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ABSTRACT

Multivariate Hilbert series of lattice cones

and homogeneous varieties

by

Wayne A. Johnson

The University of Wisconsin-Milwaukee, 2015
Under the Supervision of Dr. Jeb F. Willenbring

We consider the dimensions of irreducible representations whose highest weights

lie on a given finitely generated lattice cone. We present a rational function repre-

senting the multivariate formal power series whose coefficients encode these dimen-

sions. This result generalizes the formula for the Hilbert series of an equivariant

embedding of an homogeneous projective variety. We use the multivariate generat-

ing function to compute Hilbert series for the Kostant cones and other affine and

projective varieties of interest in representation theory. As a special case, we show

how the multivariate series can be used to compute the Hilbert series of the three

classical families of determinantal variety.

ii



c© Copyright by Wayne A. Johnson, 2015

All Rights Reserved

iii



Table of Contents

1 Introduction 1

1.1 Description of main result . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Note on organization . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Preliminaries 5

2.1 Linear algebraic groups . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 Lie algebras of linear algebraic groups . . . . . . . . . . . . . . . . . . 7

2.2.1 Lie algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2.2 The tangent space of an algebraic group . . . . . . . . . . . . 10

2.2.3 Correspondence between groups and Lie algebras . . . . . . . 12

2.3 The Theorem of the Highest Weight . . . . . . . . . . . . . . . . . . . 14

2.3.1 Representation theory of algebraic groups . . . . . . . . . . . 14

2.3.2 Root systems and highest weight theory . . . . . . . . . . . . 15

2.4 The Borel-Weil Theorem . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.5 The Weyl Dimension Formula . . . . . . . . . . . . . . . . . . . . . . 22

2.5.1 The Weyl Character Formula . . . . . . . . . . . . . . . . . . 22

2.5.2 Deriving the Weyl Dimension Formula from the Weyl Char-

acter Formula . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.6 Multivariate Hilbert series . . . . . . . . . . . . . . . . . . . . . . . . 27

2.6.1 Graded algebras . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.6.2 The Hilbert series of a projective variety . . . . . . . . . . . . 29

2.6.3 Multivariate Hilbert series and specializations . . . . . . . . . 30

iv



3 Classical Invariant Theory 32

3.1 Reductive algebraic groups and finite generation . . . . . . . . . . . . 33

3.2 First Fundamental Theorems . . . . . . . . . . . . . . . . . . . . . . 35

3.2.1 The First Fundamental Theorem for GL(V ) . . . . . . . . . . 35

3.2.2 First Fundamental Theorems for O(n) and Sp(n) . . . . . . . 37

3.3 Second Fundamental Theorems . . . . . . . . . . . . . . . . . . . . . 40

3.3.1 The Second Fundamental Theorem for GLn . . . . . . . . . . 40

3.3.2 The Second Fundamental Theorem for O(n) . . . . . . . . . . 42

3.3.3 The Second Fundamental Theorem for Sp(n) . . . . . . . . . . 43

4 Generalization of a theorem of Gross and Wallach 45

4.1 Results from Gross and Wallach . . . . . . . . . . . . . . . . . . . . . 45

4.2 The multivariate case . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.3 Proof of the generalization . . . . . . . . . . . . . . . . . . . . . . . . 50

4.4 A geometric interpretation of HSq〈λ1, . . . , λk〉 . . . . . . . . . . . . . 53

5 Examples of multivariate Hilbert series on homogeneous varieties 55

5.1 The homogeneous variety U\G . . . . . . . . . . . . . . . . . . . . . 55

5.2 The coordinate ring of an algebraic group . . . . . . . . . . . . . . . 57

5.3 The Kostant cone . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

5.3.1 Basic definitions and theorems . . . . . . . . . . . . . . . . . . 61

5.3.2 The coordinate ring of the Kostant cone . . . . . . . . . . . . 62

5.3.3 Multivariate Hilbert series on the Kostant cone . . . . . . . . 66

5.4 Determinantal varieties . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5.4.1 Symmetric determinantal varieties . . . . . . . . . . . . . . . . 67

5.4.2 Antisymmetric determinantal varieties . . . . . . . . . . . . . 71

5.4.3 The standard determinantal varieties . . . . . . . . . . . . . . 73

5.5 A nice lattice cone in P+(sln) . . . . . . . . . . . . . . . . . . . . . . 75

Bibliography 78

Curriculum Vitae 81

v



List of Figures

5.1 Coefficients for the differential operators in HSq〈(ω1, ω1), (ω2, ω2)〉. . . 59

5.2 The coefficients of the numerator of HSq,r〈(ω1, ω1), (ω2, ω2)〉. . . . . . 60

5.3 The coefficients of the numerator of HSq,r〈2ω1, 2ω2〉. . . . . . . . . . 69

5.4 Coefficients for the differential operators in HS6
q〈ω2, ω4〉 . . . . . . . . 72

5.5 Coefficients of the differential operators in HSq,r〈ω1, ωn−1〉 . . . . . . 76

vi



ACKNOWLEDGMENTS

I would first like to thank my advisor, Dr. Jeb F. Willenbring. He has been an

excellent teacher and mentor to me from my first year in the Masters program to

today. This work would not have been possible without his patience, guidance, and

support. I would also like to thank the rest of my committee: Drs. Allen Bell, Craig

Guilbault, Peter Hinow, and Yi Ming Zou. Thank you for taking the time to read

this dissertation.

I am grateful to all the wonderful professors and teachers whose courses have

brought me to this point in my education. In particular, I would like to thank Drs.

David Ellis and Benjamin Newton of Beloit College for supporting me and teaching

me how beautiful pure mathematics can be. Without your help and support, I

would never have decided that a career in pure mathematics was for me. I am lucky

enough to have had the opportunity to attend courses given by many passionate and

exemplary instructors, both in and out of the mathematics curriculum, who have

set the example for me as I teach my own courses.

Finally, I would like to thank my friends, family, and fellow graduate students

for all their help and support. I could not have done this without you.

vii



To Josh, Rachel, Amy, Renee, Nick, and Amanda. In the order I met you.



1

Chapter 1

Introduction

Let G be a semisimple linear algebraic group over C. The dimension of any finite

dimensional irreducible representation of G is given by the Weyl Dimension Formula.

We present a suitable rational expression for the multivariate power series which

encodes in its coefficients the dimensions of irreducible representations of G whose

highest weights lie in a finitely generated lattice cone in P+(g).

When the cone is generated by a single dominant integral weight, the generating

function is the Hilbert series for an equivariant embedding of G/P into a projective

space for some parabolic subgroup P . In fact, this case describes the Hilbert series

for all such equivariant embeddings. A closed form for these Hilbert series was estab-

lished by Gross and Wallach in [12]. Note that these embeddings include the most

important projective embeddings of homogeneous projective varieties, including the

Segre embedding of products of projective spaces, the Veronese embeddings of pro-

jective space, and the Plücker embeddings of Grassmannians. Another important

variety whose coordinate ring behaves much like that of G/P is the closure of the

G-orbit of a highest weight vector in a finite dimensional irreducible representation

of G. The coodinate ring was studied in this sense by Vinberg and Popov in [24],

and has a decomposition into irreducible highest weight representations similar to

that of G/P .

We study the case of a general finitely generated lattice cone, and show that there

is a multivariate extension of the results in [12] and [24]. This extension explicitly
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describes multivariate Hilbert series on many of the most interesting homogeneous

varieties. As a special case, we recover the closed form for the Hilbert series of

an equivariant embedding of G/P given in [12]. We also obtain explicit rational

functions for the multivariate Hilbert series on any variety whose coordinate ring

decomposes as a G-representation over a finitely generated lattice cone, such as the

symmetric, antisymmetric, and standard determinantal varieties.

In addition to these varieties, we obtain a closed form for the multivariate Hilbert

series of the Kostant cones, which generalize the orbit of a single highest weight vec-

tor. These varieties go back to Kostant, who proved that their ideals are generated

by quadratic elements. See [11], [18], [19], and the upcoming book by Wallach on

the subject [25]. We give a proof that the coordinate ring of a Kostant cone has

a multiplicity-free decomposition as a G-representation over a particular finitely

generated lattice cone in P+(g).

1.1 Description of main result

Here, we briefly describe the main theorem in the dissertation. LetG be a semisimple

algebraic group, and assume X is a homogeneous projective variety. In [12], Gross

and Wallach computed an explicit rational function describing the Hilbert series of

X that holds in any embeddings ofX into projective space using the Weyl Dimension

Formula. We recall their result here.

Assume T ⊂ B ⊂ G is a fixed choice of maximal torus and Borel subgroup inside

G. Let L(λ) be an irreducible highest weight representation of G, and assume that

P is the parabolic subgroup of G stabilizing the unique hyperplane in L(λ) fixed by

B. Then the homogeneous projective variety G/P embeds in the projective space

P(L(λ)) of hyperplanes in L(λ) via the map

πλ : G/P → P(L(λ))

given by πλ(gP ) = g.H. Then the coordinate ring of πλ(G/P ) is N-graded. In

particular,
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C[πλ(G/P )] =
⊕
n≥0

L(nλ),

where C[πλ(G/P )] is the homogeneous coordinate ring of πλ(G/P ). The Hilbert

series of πλ(G/P ) is then given by

HSπλ(q) =
∑
n≥0

dim(L(nλ))qn.

Gross and Wallach computed the following rational function expressing the Hilbert

series for this embedding. Note that since all embeddings of homogeneous projective

varieties are of the form discussed above, this rational expression represents the

Hilbert series for any homogeneous projective variety.

Theorem (Gross and Wallach). A closed form for the Hilbert series of the em-

bedding πλ of G/P in P(L(λ)) is given by∏
α∈Φ+

(
cλ(α)q

d

dq
+ 1

)
1

1− q
,

where cλ(α) :=
(λ, α)

(ρ, α)
, ρ is the sum of the dominant integral weights of g, and (·, ·)

is the bilinear form on h∗ induced by the Killing form on g.

Forgetting the geometric motivation for a moment, the formal power series

HSπλ(q) encodes in its coefficients the dimensions of irreducible highest weight rep-

resentations of G lying along the ray generated by λ, Nλ in the dominant chamber

of the weight lattice P+(g). We present a generalization of this. Consider all irre-

ducible highest weight representations of G whose highest weights lie on the finitely

generated lattice cone 〈λ1, . . . , λk〉 := Nλ1 ⊕ · · · ⊕ Nλk in P (g). The multivariate

formal power series

HSq〈λ1, . . . , λk〉 :=
∑
a∈Nk

dim(L(a1λ1 + · · ·+ akλk))q
a,

where qa encodes in its coefficients the dimensions of the irreducible highest weight

representations of G whose highest weight lies somewhere in the cone 〈λ1, . . . , λk〉.
Then we prove that the theorem proved in [12] generalizes to the following (keeping

the numbering it appears with later in the dissertation).
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Theorem 4.2.1. Let λ1, . . . , λk be dominant integral weights. Then

HSq〈λ1, . . . , λk〉 =
∏
α∈Φ+

(
1 + cλ1(α)q1

∂

∂q1

+ · · ·+ cλk(α)qk
∂

∂qk

) k∏
i=1

1

1− qi
,

where cλ(α) :=
(λ, α)

(ρ, α)
.

An explanation for the notation in Theorem 4.2.1 can be found in §2.5.

Returning to the geometry, for specific choices of λ1, . . . , λk, the series

HSq〈λ1, . . . , λk〉 describes the multivariate Hilbert series of the most interesting

varieties from the perspective of representation theory. We spend a good deal of

time going through examples in detail, including using Theorem 4.2.1 to find explicit

rational expressions for both multivariate and single variable Hilbert series on the

three classical types of determinantal varieties.

1.2 Note on organization

The dissertation is organized into five chapters, the first of which is introductory in

nature. Chapter 2 describes the necessary preliminary results needed to understand

the proof of Theorem 4.2.1. In Chapter 3, we present results from Classical Invariant

Theory intended to motivate the examples covered in Chapter 5. Chapter 4 contains

an overview of the geometric setting of partial flag varieties and a proof of Theorem

4.2.1. In Chapter 5, we discuss specific examples and specializations of Theorem

4.2.1 to compute Hilbert series (both singly- and multi-graded) of many classes of

varieties of interest in representation theory.
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Chapter 2

Preliminaries

In this chapter, we present the basic results needed throughout the dissertation.

There are many great references for these results, including [4], [9], [10], and [21].

Sometimes we will want a more specific reference. Good references on the structure

theory of semisimple Lie algebras are [14] and [16]. For a readable introduction to

algebraic geometry and linear algebraic groups, see [15]. We also use this chapter as

a way to introduce the notation that will be standard throughout the dissertation.

We begin with a section describing basic facts about linear algebraic groups and

certain special subgroups. Then follows a section on assigning a Lie algebra to an

algebraic group and discussing the correspondence between groups and algebras.

Sections 2.3, 2.4, and 2.5 discuss three fundamental theorems in the representation

theory of linear algebraic groups, which will be used throughout the dissertation: the

Theorem of the Highest Weight, the Borel-Weil Theorem, and the Weyl Dimension

Formula. We then switch gears from representation theory and conclude with a

brief discussion of multivariate Hilbert series in algebraic geometry.

2.1 Linear algebraic groups

Throughout this dissertation, we assume that G is a linear algebraic group over C,

unless explicitly stated otherwise. By a linear algebraic group, we mean a Zariski

closed subgroup of GL(n,C). For example, the special linear group SL(n,C) is the

zero locus of the polynomial det(g)−1, where det(g) is the determinant of the matrix
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g ∈ GL(n,C), which is polynomial in the matrix entries of g. In fact, it is often a

good idea to keep this example in mind when trying to understand the definitions

in this chapter.

We begin by defining some special subgroups of G. These classes of subgroups

will both allow us to discuss many of the algebraic properties of G and provide us

with the most interesting algebro-geometric examples of quotients of G.

Definition 2.1.1. A Borel subgroup, B ⊂ G, is a maximal solvable subgroup of G.

Note that a Borel subgroup is not necessarily normal in G. Nevertheless, the

quotient G/B, which can be given the structure of a projective variety, is intensely

studied. The geometry of G/B is closely related to the representation theory of G.

In the case where G = SL(n,C) and B is the subgroup of upper triangular matrices,

B is the stabilizer of the full flag

0 ⊂ 〈e1〉 ⊂ · · · ⊂ 〈e1, . . . , en−1〉 ⊂ Cn,

where e1, . . . , en are the standard basis vectors of Cn, under the standard action of

SL(n,C) on Cn. For this reason, G/B is often called the full flag variety, or just the

flag variety, even when G is not assumed to be the special linear group. Note also

that all Borel subgroups B of G are conjugate. In particular, they are all isomorphic

as algebraic groups.

Definition 2.1.2. A subgroup, P ⊂ G, is called parabolic if it contains a Borel

subgroup.

In the case where P is a parabolic subgroup of G, the quotient G/P can be

given the structure of a projective variety. In fact, the converse is also true. If H is

a subgroup of G and G/H can be given the structure of a projective variety, then

H must have been a parabolic subgroup of G (cf., p.384 in [9]). As a reminder, a

parabolic subgroup P is not necessarily normal in G. Therefore, the quotient G/P

does not have the structure of a group. However, since G/P is a projective variety,

it comes equipped with quite a bit of geometric structure, including a homogeneous

coordinate ring and a Hilbert series. Determining the Hilbert series of G/P as a
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rational function is one of the main motivations behind this dissertation. We discuss

Hilbert series in more depth in §2.5.

The varieties G/P are called partial flag varieties or sometimes just flag varieties.

The motivation behind these terms is similar to that ofG/B. AssumeG is the special

linear group SL(n,C) and let B be the subgroup of upper triangular matrices as

before. Then any parabolic subgroup P ⊃ B of G fixes a partial flag

V0 ⊂ V1 ⊂ · · · ⊂ Vk in Cn,

under the standard action of SL(n,C) on Cn.

Definition 2.1.3. A unipotent subgroup, U ⊂ G, is a subgroup of G consisting of

matrices of the form I +N for some nilpotent matix N .

