

structure on ΣL coincides with the barycentric subdivision of this cell structure.

The codimension-one faces of Kd correspond to vertices of L, and we assign

dihedral angles to Kd as follows. If {s, t} is an edge of L, then we assign the

dihedral angle π/mst between the faces Ks and Kt.

2
2 2

2

22
2 2

2

22

2

Figure 5.1: Kd when W is right-angled and the labeled nerve L is the boundary
complex of an octahedron

5.3 Andreev’s theorem

In [1], Andreev listed necessary and sufficient conditions for abstract three-dimensional

polytopes with assigned dihedral angles (0, π2 ] to be realized as convex polytopes in

H3. For these polytopes to tile H3, these angles must be integer submultiples of π.

We now state the theorem.

Theorem 5.3.1 ([1, Theorem 2]). Let P be an abstract three-dimensional simple

polyhedron, not a simplex. The following conditions are necessary and sufficient for

the existence in H3 of a convex polytope of finite volume of the combinatorial type
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P with the dihedral angles αij ≤
π
2 (where αij is the dihedral angle between the faces

Fi, Fj):

(i) If F1, F2 and F3 are all the faces meeting at a vertex of P , then α12+α23+α31 >

π.

(ii) If three faces intersect pairwise but do not have a common vertex, then the

angles at the three edges of the intersection satisfy α12 + α23 + α31 < π.

(iii) Four faces cannot intersect cyclically with all four angles=π
2 unless two of the

opposite faces intersect.

(iv) If P is a triangular prism, then the angles along the base and the top cannot

all be π
2 .

Our goal is to use the above theorem to formulate conditions on the labeled

nerve L so that ΣL = H3. Note that, for the rest of this thesis, we use the notation

ΣL =X whenever ΣL admits a WL–invariant metric making it isometric to X.

We say that a vertex in L is a Euclidean 3–vertex if its link has three pairwise

connected vertices, and if v0, v1, v2 are the vertices, then the labelings on the

corresponding edges satisfy:

π

mv0v1

+
π

mv0v2

+
π

mv1v2

= π.

Similarly, we say a vertex v in L is a Euclidean 4–vertex if Lk(v) is a 4–gon with

all edges labeled by 2.

Let C be an empty circuit in L and suppose that C is not the link of some vertex

of L. If C consists of three vertices v0, v1, v2, then we say that C is a Euclidean

3–circuit if the labelings on the edges of C satisfy:

π

mv0v1

+
π

mv0v2

+
π

mv1v2

= π.

Similarly, if C consists of four vertices and is not the boundary of two adjacent

simplices, then we say that C is a Euclidean 4–circuit if the labels on the edges of

C are all equal to 2.
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Figure 5.2: The two figures on the left show Euclidean vertices, while the far right
is not a Euclidean circuit

The nerve L of a Coxeter system (W,S) has a natural piecewise spherical struc-

ture, and under this structure, if s, t ∈ S are connected by an edge in L, then the edge

has length π − π/mst, where (st)mst = 1. Hence L inherits the structure of a metric

flag complex [6, Lemma 12.3.1], meaning that any collection of pairwise connected

edges of L spans a simplex if and only if there exists a spherical simplex with the

corresponding edge lengths. It follows that if v is a Euclidean 3– or 4–vertex, then

Lk(v) is a full subcomplex of L. Similarly, Euclidean circuits are full subcomplexes.

Thus the corresponding subgroups are in fact special subgroups of W .

Suppose that L is the labeled nerve of a Coxeter system, homeomorphic to S2,

and let Kd have the prescribed dihedral angles π/mst as in 5.2. It follows that if Kd

satisfies the conditions of Theorem 5.3.1, then ΣL = H3. The following theorem now

becomes a special case of Theorem 5.3.1.

Theorem 5.3.2. Suppose that L is the labeled nerve of a Coxeter system, homeo-

morphic to S2, but not the boundary of a 3–simplex. Furthermore, suppose that

• L has no Euclidean 3– or 4–circuits.

• L has no Euclidean vertices.

• L is not the right-angled suspension of a 3–gon.

Then ΣL = H3.

Proof. We must show that Kd satisfies the conditions of Theorem 5.3.1. First note

that condition (i) is vacuous in our case. Condition (ii) on Kd is equivalent to saying
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that L has no Euclidean 3–vertices and no Euclidean 3–circuits. Similarly, condition

(iii) on Kd is equivalent to saying that L has no Euclidean 4–vertices or no Euclidean

4–circuits. Finally, condition (iv) on Kd is equivalent to saying that L is not the

right-angled suspension of a 3–gon. ∎

For convenience we restate the above theorem in terms of special subgroups.

Theorem 5.3.3. Suppose that the nerve L is a triangulation of S2, but not the

boundary of a 3–simplex, and let (W,S) be the corresponding Coxeter system. Fur-

thermore, suppose that

• For every T ⊂ S, WT is not a Euclidean reflection group.

• W ≠WT ×D∞, where T ⊂ S spans empty triangle in L and D∞ is the infinite

dihedral group.

Then ΣL = H3.

5.4 Equidistant hypersurfaces

Suppose that the Coxeter group W has nerve L that is a triangulation of S2 and

that ΣL = H3. Let D denote the Davis chamber (in H3) and let WM be a special

subgroup of W . We now consider the (possibly infinite) convex polytope WMD in

H3.

For t > 0, let St denote the t–distant surface from a component S of ∂WMD.

Then St is a smooth surface (see [4, Proposition II.2.2.1]). In fact, St is a union of

pieces of which there are three types: hyperbolic, Euclidean, and spherical, each of

which are the equidistant pieces from faces, edges, and vertices of S, respectively.

The Euclidean pieces look like rectangles that are each adjacent to two hyperbolic

pieces and two spherical pieces, and the spherical pieces are adjacent to Euclidean

pieces.

As WMD is convex, the nearest point projection p ∶ H3∪∂H3 →WMD is defined.

If we fix t > r > 0, then p induces a map ptr ∶ St → Sr.



49

Lemma 5.4.1. The map ptr ∶ St → Sr induced by nearest point projection is tanh(t)
tanh(r)–

quasiconformal.

Proof. It suffices to check what ptr does on each of the three types of pieces. First,

note that a face of S is simply the intersection of ∂WMD with a hyperbolic plane

in H3. Thus ptr simply scales the corresponding hyperbolic pieces on St and Sr by

a constant factor. Hence ptr is conformal there. Similarly, the map ptr is conformal

on the spherical pieces.

Second, we consider the Euclidean piece in St equidistant from an edge of S.

A Euclidean piece looks like a rectangle adjacent to two hyperbolic pieces at two

parallel edges (parallel in the intrinsic Euclidean geometry), and the the map induced

by nearest point projection St → S scales by a factor of 1/ cosh(t) in the direction

of those edges. The other two edges of the Euclidean piece are each adjacent to a

spherical piece. An edge like this is the arc of a circle with radius t centered at a

vertex in S. Thus the edge has length θ sinh(t), where θ is the dihedral angle at the

corresponding edge of S. Hence the map ptr scales by a factor of cosh(r)/ cosh(t)

in the direction of the edges adjacent to the hyperbolic pieces, and scales the edges

adjacent to the spherical pieces by a factor of sinh(r)/ sinh(t). Therefore ptr is
tanh(t)
tanh(r)–quasiconformal on the Euclidean pieces. ∎

5.5 The conjecture in dimension three

In this section, we prove the following theorem.

Theorem 5.5.1. Suppose that the nerve L of a Coxeter group is a triangulation of

S2 not dual to a hyperbolic 3–simplex. Then

L2
qHk(ΣL) = 0 for k > 1 and q ≤ 1.

Suppose that M is a complete smooth Riemannian manifold. Given a a nonneg-

ative measurable function f ∶M → [0,∞), we define a new norm on the C∞ k–forms

called the L2
f norm by

∣∣ω∣∣2f = ∫
M

∣∣ω∣∣2pf(p)dV,
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where ∣∣ω∣∣2p is the pointwise norm and dV is the volume form of M . Let L2
fC

∗(M)

denote the weighted L2 de Rham complex defined using the L2
f norm.

Lemma 5.5.2. Let M and N be smooth surfaces and suppose that φ ∶ M → N is

a K–quasiconformal diffeomorphism. Let g ∶ N → [0,∞) be the function defined by

g(p) = f(φ−1(p)). Then for every ω ∈ L2
gC

1(N), we have that

1

K
∣∣ω∣∣2g ≤ ∣∣φ∗(ω)∣∣2f ≤K ∣∣ω∣∣2g.

Proof. The pointwise norm of a 1–form is ∣∣ω∣∣p = supx∈TpM
∣∣x∣∣=1

ω(x), where TpM is the

tangent space of M at p. Since φ is K–quasiconformal, its differential dφ maps the

circle {x ∈ TpM ∣ ∣∣x∣∣ = 1} to an ellipse with semi-axis b(p) ≤ a(p) satisfying a(p)
b(p) ≤K.