Definition 2.1.4. An algebraic torus1, T , in G is a subgroup isomorphic to (C×)l

for some l ∈ N. The integer l is called the rank of T .

Maximal toral subgroups play an important role in the representation theory of

G, which we will discuss more thoroughly in §2.3. One of the nice facts about Borel

subgroups is that every Borel subgroup is the product of a maximal torus and a

unipotent subgroup. In other words, if B is a Borel subgroup, then B = T · U ,

where T is a maximal torus in G and U is a maximal unipotent subgroup of G. If

B, T , and U are as above, then we have a natural map

π : G/U → G/B.

Note that, since B = T · U , the fibres of this map are isomorphic as varieties to T .

In particular, π−1(1B) = {tU | t ∈ T}. Actually, something much stronger is true.

Under the map π, G/U has the structure of a torus bundle over G/B.

2.2 Lie algebras of linear algebraic groups

In this section, we discuss the basic definitions and facts necessary to introduce the

dictionary between the category of finite dimensional (real) Lie algebras and the

1A group that is an algebraic torus is sometimes referred as a toral group or simply a torus. We
will use these terms interchangeably to mean an algebraic torus.
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category of simply connected (real) Lie groups. This dictionary does not completely

hold in the setting of linear algebraic groups. We will discuss when the correspon-

dence fails, and why this failure does not pose too much of a problem for the study

of algebraic groups. On the way, we will discuss the tangent space of an algebraic

group and use it to define the Lie algebra, g, of a linear algebraic group, G. A

readable introduction to the basics of Lie algebras can be found in [14], and a more

in depth discussion of the process of assigning a finite dimensional Lie algebra to a

linear algebraic group can be found in [15].

2.2.1 Lie algebras

Let L be a vector space over a field K. For the sake of simplicity, assume that K

has characteristic zero.

Definition 2.2.1. L, equipped with a bilinear operation [·, ·] called the bracket of

L, is called a Lie algebra over K if the following conditions are satisfied:

1. the bracket operation is K-bilinear,

2. [X, Y ] = −[Y,X] for all X, Y ∈ L, and

3. [X, [Y, Z]] + [Y, [Z,X]] + [Z, [X, Y ]] = 0, for all X, Y, Z ∈ L.

Property 2 says that the bracket operation is anti-commutative, and Property 3

is referred to as the Jacobi identity. Note that the bracket operation is, in general,

neither commutative nor associative. In this way, the bracket operation does not

give L the structure of a ring.

Any associative algebra A over K can be made into a Lie algebra by defining

a bracket operation on A by the commutator: [X, Y ] = XY − Y X. In this way,

we are led to our first example of a Lie algebra. Let Mn(C) be the vector space

of all n × n complex matrices. This space is an associative algebra under matrix

multiplication. When we wish to refer to the Lie algebra structure on Mn(C), we

denote it by gl(n,C). This is the Lie algebra of n×n matrices under the commutator

bracket. Many of the most interesting examples of finite dimensional Lie algebras
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can be realized as subalgebras of gl(n,C). From now on, we will assume that K is

the field of complex numbers, unless stated otherwise.

Definition 2.2.2. A vector subspace W in a Lie algebra L is called a Lie subalgebra

if W is closed under the bracket operation: [X, Y ] ∈ W for all X, Y ∈ W . W is

called an ideal in L if it is closed under the bracket operation by all elements of L:

[X, Y ] ∈ W for all X ∈ L, Y ∈ W .

Note that if W is an ideal in L, then the quotient vector space L/W is naturally

a Lie algebra under the bracket [X +W,Y +W ] := [X, Y ] +W .

A Lie algebra L is called abelian if [X, Y ] = 0 for all X, Y ∈ L. In this case, the

bracket of L is called trivial. Note that any vector space V can be made into a Lie

algebra by assigning the trivial bracket to V . A non-abelian Lie algebra is called

simple if it contains no ideals, save itself and the zero subspace.

Simple Lie algebras are, in a sense, the building blocks of the category of Lie

algebras we will be studying further in this section. A Lie algebra L is called

semisimple if it can be decomposed

L = L1 ⊕ · · · ⊕ Lk

into a direct sum of simple ideals Li.

Definition 2.2.3. A linear map T : L1 → L2 between Lie algebras L1 and L2 is

called a Lie algebra homomorphism if T preserves the bracket operations on L1 and

L2, ie. T ([X, Y ]L1) = [T (X), T (Y )]L2 .

We then have the following theorem on semisimple Lie algebras. This is Corollary

5.2 of [14].

Theorem 2.2.4. If L is semisimple, then L = [L,L], and all ideals and homomor-

phic images of L are semisimple.

In this way, we may think of the finite dimensional, semisimple Lie algebras as

a full subcategory of the category of finite dimensional Lie algebras. The repre-

sentation theory of this category of Lie algebras is particularly nice when K = C.
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When K = R, there is an equivalence of categories between the finite dimensional

semisimple Lie algebras and a certain category of real Lie groups. We will revisit

both of these settings later in this chapter.

2.2.2 The tangent space of an algebraic group

Our motivation for studying Lie algebras in this dissertation is in using them as

a tool to understand the representation theory of complex linear algebraic groups.

Therefore, we wish to understand the relationship between an algebraic group and

its Lie algebra. In order to do so, we define the notions of tangent spaces and

vector fields in the category of algebraic groups. This subsection draws heavily from

Chapters I and III in [15]. This subsection assumes some familiarity with elementary

concepts from algebraic geometry. Some good sources for this background are [3]

and [15].

Let X be an affine algebraic variety. We wish to introduce the notion of a tangent

space at a point x ∈ X. We will then show that the tangent space at the identity

of a linear algebraic group naturally has the structure of a Lie algebra. In this way,

we are able to mimic the Lie group case in the algebraic category. We begin with

an extrinsic definition.

Definition 2.2.5. Assume X ⊂ An(C) is an affine variety defined by the vanishing

of the polynomials f1, . . . , fk ∈ C[x1, . . . , xn]. Fix a point a ∈ X. Set

daf :=
n∑
i=1

∂f

∂xi
(a)(xi − ai).

The geometric tangent space of X at the point a is defined to be the linear variety

in An(C) defined by the vanishing of all daf , for all f in the ideal of X. Denote the

geometric tangent space of X at a as Tan(X)a.

It can be shown that for any finite set f1, . . . , fk of generators for the ideal

of X, Tan(X)a is defined by the vanishing of the corresponding linear functionals

daf1, . . . , dafk. We now wish to give an intrinsic formulation of the geometric tangent

space at a point in a variety.
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Let M be the maximal ideal of the coordinate ring C[X] given by polynomial

functions which vanish at the point x. The quotient ring C[X]/M can be identified

with C, and thus, the quotient M/M2 is a complex vector space. Since M is finitely

generated as a C[X]-module, the vector space M/M2 is finite dimensional. Now,

let Oa be the localization C[X]M , with maximal ideal Ma := MC[X]M . There

is a canonical isomorphism of from M/M2 to Ma/M2
a induced by the inclusion

C[X]→ C[X]M . We then define the tangent space of X at a point a ∈ X to be the

dual space (Ma/M2
a)
∗ over the field C = Oa/Ma. It can be shown that this space

can be explicitly identified with Tan(X)a.

The space (Ma/M2
a)
∗ does not depend on any embedding in affine space for its

definition. This formulation of the tangent space is then intrinsic to the variety X.

From now on, we will set Tan(X)a = (Ma/M2
a)
∗.

We return to the case where X = G is a linear algebraic group over C, and

consider the space Tan(X)e, where e is the identity in G. We wish to have a natural

assignment of a finite dimensional Lie algebra to the algebraic group G. Following

what we know for the case of real Lie groups, we wish to identify the tangent

space at the identity as a Lie algebra in a functorial way. To this end, let C[G]

be the coordinate ring of G. G acts on C[G] via g.f(h) := f(g−1h). This action

extends to the space Der(G) of all derivations of C[G]. The commutator bracket

[f, g] = fg − gf of two derivations f, g ∈ Der(G) is again a derivation. Thus,

Der(G) is a Lie algebra. However, this algebra is not finite dimensional. Note, the

product of two derivations is not necessarily a derivation. The Lie algebra structure

on Der(G) is therefore the natural ‘multiplication’ structure to consider.

The action of G on C[G] extends to an action on the algebra Der(G) of deriva-

tions on C[G]. Let g be the set of all left invariant derivations on C[G]. The bracket

of two left invariant derivations is again left invariant. Thus g is a Lie subalgebra of

Der(G). We call g the Lie algebra of G. For any homomorphism φ : G1 → G2 of lin-

ear algebraic groups, we have a natural linear map dφe1 : Tan(G1)e1 → Tan(G2)e2 ,

where e1, e2 are the identity elements of G1, G2, resp., and dφe1 is the differential of

the map φ at the identity. The following theorem (Theorem 9.1 in [15]) guarantees
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that g is the natural Lie algebra to assign to G.

Theorem 2.2.6. Let G be a linear algebraic group, and let Tan(G)e be the tangent

space to G at the identity. Then Tan(G)e and g are naturally isomorphic. In

particular, g is finite dimensional and dim(G) = dim(g). If φ : G1 → G2 is a regular

homomorphism of algebraic groups, then the map dφe : g1 → g2 is a homomorphism

of Lie algebras.

Note that the differential dφe1 behaves functorially. Thus, Theorem 2.2.6 guar-

antees that, to every linear algebraic group G, we can naturally assign a finite

dimensional Lie algebra g, which is the tangent space of G at the identity.

2.2.3 Correspondence between groups and Lie algebras

We now turn to the question of whether the assignment of a Lie algebra to a linear

algebraic group from the previous subsection is ‘unique’, in the sense that, under

a suitable restriction of the category of groups we consider, we can reverse the

assignment in a natural way. In other words, we want to recall the equivalence of

categories from a suitable subcategory of algebraic groups to a the category of finite

dimensional (complex) Lie algebras. We recall the situation for real Lie groups

before discussing why this process does not work for algebraic groups. However,

the natural assignment from the previous subsection will prove good enough for the

purpose of discussing the representation theory of algebraic groups in terms of the

representation theory of their Lie algebras.

Let G be a finite dimensional Lie group. Then the tangent space at the identity

is identified with the finite dimensional real Lie algebra of left invariant vector fields

on G. If we assume that the objects in the category of Lie groups are simply

connected, then there is an equivalence of categories between the category of finite

dimensional, (real) Lie groups and the category finite dimensional real Lie algebras.

In particular, there is an equivalence of categories between the category of finite

dimensional, semisimple, simply connected real Lie groups and the category of finite

dimensional semisimple real Lie algebras. This is Theorem 3.28 in [26]. The group
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assigned by this correspondence to a finite dimensional Lie algebra g is called the

adjoint group of g.

We could naively hope that there is a suitable category of linear algebraic groups

under which a similar result holds. To this end, we make the following definition.

Definition 2.2.7. A connected algebraic group is called semisimple if it contains

no closed connected abelian normal subgroup except the trivial subgroup.

The following theorem gives the relationship between semisimple algebraic groups

and semisimple complex Lie algebras (cf., p. 89 in [15]).

Theorem 2.2.8. A connected linear algebraic group G is semisimple if and only if

its Lie algebra, g, is semisimple.

Therefore, if we start with a semisimple group, we are guaranteed to assign a

semisimple Lie algebra to it, as in the case of Lie groups. When we venture out

of semisimple complex Lie algebras, we run into a problem. Let g = C be the one

dimensional complex abelian Lie algebra. This algebra has no ‘adjoint group’ in the

category of linear algebraic groups. The group C× has Lie algebra g, but C× is not

simply connected. Any finite covering group of C× will have the same Lie algebra.

Also, the universal covering group of C× is not a linear algebraic group. Note that

this is actually quite subtle. The additive group C can be given the structure of a

linear algebraic group with Lie algebra the abelian Lie algebra C. Since C is simply

connected, we would hope that this could be our adjoint group. However, this is

not functorial. The covering map (in this case the exponential) from C× to C is not

regular, and thus not a morphism in the category of algebraic groups. In this way,

we do not have a natural adjoint group to assign to g.

Even with this ‘pathology’, we can study the representation theory of a semisim-

ple algebraic group by studying that of a finite dimensional semisimple complex Lie

algebra. In fact, in this setting, the two objects have ‘equivalent’ representation

theories, as we would desire. We will discuss this in greater detail in the following

section.
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2.3 The Theorem of the Highest Weight

In this section, we discuss the representation theory of semisimple linear algebraic

groups, culminating in the Theorem of the Highest Weight, which characterizes the

equivalence classes of finite dimensional irreducible representations of an algebraic

group G by the combinatorial data of the weight lattice of its Lie algebra g. In this

section, and for the rest of the dissertation, we assume G is a semisimple, simply

connected linear algebraic group, unless explicitly stated otherwise. More in depth

discussions of the material in this section can be found in Chapters 1 and 3 of [10]

and Chapters X and XI of [15].

2.3.1 Representation theory of algebraic groups

Let V be a complex vector space. By a regular representation of an algebraic group

G, we mean a regular homomorphism

π : G→ GL(V ),

where GL(V ) denotes the general linear group of invertible linear tranformations on

V . Note, the word regular here is used in the sense of algebraic geometry. That is,

we assume the representation is polynomial in the matrix entries on G. Unless stated

otherwise, when we discuss representations of G, we mean regular representations.

Note that a regular representation is necessarily finite dimensional. We denote a

representation as a pair (π, V ).

On the other hand, if g is a Lie algebra and V is a complex vector space, then

we call a Lie algebra homomorphism

φ : g→ gl(V )

a representation of g, where gl(V ) is the general linear Lie algebra of all linear

transformations of V under the commutator bracket. We also denote representations

of g by pairs (φ, V ).

A regular representation (π, V ) of an algebraic group G can be differentiated

to obtain a representation (dπ, V ) of its Lie algebra. The representation (dπ, V )
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is called the differential of the representation (π, V ). Thus, every representation

of an algebraic group G induces a representation on its Lie algebra g. When G

is semisimple, we can go the other way, and “integrate” a representation of g to

a representation of G. In this way, studying the representation theory of the Lie

algebra g of an algebraic group G yields information about the representation theory

of the group G.

A representation (π, V ) of G is said to be irreducible if it contains no non-trivial

G-invariant subspaces. That is, if W ⊂ V is a subspace such that π(G)W ⊂ W , then

W is either the trivial subspace or W = V . In a sense, the irreducible representations

of G are the building blocks of all representations of G, at least when G is semisimple.

This is made precise in the following theorem (cf., p. 88 in [15]).

Theorem 2.3.1. Let G be a semisimple linear algebraic group. Then every repre-

sentation (π, V ) of G decomposes as a direct sum of representations of G

V =
⊕
i

Vi,

such that each Vi is irreducible.

Our first goal will be to classify all finite dimensional irreducible representation

of a semisimple algebraic group G. This is the content of the Theorem of the

Highest Weight. Note that it can be shown that all irreducible representations of a

semisimple, simply connected algebraic group are finite dimensional. Therefore, the

Theorem of the Highest Weight completely classifies all irreducible representations

of a semisimple, simply connected linear algebraic group G.

2.3.2 Root systems and highest weight theory

Let g be a finite dimensional, semisimple complex Lie algebra. The adjoint repre-

sentation of g is the representation

ad : g→ gl(g)

given by adX = [X, ·] for all X ∈ g. A subalgebra h ⊂ g is called toral if adX

is a semisimple transformation for all X ∈ h. A toral subalgebra with maximal
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dimension is called a Cartan subalgebra. It can be shown (cf., Lemma 2.5.17 in [10])

that every toral subalgebra is abelian and that every finite dimensional, semisimple

complex Lie algebra contains nonzero Cartan subalgebras (cf., Corollary 2.5.16 in

[10]). Further, all Cartan subalgebras of a given Lie algebra are isomorphic as Lie

algebras.

Fix a choice of Cartan subalgebra h ⊂ g. For each λ in the dual space h∗, set

gλ := {Y ∈ g | adX(Y ) = λ(X)Y for all X ∈ h}.