Thus for any ω ∈ L2
qC

1(N),

b(p)∣∣ω∣∣φ(p) ≤ ∣∣φ∗(ω)∣∣p ≤ a(p)∣∣ω∣∣φ(p).

Now, let dVM and dVN be the respective volume forms of M and N . We have that

(fdVM)p =
(g(φ)φ∗(dVN))p

a(p)b(p)
,

so for L2
f norms we have

∣∣φ∗(ω)∣∣2f = ∫
M

∣∣φ∗(ω)∣∣2pf(p)dVM

≤ ∫
M

a(p)

b(p)
∣∣ω∣∣2φ(p)g(φ(p))φ

∗(dVN)

≤K ∫
M

∣∣ω∣∣2φ(p)g(φ(p))φ
∗(dVN)

=K ∫
N
∣∣ω∣∣2xg(x)dVN =K ∣∣ω∣∣2g

The remaining inequality follows similarly. ∎

Suppose that the nerve L of W is a triangulation of S2 and that ΣL = H3. Define

f to be the function f(p) = qw, where w ∈WL is a word of shortest length such that
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p ∈ wD (here D is the Davis chamber). Let L2
qH

∗(H3) denote the weighted L2 de

Rham cohomology defined using this f .

Let WM be an infinite special subgroup of W and let S be one of the components

of ∂WMD. Put coordinates (x, t) on H3 so that t ∈ R is the oriented distance from

p ∈ H3 to the closest point x ∈ S. Fix r > 0, and for t ≥ r let St denote the

hypersurface consisting of points of (oriented) distance t from S. Let ptr ∶ St → Sr

be the map induced by nearest point projection, and let φtr denote the inverse of

ptr. By Lemma 5.4.1, ptr is K(t)–quasiconformal, with K(t) = tanh(t)
tanh(r) , and hence so

is its inverse φtr ∶ Sr → St. Let ir ∶ Sr → H3 and it ∶ St → H3 be the inclusions. Then

ir and it ○ φtr are properly homotopic.

We now adapt the argument after [8, Theorem 16.10] to prove the following

lemma.

Lemma 5.5.3. If q ≥ 1, then the map i∗r ∶ L
2
qH

1(H3) → L2
qH

1(Sr) induced by the

inclusion ir is the zero map.

Proof. Set g(x, y) = f(x,0), so f(x, y) ≥ g(x, y), and let ω be a closed L2
f 1–form

on H3. We now show that the restriction i∗r(ω) to Sr represents the zero class in in

reduced L2
f -cohomology. For the remainder of the proof, we will use the notation

∣∣[α]∣∣g and ∣∣[α]∣∣x to denote the respective L2
g norm and pointwise norm of the

harmonic representative of the cohomology class [α].

Suppose for a contradiction that [i∗r(ω)] ≠ 0. Then ∣∣i∗r(ω)∣∣g ≥ ∣∣[i∗r(ω)]∣∣g > 0. By

Lemma 5.5.2, it follows that ∣∣φ∗tr(i
∗
t (ω))∣∣

2
g ≤ K(t)∣∣i∗t (ω)∣∣

2
g, and since ir and it ○ φtr

are properly homotopic, [i∗r(ω)] = [φ∗tr(i
∗
t (ω))]. Therefore

K(t)∣∣i∗t (ω)∣∣
2
g ≥ ∣∣[i∗r(ω)]∣∣

2
g > 0.

Now, i∗t (ω) is just a restriction of ω, so we have the pointwise inequality ∣∣ω∣∣x ≥

∣∣i∗t (ω)∣∣x. Using Fubini’s Theorem, we compute

∣∣ω∣∣2g = ∫
H3

∣∣ω∣∣2xg(x, y)dV ≥ ∫

∞

r
∫
St

∣∣ω∣∣2xg(x, y)dAdt ≥ ∫
∞

r
∫
St

∣∣i∗t (ω)∣∣
2
xg(x, y)dAdt

= ∫

∞

r
∣∣i∗t (ω)∣∣

2
gdt ≥ ∫

∞

r

tanh(r)

tanh(t)
∣∣[i∗r(ω)]∣∣

2
gdt = ∞.
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Since ∣∣ω∣∣f ≥ ∣∣ω∣∣g, this contradicts the assumption that the L2
f norm of ω is finite. ∎

Suppose that L is the nerve of a Coxeter group WL and that A is a full subcom-

plex of L. For the proofs that follow, note that dimqL2
qHk(WLΣA) = L2

qbk(ΣA) (see

[6, pg. 352 (vi)]).

Lemma 5.5.4. Suppose that the nerve L is a triangulation of S2 and that there

exists a full subcomplex 1–sphere M of L that separates L into two full 2–disks L1

and L2 with boundary M . Furthermore, suppose that one of the following holds:

(i) ΣM = R2.

(ii) ΣL = H3.

Then

L2
qHk(ΣL) for k ≥ 2 and q ≤ 1.

Proof. Since ΣL is a 3–manifold, it follows that L2
qb3(ΣL) = 0 [6, Proposition 20.4.1].

Hence we must show that L2
qb2(ΣL) = 0. Consider the following Mayer–Vietoris

sequence applied to L = L1 ∪M L2:

⋯ L2
qH2(WLΣL1) ⊕L

2
qH2(WLΣL2) L2

qH2(ΣL) L2
qH1(WLΣM) ⋯

By Theorem 5.1.1, we have that L2
qH2(WLΣL1) = L

2
qH2(WLΣL2) = 0. If (i) holds,

then Theorem 3.3.4 implies that L2
qH1(ΣM) = 0, and we are done. If (ii) holds, we

argue that the connecting homomorphism ∂∗ ∶ L2
qH2(ΣL) → L2

qH1(WLΣM) is the

zero map. By [8, Lemma 16.2], we reduce the proof to showing that the map induced

by inclusion i∗ ∶ L2
q−1H1(WLΣM) → L2

q−1H1(ΣL) is the zero map, and since WLΣM

is a disjoint union of copies of ΣM , it is enough to show that the restriction of i∗ to

one summand L2
q−1H1(ΣM) is zero.

Consider the infinite convex polytope WMD, where D is the Davis chamber for

W . We have that WM acts properly and cocompactly on WMD by isometries. In

particular, if S is one of the components of ∂WMD, then WM acts properly and
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cocompactly on S, and therefore L2
q−1H

∗(ΣM) ≅ L2
q−1H

∗(S). Hence we are done if

we show that map i∗ ∶ L2
q−1H

1(H3) → L2
q−1H

1(S) induced by the inclusion i ∶ S → H3

is the zero map.

Fix r > 0, and let Sr be the r–distant surface from S. Sr and S are properly

homotopy equivalent, and this equivalence induces a weak isomorphism between

L2
q−1H

∗(S) and L2
q−1H

∗(Sr). Thus we have reduced the proof to showing that the

map i∗r ∶ L
2
q−1H

1(H3) → L2
q−1H

1(Sr) induced by the inclusion ir ∶ Sr → H3 is the zero

map, and therefore we are done by Lemma 5.5.3. ∎

Remark 5.5.5. In [8, Section 16] W is strictly assumed to be right-angled, but the

proof of [8, Lemma 16.2] does not use this, as it only uses properties of weighted

L2–(co)homology.

Proof of Theorem 5.5.1. We first suppose that ΣL = H3. We need to find a full

subcomplex M of L satisfying the hypothesis of Lemma 5.5.4. First we suppose

that L is a flag complex. Let v be a vertex of L and set M = Lk(v). Since L is flag,

M is a full subcomplex of L, and since L is a triangulation of the 2–sphere, it follows

that M is a 1–sphere, and we are done. Now suppose that L is not flag. Since L

is not the boundary of a 3–simplex, there exists an empty 2–simplex in L. Let M

denote this empty 2–simplex. Then M separates L into two full 2–disks, both with

boundary M , and we are done. We now suppose that ΣL ≠ H3 and use Theorem

5.3.3 to perform a case-by-case analysis.

Case I: W contains a Euclidean special subgroup WT . Let M be the full subcomplex

of L corresponding to WT . Then M separates L into two 2–disks both with boundary

M and hence Lemma 5.5.4 (i) implies the assertion.

Case II: W =WT ×D∞, where T ⊂ S spans empty triangle in L. Either ΣL = R3 or

ΣL = H2 ×R. In both cases we are done by the weighted Künneth formula.

Case III: L is the boundary of a 3–simplex. By assumption, L is not dual to a

hyperbolic simplex, so ΣL = R3. Therefore we are done by [8, Corollary 14.5]. ∎
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5.6 The conjecture in dimension four

In dimension four, we prove the following case of the Weighted Singer Conjecture:

Theorem 5.6.1. Suppose that the nerve L of a Coxeter group is a triangulation of

S3. Furthermore, suppose that there exists a vertex of L such that its link is a full

subcomplex of L and not dual to a hyperbolic 3–simplex. Then

L2
qHk(ΣL) = 0 for k > 2 and q ≤ 1.