Note that g0 = {Y ∈ g | [X, Y ] = 0 for all X ∈ h}. This subspace of g is called

the centralizer of h in g. Define Φ to be the set of all λ ∈ h∗ \ 0 such that gλ 6= 0.

Elements of Φ are called the roots of the Lie algebra g. The nonzero gλ with λ ∈ Φ

are called the root spaces of g

Since, for all X ∈ h, the transformation adX are all mutually commuting and

semisimple, we have a root space decomposition of g:

g = g0 ⊕
⊕
λ∈Φ

gλ.

It can be shown that a Cartan subalgebra is its own centralizer in g (cf., Proposition

2.5.18 in [10]), and thus g0 = h.

We collect the basic facts on roots and root spaces in the following theorem.

This is Theorem 2.5.20 in [10].

Theorem 2.3.2. Let g be a semisimple complex Lie algebra. The roots and root

spaces of g satisfy the following properties:

1. Φ spans h∗.

2. If α ∈ Φ, then dim[gα, g−α] = 1, and there is a unique element hα ∈ [gα, g−α]

such that α(hα) = 2. The element hα is called the coroot of α.

3. If α ∈ Φ and z ∈ C, then cα ∈ Φ if and only if c = ±1. Also, dimgα = 1.

4. Let α, β ∈ Φ with β 6= ±α. Let p be the largest integer non-negative integer

with β+pα ∈ Φ and let q be the smallest non-negative integer with β−qα ∈ Φ.

Then
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β(hα) = q − p ∈ Z

and β + rα ∈ Φ for all integers r with −q ≤ r ≤ p. Hence β − β(hα)α ∈ Φ.

5. If α, β ∈ Φ and α + β ∈ Φ, then [gα, gβ] = gα+β.

Define a bilinear form on g by (X, Y ) = Tr(adXadY ). This form is called the

Killing form for g. It can be shown (cf., Theorem 2.5.11 in [10]) that the Killing

form of a Lie algebra g is nondegenerated if and only if g is semisimple. Since (·, ·)
is nondegenerate, it induces an isomorphism between g and g∗. We will often abuse

notation and denote by (·, ·) the bilinear form induced by the Killing form on g∗

(and, in particular, h∗).

Using the Killing form, we can define positive roots. Let E be the real span of

{hα | α ∈ Φ}. A regular element of E is a vector h ∈ E such that (α, h) 6= 0 for all

α ∈ Φ. Regular elements of E exist. Fix a regular element h, and set

Φ+ = {α ∈ Φ | (α, h) > 0}.

The set Φ+ is called the set of positive roots of g. It can be shown that Φ =

Φ+ ∪ (−Φ+).

A positive root α which cannot be written as the sum of two other positive roots

is called simple. Let ∆ be the set of all simple roots of g. Then we have the following

(cf., Proposition 2.5.23 in [10]).

Proposition 2.3.3. Let ∆ be the set of simple roots of g. Then every positive root

is a linear combination of the elements of ∆ with nonnegative integer coefficients.

In this sense, the simple roots generate all of the positive roots. Note that these

definitions depend on our choice of regular element h ∈ E. However, it can be

shown that a set of simple roots always exists, and each set of simple roots for a

given semisimple complex Lie algebra has the same cardinality.

We now turn to highest weight theory. Begin by fixing a Cartan subalgebra

h ⊂ g.
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Definition 2.3.4. Let g be a semisimple complex Lie algebra with Cartan subal-

gebra h. The weight lattice for g is the set

P (g) = {µ ∈ h∗ | µ(hα) ∈ Z for all α ∈ Φ}.

By the linearity of µ ∈ h∗, P (g) is an additive subgroup of h∗.

Definition 2.3.5. The root lattice of g, Q(g), is the additive subgroup of h∗ gener-

ated by Φ ∪ {0}.

The root lattice Q(g) is a subgroup of the weight lattice P (g). Let (φ, V ) be a

finite dimensional representation of g. For each µ ∈ h∗, set

V (µ) = {v ∈ V | φ(Y )v = µ(Y )v for all Y ∈ h}.

If V (µ) 6= 0, call µ a weight of V . Let X(V ) ⊂ h∗ be the set of all weights of V .

Then we have the following theorem (cf., Theorem 3.1.16 in [10]).

Theorem 2.3.6. Let (φ, V ) be a finite dimensional representation of g. Then

X(V ) ⊂ P (g), and

V =
⊕

µ∈X(V )

V (µ).

Let ∆ be a fixed choice of simple roots for g with positive roots Φ+. Define the

fundamental dominant weights in P (g) to be the weights dual to the coroots hα under

the form induced by the Killing form on h for all α ∈ ∆. That is, if ∆ = {α1, . . . , αk},
then the fundamental dominant weights are the weights {ω1, . . . , ωk} ⊂ P (g) such

that

(ωi, hαj) = δij.

Denote by P+(g) the subsemigroup of P (g) generated by the fundamental dominant

weights. In other words,

P+(g) = Nω1 ⊕ · · · ⊕ Nωk ⊂ P (g).
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Weights in P+(g) are referred to as dominant integral weights. Further, a dominant

integral weight is called regular if none of its integral coefficients are zero.

Fundamental dominant weights play an important role in the representation the-

ory of semisimple algebraic groups and semisimple complex Lie algebras. They are

precisely the data needed to parametrize the finite dimensional irreducible represen-

tations of an algebraic group G. This is the content of the Theorem of the Highest

Weight, which can be found in any introductory text on Lie theory (including [9],

[10], [14], etc.).

Let (φ, V ) be a nonzero irreducible, finite dimensional representation of g. Then

there exists a unique weight λ ∈ P+(g) such that dim(V (λ)) = 1. This weight λ

is called the highest weight of the representation V . Any nonzero vector vλ in the

(one dimensional) weight space V (λ) is called a highest weight vector. We state the

following version of the Theorem of the Highest Weight for the finite dimensional

irreducible representations of g.

The Theorem of the Highest Weight. Let λ be a dominant integral weight of

g. Then the following hold.

1. There exists a finite dimensional irreducible representation, (σ, L(λ)), of g with

highest weight λ.

2. Let (φ, V ) be an finite dimensional irreducible representation of g with highest

weight λ. Then (φ, V ) is equivalent to (σ, L(λ)).

Note that, due to the way the representation theory of G and that of g are

intertwined, we could have written this discussion in terms of the group G. In par-

ticular, the finite dimensional irreducible representations of G are also parametrized

by the dominant integral weights of g. We will fix the notation L(λ) to mean the

irreducible highest weight representations of highest weight λ for the remainder of

the dissertation.
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2.4 The Borel-Weil Theorem

The Borel-Weil Theorem can be thought of as a reformulation of the Theorem of

the Highest weight in the setting of line bundles on the flag variety G/B. While

beautiful in its own right, this point of view leads to many of the geometric appli-

cations of representation theory, including the motivation behind the results from

[12] generalized in this dissertation. The Borel-Weil Theorem realizes irreducible

highest weight representations of G concretely as the spaces of sections on certain

line bundles on G/B.

To begin, we fix a choice of Borel subgroup B ⊂ G. Let V be an irreducible

representation of G, and let P(V ) be the projective space of lines through the origin

in V . The action of G extends to an action on P(V ), and (cf., p. 392 in [9]) there

is a unique closed orbit of G on P(V ). Since the unique closed orbit can be given

the structure of a projective variety, it must be of the form G/P for some parabolic

subgroup P ⊆ G.

Consider the tautological line bundle on P(V ). Since G/P is a closed orbit of

G in P(V ), we may pull back the tautological line bundle to the projective variety

G/P . In this sense, to every irreducible representation of G, we assign a projective

variety, X = G/P , and a G-equivariant line bundle, L, on X. We use the terms line

bundle and G-equivariant line bundle interchangeably. Now, let π be the natural

projection from the flag variety G/B to G/P . We can further pull back the line

bundle L via π to a line bundle π∗L on G/B.

Under this construction, the weight lattice P (g) is isomorphic to the group of

line bundles on G/B. Assume λ is a dominant integral weight of g. Then we can

realize the space H0(G/B,Lλ) of holomorphic sections of the associated line bundle

Lλ as an irreducible highest weight representation of G. We make this precise below

(cf., p. 392 in [9]).

We now realize the finite dimensional irreducible representations of G using G-

equivariant line bundles. Starting with the group G, we consider the flag variety

G/B. Recall that B is a product of a maximal torus T and a unipotent subgroup

U . Let b, h, and n be the Lie algebras of B, T , and U , resp. Since T is an abelian
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subgroup of G, its Lie algebra is also abelian. Also, the Lie algebra of a unipotent

group is nilpotent. So, on the level of Lie algebras, the product B = T ·U corresponds

to the decomposition b = h⊕ n of the algebra b into an abelian and a nilpotent Lie

algebra. The nilpotent algebra n is the sum of the positive root spaces

n =
⊕
α∈Φ+

gα.

Every dominant integral weight λ corresponds to a one dimensional representa-

tion of the torus T . Since B is the product of T and the unipotent group U , this

one dimensional representation extends trivially to a representation of B. Denote

this representation by Cλ. Then define

Lλ = G×B Cλ

to be the fibre product of G and Cλ over B. In other words,

Lλ = (G× Cλ)/ ∼,

where ∼ is the equivalence relation given by (g, v) ∼ (gx, x−1v) for all x ∈ B.

Lλ has a natural projection π to G/B given by π[(g, v)] = gB, where [(g, v)] is

the equivalence class of (g, v) in G ×B Cλ. This map is clearly well-defined, since

(gx)B = gB for all x ∈ B. Equipped with the map π, Lλ is a holomorphic line

bundle on G/B. We have the following (cf., p.393 in [9]).

Borel-Weil Theorem. For a dominant integral weight λ, the space of sections

H0(G/B,L−λ) is equivalent to the irreducible representation of G with highest

weight λ.

In our previous notation, the Borel-Weil Theorem states that L(λ) ∼= H0(G/B,L−λ)

as G-representations. In this way, the Borel-Weil Theorem gives us a concrete re-

alization of the irreducible highest weight representations of G. We will use the

Borel-Weil Theorem to help construct an explicit description of the homogeneous

coordinate ring of the orbit G/P in Chapter 3.
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2.5 The Weyl Dimension Formula

In this section, we present the Weyl Dimension Forumla, which can be used to com-

pute the dimension of an irreducible finite dimensional highest weight representation

of G. We begin by presenting some basics of character theory, culminating in the

Weyl Character Formula. We then deduce the Weyl Dimension Formula from the

Weyl Character Formula. Standard references for these topics include [10], [15], and

[16].

2.5.1 The Weyl Character Formula

Let (π, V ) be a representation of G. We define the character of V to be the function

χV : G→ C

given by χV (g) = Tr(π(g)). Note that, since π is a homomorphism, the character of

V is a class function onG, ie. χV is constant on conjugacy classes ofG: χV (hgh−1) =

χV (g) for all h ∈ G. Also, let e be the identity element of G. Then χV (e) = dim(V ),

again since π is a homomorphism.

Some basic properties of characters are given below. This is Proposition 2.1 in

[9].

Proposition 2.5.1. Let V and W be representations of G. Then χV⊕W = χV +χW ,

χV⊗W = χV χW , and χV ∗ = χV , where z denotes the complex conjugate of z.

Motivated by the fact that χV (1) = dim(V ), we wish to compute the character of

V , when G is a semisimple linear algebraic group. As before, fix a Cartan subalgebra

h ⊂ g and a set Φ+ of positive roots. Let ∆ = {α1, . . . , αk} be the simple roots of

g, and let ω1, . . . , ωk be the fundamental dominant weights in h∗ dual to the simple

roots. Denote the semigroup of dominant integral weights by P+(g).

To every αi ∈ ∆, define the simple root reflection sαi : h∗ → h∗ to be the map

sαi(β) = β − β(hα)α,
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where hα is the coroot in h of α. Then s2
αi

is the identity function on h∗, and sαi

can is the reflection of h through the hyperplane (hα)⊥. Define the Weyl group, W ,

of G to be the finite group generated by the simple root reflections. It is a basic

fact that the Weyl group of G is isomorphic to Norm(T )/T , where Norm(T ) is the

normalizer of the torus T in G.

Let R be the integral group ring Z[P (g)] of the weight lattice P (g). For every

λ ∈ P (g), let eλ denote the basis element of R corresponding to λ. Define the Weyl

function of G to be the element ∆G ∈ R given by

∆G = eρ
∏
α∈Φ+

(1− e−α).

Note that, by considering weights as characters of the maximal torus T , ∆G can

be considered a function on T . Define the adjoint representation of G to be the

representation (σ,GL(g)) given by σ(g)(X) = gXg−1 for all g ∈ G and X ∈ g.

Then, since W can be realized as Norm(T )/T , the adjoint representation of G gives

a representation σ of W on h∗. For any s ∈ W , define

sgn(s) = det(σ(s)).

Note that, since W is generated by reflections, sgn(s) = ±1. We can, of course,

restrict the action of W on h∗ to an action on the weight lattice P (g) ⊂ h∗. We will

denote this action simply sλ for each s ∈ W , λ ∈ P (g).

Let (φ, V ) be a finite dimensional representation of g. Then V decomposes into

weight spaces of h:

V =
⊕
λ∈P (g)

V (λ).

Define

χV =
∑
λ∈P (g)

dim(V (λ))eλ.

Then χV is an element of the integral group ring R. There is a regular representa-

tion (π, V ) of G whose differential is (φ, V ). Restricting this representation to the

subgroup T , we have



24

χV (h) = Tr(π(h)), for all h ∈ T ,

so that χV is a character on T (cf., p. 331 in [10]). We are now ready to state the

Weyl Character Formula.

Weyl Character Formula. Let λ ∈ P+(g) and let L(λ) be the finite dimensional

irreducible representation of G with highest weight λ. Then

χL(λ) =

∑
s∈W sgn(s)es(λ+ρ)

∆G

,

where ρ := ω1 + · · ·+ ωk and k is the rank of T .

2.5.2 Deriving the Weyl Dimension Formula from the Weyl
Character Formula

Note that, in the context of the Weyl Character Formula, since χV is a character

of the torus T , χV (e) = dim(V ), where e is the identity element of G. The Weyl

Dimension Formula uses this fact and the Weyl Character Formula to compute the

dimension of V , where (π, V ) is an irreducible, finite dimensional regular represen-

tation of G. We will derive the Weyl Dimension Formula from the Weyl Character

Formula explicity. For a more in depth reference, see §7.1 in [10].

For the rest of the dissertation, if {ω1, . . . , ωk} is a set of fundamental dominant

weights for g, then set

ρ = ω1 + · · ·+ ωk.

Note also that it can be shown that ∆G =
∑
s∈W

sgn(s)esρ. This fact is known as the

Weyl Denominator Formula, and is Corollary 7.1.3 in [10].

Weyl Dimension Formula. Let λ ∈ P+(g). The dimension of L(λ) is a polynomial

of degree |Φ+| in λ given by

dim(L(λ)) =
∏
α∈Φ+

(λ+ ρ, α)

(ρ, α)
,

where (·, ·) is the bilinear form on h∗ induced by the Killing form on g.
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Proof. Note that ∆G(e) = 0, since ∆G(shs−1) = sgn(s)∆(G)(h) holds for all h ∈ T .

Similarly, the numerator in the Weyl Character Formula also vanishes at the identity.

We must apply an algebraic version of l’Hospital’s rule to compute the dimension

of L(λ).

In order to do this, begin by defining a linear functional ε : R→ C by

ε(
∑
λ

nλe
λ) =

∑
λ

nλ.

Under the action seλ = esλ of W on R, ε(sf) = ε(f) for all f ∈ R. Let (·, ·) be the

bilinear form on h∗ induced by the Killing form on g, and define a derivation ∂α on

R by

∂α(eλ) = (α, λ)eλ.

Then s.(∂αf) = ∂s(α)(sf) holds for all s ∈ W and f ∈ R.