Proof. In this case, ΣL is a 4–manifold, and hence L2
qb4(ΣL) = 0 [6, Proposition

20.4.1]. It remains to show that L2
qb3(ΣL) = 0. Suppose that the nerve L is a

triangulation of S3 and let s ∈ L be a vertex. We make the following observations:

• The nerve LS−s of the Coxeter system (WS−s, S − s) is a 3–disk.

• The nerve St(s) of the Coxeter group WSt(s) is a 3–disk.

• The nerve Lk(s) of the Coxeter group WLk(s) is a 2–sphere.

This is because the subcomplexes St(s), Lk(s), and LS−s of L correspond to the

closed star of the vertex s, link of the vertex s, and complement of the open star of

s, respectively, which are all by assumption full subcomplexes of L.

Consider the following Mayer–Vietoris sequence:

⋯ L2
qH3(WLΣLS−s) ⊕L

2
qH3(WLΣSt(s)) L2

qH3(ΣL) L2
qH2(WLΣLk(s)) ⋯

By Theorem 5.1.1, L2
qb3(ΣSt(s)) = 0 and L2

qb3(ΣLS−s) = 0, and by Theorem 5.5.1,

L2
qb2(ΣLk(s)) = 0. Therefore by the above sequence, L2

qb3(ΣL) = 0. ∎

We obtain the following corollary.

Corollary 5.6.2. Suppose that the nerve L of a Coxeter group is a flag triangulation

of S3. Then

L2
qHk(ΣL) = 0 for k > 2 and q ≤ 1.
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Proof. Since L is flag, it follows that the link of every vertex is a full subcomplex of

L. Furthermore, the link of every vertex is not the boundary of a 3–simplex (and in

particular, not dual to a 3–simplex). Theorem 5.6.1 now completes the proof. ∎

5.7 The case where L is a 3–manifold

In this section, we prove the following generalization of Corollary 5.6.2.

Theorem 5.7.1. Suppose that L is a flag triangulation of a 3–manifold. Then

L2
qHk(ΣL) = 0 for k > 2 and q ≤ 1.

Note that, in this case, ΣL is a 4–pseudomanifold (i.e. every 3–cell of ΣL is

contained in precisely two 4–cells). We will prove the theorem using ruins.

Lemma 5.7.2. Suppose that L is a flag triangulation of a 3–manifold. Then for

every t ∈ L, L2
qH∗(Ω(S, t), ∂Ω(S, t)) = 0 for ∗ > 2 and q ≤ 1.

Proof. First, for t ∈ L, recall that the (S, t)–ruin has the property that

Ω(S, t) = Ω(St(t), t),

where St(t) = {s ∈ S ∣ mst < ∞}. Recall that Lk(t) = St(t) − t, and so we have

the following weak exact sequence (see sequence (4.1)):

⋅ ⋅ ⋅ L2
qH∗(Σ(Lk(t))) L2

qH∗(Σ(St(t))) L2
qH∗(Ω(S, t), ∂Ω(S, t)) ⋅ ⋅ ⋅

Note that

L2
qb∗(Σ(St(t))) = L2

qb∗(ΣSt(t)) and L2
qb∗(Σ(Lk(t))) = L2

qb∗(ΣLk(t)),

where ΣSt(t) and ΣLk(t) are the Davis complexes corresponding to the subgroups

WSt(t) and WLk(t), respectively. Since L is flag, the respective nerves of the groups

WSt(t) and WLk(t) are a 3–disk and a 2–sphere. Furthermore, the nerve of WLk(t) is
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not the boundary of a 3–simplex (again, L is flag). By Theorem 5.1.1, L2
qbk(ΣSt(t)) =

0 for k > 2, and by Theorem 5.5.1, L2
qbk(ΣLk(t)) = 0 for k > 1. Therefore weak

exactness of the sequence implies that L2
qH∗(Ω(S, t), ∂Ω(S, t)) = 0 for ∗ > 2. ∎

We now adapt the argument of [18] to complete the proof of Theorem 5.7.1. The

main point is that we are able to prove the following lemma for q ≤ 1.

Lemma 5.7.3 (Compare [18, Lemma 4.1]). For every T ∈ S(2) and U ⊂ S with

T ⊂ U , we have L2
qH4(Ω(U,T ), ∂Ω(U,T )) = 0 for q ≤ 1.

Proof. Once we establish the lemma for q = 1, we apply the argument in Lemma

3.3.8 to obtain the result for q ≤ 1 (see Remark 3.3.9).

Assume that Ω(U,T ) contains 4–dimensional cells, otherwise we are done. Then

every codimension-one face of a 4–cell in Ω(U,T ) is either free (not the face of

another 4–cell) or contained in precisely one other 4–cell (Σcc is a 4–pseudomanifold).

If every codimension-one face of a 4–cell is free, then this cell has faces not

contained in ∂Ω(U,T ). Thus a relative cycle cannot be supported on this cell.

So, we assume that cells of type T ′ ∈ S(U)
(4)
>T have a codimension-one face of

type R that is not free. This face must be contained in another 4–cell of type

T ′′ ∈ S(U)
(4)
>T . Thus T ′ = R ∪ {t} and T ′′ = R ∪ {s} for some s, t ∈ S. Since L is

flag and 3–dimensional, mst = ∞. Hence we obtain a sequence of adjacent 4–cells

WT ′ ,WT ′′ , sWT ′ , stWT ′′ , stsWT ′ , .... Furthermore, a relative 4–cycle must be constant

on adjacent cells of type T ′ and T ′′, and since we have an infinite sequence of such

adjacent cells, this constant must be zero. ∎

The rest of the argument now follows [18] line by line. We repeat it for the sake

of completeness.

Lemma 5.7.4 ([18, Proposition 4.2]). For every t ∈ T and U ⊂ S with t ∈ U , we

have L2
qH∗(Ω(U, t), ∂Ω(U, t)) = 0 for ∗ > 2 and q ≤ 1.

Proof. The proof is by induction on Card(S −U), Lemma 5.7.2 serving as the base

case. Let s ∈ S and set V = U ∪ {s}. If mst = ∞, then Ω(U, t) = Ω(V, t) and we
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are done by induction. Otherwise, consider the weak exact sequence (see sequence

(4.1):

⋅ ⋅ ⋅ L2
qH∗(Ω(U, t), ∂) L2

qH∗(Ω(V, t), ∂) L2
qH∗(Ω(V,{s, t}), ∂) ⋅ ⋅ ⋅

By Lemma 5.7.3, L2
qH4(Ω(V,{s, t}), ∂) = 0 and by induction, L2

qH∗(Ω(V, t), ∂) =

0 for ∗ > 2. Therefore L2
qH∗(Ω(U, t), ∂) = 0 for ∗ > 2. ∎

Proof of Theorem 5.7.1. For every U ⊂ S and t ∈ U , we have the following weak

exact sequence:

⋅ ⋅ ⋅ L2
qH∗(Σ(U − t)) L2

qH∗(Σ(U)) L2
qH∗(Ω(U, t), ∂) ⋅ ⋅ ⋅

By Lemma 5.7.4, L2
qH∗(Ω(U, t), ∂) = 0 for ∗ > 2, and hence by weak exactness,

L2
qH∗(Σ(U − t)) ≅ L2

qH∗(Σ(U)) for ∗ > 2.

It follows that L2
qH∗(Σ(S)) ≅ L2

qH∗(Σ(∅)) for ∗ > 2, and hence the theorem. ∎
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Chapter 6

The Fattened Davis Complex

We will now construct a complex which is a “fattened” version of the Davis complex.

This new thickened complex will be a homology manifold with boundary possessing

the Davis complex as a W–equivariant retract. For the remainder of this thesis we

suppose that W is an infinite Coxeter group.

6.1 Construction

Given a Coxeter system (W,S), we find a compact P with mirror structure (Ps)s∈S

as follows. Let P ∗ be a cell complex with vertex set S that is a GHSn−1, with

n − 1 > dimL, such that the nerve L is a subcomplex of P ∗. Take P to be the

(P ∗, S)–chamber.

Denote by P the collection of proper nonempty subsets T of S with PT ≠ ∅. We

denote by NP the subcollection of P corresponding to non-spherical subsets. For

T ∈ P, we denote a neighborhood of the face PT by N(PT ) and the corresponding

closed neighborhood by N̄(PT ).

We begin by building a regular neighborhood of ∂P in P . Start by choosing

neighborhoods of codimension–n faces so that for any two codimension–n faces

PU and PV we have N̄(PU) ∩ N̄(PV ) = ∅. Then we choose neighborhoods of

codimension–(n − 1) faces so that for any two codimension–(n − 1) faces PU and

PV we have:
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N̄(PU) ∩ N̄(PV ) ⊂ N(PU ∩ PV ). (6.1)

If U ∪ V ∉ P, then we take N(PU ∩ PV ) = ∅. We proceed inductively, employ-

ing condition (6.1) at each step until we obtain the collection {N(PT )}T ∈P . This

collection gives us a regular neighborhood of ∂P .