Define D =
∏
α∈Φ+

∂α, and for simplicity, let Nλ denote the denominator

∑
w∈W

sgn(s)es(λ+ρ)

in the Weyl Character Formula. Note that s(Df) = sgn(s)D(sf) holds for all

s ∈ W . Then,

D.Nλ =
∑
w∈W

s(D(eλ+ρ)) =
∏
α∈Φ+

(ρ+ λ, α)
∑
s∈W

es(ρ+λ).

Also, by the above and the Weyl Denominator Formula,

D∆G =
∏
α∈Φ+

(ρ, α)
∑
s∈W

esρ. (2.1)

Applying the function ε, we obtain

ε(D(Nλ)) = |W |
∏
α∈Φ+

(λ+ ρ, α).

In particular, by the Weyl Character Formula, ∆GχV = Nλ. Hence

ε(D(∆GχV )) = |W |
∏
α∈Φ+

(λ+ ρ, α). (2.2)
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It can be shown that, for every f ∈ R, ε(D(f∆G)) = ε(fD(∆G)). In particular, this

holds when f = χV . Thus, (2.2) implies that

ε(χVD(∆G)) = |W |
∏
α∈Φ+

(λ+ ρ, α). (2.3)

But, (2.1) implies that

ε(χVD(∆G)) =
∏
α∈Φ+

(ρ, α)ε(
∑
w∈W

∑
µ∈h∗

mλ(µ)eµ+sρ) = |W |dim(L(λ))
∏
α∈Φ+

(ρ, α)

(2.4)

Setting (2.3) and (2.4) equal to each other and solving for dim(L(λ)) implies the

result.

Following the notation given by Gross and Wallach in [12], set cλ(α) =
(λ, α)

(ρ, α)
.

Then the Weyl Dimension Formula states that

dim(L(λ)) =
∏
α∈Φ+

(1 + cλ(α)),

by the bilinearity of (·, ·).
We include the proof of the Weyl Dimension Formula in this section to emphasize

the role certain differential operators play in the representation theory of linear

algebraic groups. In the proof as given, the operator

D =
∏
α∈Φ+

∂α

plays the role of ‘derivative’ in an argument which resembles l’Hospital’s Rule in

order to compute the indeterminate form of the Weyl Character Formula at the

identity. The main result in Chapter 4 can be thought of as a method of computing

dimensions of finite dimensional irreducible representations of G using certain dif-

ferential operators. The setting is quite different, as are the operators used, but the

use of differential operators to compute the dimensions of representations hearkens

back to the proof of the Weyl Dimension Formula.
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2.6 Multivariate Hilbert series

In this section, we switch gears from the theory of Lie algebras to associative alge-

bras, in order to discuss multivariate Hilbert series on graded algebras and modules.

We begin by defining what it means for a complex algebra to be graded over Nk

and give some examples. We introduce the Hilbert function and Hilbert series of an

N-graded algebra, and their generalizations to the Nk-graded case. We then discuss

the Hilbert series of projective varieties by considering their coordinate rings to be

graded by degree. This is a singly graded case of the more general multivariate

Hilbert series. We conclude with a discussion of the multivariate case and some

specializations of multivariate Hilbert series to the singly graded case. A readable

introduction to the theory of multivariate Hilbert series is [20]. There are many

good references for the single variable case, including [1], [3], and [23].

2.6.1 Graded algebras

Throughout this section, let A be an associative algebra over C. Note that, in the

definitions to follow, the algebra A could be replaced with a module M over A by

changing all instances of the word “subspace” to “submodule”.

Definition 2.6.1. An algebra A is called Nk-graded if

A =
⊕
a∈Nk

Aa,

where the components Aa are subspaces of A such that AaAb = Aa+b holds for

all a,b ∈ Nk. The components Aa are called the homogeneous components of A.

Elements of A which lie in one of the homogeneous components of A are called

homogeneous.

As an example of a graded C-algebra, consider the polynomial ringA = C[z1, . . . , zn]

in n indeterminates. Let za denote the monomial za11 . . . zann for all a ∈ Nn. Then

zaab = za+b. Then we have the decomposition

C[x1, . . . , xn] =
⊕
a∈Nn

Cza.
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This decomposition gives A the structure of an Nn-graded C-algebra.

Let A be an N-graded (associative) algebra. Assume further that the homoge-

neous components of A are finite dimensional subspaces of A. Note that this is the

case for the polynomial ring C[x1, . . . , xn], where instead of the grading we used

previously, we grade by degree, ie. Ak = {f | f is homogeneous of degree k}. Define

the Hilbert function of A to be the formal function

HFA : N→ N

such that HFA(k) = dim(Ak). We further define the Hilbert series of A to be the

formal power series

HSA(q) =
∞∑
i=0

HFA(i)qi.

In other words, HSA(q) is the generating function of the dimensions of the homoge-

neous components of A. The Hilbert series of A is an element of the ring of formal

power series Z[[q]] with integer coefficients in the indeterminate q. In the case where

A is N-graded, we sometimes call the series HSA(q) singly-graded.

In the singly-graded case, HSA(q) has nice properties. For instance, if A is

generated in degree one (as will be the case for the homogeneous coordinate rings

of flag varieties G/P , cf. [12]), then

HSA(q) =
P (q)

(1− q)d
,

where P (q) is a polynomial in q with integer coefficients. Finding explicit rational

functions that represent the series HSA(q) is a broad topic of research.

Now let A be an Nk-graded (associative) algebra, again with finite dimensional

homogeneous components. Define the Hilbert series of A to be the formal power

series

HSA(q1, . . . , qk) =
∑
a∈Nk

dim(Aa)qa.

The series HSA(q1, . . . , qk) resides in the ring of formal power series Z[[q1, . . . , qk]]

with integer coefficients in the indeterminates q1, . . . , qk.
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Returning to the example given above with A = C[z1, . . . , zn] under the Nn-

grading, we can easily compute the multivariate Hilbert series of A. Since the

dimension of each homogeneous component Aa = Cza is one, the Hilbert series of

A is

HSA(q) =
∑
a∈Nn

qa =
n∏
i=1

1

1− qi
.

Note that in this case, HSA(q) is simply the sum of all monomials in C[q1, . . . , qn].

2.6.2 The Hilbert series of a projective variety

Hilbert series play a central role in the study of graded algebras, especially when

the algebra is the homogeneous coordinate ring of a projective variety. In the case

where the coordinate ring is N-graded, we can read off certain geometric information

about the variety from the expression of HSA(q) as a rational function.

Let C[z1, . . . , zn] be the algebra of polynomials with complex coefficients in the

indeterminates z1, . . . , zn. As previously discussed, this algebra has a natural N-

grading by degree. An ideal in C[z1, . . . , zn] is called homogeneous if it can be

generated by homogeneous elements of C[z1, . . . , zn]. If I ⊆ C[z1 . . . , zn] is such an

ideal, then the quotient algebra

C[z1, . . . , zn]/I

inherits the gradation by degree. Note that the ideal of a projective varieties is an

homogeneous ideal. Thus, the coordinate ring of a projective variety has a natural

gradation by degree.

Definition 2.6.2. Let X be a projective variety. We define the Hilbert series of

X to be the Hilbert series of its homogeneous coordinate ring C[X], under the

gradation of C[X] by degree.

The Hilbert series of a projective variety X encodes geometric information about

the variety X. For instance, the degree of the variety X, which is a measure of

how X is embedded in projective space, can be computed by plugging 1 into the
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numerator of the Hilbert series. Note that the Hilbert series of a projective variety

is not uniquely determined by the variety. It depends on the particular way that X

is embedded in a projective space. Isomorphic varieties may have different Hilbert

series, depending on what space they are embedded in.

Throughout this dissertation, we will be particularly interested in those projec-

tive varieties which come equipped with a transitive action of a semisimple linear

algebraic group G. Such a projective variety is called G-homogeneous or simply

homogeneous if the group is clear from context. As mentioned in §2.1, homogeneous

projective varieties are characterized by embeddings of G/P into a projective space,

where P is a parabolic subgroup of G. That is, if G acts transitively on a variety

X, and X can be given the structure of a projective variety, then the stabilizer P

of X in G is a parabolic subgroup of G. Therefore, the study of the geometry of

homogeneous projective varieties is really the study of the various ways G/P can

be embedded into a projective space. Explicit rational functions representing the

Hilbert series of any homogeneous projective variety were computed in [12]. We

recall their results in §4.1.

2.6.3 Multivariate Hilbert series and specializations

We now turn our focus to the case where A is an Nk-graded algebra over C. There

are many ways to specialize a multivariate Hilbert series HSA(q1, . . . , qk) to a single

variate series. Each specialization corresponds to a different N-gradation on A.

For instance, if A is the Stanley-Reisner ring of a simplicial comlex ∆, then the

specialization qi 7→ q for all i = 1, . . . , k is called the course Hilbert series on A.

This specializes the multivariate Hilbert series to the standard Hilbert series of the

simplicial complex ∆ (cf., §1.2 in [20]). In this sense, the multivariate Hilbert series

HSA(q1, . . . , qk) encodes more information than a singly-graded Hilbert series on

A. Specializing the variables leads to a description of many different singly-graded

Hilbert series for A.

This idea will be used in some of the examples in Chapter 5, especially when

considering multivariate Hilbert series of determinantal varieties. Determinantal
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varieties come equipped with a standard structure of affine variety, which leads to a

singly-graded Hilbert series that has been studied extensively by both representation

theorists and commutative algebraists. In §5.4, we present a method of computing

this singly-graded Hilbert series as a specialization of the rational function given in

Theorem 4.2.1.
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Chapter 3

Classical Invariant Theory

In this chapter, we review results from Classical Invariant Theory (CIT), which is

the study of the polynomial invariants of the classical families of algebraic groups,

GL(n,C), O(n), and Sp(n), acting on a vector space V . These invariants inherit

a gradation by degree from the ring of polynomial functions on V , and computing

explicit rational functions that represent their Hilbert series is a subject of study.

Much of the genesis of CIT was due to Brauer, Frobenius, Schur, Weyl, and others,

who studied the G-invariant elements, (
⊗k V )G, of the k-fold tensor product of V .

Solutions to this problem when G is a classical group and V = W k ⊕ (W ∗)k are

known as the First Fundamental Theorem for G. We discuss this situation in §2 of

this chapter. Much of the exposition in this chapter can be found in [10]. Other

standard references include [6] and [22].

Note that this chapter requires considerably more background than Chapter 2.

This survey is meant to motivate the types of examples we will revisit in Chapter

5. For example, we present determinantal varieties as objects of classical interest in

CIT when we discuss the Second Fundamental Theorems in §3 of this chapter. This

is meant to motivate our study of their multivariate Hilbert series in Chapter 5. The

main theorem in Chapter 4 may be understood without using this chapter. In this

sense, this chapter may be skipped by a reader who wishes to understand the main

result without worrying about where the examples fit in the classical literature.
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3.1 Reductive algebraic groups and finite gener-

ation

In [10], the authors state that the basic problem of invariant theory is to describe the

G-invariant elements (
⊗k V )G of a regular representation (π, V ) of a linear algebraic

group G. In general, this problem is quite difficult. The problem is much easier to

solve if we restrict the groups we consider to reductive algebraic groups.

Definition 3.1.1. A linear algebraic group G is called reductive if every regular

representation (π, V ) of G is completely reducible.

Note that by completely reducible, we mean that if W is a G-invariant subspace

of V , then V has a G-invariant subspace W ′ such that V = W ⊕W ′.

Let Ĝ be the set of all isomorphism classes of irreducible regular representations

of G. If W is an irreducible regular representation of G, denote by [W ] the isomor-

phism class of W in Ĝ. For every λ ∈ Ĝ, we have a G-isotypic subspace Wλ of V

given by

Wλ :=
∑

W⊂V,[W ]=λ

W .

Since any representation (π, V ) of a reductive group G is completely reducible, we

have a decomposition of V into G-isotypic subspaces

V =
⊕
λ∈Ĝ

Wλ.

We now fix a representation (π, V ) ofG. Let C[V ] be the algebra of all polynomial

functions on V . Then G acts on C[V ] by

π(g)f(v) := f(g−1v).

Under this action, the spaces C[V ]k of homogeneous polynomials of degree k are

G-invariant. Then, since G is reductive, the coordinate ring C[πk(G)] is completely

reducible, where πk denotes the restriction of π to C[V ]k. This implies (cf., p. 226

in [10]) that C[V ]k has a primary decomposition into G-isotypic subspaces. In other

words,
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C[V ]k =
⊕
λ∈Ĝ

Wλ.

Since any polynomial f ∈ C[V ] can be written as a sum of homogeneous poly-

nomials, the decomposition of C[V ]k allows us to decompose f over the isotypic

subspaces. We write

f =
∑
λ∈Ĝ

fλ,

where fλ ∈ Wλ. Let f ] denote the isotypic component of f corresponding to the

trivial representation of G.

Let C[V ]G denote the algebra of G invariant polynomials in C[V ]. This algebra

is often referred to as the algebra of G-invariants. Note that multiplying by a G-

invariant polynomial leaves every G-isotypic subspace of C[V ]k invariant. This in

turn implies that (φf)] = φf ] for all f ∈ C[V ] and G-invariant φ. Therefore, the

projection map f 7→ f ] is a C[V ]G-module homomorphism. We are now ready to

state the following celebrated result of Hilbert. This is Theorem 5.1.1 in [10].

Theorem 3.1.2. Suppose G is a reductive linear algebraic group acting by a regular

representation on a vector space V . Then the algebra C[V ]G is finitely generated as

a C-algebra.

The proof of this theorem uses the Hilbert Basis Theorem to construct a finite

set of generators for the ideal of G-invariant polynomials without a constant term

in C[V ] and then uses the homomorphism f 7→ f ] to show that this finite set of

generators actually generates C[V ]G as a C-algebra. For the details, see [10].

Note that Theorem 4.2.1 does not say that the algebra C[V ]G is a polynomial

ring over C. It says nothing about the relations between the generators. However,

finding an appropriate finite generating set can often lead to explicit computations

inside the algebra of G-invariants. This theorem is one of the main motivations for

studying reductive groups rather than a larger class of groups in CIT.

If we have a set {f1, . . . , fn} of generators for C[V ]G, where n is as small as

possible, we call {f1, . . . , fn} a set of basic invariants for C[V ]G. Theorem 4.2.1
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guarantees that we always have a finite set of basic invariants for C[V ]G, whenever

G is a reductive group. This allows us to concretely determine the Hilbert series of

C[V ]G when G is reductive.

For instance, assume H(q) denotes the Hilbert series of C[V ]G. Namely,

H(q) =
∞∑
k=0

dim(C[V ]Gk )qk.

Then, in the case that the basic invariants are algebraically independent, we have

H(q) =
n∏
i=1

1

1− tdi
,

where d1, . . . , dn are assumed to be the degrees of the basic invariants. Explicit

formulations of the Hilbert series as a rational function when the basic invariants

are not necessarily algebraically independent is one of the fundamental problems of

invariant theory.

3.2 First Fundamental Theorems

For a reductive group G, the First Fundamental Theorem is an explicit description

of the basic invariants of the ring of invariants C[(V ∗)n⊕ V m]G for any regular rep-

resentation (π, V ) of G. In other words, the First Fundamental Theorem describes

a generating set {f1, . . . , fn} for the ring of invariants C[(V ∗)n ⊕ V m]G, when G is

reductive, and n is as small as possible. In this section, we will describe the First

Fundamental Theorem for the classical families GL(V ), O(n), and Sp(n). We focus

on these groups because, as we will see in the next section, the invariant theory for

these groups leads naturally to a description of the coordinate rings of the three

classical families of determinantal variety. We continue to follow the discussion in

[10].

3.2.1 The First Fundamental Theorem for GL(V )

Assume G is a reductive group, and (π, V ) is a regular representation of G. We

begin by describing a geometric construction of the polynomial GL(V )-invariants of

C[(V ∗)n ⊕ V m]. This is motivated by the fact that
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C[(V ∗)n ⊕ V m]GL(V ) ⊆ C[(V n)∗ ⊕ V m]G.

Thus, the First Fundamental Theorem for GL(V ) will give some information about

the invariants of the group G.

Note that we have a natural isomorphism (V ∗)k ∼= Hom(V,Ck), where the or-

dered k-tuple (v∗1, . . . , v
∗
k) of linear functionals on V corresponds to the linear map

v 7→ (v∗1(v), . . . , (v∗k(v))

from V to Ck. Similarly, we have the natural isomorphism V m ∼= Hom(Cm, V ),

where the ordered m-tuple (v1, . . . , vm) of vectors in V corresponds to the linear

map

(z1, . . . , zm) 7→ z1v1 + · · ·+ zmvm

from Cm to V . Therefore, the polynomial algebra C[(V ∗)k ⊕ V m] is naturally iso-

morphic as a C-algebra to the algebra

C[Hom(V,Ck)⊕Hom(Cm, V )],

and GL(V ) acts on the above via the action

g.f(x, y) = f(xπ(g−1), π(g)y).

Let Mk,m denote the space of k × m complex matrices. We define a map µ :

Hom(V,Ck)⊕Hom(Cm, V )→Mk,m, by

µ(x, y) = xy,

where xy denotes composition of the linear transformations x and y. Then, by

construction, µ is GL(V )-invariant, in the sense that

µ(g.(x, y)) = µ(xπ(g−1), π(g)y) = xπ(g)−1π(g)y = xy = µ(x, y),

and thus the induced map µ∗ on the coordinate ring C[Mk,m] of Mk,m has range in

the GL(V )-invariant polynomials on Hom(V,Ck)⊕Hom(Cm, V ),

µ∗ : C[Mk,m]→ C[Hom(V,Ck)⊕Hom(Cm, V )]GL(V ).



37

Let zij denote the image µ∗(xij) of the matrix entry function xij on Mk,m. Then zij

is the contraction

zij(v
∗
1, . . . , v

∗
k, v1, . . . , vm) = v∗i (vj).

We are now ready to state the First Fundamental Theorem for GL(V ). This is

Theorem 5.2.1 in [10].

Theorem 3.2.1. The map

µ∗ : C[Mk,m]→ C[Hom(V,Ck)⊕Hom(Cm, V )]GL(V )

is surjective. Hence C[Hom(V,Ck) ⊕ Hom(Cm, V )]GL(V ) is generated (as a C-

algebra) by the contractions {v∗i (vj) | i = 1, . . . , k, j = 1, . . . ,m}.

3.2.2 First Fundamental Theorems for O(n) and Sp(n)

We now modify the story for GL(V ) to get a similar theorem for the classical families

O(n) and Sp(n). We begin with O(n).

Let V = Cn, and denote by (·, ·) the symmetric form

(x,y) =
n∑
i=1

xiyj for all x,y ∈ V .

Let O(n) be the orthogonal group of this form, ie. g ∈ O(n) if and only if gtg = In,

where In is the identity matrix in GLn. Denote by SMk the set of symmetric

matrices in Mk, and define the map τ : Mn,k → SMk by

τ(X) = X tX.

Then τ is O(n)-invariant, in the sense that

τ(gX) = X tgtgX = X tInX = X tX = τ(X)

holds for all g ∈ O(n) and X ∈Mn,k. Therefore, the induced map on the coordinate

ring C[SMk] has range in the O(n)-invariant polynomials in C[Mn,k],

τ ∗ : C[SMk]→ C[Mn,k]
O(n).
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Since Mn,k
∼= V k as vector spaces, we can consider the range of τ ∗ to lie in C[V k]O(n).

Let v1, . . . , vk ∈ Cn, and let X be the matrix [v1, ,̇vk] in Mk,n where we consider

the vectors vi to be as column vectors. Then the matrix X tX is the symmetric k×k
matrix with ij-entry (vi, vj). By symmetric, we mean that X = X t. Then, under

the map τ ∗, the matrix entry functions xij on the symmetric matrices SMk pulls

back to the quadratic polynomial

τ ∗(xij)(v1 . . . , vk) = (vi, vj),

which is then O(n)-invariant since the range of τ ∗ is in the O(n)-invariant polyno-

mials on V k. We are then led to the following First Fundamental Theorem for O(n).

This is Theorem 5.2.2 (Part 1) in [10].

Theorem 3.2.2. The homomorphism τ ∗ is surjective. Hence the algebra of O(n)-

invariant polynomials in k vector arguments is generated by the quadratic polyno-

mials {(vi, vj) | 1 ≤ i ≤ i ≤ j ≤ k}.a

Now assume that n = 2m is a non-negative, even integer. Let Jn be the n × n
block-diagonal matrix

Jn = diag[κ, . . . , κ],

consisting of m copies of κ, where κ is the 2× 2 matrix

[
0 1
−1 0

]
.

We define an anti-symmetric bilinear form ω on Cn by

ω(x,y) = (x, Jny),

where x,y ∈ Cn. Let Sp(n) be the invariance group of this form, ie. g ∈ Sp(n) if

and only if gtJng = Jn.

Let AMk denote the set of all k × k anti-symmetric matrices, and let γ be the

map from Mn,k to AMk given by
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γ(X) = X tJnX.

By anti-symmetric, we mean that X = −X t. By construction, we know that γ is

Sp(n)-invariant, in the sense that

γ(gX) = X tgtJngX = X tJnX = γ(X),

for every g ∈ Sp(n) and X ∈Mn,k. Therefore, γ induces a map γ∗ on the coordinate

ring of AMk whose range lies in the Sp(n) invariant polynomials on Mn,k,

γ∗ : C[AMk]→ C[Mn,k]
Sp(n).

Again, since Mn,k
∼= V k, we can consider the range of γ∗ to be in C[V k]Sp(n).

Now, as in the orthogonal case, let v1 . . . , vk ∈ V (= Cn), and consider the matrix

X in Mn,k given by [v1, . . . , vk]. Then the matrix X tJnX is the k×k anti-symmetric

matrix with ij-entry (vi, Jnvj) = ω(vi, vj). Therefore, the matrix entry functions xij

pull back to the quadratic polynomials

(vi, Jnvj),

which are Sp(n)-invariant. We then have the following First Fundamental Theorem

for Sp(n). This is Theorem 5.2.2 (Part 2) in [10].

Theorem 3.2.3. Suppose n is even. Then the homomorphism γ∗ is surjective.

Hence the algebra of Sp(n)-invariant polynomials in k vector arguments is generated

by the quadratic polynomials {ω(vi, vj) | 1 ≤ i < j ≤ k}.

As we have seen in this section, the invariant theory of O(n) is closely tied to

the vector space SMk of symmetric k×k complex matrices. Similarly, the invariant

theory of Sp(n) is closely tied to the vector space AMk of anti-symmetric k × k

complex matrices. We will see in the next section another connection between these

families of classical groups and these spaces of matrices.



40

3.3 Second Fundamental Theorems

Let G be a reductive group. Homogeneous varieties X whose coordinate ring C[X]

have a multiplicity-free decomposition as a G-representation are called multiplicity-

free G-spaces. The term multiplicity-free means that the finite dimensional irre-

ducible representations of G which appear in the irreducible decomposition of C[X]

have multiplicity one. An important example of a multiplicity-free space is the

group G itself, thought of as a G × G-representation. We will explore this space

in §5.2. In this section, we will be interested in a special multiplicity-free space for

each family of classical group we studied in the previous section. These families are

called determinantal varieties, and they play an important role in representation

theory, commutative algebra, and other areas of mathematics. For G = GLn, O(n),

or Sp(n), the multiplicity-free decomposition of the determinantal variety will be

called the Second Fundamental Theorem for G.

3.3.1 The Second Fundamental Theorem for GLn

We begin by defining a representation of GLn×GLm on the coordinate ring C[Mn,m],

where, as before, Mn,m is the vector space of n ×m complex matrices. Define the

representation πn,m on C[Mn,m] as follows:

πn,m(g, h)f(X) = πn,m(g−1Xh),

for all (g, h) ∈ GLn ×GLm and X ∈Mn,m. Recall from §3.2.1 that, the representa-

tion π of GLk on C[Mn,k ×Mk,m] given by

π(g)f(x, y) = f(xg, g−1y),

for all (x, y) ∈ Mn,k × Mk,m and g ∈ GLn. Then, the First Fundamental Theo-

rem for GLn states that the multiplication map µ induces a surjective C-algebra

homomorphism

µ∗ : C[Mn,m]→ C[(V ∗)n × (V m)]GLn ,
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where V = Ck.

In fact (cf., Corollary 5.2.1 in [10]), if k ≥ min(n,m), then the kernel of µ∗ is

trivial. The Second Fundamental Theorem for GLn is a description of the kernel of

µ∗ when k < min(n,m). In this case, µ(Mn,k×Mk,m) is the space of all matrices in

Mn,m of rank at most k. Denote this set by D≤kn,m. The set D≤kn,m has the structure of

an affine variety. It is often called the determinantal variety. To differentiate from

the determinantal varieties in the next two subsections, we call D≤kn,m the standard

determinantal variety.

Let J k
n,m be the ideal of polynomials in C[Mn,m] vanishing on the determinantal

variety D≤kn,m. Then J k
n,m = ker(µ∗), and C[D≤kn,m] = C[Mn,m]/J k

n,m. The Second

Fundamental Theorem for GLn contains three parts: generators for the ideal J k
n,m,

the decomposition of J k
n,m as a GLn ×GLm-representation, and the decomposition

of C[D≤kn,m] as a GLn ×GLm-representation. This is Theorem 12.2.12 in [10].

Theorem 3.3.1. Assume k < min(n,m).

1. The set of all (k+1)× (k+1) minors is a minimal generating set for the ideal

J k
n,m.

2. As a GLn ×GLm-representation, the determinantal ideal J k
n,m decomposes as

J k
n,m
∼=
⊕
λ

(Ln(λ))∗ ⊗ Lm(λ),

where Ln(λ) is an irreducible highest weight representation of GLn, Lm(λ)

is an irreducible highest weight representation of GLm, and k < depth(λ) ≤
min(n,m).

3. As a GLn × GLm-representation, the coordinate ring of the determinantal

variety decomposes as

C[D≤kn,m] ∼=
⊕
λ

(Ln(λ))∗ ⊗ Lm(λ),

where depth(λ) ≤ k.
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We will be particular interested in Part 3 of the above, which we will use to

compute a rational function expressing the multivariate Hilbert series of D≤kn,m and

specializing to the standard single variable Hilbert series in §5.4.3.

3.3.2 The Second Fundamental Theorem for O(n)

We now turn to the Second Fundamental Theorem for O(n). As in §3.2.2, let SMn

denote the space of all n× n symmetric complex matrices. Then we have a map

τ : Mk,n → SMn,

given by τ(X) = X tX. By the First Fundamental Theorem for O(n), the induced

homomorphism

τ ∗ : C[SMn]→ C[Mk,n]

is surjective. As in the case for GLn, when k ≥ n, τ ∗ is also injective (cf., Corollary

5.2.4 in [10]). The Second Fundamental Theorem for O(n) concerns the case where

k < n.

We begin by defining an action of GLn on C[SMn]. Let π be the representation

of GLn on C[SMn] given by

π(g)f(X) = f(gtXg),

for all g ∈ GLn and X ∈ SMn.

Let k < n. It can be shown (cf., Lemma 5.2.4 in [10]) that the range of τ consists

of all symmetric matrices of rank at most k. This set has the structure of an affine

variety, called the symmetric determinantal variety. Let SD≤kn denote the symmetric

determinantal variety, and let SJ k
n denote the ideal of polynomials in C[SMn] that

vanish on SD≤kn . The Second Fundamental Theorem for O(n) describes three things:

a set of generators for SJ k
n, a decomposition for SJ k

n as a GLn-representation,

and a decomposition for the coordinate ring C[SD≤kn ] = C[SMn]/SJ k
n as a GLn-

representation. This is Theorem 12.2.14 in [10]. Here, an even dominant integral

weight in P+(g) is a weight which lies in the lattice cone 〈2ω1, . . . , 2ωl〉, where

ω1, . . . , ωl are the fundamental dominant weights of G.
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Theorem 3.3.2. Assume k < n.

1. The restriction to SMn of the (k+1)× (k+1) minors is a minimal generating

set for SJ k
n.

2. As a GLn-representation, the symmetric determinantal ideal SJ k
n decomposes

as

SJ k
n
∼=
⊕
λ

L(λ),

where λ runs over all even dominant integral weights that satisfy k < depth(λ) ≤
n.

3. As a GLn-representation, the coordinate ring of the symmetric determinantal

variety decomposes as

C[SD≤kn ] ∼=
⊕
λ

L(λ),

where λ runs over all even dominant integral weights of depth at most k.

As before, we will be most concerned with Part 3 of the above Theorem. In

§5.4.1, we will use this theorem to compute an explicit rational function representing

the multivariate Hilbert series on SD≤kn and use this multivariate series to present

an algorithm for computing explicit rational functions representing the standard

Hilbert series of SD≤kn for any n and k.

3.3.3 The Second Fundamental Theorem for Sp(n)

As in §3.2.3, let AMn denote the set of all n× n anti-symmetric complex matrices.

Assume that k is even. We have a map

γ : Mk,n → AMn,

given by γ(X) = X tJkX, where Jk is the matrix defined in §3.2.3. The induced

homomorphism on the coordinate rings
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γ∗ : C[AMn]→ C[Mk,n]

is surjective by the First Fundamental Theorem for Sp(n). By Corollary 5.2.4 in

[10], γ∗ is also injective when k ≥ n. The Second Fundamental Theorem for Sp(n)

concerns the case where k < n.

We begin by defining an action of GLn on C[AMn]. Let π be the representation

of GLn on C[AMn] given by

π(g)f(X) = f(gtXg),

for all g ∈ GLn and X ∈ AMn.

Assume k < n. By Lemma 5.2.5 in [10], the range of γ consists of all rank at

most k matrices in AMn. This set has the structure of an affine variety. Call this

variety the anti-symmetric determinantal variety and denote it by AD≤kn . Let AJ k
n

denote the ideal of polynomials in C[AMn] which vanish on AD≤kn . The Second

Fundamental Theorem for Sp(n) describes a set of generators for AJ k
n, a decom-

position of AJ k
n as a GLn-representation, and a decomposition of the coordinate

ring of AD≤kn as a GLn-representation. The generators are more complicated in

this case than in the GLn and O(n) cases. For this reason, we focus solely on the

decomposition of the coordinate ring C[AD≤kn ]. This is Theorem 12.2.15 (Part 3) in

[10].

Theorem 3.3.3. Assume k < n. As a GLn-representation, the coordinate ring of

the anti-symmetric determinantal variety decomposes as

C[AD≤kn ] ∼=
⊕
λ

L(λ),

where depth(λ) ≤ k.

We will use this theorem to compute both singly- and multi-graded Hilbert series

on the anti-symmetric determinantal variety in Chapter 5. The computation in this

case is more complicated than that of the symmetric or standard determinantal

varieties, but the same methods may be used.
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Chapter 4

Generalization of a theorem of
Gross and Wallach

In this chapter, we begin with an exposition of the formulation by Benedict H.

Gross and Nolan R. Wallach of the Hilbert series of a partial flag variety. This

exposition is taken from [12], using the Borel-Weil theorem and other standard

facts on the representation theory of algebraic groups. The author recommends

the text [9] for a clear presentation of these facts. We then present a multivariate

generalization of the Hilbert series from [12], and prove that this generalization holds

for all semisimple, simply connected linear algebraic groups over C. We conclude

with a brief description of the diagonal embedding of a partial flag variety, whose

multivariate Hilbert series may be computed using our generalization. Much of this

material may be found in the author’s ArXiv e-print [17].

4.1 Results from Gross and Wallach

Let λ ∈ P+(g), and let L be the unique line in L(λ) fixed by B. Equivalently,

let H be the unique hyperplane in L(λ)∗ fixed by B. Since the stabilizer of H

contains all elements of G which fix H, the stabilizer is a parabolic subgroup. Denote

this subgroup by Pλ. For any fixed Borel subgroup B, there are finitely many

parabolic subgroups containing B. Therefore, many different dominant weights

correspond to the same subgroup Pλ. For instance, whenever the weight is regular,
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ie. λ ∈ Z+ω1⊕· · ·⊕Z+ωk, where Z+ denotes all positive integers, Pλ = B. However,

each different weight will correspond to a different embedding of the partial flag

variety into a projective space. Namely, the partial flag variety Xλ := G/Pλ embeds

in the projective space P(L(λ)) of all hyperplanes in L(λ)∗ via the map

πλ : G/Pλ → P(L(λ))

gP 7→ g.H,

which embeds G/Pλ onto the unique closed orbit of G on P(L(λ)) (cf., p. 392 in [9]).