Finally, we realize the neighborhoods {N(PT )}T ∈P in the above construction as

{NT × PT}T ∈P , where NT is a neighborhood of the cone point in Cone(σT ) and σT

is the geometric cell in P ∗ spanned by T (note that we can always do this, see the

discussion in Section 2.7.1).

We now define

Kf ∶= P − ⋃
T ∈NP

N(PT ).

We call Kf the fattened Davis chamber.

Note that the mirror structure (Ps)s∈S on P induces a mirror structure (Kf
s )s∈S

on Kf . Define ΦL ∶= U(W,Kf). We call ΦL the fattened Davis complex.

Given a T ∈ NP , we denote by Kf(T ) the fattened Davis chamber corresponding

to σT and Coxeter system (WT , T ) (recall that the geometric cell σT has a natural

WT mirror structure).

Remark 6.1.1. For any Coxeter system (W,S), one can always find a P ∗ for

the above construction: simply let P ∗ be the boundary of the standard (∣S∣ − 1)–

dimensional simplex ∆∣S∣−1. Then P is the barycentric subdivision of ∆∣S∣−1, and the

Davis chamber K can then be viewed as a subcomplex of the barycentric subdivision

of P spanned by the barycenters of spherical faces. One can see this using the

language of posets. Note that K is the geometric realization of the poset S and P is

the geometric realization of the poset of proper subsets of S. The natural inclusion of

posets now induces the desired inclusion of K into P . The mirror structure (Ks)s∈S

on K is now induced by the mirror structure (Ps)s∈S on P . In this case U(W,P ) is

the traditional Coxeter complex, and we are essentially viewing ΣL as a subcomplex

of the barycentric subdivision of the Coxeter complex.
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6.2 Properties of ΦL

W is assumed to be infinite, so via the choice of P for construction, the Davis

chamber is the subcomplex of P spanned by vertices of P corresponding to spherical

faces. Hence we have the following inclusions: K ⊂Kf ⊂ P (See Figure 6.1).

Figure 6.1: K ⊂Kf ⊂ P when W =D∞ ×D∞ and P = ∆3

Note that there is a face preserving deformation retraction of Kf onto K, thus

we have the following:

Proposition 6.2.1. ΦL W–equivariantly deformation retracts onto ΣL.

Proposition 6.2.2. ΦL is a locally compact contractible homology n–manifold with

boundary ∂ΦL.

Proof. Since ΣL is contractible, it follows from Proposition 6.2.1 that ΦL is con-

tractible. Moreover, Kf is compact since it is closed in P (P is compact), so ΦL is

locally compact.

As before, give Kf the mirror structure (Kf
s )s∈S induced from P , and declare

Kf
e = ∂Kf −⋃T ∈S>∅(K

f
T − ∂K

f
T ), where e is the identity element of W . According to

Proposition 2.5.3, it remains to show that Kf is a partially S–mirrored homology

manifold with corners. Let S′ = S ∪ {e} and note that by construction Kf
T = ∅ if

and only if T is not spherical. So, we are done if we show that for every spherical

T ⊂ S′, Kf
T has dimension n − ∣T ∣.

If e ∉ T , then we are done since (PT , ∂PT ) is a GHDn−∣T ∣. This is because P is by

definition the (P ∗, S)–chamber and the nerve L was assumed to be a subcomplex
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of P ∗. Hence, since T is spherical, σT , the geometric cell in P ∗ corresponding to

T , is a simplex of dimension ∣T ∣ − 1. Therefore the dimension of PT is equal to

n − dimσT − 1 = n − ∣T ∣.

If e ∈ T , then U = T − {e} is spherical, and by the above discussion Kf
U has

dimension n− ∣U ∣ = n− ∣T ∣ +1. Then Kf
T =Kf

U ∩K
f
e = ∂K

f
U has dimension n− ∣T ∣. ∎

Remark 6.2.3. If P = ∆∣S∣−1, then the Coxeter complex U(W,P ) is a PL-manifold

away from faces with infinite stabilizers. This is because the links of faces corre-

sponding to spherical subsets T are homeomorphic to the Coxeter complex of the

corresponding group WT . Since WT is finite, this Coxeter complex is homeomorphic

to a sphere of appropriate dimension. Since we obtain ΦL by removing neighbor-

hoods of non-spherical faces (faces with infinite stabilizers), it follows that ΦL is a

PL-manifold with boundary.

6.3 The structure of ∂ΦL

The main goal of this section is to understand the structure of ∂ΦL. The first

proposition will tell us that ∂Kf can be broken up into pieces, each of which has a

nice product structure. This decomposition of ∂Kf then leads us to a cover of ∂ΦL

which will be used to study the algebraic topology of ∂ΦL.

For T ∈ NP define

CT = ∂N(PT ) − ⋃
U∈NP

N(PU),

ΛT = PT − ⋃
U∈NP
T⊂U

N(PU).

Proposition 6.3.1. (i) Suppose that U,V ∈ NP . Then CU ∩CV ≠ ∅ if and only if

U ⊂ V or V ⊂ U .

(ii) If T ∈ NP then

CT ≈Kf(T ) ×ΛT .

(iii) Suppose that T1, T2 ∈ NP with T1 ⊂ T2. Then

CT1 ∩CT2 ≈K
f(T1) ×ΛT2 .
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Proof. For (i), one implication is obvious. If U ⊂ V , then PV is a face of PU . Thus

CU ∩ CV ≠ ∅. For the reverse implication, suppose that U /⊂ V and V /⊂ U . By

construction and condition (6.1), either N̄(PU) ∩ N̄(PV ) = ∅ or N̄(PU) ∩ N̄(PV ) ⊂

N(PU ∩PV ). The former case immediately implies that CU ∩CV = ∅, and the latter

case implies that the intersection ∂N(PU) ∩ ∂N(PV ) is removed at some point in

the construction of the fattened Davis chamber, hence CU ∩CV = ∅.

For (ii), recall that we have realized the collection {N(PT )}T ∈NP as neighbor-

hoods {NT × PT}T ∈NP , where NT is a neighborhood of the cone point in Cone(σT ).

Now, for each U ⊂ T , let αU denote the face in σT corresponding to PU . More

precisely, σT has a WT mirror structure, and αU is the intersection of mirrors corre-

sponding to U ⊂ T . We can express the neighborhoods in the construction of Kf(T )

as neighborhoods {αU × N ′
U}U∈NP

U⊂T
, where N ′

U is a neighborhood of the cone point

in Cone(Lk(αU , σT )). Here Lk(αU , σT ) denotes the link of the face αU in σT . In

particular,

Kf(T ) = σT − ⋃
U∈NP
U⊂T

αU ×N
′
U .

Now, we have that Lk(αU , σT ) ≈ σU , so N ′
U ≈ NU . Hence

Kf(T ) ≈ σT − ⋃
U∈NP
U⊂T

PU ×NU .

Moreover, we can write ΛT and CT as

ΛT = PT − ⋃
U∈NP
T⊂U

PU ×NU ,

CT = (σT × PT ) − ⋃
U∈NP
U≠T

PU ×NU .

We now show that CT ≈ Kf(T ) ×ΛT . Note that Kf(T ) ×ΛT = (Kf(T ) × PT ) ∩

(σT ×ΛT ), so we begin unwinding definitions. We first observe that
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Kf(T ) × PT ≈
⎛
⎜
⎝
σT − ⋃

U∈NP
U⊂T

PU ×NU

⎞
⎟
⎠
× PT ≈ (σT × PT ) − ⋃

U∈NP
U⊂T

PU ×NU .

This is because PT is a face of each of the PU ’s. Similarly, we have

σT ×ΛT = σT ×
⎛
⎜
⎝
PT − ⋃

U∈NP
T⊂U

PU ×NU

⎞
⎟
⎠
≈ (σT × PT ) − ⋃

U∈NP
T⊂U

PU ×NU .

This follows from the fact that PU ’s are faces of PT . Thus we have shown that

Kf(T ) ×ΛT = (Kf(T ) × PT ) ∩ (σT ×ΛT ) ≈ CT , therefore proving (ii).

We now prove (iii). By (ii),

CT1 ∩CT2 ≈ (Kf(T1) ∩K
f(T2)) × (ΛT1 ∩ΛT2).

It now simply remains to unwind the definitions. Since T1 ⊂ T2, it follows that PT2

is a face of PT1 . In particular, σT1 ∩ σT2 = σT1 and hence

Kf(T1) ∩K
f(T2) ≈ σT1 ∩ σT2 − ⋃

U,V ∈NP
U⊂T1
V ⊂T2

N(PU) ∪N(PV )

≈ σT1 − ⋃
U∈NP
U⊂T1

N(PU)

≈Kf(T1)

A similar computation shows that ΛT1 ∩ΛT2 ≈ ΛT2 , thus completing the proof of

the proposition. ∎

Proposition 6.3.2.