Recall that the Hilbert series of a projective variety is dependent on its embedding

in a projective space. In [12], the authors prove the following theorem.

Theorem (Gross and Wallach). The Hilbert series of the embedding πλ of G/Pλ

in P(L(λ)) is given by ∏
α∈Φ+

(
cλ(α)q

d

dq
+ 1

)
1

1− q
.

The first step to understanding this result is to understand the homogeneous

coordinate ring A(Xλ). In order to do this, we realize irreducible representations

of G as sections of line bundles over the partial flag variety G/Pλ. This realization

is the celebrated Borel-Weil Theorem (cf., p. 393 in [9]). Note that our statement

below of the Borel-Weil Theorem is slightly different than that given in §2.4. This

is because the projective space we are considering is the space of hyperplanes and

not lines. This version is ‘dual’ to the previous version, in that the bundle Lλ
corresponds to the representation L(λ). Let O(1) be the tautological line bundle on

P(L(λ)). Then the pullback π∗λO(1) := Lλ is a G-equivariant line bundle on X. Let

H0(Xλ,Lλ) be the space of sections from Xλ into Lλ.

Borel-Weil Theorem. Let λ be a dominant integral weight of g. The space of

sections H0(Xλ,Lλ) is equivalent to the irreducible highest weight representation

L(λ).

The Borel-Weil theorem is a concrete realization of the irreducible highest weight

representations of G. Recall from §2.4 that using this theorem, we can cook up an
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isomorphism between the weight lattice P+(g) and the group of line bundles on G/B.

Under this isomorphism, the bundle Lnλ := π∗λO(n) has sections H0(Xλ,Lnλ) = L(nλ)

for all n ≥ 0. All of these bundles are G-equivariant.

Following [12], we consider the restriction homomorphism H0(P(L(λ)),O(n))→
H0(Xλ,Lnλ). This homomorphism is both is G-equivariant and nonzero. Since L(nλ)

is an irreducible representation, this means that the restriction is surjective. Thus,

the embedding πλ of Xλ is projectively normal. Therefore, the coordinate ring of

Xλ is given by

A(Xλ) =
⊕
n∈N

L(nλ).

This decomposition is graded, since L(λ)L(µ) ⊆ L(λ + µ) for all dominant weights

λ, µ. The Hilbert series of this embedding is then given by

HSq(πλ) =
∑
n∈N

dim(L(nλ))qn.

Using the fact that the Weyl Dimension Formula implies that

dim(L(nλ) =
∏
α∈Φ+

(1 + ncλ(α)),

Gross and Wallach show via direct computation that the Hilbert series has the form

given in this section.

One of the reasons this result is interesting is that the projective varieties G/Pλ

include many of the most interesting varieties from classical algebraic geometry. We

give the details for one such example.

The following exposition can be found in Lecture 6 in [13]. We begin by defining

the Plücker embedding of the Grassmannian G(k, n) consisting of all (n− k)-planes

in Cn. That is we define G(k, n) to consist of all subspaces of Cn of codimension

k. The Plücker embedding of G(k, n) into P(
∧k Cn) is an object of classical interest

in algebraic geometry1, and it can be realized as a certain quotient of SL(n,C). In

1Recall that, in the notation of [12], P(V ) is the projective space of all hyperplanes in V . This
is isomorphic to the classical projective space of all lines through the origin in V ∗.
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order to do this, let W ∈ G(k, n). Assume the vectors v1, . . . , vn−k are a basis for W .

Assign to W the multivector v1 ∧ · · · ∧ vn−k ∈
∧n−k Cn. This defines an embedding

of G(n, k) into P(
∧k Cn), called the Plücker embedding.

In §7 of [12], they present the Plücker embedding as the quotient SL(n,C)/Pλ,

where λ is the weight e1 + e2 + · · · + ek. They use their formulation of the Hilbert

series to compute the dimension and degree of the Plücker embedding. In a similar

way, they are able to compute geometric information about the Veronese, Segre,

and flag varieties by first realizing them as a quotient of an algebraic group.

4.2 The multivariate case

Let λ1, . . . , λk be a finite collection of weights in P+(g). Consider the finitely gen-

erated lattice cone 〈λ1, . . . , λk〉 := Nλ1 ⊕ · · · ⊕ Nλk ⊂ P+(g). Consider the formal

power series

HSq〈λ1, . . . , λk〉 =
∑
a∈Nk

dim(L(a1λ1 + · · ·+ akλk))q
a,

where qa := qa11 · · · · · q
ak
k . The coefficient of qa is the dimension of the irreducible

highest weight representation of G with highest weight a1λ1 + · · ·+akλk. Therefore,

HSq〈λ1, . . . , λk〉 is a generating function for the dimensions of the irreducible highest

weight representations with highest weight lying in the finitely generated lattice cone

〈λ1, . . . λk〉.
In the case that k = 1, this is the ray Nλ in the dominant chamber of the weight

lattice through the weight λ. We can then think of the Hilbert series considered by

Gross and Wallach as the generating function for the dimensions of highest weight

representations whose highest weight lies on the ray 〈λ〉. Namely, since

HSq(πλ) = HSq〈λ〉 =
∑
a∈N

dim(L(aλ))qa,

the Hilbert series of G/Pλ can be interpreted combinatorially as the generating func-

tion of the dimensions of irreducible highest weight representations whose highest

weights lie on a particular lattice cone. The formal power series HSq〈λ1, . . . , λk〉 can
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the be thought of as an immediate generalization of this idea to an arbitrary finitely

generated lattice cone. The “HS” in our notation is not by accident. In the next

section, we will give a geometric interpretation of HSq〈λ1, . . . , λk〉 as a multivariate

Hilbert series on a class of projective varieties related to the partial flag varieties.

We will next be concerned with proving a generalization of the formulation given

by Gross and Wallach of the closed form of the Hilbert series for πλ to the multi-

variate series. We will prove the following theorem. This theorem is the heart of

the dissertation, and will be used throughout Chapter 5 to compute single variable

and multivariate Hilbert series for many classes of homogeneous varieties.

Theorem 4.2.1. Let λ1, . . . , λk be dominant integral weights. Then

HSq〈λ1, . . . , λk〉 =
∏
α∈Φ+

(
1 + cλ1(α)q1

∂

∂q1

+ · · ·+ cλk(α)qk
∂

∂qk

) k∏
i=1

1

1− qi
,

where cλ(α) :=
(λ, α)

(ρ, α)
.

Note that, in the case where k = 1, we recover the result from [12] in the previous

section. The multivariate series can be thought of as encoding the Hilbert series of

many different embeddings of partial flag varieties simultaneously. We can recover

the individual embeddings by specializing the multivariate series in the appropriate

way. For example, fix some j ∈ {1, . . . , k} and set qi = 0 for all i 6= j. Then we have

HS(0,...,qj ,...,0)〈λ1, . . . , λk〉 =
∏
α∈Φ+

(
1 + cλj(α)qj

∂

∂qj

)
1

1− qj
= HSqj(πλj).

In other words, the above specialization gives the Hilbert series of the embedding

πλk of the partial flag variety G/Pλk .

In the case where k is the rank of g, and λi = ωi for all i, the cone is the entire

weight lattice. In this case, the series HSq〈λ1, . . . , λk〉 is a generating function for

all the dimensions of the finite dimensional irreducible representations of G, where

each representation is indexed by its coordinates in the basis {ω1, . . . , ωk} for the

dominant chamber of the weight lattice.
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There are many other specializations which produce interesting single variable

and multivariate Hilbert series on interesting varieties. We will revisit many of these

specializations in the next chapter.

4.3 Proof of the generalization

We will now prove the theorem from the previous section. This is our main theorem,

and we will spend the rest of the dissertation applying this theorem to compute single

variable and multivariate Hilbert series on many varieties of particular interest in

representation theory.

Theorem 4.2.1. Let λ1, . . . , λk be dominant integral weights. Then

HSq〈λ1, . . . , λk〉 =
∏
α∈Φ+

(
1 + cλ1(α)q1

∂

∂q1

+ · · ·+ cλk(α)qk
∂

∂qk

) k∏
i=1

1

1− qi
,

where cλ(α) :=
(λ, α)

(ρ, α)
.

Note: In the formula in the above theorem, we are applying the partial differential

operator ∏
α∈Φ+

(
1 + cλ1(α)q1

∂

∂q1

+ · · ·+ cλk(α)qk
∂

∂qk

)
to the rational function

k∏
i=1

1

1− qi
.

Proof. Consider L(a1λ1 + · · ·+ akλk). By the Weyl Dimension Formula, we have

dim(L(a1λ1 + · · ·+ akλk)) =
∏
α∈Φ+

(a1λ1 + · · ·+ akλk + ρ, α)

(ρ, α)
.

Since the Killing form (·, ·) is bilinear, the above product can be rewritten as

dim(L(a1λ1 + · · ·+ akλk)) =
∏
α∈Φ+

(1 + a1cλ1(α) + · · ·+ akcλk(α)).
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Therefore, we can rewrite the series as

HSq〈λ1, . . . , λk〉 =
∑
a∈Nk

∏
α∈Φ+

(1 + a1cλ1(α) + · · ·+ akcλk(α))qa, (4.1)

where a = (a1, . . . , ak) ∈ Nk, and qa := qa11 . . . qakk . Consider the product∏
α∈Φ+

(1 + a1cλ1(α) + · · ·+ akcλk(α)).

Note that the above is a polynomial in the ai for 1 ≤ i ≤ k. Let d := |Φ+| and

|i| := i1 + · · ·+ ik, for any i ∈ Nk. Then, expanding the product of sums into a sum

of products, we have∏
α∈Φ+

(1 + a1cλ1(α) + · · ·+ akcλk(α)) =
∑
|i|≤d

bia
i, (4.2)

where bi is the coefficient of the monomial ai for each i with |i| ≤ d. Combining

(4.1) and (4.2), we have

HSq〈λ1, . . . , λk〉 =
∑
a∈Nk

∑
|i|≤d

bia
iqa.

The coefficients of the polynomial (4.2) do not depend on a. Therfore, we may

rearrange the order of summation as follows:

HSq〈λ1, . . . , λk〉 =
∑
|i|≤d

bi
∑
a∈Nk

aiqa. (4.3)

We now find a rational function representing the series
∑
a∈Nk

aiqa. Fix a k-tuple

(i1, . . . , ik) ∈ Nk, and define f(i1,...,ik)(q) to be the formal power series

f(i1,...,ik)(q) :=
∑
a∈Nk

aiqa.

Then applying the partial differential operator qj
∂

∂qj
to f(i1,...,ik)(q) increases the

integer in the jth coordinate by one. To see this, note that for each summand aiqa,

we have

∂

∂qj
(ai11 . . . a

ij
j . . . a

ik
k q

a1
1 . . . q

aj
j . . . qakk ) = ai11 . . . a

ij+1
j . . . aikk q

a1
1 . . . q

aj−1
j . . . qakk .
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Multiplying both sides by qj, we have

qj
∂

∂qj
(f(i1,...,ik)(q)) = f(i1,...,ij+1,...,ik)(q).

Define f(0,...,0)(q) :=
k∏
j=1

1

1− qk
. Because the differential operators qj

∂

∂qj
commute

for all j, we have

f(i1,...,ik)(q) =

(
q1

∂

∂q1

)i1
. . .

(
qk

∂

∂qk

)ik k∏
j=1

1

1− qj

Consider the k-tuple

(
q1

∂

∂q1

, . . . , qk
∂

∂qk

)
, and define(

q
∂

∂q

)i

:=

(
q1

∂

∂q1

)i1
. . .

(
qk

∂

∂qk

)ik
.

Then, we have

f(i1,...,ik)(q) =

(
q
∂

∂q

)i k∏
j=1

1

1− qj
.

Therefore, (4.3) becomes ∑
|i|≤d

bi

(
q
∂

∂q

)i
 k∏
j=1

1

1− qj
. (4.4)

The crucial point in this proof is to note that the sum

∑
|i|≤d

bi

(
q
∂

∂q

)i

(4.5)

is the same polynomial as in (4.2), after making the substitution ai 7→ qi
∂

∂qi
, for each

i = 1, . . . , k. Therefore, the polynomial in (4.5) factors in the same way. Namely,∑
|i|≤d

bi

(
q
∂

∂q

)i

=
∏
α∈Φ+

(
1 + cλ1(α)q1

∂

∂q1

+ · · ·+ cλk(α)qk
∂

∂qk

)
.

Combining this fact with (4.4), we have shown that
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HSq〈λ1, . . . , λk〉 =
∏
α∈Φ+

(
1 + cλ1(α)q1

∂

∂q1

+ · · ·+ cλk(α)qk
∂

∂qk

) k∏
j=1

1

1− qj

4.4 A geometric interpretation of HSq〈λ1, . . . , λk〉

In the single variable case, studied in [12], the problem was well motivated by

computing an explicit rational function representing the Hilbert series of all G-

equivariant embeddings of a partial flag variety G/Pλ into projective space. We

wish to present a similar geometric motivation for the series HSq〈λ1, . . . , λk〉. There

are a few different choices of varieties with multivariate Hilbert series given by

HSq〈λ1, . . . , λk〉. In this section we present the one most closely related to the

setting described in [12]. In the next chapter (namely §5.1 and §5.3), we discuss two

more settings where Theorem 4.2.1 explicitly computes multivariate Hilbert series

on classes of varieties.

Let G be a linear algebraic group, as before, with Borel subgroup B. Let P be the

parabolic subgroup that simultaneously stabilizes the hyperplane Hi in L(λi) fixed

by B for the dominant weights λ1, . . . , λk in P+(g). In particular, P = P1∩ · · ·∩Pk,
where Pi is the stabilizer in G of λi for i = 1, . . . , k. Then, we have a map

π : G/P → P(L(λ1))× · · · × P(L(λk)),

where, as before, P(L(λi)) is the projective space of hyperplanes in L(λi) for each

i = 1, . . . , k, and π(gP ) = (g.H1, . . . , g.Hk) is the diagonal embedding of G/P into

P(L(λ1))× · · · × P(L(λk)).

The coordinate ring of this embedding can be described in the language of line

bundles, similarly to the discussion in §4.1. Let X = π(G/P ). Then, we have the

following description of the coordinate ring of X (cf., [2])

A(X) =
⊕
a∈Nk

H0(X,La1,...,ak),

where La1,...,ak is the line bundle on G/P given by the pullback of O(1) on
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P(L(λ1))× · · · × P(L(λk))

along π. The space of sections H0(X,La1,...,ak) is isomorphic as a G-representation

to the highest weight representation L(a1λ1 + · · ·+ akλk).

The above discussion can be summarized in the following way: the coordinate

ring of the diagonal embedding of the partial flag variety X = G/P is given by:

A(X) =
⊕
a∈Nk

L(a1λ1 + · · ·+ akλk).

Therefore, the series HSq〈λ1, . . . , λk〉 is the multivariate Hilbert series of the em-

bedding π of the partial flag variety G/P . This is another way in which Theorem

4.2.1 can be thought of as a direct generalization of the ideas in [12].
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Chapter 5

Examples of multivariate Hilbert
series on homogeneous varieties

In this chapter, we compute explicit rational forms for the multivariate Hilbert series

of a suite of examples of varieties of great interest in representation theory. We begin

by discussing the coordinate ring of the variety U\G, where U is a maximal unipotent

subgroup of G. Other examples include the coordinate ring, C[G], of the group G,

considered as a G×G-representation, as well as the three families of determinantal

varieties. We present computations for the coordinate ring of the Kostant cone, as

well as some series which behave particularly nicely.

5.1 The homogeneous variety U\G

We begin our examples by considering the coordinate ring of the variety U\G, where

U is a maximal unipotent subgroup of G such that B = T · U .