∂ΦL = ⋃
j

⊔

T ∈N (j)P

U(W,CT ),

where N
(j)
P = {T ∈ NP ∣ Card(T ) = j}.

Proof. The fact that one can decompose ∂ΦL in this way is clear by construction,

and the second union is in fact a disjoint union by Proposition 6.3.1 (i). ∎
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6.4 Algebraic topology of ΦL and ∂ΦL

We now turn our attention to studying the algebraic topology of ΦL and ∂ΦL. We

first begin with a corollary of Proposition 6.2.1.

Corollary 6.4.1.

L2
qH∗(ΦL) ≅ L

2
qH∗(ΣL).

Not only does ΦL have the same weighted L2–(co)homology as ΣL, but by Propo-

sition 6.2.2, ΦL is a locally compact homology manifold with boundary. Thus we

have weighted Poincaré duality for ΦL at our disposal. With this in mind, we prove

the following lemma.

Lemma 6.4.2. Suppose that (W,S) is a Coxeter system with vcdW = m and that

ΦL is a homology n–manifold with boundary with L2
qb1(∂ΦL) = 0.

(i) If n −m = 1 and L2
q−1bm(ΦL) = 0 then L2

qb1(ΣL) = 0.

(ii) If n −m ≥ 2 then L2
qb1(ΣL) = 0.

Proof. Consider the long exact sequence for the pair (ΦL, ∂ΦL):

⋅ ⋅ ⋅ L2
qH1(∂ΦL) L2

qH1(ΦL) L2
qH1(ΦL, ∂ΦL) ⋅ ⋅ ⋅

By weighted Poincaré duality

L2
qH1(ΦL, ∂ΦL) ≅ L

2
q−1Hn−1(ΦL).

Now, by assumption L2
qH1(∂ΦL) = 0, so by weak exactness we must show that

L2
q−1Hn−1(ΦL) = 0. We will then be done by Corollary 6.4.1, which says that

L2
qH1(ΣL) = L2

qH1(ΦL) = 0.

For (i), we have that L2
q−1bm(ΦL) = 0. Since n−m = 1, we have that m = n−1, so

it follows that L2
q−1Hn−1(ΦL) = 0. For (ii), we have that n −m ≥ 2, so n − 1 ≥m + 1.

Since vcdW =m, Corollary 3.3.7 implies that

L2
q−1Hn−1(ΣL) = L

2
q−1Hn−1(ΦL) = 0.

∎
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We devote the remainder of the section to studying the algebraic topology of

∂ΦL. The following is a corollary of Proposition 6.3.1.

Corollary 6.4.3. (i) If T ∈ NP , then for every k ≥ 0

L2
qbk(U(W,CT )) = L

2
qbk(ΦLT ) = L

2
qbk(ΣLT ),

where LT is the subcomplex of L corresponding to the subgroup WT .

(ii) Suppose that T1, T2 ∈ NP with T1 ⊂ T2. Then for every k ≥ 0

L2
qbk(U(W,CT1) ∩ U(W,CT2)) = L

2
qbk(ΦLT1

) = L2
qbk(ΣLT1

),

where LT1 is the subcomplex of L corresponding to the subgroup WT1.

Remark 6.4.4. The L2
q–Betti numbers on the center and the right of the equations

in (i) and (ii) are computed with respect to the special subgroups WT (respectively

WT1) of W , while the ones on the far left side of the equations are computed with

respect to W .

Proof. We prove only (i) as the proof of (ii) is similar. Proposition 6.3.1 implies

that CT ≈ Kf(T ) × ΛT as mirrored spaces, where ΛT is contractible and has no

mirror structure. Therefore U(W,CT ) is W–equivariantly homotopy equivalent to

U(W,Kf(T )). Now, L2
qH∗ (U(W,Kf(T ))) is just the completion of

L2
q(W ) ⊗Rq(WT ) L

2
qH∗ (U(WT ,K

f(T ))) ,

so for every k ≥ 0,

L2
qbk (U(W,K

f(T ))) = L2
qbk (U(WT ,K

f(T ))) = L2
qbk(ΦLT ).

∎

Consider the cover V = {U(W,CT )}T ∈NP of ∂ΦL in Proposition 6.3.2. The cover

V will have intersections of variable depth, so we obtain a spectral sequence following

[3, Ch. VII, §3,4]:
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Proposition 6.4.5. There is a Mayer–Vietoris type spectral sequence converging to

HW
∗ (∂ΦL,Nq(W )) with E1–term:

Ei,j
1 = ⊕

σ∈Flag(NP )
dimσ=i

HW
j (U(W,Cminσ),Nq(W )).

Proof. Let N(V) denote the nerve of the cover V . It is the abstract simplicial

complex whose vertex set is NP and whose simplices are the non-empty subsets

σ ⊂ NP such that the intersection Vσ = ⋂T ∈σ U(W,CT ) is non-empty. Following

[3, Ch. VII, §3,4], there is a Mayer–Vietoris type spectral sequence converging to

HW
∗ (∂ΦL,Nq(W )) with E1–term:

Ei,j
1 = ⊕

σ∈N(V)
dimσ=i

HW
j (Vσ,Nq(W )).

We have that Vσ ≠ ∅ if and only if ⋂T ∈σ CT ≠ ∅, and applying Proposition 6.3.1

inductively, this happens if and only if the vertices of σ form a chain Ti1 ⊂ Ti2 ⊂

⋯ ⊂ Tik . This observation shows that N(V) = Flag(NP ). Now, applying Propo-

sition 6.3.1 inductively, it follows that Vσ ≈ U(W,CTi1). Hence HW
∗ (Vσ,Nq(W )) =

HW
∗ (U(W,CTi1),Nq(W )), so the terms in the spectral sequence are the ones claimed.

∎

For later computations, note that Corollary 6.4.3 implies:

L2
qb∗(U(W,Cminσ)) = dimNq H

W
∗ (U(W,Cminσ))

= L2
qb∗(ΦLminσ

)

= L2
qb∗(ΣLminσ

).
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Chapter 7

Computations

In this section we will use the fattened Davis complex to make concrete compu-

tations. We first begin by considering the case where the nerve L of the Coxeter

system (W,S) is a graph. Note that for this special case ΣL is two-dimensional.

We then briefly discuss how we can use our computations to produce examples of

Coxeter groups for which the Weighted Singer Conjecture holds. We then direct

our attention to quasi-Lánner groups, and finish with computations for 2–spherical

Coxeter groups whose corresponding nerves are no longer restricted to be graphs.

Let Kn denote the complete graph on n vertices. Recall that a Coxeter system

is 2–spherical if the one-skeleton of its nerve is Kn for some n. For the purpose of

figures and examples, we will distinguish the special case where the labeled nerve

L = Kn(3), where Kn(3) denotes the complete graph on n vertices with every edge

labeled by 3.

Unless stated otherwise, the standing assumption in this chapter is that q ≥ 1.

7.1 The case where L is a graph

Suppose that the labeled nerve L is the one-skeleton of an n–dimensional cell com-

plex Λ, where n ≥ 2. We say that a 2–cell of Λ is Euclidean if the corresponding

special subgroup generated by the vertices of that cell is a Euclidean reflection group.

Note that the only possible labels on a Euclidean cell are mst ∈ {2,3,4,6}.

Before proving the main theorem of this section, we begin with a lemma. The



68

special case of the lemma when q = 1 is closely related to a result of Schroeder [19,

Theorem 4.6]. We provide an argument which is analogous to that of Schroeder in

his proof.

Lemma 7.1.1. Suppose that the labeled nerve L is the one-skeleton of a cellulation

of S2. Then

L2
qb2(ΣL) = 0 for q ≤ 1.

Proof. In light of Lemma 3.3.8, we must show that L2
1b2(ΣL) = 0. We begin by

building L to a triangulation of S2 by coning on empty 2–cells and labeling the

new edges by 2’s, at each step keeping track of the L2
1–(co)homology with a Mayer–

Vietoris sequence. More precisely, start with T1 ⊂ S corresponding to an empty 2–

cell LT1 in L and denote by CLT1 the right-angled cone on LT1 . The corresponding

special subgroup WT1 is infinite, and it acts properly and cocompactly by reflections

on either R2 or H2. In both cases L2
1H2(ΣLT1

) = 0 and hence the Künneth formula

implies that L2
1H2(ΣCLT1

) = 0. We have the following Mayer–Vietoris sequence:

⋅ ⋅ ⋅ Ð→ L2
1H2(ΣLT1

) Ð→ L2
1H2(ΣCLT1

) ⊕L2
1H2(ΣL)

f1
Ð→ L2

1H2(ΣL∪CLT1) Ð→ ⋅ ⋅ ⋅

In particular, the map f1 is injective. We then choose another T2 ⊂ S corre-

sponding to an empty 2–cell LT2 in L and denote by CLT2 the right-angled cone on

LT2 . By a similar argument, the map f2 in the following Mayer–Vietoris sequence

is injective:

⋅ ⋅ ⋅ Ð→ L2
1H2(ΣCLT2

) ⊕L2
1H2(ΣL∪CLT2)

f2
Ð→ L2

1H2(ΣL∪CLT1∪CLT2) Ð→ ⋅ ⋅ ⋅

Proceed inductively until all empty 2–cells have been coned off and denote the

newly promoted nerve by L′. The fi’s yield a sequence of injective maps:

L2
1H2(ΣL) L2

1H2(ΣL∪CLT1) ⋅ ⋅ ⋅ L2
1H2(ΣL′)
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Since L′ is a triangulation of S2, it follows that ΣL′ is a 3–manifold. Now, a

result of Lott and Luck [14], in conjunction with the validity of the Geometrization

Conjecture for 3–manifolds [17], implies that L2
1H∗(ΣL′) vanishes in all dimensions.