Following the discussion in §3.3 of [27], consider the action of U × G ⊂ G × G
on C[G] given by (u, g).f(x) = f(u−1xg). The U -invariants C[G]U are isomorphic

to the ring C[U\G], where we consider U acting on the left. We wish to decompose

the ring C[U\G] as a G-representation.

Since the torus T normalizes U , we have a left torus action on C[U\G] given by

t · f(x) = f(t−1x). We then have a Peter-Weyl decomposition
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C[U\G] =
⊕

λ∈P+(g)

(L(λ)∗)U ⊗ L(λ).

The Theorem of the Highest Weight implies that (L(λ)∗)U is one dimensional. To

emphasize this, we replace (L(λ)∗)U with Cλ. Therefore, we have

C[U\G] =
⊕

λ∈P+(g)

Cλ ⊗ L(λ).

The action of the torus T equips C[U\G] with a gradation by the charac-

ter group X(T ) ∼= Zk, where k is the rank of g. To see this, note that every

weight λ ∈ P+g defines a character eλ of T . If we look at the weight spaces

C[U\G]λ := {f ∈ C[U\G] | f(t−1x) = eλ(t)f(x)∀x ∈ U\G, t ∈ T}, under the

right action of G on C[U\G] given by f(x).g = f(xg), C[U\G]λ ∼= L(λ). Note also

that C[U\G]λG[U\G]µ = C[U\G]λ+µ. Thus, the algebra C[U\G] is graded by X(T )

via the weight space decomposition.

As graded algebras, we have

C[U\G] ∼=
⊕

λ∈P+(g)

L(λ).

In other words, the graded components of the homogeneous coordinate ring of the

full flag variety U\G are irreducible highest weight representations. Further, every

irreducible highest weight representation of G appears in the decomposition with

multiplicity one. Thus, as a G-representation, C[U\G] decomposes over the lattice

cone 〈ω1, . . . , ωk〉, where k is the rank of g, i.e.

C[U\G] ∼=
⊕

λ∈〈ω1,...,ωk〉

L(λ),

and under this gradation, the multivariate Hilbert series of U\G is given by

HSq〈ω1, . . . , ωk〉.

Note that this settings produces a class of varieties which have multivariate

Hilbert series given by Theorem 4.2.1. Since the coordinate ring of U\G decom-

poses over the cone 〈ω1, . . . , ωk〉 generated by the fundamental dominant weights it

contains all algebras of the form
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⊕
λ∈〈λ1,...,λk〉

L(λ)

as subalgebras. In other words, all algebras which are graded by irreducible highest

weight representations of G are contained in C[U\G]. Then, in order to find a

suitable variety, X, whose coordinate ring has the form given above, we need only

take X to be the spectrum of the algebra, equipped with the Zariski topology. In

this case, X will have multivariate Hilbert series

HSX(q1, . . . , qk) =
∑
a∈Nk

dim(L(a1λ1 + · · ·+ akλk))q
a,

which can be explicitly computed as a rational function using Theorem 4.2.1. This

settings motivates the study of formal power series of the form HSq〈λ1, . . . , λk〉 from

a geometric point of view.

5.2 The coordinate ring of an algebraic group

In this section, we consider the coordinate ring C[G] of a semisimple linear algebraic

group as a representation of the semisimple group G×G under the action given in

the previous section:

(g, h).f(x) := f(g−1xh).

Under this action, the coordinate ring has the following decomposition into irre-

ducible G×G-representations:

C[G] ∼=
⊕

λ∈P+(g)

(L(λ))∗ ⊗ L(λ).

The highest weight of the irreducible G × G-representation (L(λ))∗ ⊗ L(λ) can be

represented by the ordered pair of weights (−sλ, λ), where s is the longest element

of the Weyl group of G, acting on the weight λ as discussed in §2.5. We can then

use Theorem 4.2.1 to compute a multivariate Hilbert series for C[G].

Since we are assuming G is linear algebraic, we can simplify the above by aug-

menting the action of G × G on C[G]. Let gt denote the transpose of the matrix

g ∈ G. Consider the action of G×G on C[G] given by
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(g, h).f(x) := f(gtxh).

In this case, the coordinate ring has the following decomposition into irreducible

G×G-representations:

C[G] ∼=
⊕

λ∈P+(g)

L(λ)⊗ L(λ).

Note that, since dim(L(λ)) = dim((L(λ))∗), the tensor products in the two decom-

positions have the same dimension. In particular, the graded subspaces in both

decompositions have equal dimension. Therefore, they have the same multivari-

ate Hilbert series. However, the second decomposition is simpler from the point of

view of lattice cones, since λ runs through the cone 〈(ω1, ω1), . . . , (ωk, ωk)〉, where

ω1, . . . , ωk are the fundamental dominant weights of G. This decomposition avoids

the action of the Weyl group on the weight lattice.

We now compute some examples. Begin by considering the coordinate ring of

G = SL2. The group G has only one fundamental dominant weight. Label this

weight as ω (often times this weight is labeled as simply 1, due to the fact that

P+(sl2) = N). Then, by the discussion above, the coordinate ring decomposes as an

SL2 × SL2-representation in the following way:

C[SL2] ∼=
⊕

λ∈〈(ω,ω)〉

L(λ).

Therefore, the series HSq〈(ω, ω)〉 is singly-graded. Note that we do not need the

full machinery of Theorem 4.2.1 to compute a singly-graded series. This could be

computed using the results in [12]. However, this example is interesting as a simple

base case for more complicated algebraic groups.

We now compute HSq〈(ω, ω)〉. Let Φ+ = {(α, 0)} ∪ {(0, α)} denote the positive

roots of sl2 ⊕ sl2, where α is the positive root of sl2. Then

c(ω,ω)(α, 0) = 1 = c(ω,ω)(0, α),

and the Hilbert series is particularly simple to compute. We have

HSq〈(ω, ω)〉 = (1 + q
∂

∂q
)2 1

1− q
=

1 + q

(1− q)3
.
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For another example, this time with multivariate Hilbert series, let G = SL3. In

this case, the multivariate Hilbert series of C[G] is given by

HSq〈(ω1, ω1), (ω2, ω2)〉.

We then have the following figure, after computing the coefficients of the differential

operators that contribute non-trivial terms in the formula from Theorem 4.2.1.

Figure 5.1: Coefficients for the differential operators in HSq〈(ω1, ω1), (ω2, ω2)〉.

Note that the differential operators that contribute to the product formula in

Theorem 4.2.1 for the semisimple group SL3 × SL3 are precisely the same as those

which would contribute in HSq〈ω1, ω2〉 for G = SL3, counted once for each copy of

SL3. This holds true in any semisimple group.

Since there are only two variables in this series, denote them by q and r. Com-

puting the series HSq,r〈(ω1, ω1), (ω2, ω2)〉 yields the following rational function:

1 + 4q + 4r + q2 − qr + r2 − 10q2r − 10qr2 + q3r − q2r2 + qr3 + 4q3r2 + 4q2r3 + q3r3

(1− q)5(1− r)5
.

Note that the numerator in this series looks complicated. The denominator, on

the other hand, is much simpler. It is often easy to compute the denominator of

these multivariate series by counting the number of differential operators of a given

variable that occur in the rational function.

If we plot the coefficients of the monomials in the numerator along axes corre-

sponding to the powers of the variables involved, we get a very nice picture. See
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Figure 5.2. Note that there are two symmetries when we plot these coefficients: one

along the diagonal and one along the anti-diagonal. We wish to find a combinato-

rial description of the symmetries in the numerator of HSq〈λ1, . . . , λk〉 for a general

group. This will be a topic of future study.

Figure 5.2: The coefficients of the numerator of HSq,r〈(ω1, ω1), (ω2, ω2)〉.

5.3 The Kostant cone

This section is split into three subsections. The first of which presents without proof

the basic definitions and theorems about the Kostant cone, as given in the upcom-

ing book “Basic Geometric Invariant Theory” by Wallach. The next subsection will

present a construction of the coordinate ring of a Kostant cone as an infinite dimen-

sional G-module that decomposes into finite dimensional irreducible representations

whose highest weights trace out a lattice cone in P+(g). The final subsection makes

explicit the relationship between the Kostant cone and the multivariate generating

function given in the main theorem.
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5.3.1 Basic definitions and theorems

We begin by defining the Kostant cone given by a k-tuple of highest weight represen-

tations of G. The following definitions and the results from this section can be found

in Chapter 4 §3 of [25]. Let L(λ1), . . . , L(λk) be highest weight representations of G

of highest weight λi, and choose a highest weight vector vi ∈ L(λi) for each i. Let

V be the direct sum L(λ1)⊕ · · · ⊕ L(λk). Then G acts on V diagonally. Let S(V )

be the symmetric algebra on V . Then S(V ) is Nk-graded. Following the notation in

[25], let Sn1,...,nk(V ) ∼= Sn1(V ) ⊗ · · · ⊗ Snk(V ) be a multi-homogeneous component

of S(V ). By Lemma 32 in [25], the multiplicity of the irreducible representation

with highest weight
∑

i niλi in Sn1,...,nk(V ) is one. Denote this subrepresentation

V n1,...,nk . Then we have the following definition.

Definition 5.3.1. The Kostant cone X of V is the set of v ∈ V such that

vn ∈
∑

n1+···+nk=n

V n1,...,nk .

There is a nice, concrete way of describing X in terms of an ‘augmented’ G-action

on V . We let the group G× (C×)k act on V via

(g, z1, . . . , zk).(v1, . . . , vk) = (z1g.v1, . . . , zkg.vk).

This is a quasi-affine variety, and by Theorem 63 in [25], the Zariski closure of this

variety is equal to the Kostant cone X on V . Note that, if the highest weights

λi are all linearly independent, then the action of G × (C×)k on V is the same as

the diagonal action of G on V . Theorem 63 requires augmenting the action with an

additional torus action in order to hold for the case where the weights are dependent.

Note that the variety X is a direct generalization of the orbit of a highest weight

vector. In the case of a highest weight λ, with highest weight vector v, G×C×.v =

G.v, and the closure of the orbit of the highest weight vector v is the Kostant cone

of V = L(λ).

One of the interesting properties of the Kostant cone, originally due to Kostant,

is the fact that the ideal of polynomials vanishing on X is always generated by
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quadratic polynomials. This result is referred to as Kostant’s quadratic generation

theorem, and proofs can be found in [11], [18], and [19] for the case of a single weight

and Chapter 4 of [25] for the general case.

5.3.2 The coordinate ring of the Kostant cone

Note that, in the case that k = 1, the Kostant cone is the closure G.vλ in L(λ). These

varieties have been intensely studied, and their coordinate rings are computed in [24].

Here, we generalize the results in [24] to the multivariate case. Let L(λ1), . . . , L(λk)

be finite dimensional irreducible representations ofG with highest weights λ1, . . . , λk,

and choose a highest weight vector vi from each L(λi). Define V := L(λ1) ⊕ · · · ⊕
L(λk) as before. Let X be the Zarkiski closure of G × (C×)k.(v1, . . . , vk). In other

words, X is the Kostant cone corresponding to λ1, . . . , λk. In this section, we adapt

the computation in [24] of the coordinate ring of the orbit of a highest weight vector

to find an explicit description of the coordinate ring of X, and we use their notation.

We consider G and its subgroups as subgroups of G × (C×)k via the map

g 7→ (g, 1, . . . , 1). We will abuse notation and write g.(v1, . . . , vk) when we mean

(g, 1, . . . , 1).(v1, . . . , vk). We then have

b.(v1, . . . , vk) = (λ1(b)v1, . . . , λk(b)vk),∀b ∈ B. (5.1)

Let O be the orbit of (v1, . . . , vk), π the canonical mapping of V/{0} onto P(V ), and

P the isotropy subgroup of π(v1, . . . , vk).

Proposition 5.3.2. P is a parabolic subgroup, containing B.

Proof. Let πi be the canonical mapping of L(λi)/{0} onto P(L(λi)), and let Pi be

the isotropy subgroup of πivi. Then it follows from (3.1) that Pi is a parabolic

subgroup containing B. We will show that P = P1 ∩ · · · ∩ Pk.
To this end, assume p ∈ P . Then p, acting diagonally, stabilizes the line through

the origin in V containing (v1, . . . , vk). In particular, p stabilizes the line through

the origin in L(λi) containing vi. Thus, P ⊂ P1 ∩ · · · ∩ Pk.
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Now assume p ∈ P1 ∩ · · · ∩ Pk. Then p stabilizes the line through the origin

in each L(λi) that contains vi. Since P acts diagonally on π(v1, . . . , vk), this gives

p ∈ P .

Note that, as characters of B, the weights λ1, . . . , λk extend uniquely to charac-

ters of P . Let H be the isotropy subgroup of (v1, . . . , vk).

Proposition 5.3.3. H = {p ∈ P | λi(p) = 1, i = 1, . . . , k}.

Proof. Note that if λi(p) = 1, for all i = 1, . . . , k, we have

p.(v1, . . . , vk) = (λ(p)v1, . . . , λ(p)vk) = (v1, . . . , vk),

so H contains {p ∈ P | λi(p) = 1, i = 1, . . . , k}.
For the opposite inclusion, let h ∈ H. Then, since h fixes (v1, . . . , vk) and

acts linearly, it must fix the line π(v1, . . . , vk). So H ⊂ P . Thus h.(v1, . . . , vk) =

(λ1(h)v1, . . . , λk(h)vk). This implies that λi(h) = 1, for all i = 1, . . . , k, since H is

the isotropy group of (v1, . . . , vk).

We have the following further characterization of X.

Theorem 5.3.4. X = O ∪ {0}.

Proof. O is invariant under multiplication by any element of C×. To see this, let

z ∈ C×. Then (g, z1, . . . , zk).(zv1, . . . , zvk) = (zz1g.v1, . . . , zzrg.vk). But this is just

(g, zz1, . . . , zzk).(v1, . . . , vk), which is in O. Thus, the claim follows from the fact

that πO is closed in P(V ). This is true, since πO ∼= G/P , and P is a parabolic

subgroup of G.

The maps G
τ−→ O

ι−→ X, where τ(g) = g.(v1, . . . , vk) and ι is the canonical

inclusion generate inclusions

C[X] ↪→ C[O] ↪→ C[G]

on the level of homogeneous coordinate rings. Further, the maps ι and τ commute

with left translations. To see that τ commutes with left translations, consider τ(gh).

Then



64

τ(gh) = gh.(v1, . . . , vk) = g.(hv1, . . . , hvk) = g.τ(h).

Since τ and ι commute with left translations, C[X] and C[O] are left-invariant

subalgebras of C[G]. Thus, C[O] = C[G/H] = C[G]H , where H is considered to act

on the right. H is normal in P . Thus, C[O] is right-invariant with respect to P .

The action of P by right translation then reduces to the action of the torus P/H.

Therefore, we have a decomposition into weight spaces

C[O] =
⊕

λ∈X(P )

C[O]λ,

where C[O]λ := {f ∈ C[O] | f(gp) = λ(p)f(g), g ∈ G, p ∈ P}.
We define S(λ) := {f ∈ C[G] | f(gb) = λ(b)f(g), g ∈ G, b ∈ B}. Note that this

is a finite dimensional, left-invariant subspace of C[G]. The set

X(B)+ := {λ ∈ X(B) | S(λ) 6= 0}

is the set of all highest weights of irreducible representations of G. The representa-

tion S(λ), when λ ∈ X(B)+, is dual to the irreducible representation of G of highest

weight λ. The duality can be expressed explicitly by

〈f, g.vλ〉 = f(g) (5.2)

for all f ∈ S(λ), g ∈ G, and vλ a highest weight vector of weight λ.

It is clear that C[O]λ ⊂ S(λ). Let 〈λ1, . . . , λk〉 be the set of all non-negative

integer combinations of λ1, . . . , λk.

Proposition 5.3.5. C[O]λ 6= 0 implies λ is an integer combination of λ1, . . . , λk.