In particular, L2
1b2(ΣL) = 0. ∎

Remark 7.1.2. Schroeder proves a more general theorem for q = 1 [19, Theorem

4.6]. A metric flag complex L is planar if it can be embedded as a proper sub-

complex of a triangulation of the 2–sphere (see the discussion before Theorem 5.3.3

for the definition of metric flag complex). Schroeder proves that if the nerve L of

a Coxeter system is planar, then L2
1bk(ΣL) = 0 for k ≥ 2. If L is planar and W is

the corresponding Coxeter group, then Proposition 2.9.1 implies that vcdW ≤ 2.

Therefore we can use Lemma 3.3.8 to deduce that L2
qbk(ΣL) = 0 for k ≥ 2 and q ≤ 1.

Theorem 7.1.3. Suppose that the labeled nerve L is the one-skeleton of a cell com-

plex that is a GHSn, n ≥ 2, where all 2–cells are Euclidean, and let (W,S) denote

the corresponding Coxeter system. Then L2
qb∗(ΣL) is concentrated in degree 2.

Furthermore,

L2
qb2(ΣL) = 1 −∑

s∈S

qs
1 + qs

+ ∑
s,t∈S
mst=2

qsqt
1 + qs + qt + qsqt

+ ∑
s,t∈S
mst=3

q3s
1 + 2qs + 2q2s + q

3
s

+

+ ∑
s,t∈S
mst=4

q2sq
2
t

1 + qs + qt + 2qsqt + q2sqt + qsq
2
t + q

2
sq

2
t

+

+ ∑
s,t∈S
mst=6

q3sq
3
t

1 + qs + qt + 2qsqt + q2sqt + qsq
2
t + 2q2sq

2
t + q

2
sq

3
t + q

3
sq

2
t + q

3
sq

3
t

.

Proof. Proposition 3.3.1 implies that L2
qb0(ΣL) = 0. Proposition 3.3.2, along with

Theorem 2.2.1, explicitly compute the formula for L2
qb2(ΣL). We now turn our

attention to showing L2
qb1(ΣL) = 0. For the construction of the fattened Davis

complex, we will use the given cell complex as P ∗.

We prove the theorem by induction on n. For the base case n = 2, first note

that for every T ∈ NP , σT is Euclidean. Hence Proposition 6.3.1 implies that each

CT appearing in ∂Kf corresponds to a set T ∈ NP where WT is Euclidean reflection
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group. Thus Corollary 6.4.3 and Theorem 3.3.4 imply that L2
qb1(U(W,CT )) = 0.

This and Proposition 3.3.1 imply that the E0,1
1 and E1,0

1 terms in the E1 sheet

of the spectral sequence in Proposition 6.4.5 are zero, which in turn implies that

L2
qb1(∂ΦL) = 0. Now, note that ΦL is three-dimensional and vcdW = 2. Moreover,

by Lemma 7.1.1, L2
q−1H2(ΣL) = 0. Therefore, via Lemma 6.4.2 (i), we reach the

conclusion that L2
qb1(ΣL) = 0.

Now, suppose the theorem is true form < n. Since ΣL is two-dimensional, Lemma

6.4.2 (ii) tells us that we are done if we show that L2
qb1(∂ΦL) = 0. Let T ∈ NP . Then

σT is the (∂σT , T )–chamber, where σT is the geometric cell in P ∗ spanned by T . In

particular, ∂σT is a cell complex that is GHSm, m < n, and since all 2–cells of P ∗ are

Euclidean, it follows that all 2–cells of ∂σT are Euclidean. Hence, by induction and

Corollary 6.4.3, it follows that for every T ∈ NP , L2
qb1(U(W,CT )) = L

2
qb1(ΣLT ) = 0.

This and Proposition 3.3.1 imply that the E0,1
1 and E1,0

1 terms in the E1 sheet

of the spectral sequence in Proposition 6.4.5 are zero, which in turn implies that

L2
qb1(∂ΦL) = 0. ∎

Consider the special case of Theorem 7.1.3 when n = 2. In this case, Theorem

7.1.3, along with Lemma 7.1.1, explicitly compute the L2
q–Betti numbers for all

q: they are always concentrated in a single dimension. We emphasize this in the

following corollary.

Corollary 7.1.4. Suppose that the labeled nerve L is the one-skeleton of a cell

complex that is a GHS2, where all 2–cells are Euclidean.

• If q ∈ R̄, then L2
qH∗(ΣL) is concentrated in dimension 0.

• If q ∉ R and q ≤ 1, then L2
qH∗(ΣL) is concentrated in dimension 1.

• If q ≥ 1, then L2
qH∗(ΣL) is concentrated in dimension 2.
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Furthermore,

χq(ΣL) = 1 −∑
s∈S

qs
1 + qs

+ ∑
s,t∈S
mst=2

qsqt
1 + qs + qt + qsqt

+ ∑
s,t∈S
mst=3

q3s
1 + 2qs + 2q2s + q

3
s

+

+ ∑
s,t∈S
mst=4

q2sq
2
t

1 + qs + qt + 2qsqt + q2sqt + qsq
2
t + q

2
sq

2
t

+

+ ∑
s,t∈S
mst=6

q3sq
3
t

1 + qs + qt + 2qsqt + q2sqt + qsq
2
t + 2q2sq

2
t + q

2
sq

3
t + q

3
sq

2
t + q

3
sq

3
t

.

If we place some restrictions on either our labels or the cell complex, then the

formulas in Theorem 7.1.3 become relatively simple, as illustrated by the following

corollaries.

Corollary 7.1.5. Suppose that L is the one-skeleton of a cell complex that is a

GHSn, n ≥ 2, where all 2–cells are 2–simplices. Give L the labels mst = 3. Then

L2
qb∗(ΣL) is concentrated in degree 2.

Furthermore,

L2
qb2(ΣL) = 1 −

V q

1 + q
+

Eq3

1 + 2q + 2q2 + q3
,

where V and E are the number of vertices and edges of L, respectively.

Recall that an n–dimensional octahedron has 2n vertices and 2n(n − 1) edges.

Corollary 7.1.6. Suppose that L the one skeleton of an n–dimensional octahedron

with n ≥ 3 and the labels mst = 3. Then L2
qb∗(ΣL) is concentrated in degree 2.

Furthermore,

L2
qb2(ΣL) = 1 −

2nq

1 + q
+

2n(n − 1)q3

(1 + 2q + 2q2 + q3)
.

Corollary 7.1.7. Let L = Kn(3) with n ≥ 3. Then L2
qb∗(ΣL) is concentrated in

degree 2. Furthermore,

L2
qb2(ΣL) = 1 −

nq

1 + q
+

n(n − 1)q3

2(1 + 2q + 2q2 + q3)
.

Remark 7.1.8. Note that under the hypothesis of the above corollaries, all gen-

erators in S are conjugate, so in this case q = q, where q ≥ 1 is a positive real

number.
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If we assume that W is right-angled, we have the following consequences of

Theorem 7.1.3.

Corollary 7.1.9. Suppose that L is the one-skeleton of a cell complex that is a

GHSn, n ≥ 2, where all 2–cells are 2–cubes. Give L the labels mst = 2. Then

L2
qb∗(ΣL) is concentrated in degree 2. Furthermore,

L2
qb2(ΣL) = 1 −∑

s∈S

qs
1 + qs

+ ∑
{s,t}∈S

qsqt
1 + qs + qt + qsqt

.

Analogous to the case where L = Kn(3), let Cn(2) denote the one-skeleton of

an n–cube with edges labeled by 2. If we assume that L = Cn(2) and that q = q,

where q is a positive real number, then we obtain simple formulas for the L2
q–Betti

numbers. Recall that an n–cube has 2n vertices and n2n−1 edges.

Corollary 7.1.10. Let L = Cn(2) with n ≥ 2. Then L2
qb∗(ΣL) is concentrated in

degree 2. Furthermore,

L2
qb2(ΣL) = 1 −

2nq

1 + q
+

n2n−1q2

1 + 2q + q2
.

We can also allow ourselves to remove some edges from L = Kn(3). We denote

by K l
n(3) the complete graph on n vertices, labeled by 3’s and with l edges removed.

We have the following consequence of Corollary 7.1.7.

Corollary 7.1.11. Suppose that L = K l
n(3), where n ≥ 5 and l ≤ n − 4. Then

L2
qb∗(ΣL) is concentrated in degree 2. Furthermore,

L2
qb2(ΣL) = 1 −

nq

1 + q
+

n(n − 1)q3

2(1 + 2q + 2q2 + q3)
−

lq3

1 + 2q + 2q2 + q3
.

Proof. We first note that removing an edge from Kn(3) splits the graph into two

copies of Kn−1(3) intersecting at Kn−2(3). Since n ≥ 5 and q ≥ 1 we have the

following Mayer–Vietoris sequence:

⋅ ⋅ ⋅ L2
qH1(ΣKn−2) L2

qH1(ΣKn−1) ⊕L
2
qH1(ΣKn−1) L2

qH1(ΣK1
n
) 0 (⋆)
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We first handle the case where L =K1
5(3). Removing an edge from K5(3) splits

the graph into two copies of K4(3) intersecting at K3(3). Corollary 7.1.7 computes

the L2
q–(co)homology of each of the pieces in this decomposition and applying the

sequence (⋆) now proves the assertion for the case L =K1
5(3).

The proof for L = K l
n(3) is now by induction, the above computation serving

as the base case. Suppose that the theorem is true for m < n. Begin by removing

an edge from Kn(3), splitting it as two copies of Kn−1(3) intersecting at Kn−2(3).

Now, we remove the remaining l − 1 ≤ n − 5 edges from each of the graphs in the

splitting, the worst case scenario being that we remove l − 1 edges from Kn−2(3)

(which in turn removes l − 1 edges from each copy of Kn−1(3)). Nevertheless, the

inductive hypothesis is satisfied for each of the Kn−1’s in the splitting no matter how

the remaining edges are removed. Applying a Mayer–Vietoris sequence analogous

to (⋆) now shows that the theorem holds for L =K l
n(3). ∎

With the help of ruins (see Section 4.2), we are also able to make computations

when we change some labels on L =Kn(3).

Theorem 7.1.12. Let L = Kn, the complete graph on n vertices with n ≥ 5. Let

k ≤ n − 4, and suppose that we label k edges of L with mst ∈ N − {1,3} and label the

remaining edges by 3. Then L2
qb∗(ΣL) is concentrated in degree 2.

Proof. The proof is by induction on n. First consider the case where L =K5 with one

label mst ∈ N − {1,3}. Then by Corollary 7.1.7, L2b1(Σ(S − s)) = L2b1(ΣK4(3)) = 0.

According to sequence (4.1), it remains to show that L2
qH1(ΩS{s}, ∂) = 0. We turn

our attention to sequence (4.1) with U = S, T = {s, t}, U ′ = S − t, and T ′ = {s}. By

Proposition 4.2.1, L2
qH1(ΩST , ∂) = 0, the point being that the relative chain complex

of (ΩST , ∂ΩST ) has no one-dimensional cells. So, by weak exactness, it remains to

show that L2
qH1(ΩU ′T ′ , ∂) = 0. We consider the following weak exact sequence:

⋅ ⋅ ⋅ L2
qH1(Σ(S − {s, t})) L2

qH1(Σ(S − t)) L2
qH1(ΩU ′T ′ , ∂) ⋅ ⋅ ⋅

Note that

L2
qb0(Σ(S − {s, t})) = L2

qb0(ΣK3(3)) = 0
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and

L2
qb1(Σ(S − t)) = L2

qb1(ΣK4(3)) = 0

by Theorem 3.3.4 and Corollary 7.1.7, respectively. By weak exactness, L2
qH1(ΩU ′T ′ , ∂) =

0, and hence L2
qH1(ΩS{s}, ∂) = 0, thus proving the assertion for L =K5.

Now, suppose that the theorem is true for L = Km, m < n. We wish to show

the theorem is true for L = Kn. Begin by choosing an edge e with vertices s and t

and label different from 3. We now observe that L2b1(Σ(S − s)) = L2b1(ΣKn−1) = 0

by the inductive hypothesis, since Kn−1 now has at most n − 5 edges with a label

different from 3. Similarly, the inductive hypothesis implies L2
qb1(Σ(S − t)) = 0 and

L2
qb0(Σ(S − {s, t})) = 0. Hence the weak exact sequences used in the proof for the

case L =K5 allow us to conclude that L2
qb1(ΣL) = L2

qb1(Σ(S)) = 0. ∎

Remark 7.1.13. Note that in conjunction with Theorem 3.3.4 and Corollary 7.1.4,

the above argument gives an alternate proof of Corollary 7.1.7.

7.2 Connection to the Weighted Singer Conjec-

ture

We note that Theorem 7.1.3 provides convincing evidence for the validity of a

weighted version of Theorem 5.0.2 when L is a triangulation of the (n − 1)–sphere.

Suppose that the labeled nerve L′ is the one-skeleton of a cellulation of a GHSn−1,

n ≥ 3, where all 2–cells are Euclidean. Build L′ to a triangulation that is a GHSn−1

by coning on each empty cell and labeling new edges by 2. In other words, perform

the following sequence of right-angled cones. First begin by coning on each empty

2–cell, then on each empty 3–cell, and so on, until each empty cell has been coned

off (if n = 3, this process stops when each empty 2–cell has been coned off).

Theorem 7.2.1. Suppose that the nerve L a GHSn−1, n ≥ 3, obtained via the above

construction and suppose that q ≥ 1. Then

L2
qbk(ΣL) = 0 for k ≤ 1.
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Proof. The proof of the theorem follows the strategy of Lemma 7.1.1: one performs

careful book-keeping using Mayer–Vietoris sequences when constructing L from L′.

Theorem 7.1.3 tells us that L′ originally satisfies L2
qb1(ΣL′) = 0. To construct L

from L′, we first began by coning empty 2–cells, then successively coning higher

dimensional cells, labeling new edges by 2. If at each step of this process we employ

a Mayer–Vietoris sequence, then Theorem 7.1.3, in conjunction with the fact that

right-angled cones will not develop new homology below dimension 2, implies that

L2
qb1(ΣL) = 0. ∎

7.3 Quasi-Lánner groups

A 2–spherical Coxeter group W is quasi-Lánner if it acts properly (but not co-

compactly) on hyperbolic space Hn by reflections with fundamental chamber an

n–simplex of finite volume. For brevity, we say that W is of type QLn. Quasi-

Lánner groups have been classified and only exist in dimensions 3 through 10. For

a complete list, see [13, §6.9]. We note that the Coxeter group with corresponding

nerve L =K4(3) is on the list.

All non-spherical proper special subgroups of a quasi-Lánner group are Euclidean

and on the list appearing in [13, pg. 34]. Moreover, if W is of type QLn, then the

only proper infinite special subgroups are those WT with ∣T ∣ = n − 1. Hence, by

Proposition 2.9.1, if W is of type QLn, then vcdW = n − 1. With this observation,

we prove the following theorem.

Theorem 7.3.1. Suppose that W is of type QLn. Then L2
qbk(ΣL) = 0 whenever

k ≥ n − 1 and q ≤ 1, or k ≤ 1 and q ≥ 1.

Proof. We first suppose that q = 1. Since W is of type QLn, we can realize a

finite volume n–simplex in hyperbolic space Hn, with W acting by reflections along

codimension-one faces (note that this simplex has some ideal vertices). By a theorem

of Cheeger–Gromov [5], L2
1Hk(ΣL) ≅ L2

1H
k(Hn), where L2

1H
k denotes the L2 de

Rham cohomology. By a theorem of Dodziuk [11], L2
1H

k(Hn) = 0 for all k ≥ 0 if n is
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odd, and is concentrated in dimension n
2 if n is even. In particular, L2

1bn−1(ΣL) = 0.

The result for q ≤ 1 now follows by Lemma 3.3.8 and the fact that vcdW = n − 1.

Now, suppose that q ≥ 1. Consider the fattened Davis complex ΦL with respect

to P = ∆n, the standard n–simplex (see Remark 6.1.1 and Figure 7.1).

Figure 7.1: Kf when L =K4(3)

Weighted Poincaré duality implies that

L2
qH1(ΦL, ∂ΦL) ≅ L

2
q−1Hn−1(ΦL) ≅ L

2
q−1Hn−1(ΣL) = 0,

so by the long exact sequence for the pair (ΦL, ∂ΦL) it remains to show L2
qH1(∂ΦL) =

0. Proposition 6.3.2 implies that each CT appearing in ∂Kf corresponds to a set

T ∈ NP with WT a Euclidean reflection group. In particular, Corollary 6.4.3 and

Theorem 3.3.4 imply that L2
qb1(U(W,CT )) = 0. Hence the E0,1

1 term in the E1

sheet of the spectral sequence of Proposition 6.4.5 is zero. By Proposition 3.3.1,

the first row of the E1 sheet is also zero, and in particular E1,0
1 is zero. Therefore

L2
qb1(∂ΦL) = 0. ∎

Of important note is the case when W is QL3. In this special case, Theorem 7.3.1

explicitly computes the L2
q–Betti numbers for all q: they are always concentrated

in a single dimension.

Corollary 7.3.2. Suppose that W is of type QL3. Then

• If q ∈ R̄, then L2
qH∗(ΣL) is concentrated in dimension 0.
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• If q ∉ R and q ≤ 1, then L2
qH∗(ΣL) is concentrated in dimension 1.

• If q ≥ 1, then L2
qH∗(ΣL) is concentrated in dimension 2.

Since the L2
q–(co)homology is always concentrated in a single dimension, one can

use Proposition 3.3.2, along with Theorem 2.2.1, to obtain explicit formulas for the

L2
q–Betti numbers.

7.4 Other 2–spherical groups

We now perform computations for other 2–spherical groups, removing the restriction

that the nerve L is a graph. Given a Coxeter system (W,S), we make a particular

choice of P for the construction of ΦL, namely P = ∆∣S∣−1, the standard (∣S∣ − 1)–

simplex (see Remark 6.1.1).

While one could argue the following lemma using the spectral sequence, we use

a simple Mayer–Vietoris sequence argument to illustrate the technique behind the

machinery.

Lemma 7.4.1. Suppose that (W,S) is infinite 2–spherical with ∣S∣ = 5 and vcdW ≤

3. Furthermore, suppose that every infinite special subgroup WT , with ∣T ∣ = 3,4, is

Euclidean or QL3, and that L2
1b3(ΣL) = 0. Then L2

qbk(ΣL) = 0 for k < 2.

Proof. We wish to reduce the proof to showing that L2
qb1(∂ΦL) = 0. If vcdW = 2,

then this is accomplished by Lemma 6.4.2 (ii). If vcdW = 3, then according to

Lemma 6.4.2 (i), we reduce the proof to showing L2
qb1(∂ΦL) = 0 if we show that

L2
q−1b3(ΣL) = 0. By Lemma 3.3.8, we reach this conclusion since by assumption

L2
1b3(ΣL) = 0. So, to complete the proof, we must show that L2

qb1(∂ΦL) = 0.

Let N
(j)
P = {T ∈ NP ∣ Card(T ) = j} and set

Aj = ⊔

T ∈N (j)P

U(W,CT ).

Note that ∣S∣ = 5 and all proper non-spherical subsets T have order 3 or 4, so by

Proposition 6.3.2, ∂ΦL = A3 ∪A4. Figure 7.2 illustrates the chamber for ∂ΦL for the

case where L =K5(3).
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Figure 7.2: Fundamental chamber for ∂ΦL when L =K5(3)

By Proposition 6.3.1 (i),

A3 ∩A4 = ⊔

U∈N (3)P

V ∈N (4)P
U⊂V

U(W,CU) ∩ U(W,CV )

By Corollary 6.4.3,

L2
qbk(Aj) = ∑L2

qbk(U(W,CT ))

= ∑L2
qbk(ΦLT )

and

L2
qbk(A3 ∩A4) = ∑L2

qbk(U(W,CT ))

= ∑L2
qbk(ΦLT )

Here LT is the subcomplex of L corresponding to the infinite subgroup WT ,

which is either Euclidean or of type QL3. By Theorem 3.3.4 and Theorem 7.3.1,
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L2
qbk(ΦLT ) = 0 for k < 2. Hence

L2
qHk(Aj) = 0 for j = 3,4 and L2

qHk(A3 ∩A4) = 0 for k < 2. (◇)

Now, consider the Mayer–Vietoris sequence:

⋅ ⋅ ⋅ L2
qHk(A3 ∩A4) L2

qHk(A3) ⊕L2
qHk(A4) L2

qHk(∂ΦL) ⋅ ⋅ ⋅

Inputting (◇) into this sequence yields

L2
qHk(∂ΦL) = 0 for k < 2.

Lemma 6.4.2 now concludes that L2
qb1(ΣL) = 0. ∎

Theorem 7.4.2. Suppose that (W,S) is infinite 2–spherical with ∣S∣ ≥ 5. Suppose

furthermore that:

1. For every T ⊆ S with ∣T ∣ ≥ 5, vcdWT ≤ ∣T ∣ − 2.

2. L2
1b∣S∣−2(ΣL) = 0.

3. Every infinite subgroup WT , with ∣T ∣ = 3,4, is Euclidean or QL3.

Then L2
qbk(ΣL) = 0 for k < 2.

Proof. The statement for L2
qb0(ΣL) follows from Proposition 3.3.1. So, we turn our

attention to showing L2
qb1(ΣL) = 0. The proof of the theorem is now by induction

on ∣S∣, Lemma 7.4.1 serving as the base case. By Lemma 3.3.8, since vcdW ≤ ∣S∣−2,

it follows that L2
q−1b∣S∣−2(ΣL) = 0. Furthermore, ΦL has dimension ∣S∣ − 1, so by

Lemma 6.4.2 it now suffices to show that L2
qb1(∂ΦL) = 0. By assumption, every non-

spherical special subgroup WU with ∣U ∣ = 3,4 is Euclidean or QL3. Thus every non-

spherical special subgroup WU , with 4 < ∣U ∣ < ∣S∣ satisfies the inductive hypothesis.

Therefore by induction, Theorem 3.3.4, and Theorem 7.3.1, for any T ∈ NP we have

that L2
qb1(ΣLT ) = 0 (Here LT is the subcomplex of L corresponding to the special

subgroup WT ).

Hence by Corollary 6.4.3 (i), for every T ∈ NP
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L2
qb1(U(W,CT )) = L

2
qb1(ΣLT ) = 0.

This implies that the E0,1
1 term in the E1 sheet of the spectral sequence of

Proposition 6.4.5 is zero. By Proposition 3.3.1, the first row of the E1 sheet is also

zero, and in particular E1,0
1 is zero. Therefore L2

qb1(∂ΦL) = 0. ∎

With the help of Theorem 5.0.2, we drop condition 2 in Theorem 7.4.2.

Corollary 7.4.3. Suppose that (W,S) is infinite 2–spherical with ∣S∣ ≥ 5. Suppose

furthermore that:

1. For every T ⊆ S with ∣T ∣ ≥ 5, vcdWT ≤ ∣T ∣ − 2.

2. Every infinite subgroup WT , with ∣T ∣ = 3,4, is Euclidean or QL3.

Then L2
qbk(ΣL) = 0 for k < 2.

Proof. Note that condition 2 in Theorem 7.4.2 is vacuously satisfied if vcdW ≤ ∣S∣−3,

so we suppose that vcdW = ∣S∣ − 2. We must show that L2
1b∣S∣−2(ΣL) = 0, and to

do this, we use an argument analogous to the one in Lemma 7.1.1. We first begin

by coning empty 2–simplices of L, and then empty 3–simplices, and so on, until all

empty simplices have been coned off. We then label all new edges by 2. In this

way we obtain a newly promoted nerve L′ which is a triangulation of S ∣S∣−2, and in

particular, ΣL′ is an (∣S∣ − 1)–manifold. By Theorem 5.0.2, L2
1b∣S∣−2(ΣL′) = 0, and

using the arguments of Lemma 7.1.1, we can conclude that L2
1b∣S∣−2(ΣL) = 0. ∎

As a corollary to Theorem 7.4.2, we also obtain a specialized version of Conjec-

ture 5.0.1 where n = 4 and W is 2–spherical.

Corollary 7.4.4. Suppose that (W,S) is 2–spherical with ∣S∣ ≥ 6 and that the nerve

L is a triangulation of S3. Furthermore, suppose that every infinite special subgroup

WT , with ∣T ∣ = 3,4, is Euclidean or QL3. Then

L2
qbk(ΣL) = 0 for k < 2.
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Proof. Since L is a triangulation of S3, it follows that vcdW = 4. In particular, W

satisfies the hypothesis of Theorem 7.4.2. ∎

Remark 7.4.5. Figure 7.3 gives examples of Coxeter diagrams whose corresponding

Coxeter system (W,S) has ∣S∣ = 6 and satisfies the hypothesis of Corollary 7.4.4 (if

two vertices are not connected, then the implied label between them is 2). The

author does not know whether there exist examples whenever ∣S∣ ≥ 7.

q
r

s m

t

u
v

1
q +

1
r +

1
s = 1, 1

t +
1
u +

1
v = 1, m = 2,3,4

• If m = 3, then s, r, u, t ≠ 6 and either s, r ≠ 4 or u, t ≠ 4.

• If m = 4, then s, r, u, t ≠ 4,6.

Figure 7.3: 2–spherical Coxeter diagrams satisfying the hypothesis of Corollary 7.4.4
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