Proof. Assume that C[O]λ 6= 0. Take a nonzero f ∈ C[O] such that f(gp) =

λ(p)f(g) for all g ∈ G, p ∈ P . In particular, f(gh) = λ(h)f(g) for all g ∈ G, h ∈ H.

By the way we identify C[O] as a subalgebra of C[G], we have

f(gh) = f ◦ τ(gh) = f(gh.(v1, . . . , vk)) = f(g.(λ1(h)v1, . . . , λk(h)vk)).

By Proposition 2,

H = {p ∈ P | λi(p) = 1, i = 1, . . . , k}.
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Thus, f(gh) = f(g.(v1, . . . , vk)) = f ◦ τ(g) = f(g). Summarizing, we have

f(g) = f(gh) = λ(h)f(g).

Then f 6= 0, implies λ(h) = 1. Therefore, we have

Ker(λ) ⊃ Ker(λ1) ∩ · · · ∩Ker(λk).

There exists a bijective correspondence between subgroups of T and subgroups of

X(T ), given by (Γ ≤ X(T ))

Γ 7→ T Γ := {t ∈ T | χ(t) = 1 for all χ ∈ Γ}.

This correspondence reverses inclusions: if T Γ1 ⊂ T Γ2 , then Γ1 ⊃ Γ2. To see this,

note that Γ consists of ALL characters whose value on T Γ is one. If T Γ1 ⊂ T Γ2 ,

then any element of Γ2 has value one on T Γ1 . Thus, Γ2 ⊂ Γ1. Now, let Γ1 be the

subgroup generated by λ1, . . . , λr, and let Γ2 be the subgroup generated by λ.

We have T Γ1 = Ker(λ1) ∩ · · · ∩Ker(λk) and T Γ2 = Ker(λ). We have already

shown that T Γ1 ⊂ T Γ2 . Thus, Γ2 ⊂ Γ1, and we have proven the claim.

Note that Proposition 3 implies that

C[O] ⊂
⊕
λ

S(λ), (5.3)

where λ runs through all integer combinations of λ1, . . . , λk.

Proposition 5.3.6. For each λ ∈ 〈λ1, . . . , λk〉, S(λ) ⊂ C[X].

Proof. We need to show that S(λi) ⊂ C[X] for all i = 1, . . . , k. Then the claim

follows from the fact that S(λ) · S(µ) = S(λ + µ) for all λ, µ ∈ X+(B). Take

f ∈ S(λi). Then f(gb) = λi(b)f(g), for all g ∈ G, b ∈ B. Let vi be a highest

weight vector for L(λi) as before. Then by (5.2), f(g) = 〈f, gb.vi〉 = 〈f, g.vi〉. Let

Oi := G.vi for each i = 1, . . . , k, and define a map Oi → X by

g.vi 7→ g.(v1, . . . , vi, . . . , vk),

for each i. We can think of these maps as inclusions of the Oi into X. In this way,

we consider g.vi to be an element of X. Then, by (5.2), f is a function on X, and

S(λi) ⊂ C[X].
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Note that Proposition 4 implies that⊕
λ∈〈λ1,...,λr〉

S(λ) ⊂ C[X]. (5.4)

Then, by the chain of inclusions C[X] ↪→ C[O] ↪→ C[G] and the fact that λ cannot

be a highest weight if the coefficients on any λi are negative, (5.3) and (5.4) imply

the following theorem.

Theorem 5.3.7. The homogeneous coordinate ring C[X] of the Kostant cone X

given by the weights λ1, . . . , λk is ⊕
λ∈〈λ1,...,λk〉

S(λ).

5.3.3 Multivariate Hilbert series on the Kostant cone

Note that Kostant’s quadratic generation theorem gives a method of computing

multivariate Hilbert series on the Kostant cone X. The multivariate Hilbert series

of a variety whose ideal I has a quadratic generating set can be computed using

methods from commutative algebra by looking at the graph of relations given by

the leading quadratic monomials in I. However, this method rarely leads to simple

direct computations of Hilbert series.

On the otherhand, the main theorem gives a direct way of computing the mul-

tivariate Hilbert series of X. Let C[X] be the homogeneous coordinate ring of X.

By Theorem 3, we have

C[X] =
⊕

λ∈〈λ1,...,λk〉

S(λ).

The representations S(λ) are dual to the irreducible highest weight representations

L(λ). In particular, they have the same dimension. So we can use the formula for

the main theorem to compute the multivariate Hilbert series on X given by the

decomposition into weight spaces in Theorem 3. Let HS(X) be the multivariate

Hilbert series of X. Then, explicitly,
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HS(X) =
∏
α∈Φ+

(
1 + cλ1(α)q1

∂

∂q1

+ · · ·+ cλk(α)qk
∂

∂qk

) k∏
i=1

1

1− qi
.

This formula holds for any Kostant cone X, regardless of the number of dominant

weights involved. Also, this formula is explicit, and can be computed for specific

examples with the help of a computer algebra system.

5.4 Determinantal varieties

In this section, we use the Second Fundamental Theorems presented in §3.3 and

Theorem 4.2.1 to compute multivariate Hilbert series on the three classical types of

determinantal varieties. We may then use an appropriate specialization to find the

standard single variable Hilbert series for these varieties. Explicit rational functions

representing the single variable Hilbert series were computed by Thomas Enright,

Markus Hunziker, and Andrew Pruett in [7] and [8] using BGG resolutions. We

present the methods in this section as a simpler way of computing these Hilbert

series directly, especially in low rank examples. In each case, there is a sense in

which the multivariate series behaves ‘better’ than the single variate series. We

have a recursive relationship for finding the multivariate series which does not exist

when we restrict to the single variable case. Motivated by this fact, we compute the

multivariate series recursively before restricting our variables to obtain the standard

Hilbert series.

5.4.1 Symmetric determinantal varieties

As in §3.3, let SD≤kn denote the variety of all rank at most k symmetric n × n

complex matrices.

The Second Fundamental Theorem of Invariant Theory for O(n) (cf., [10], p.561),

states that the homogeneous coordinate ring C[SD≤kn ] of SD≤kn decomposes as an

GLn-module in the following way:

C[SD≤kn ] ∼=
⊕
λ

L(λ),
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where λ runs over all even dominant integral weights of depth at most k. Here, an

even weight of depth at most k is one that lies in the lattice cone 〈2ω1, . . . , 2ωk〉,
where ω1, . . . , ωn are the fundamental dominant weights of GLn, using the stan-

dard Borel subgroup of upper triangular matrices in GLn. Note that GLn is not

a semisimple group. However, it is reductive. It can then be given a root system

related to the root system of its semisimple part SLn (cf. Chapter 3 in [10]). In

this way, we can consider the decomposition in the Second Fundamental Theorem

of Invariant Theory to hold as SLn-representations, and the result of Theorem 4.2.1

holds. In a similar way, we will consider the Second Fundamental Theorems for GLn

and Sp(n) to give decompositions of the coordinate rings of the anti-symmetric and

standard determinantal varieties as SLn-representations in the following two sub-

sections.

We can then compute the series HSq〈2ω1, . . . , 2ωk〉 and specialize the variables

in an appropriate way to recover the Hilbert series of the standard embedding of

the symmetric determinantal variety. The standard Hilbert series on SD≤kn is given

by ∑
λ

dim(L(λ))q|λ|,

where again, λ runs over all even dominant integral weights of depth at most k.

After computing the series HSq〈2ω1, . . . , 2ωk〉, we specialize to the standard Hilbert

series by making the substitution qi 7→ qi for i = 1, . . . , k.

We now compute some examples. We consider the variety SD≤2
4 . We will com-

pute the series HSq〈2ω1, 2ω2〉, where ω1 and ω2 are the first two fundamental dom-

inant weights of SL4. The main theorem gives us the following rational function for

HSq〈2ω1, 2ω2〉:∏
1≤i<k≤4

(
1 + 2cω1(εi − εj)q1

∂

∂q2

+ 2cω2(εi − εj)q2
∂

∂q2

)
1

(1− q1)(1− q2)
,

where Φ+ = {εi − εj | 1 ≤ i < j ≤ 4}, and εi is the functional that gives the ith

diagonal element of a matrix in g = sl4. Then computing cω1(εi− εj) and cω2(εi− εj)
for 1 ≤ i < j ≤ 4 gives us
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(1 + 2q1
∂
∂q1

)(1 + 2q2
∂
∂q2

)(1 + q1
∂
∂q1

+ q2
∂
∂q2

)(1 + q2
∂
∂q2

)(1 + 2
3
q1

∂
∂q1

+ 2
3
q2

∂
∂q2

) 1
(1−q1)(1−q2)

.

Applying the differential operators then yields

1+6q1+15q2+q21+16q1q2+15q22+q32−50q1q22−29q21q2−4q1q32−25q21q
2
2+6q31q2+21q21q

3
2+20q31q

2
2+6q31q

3
2

(1−q1)4(1−q2)5
.

This formula seems unmanagable, but is easy to compute with Mathematica or

Maple. We can also graph the coefficients the way we did for the coordinate ring

of SL3 to try and find a nice depiction of the numerator (see Figure 5.3). However,

after we make the substitution qi 7→ qi, we get

1 + 3q + 6q2

(1− q)7
,

which is the Hilbert series for the standard embedding of SD≤2
4 .

Figure 5.3: The coefficients of the numerator of HSq,r〈2ω1, 2ω2〉.

We can then increase the size of the matrices to recursively find the Hilbert series

of SD≤2
n . Let {α1, . . . , αn−1} be the simple roots of SLn. The only positive roots of

SLn that contribute to the product in HSq〈ω1, ω2〉, are those which can be written

as a sum of consecutive simple roots
∑
αi beginning at either α1 or α2. So, as we go

from n− 1 to n, we add two differential operators, namely, those which correspond
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to the positive roots α2 + · · ·+αn−1 and α1 + · · ·+αn−1. If we define HSnq〈ω1, ω2〉 to

be the series given by the first two fundamental dominant weights of SLn, we have

the following recursive formula. Note that

HS3
q〈2ω1, 2ω2〉 =

1 + 3q1 + 3q2 − 3q2
1q2 − 3q1q

2
2 − q2

1q
2
2

(1− q1)3(1− q2)3
.

Lemma. For n > 3,

HSnq〈2ω1, 2ω2〉 = (1 + 2
n−2

q2
∂
∂q2

)(1 + 2
n−1

q1
∂
∂q1

+ 2
n−1

q2
∂
∂q2

)HSn−1
q 〈2ω1, 2ω2〉.

We obtain the recursion by simply computing the coefficients for the two new

weights. Note that this recursion is on the multivariate series, but it does not pass to

a recursion on the single variable Hilbert series for the varieties SD≤2
n . The recursion

is linear in the number of differential operators that contribute to the series when

we go from SLn−1 to SLn. In this way, the multivariate series behaves more nicely

than the single variable Hilbert series. This multivariate series then allows us to

more easily compute the Hilbert series of SD≤kn .

This method generalizes to the rank k symmetric determinantal variety. Again,

we write HSnq〈2ω1, . . . , 2ωk〉 when considering the weights as weights of SLn. We

have the following.

Proposition 5.4.1. Let n > k + 1. Then

HSnq 〈2ω1, . . . , 2ωk〉 =
k∏
i=1

(
1 +

2

n− i

k∑
j=i

qj
∂

∂qj

)
HSn−1

q 〈2ω1, . . . , 2ωk〉.

Proof. We have a labeling of the fundamental dominant weights and the simple

roots for SLn as ω1, . . . , ωn−1 and α1, . . . , αn−1, resp., such that

Φ+ = {αi + αi+1 + · · ·+ αj | 1 ≤ i ≤ j ≤ n− 1},

and

cωk(αi + · · ·+ αj) =


1

j − i+ 1
: i ≤ k ≤ j

0 : otherwise

independent of n. Under this labeling, the positive roots of SLn which contribute

to the product but did not contribute at the (n−1)-st step are precisely those roots
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whose sum begins with αi for some i ≤ k and ends with αn−1. There are k of these

roots, namely α1 + · · ·+ αn−1, α2 + · · ·+ αn−1, . . . , αk + · · ·+ αn−1. Then we have

2cωi(α1 + · · ·+ αn−1) =
2

n− 1
, for 1 ≤ i ≤ k,

2cωi(α2 + · · ·+ αn−1) =
2

n− 2
, for 2 ≤ i ≤ k,

. . .

2cωk(αk + · · ·+ αn−1) =
2

n− k
.

This proves the Proposition.

We wish to emphasize the recursive nature of the multivariate series. This is

due to the fact that we have a labeling of the fundamental dominant weights and

positive roots of SLn that is universal for all n. Then, by the product in Theorem

4.2.1, as we increase n, many of our differential operators can be reused, since cωi(α)

does not depend on n. This situation is unique to the multivariate case: there is no

analogue for the standard Hilbert series of SD≤kn . We will exploit this fact again in

the next two subsections.

5.4.2 Antisymmetric determinantal varieties

As in §3.3, let AD≤2k
n denote the variety of all rank at most 2k antisymmetric n×n

complex matrices.

The Second Fundamental Theorem of Invariant Theory for Sp(n) (cf., [10], p.562)

states that the homogeneous coordinate ring C[AD≤2k
n ] of AD≤2k

n decomposes as an

SLn-module in the following way:

C[AD≤2k
n ] ∼=

⊕
λ

L(λ),

where λ runs over the lattice cone 〈ω2, . . . , ω2k〉, where as before, ωi is the ith

fundamental dominant weight of SLn with respect to the standard Borel subgroup

B of upper triangular matrices in SLn.

We compute the series HSq〈ω2, . . . , ω2k〉 and specialize the variables in an ap-

propriate way to recover the Hilbert series of the standard embedding of the an-
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tisymmetric determinantal variety. The standard Hilbert series on AD≤2k
n is given

by ∑
λ

dim(L(λ))q|λ|,

where again, λ runs over the lattice cone 〈ω2, . . . , ω2k〉. After computing the se-

ries HSq〈ω2, . . . , ω2k〉, we specialize to the standard Hilbert series by making the

substitution qi 7→ qi for i = 1, . . . , k.

As in the previous subsection, we start with the simplest case with a multi-

gradation. ConsiderAD4
n, where n ≥ 6. In this case, we wish to computeHSnq〈ω2, ω4〉,

where again, the superscript refers to fact that we are considering ω2 and ω4 as

fundamental dominant weights of the group SLn. Let n = 6. There are twelve dif-

ferential operators in the formula in Theorem 4.2.1 which are nonzero in this case.

These differential operators correspond to positive root strings αi + · · ·+ αj, where

α2 and/or α4 show up somewhere in the string. In this case, those roots and their

values are given in the following figure.

Figure 5.4: Coefficients for the differential operators in HS6
q〈ω2, ω4〉

As we increase n, we add four new differential operators at each step. To see

this, note that as n increases to n+1, the new root strings which contribute at least
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one nonzero differential operator are those which contain a copy of α2 or α4 and end

in n. These new root strings are of the form αi + · · · + αn for i = 1, 2, 3, 4. There

are obviously four such root strings. We then have the following recursive relation.

Lemma. Let n > 6. Then

HSnq〈ω2, ω4〉 = D.HSn−1
q 〈ω2, ω4〉,

where D is the partial differential operator

(1 + 1
n−1

q1
∂
∂q1

+ 1
n−1

q2
∂
∂q2

)(1 + 1
n−2

q1
∂
∂q1

+ 1
n−2

q2
∂
∂q2

)(1 + 1
n−3

q2
∂
∂q2

)(1 + 1
n−4

q2
∂
∂q2

).

This recursion is obtained by computing the coefficients of the four new differ-

ential operators obtained by increasing the size of the matrices from n−1×n−1 to

n × n. Note that even though the recursion is significantly more complicated than

in the symmetric case, we still add a fixed amount of differential operators at each

step, and the actual computational complexity does not really increase. In a similar

fashion, we can obtain a recursive relationship for the multivariate Hilbert series of

AD≤2k
n .

5.4.3 The standard determinantal varieties

As in §3.3, let D≤kn,m denote the variety of all n × m complex matrices of rank at

most k.

The Second Fundamental Theorem of Invariant Theory for GLn (cf., [10], p.559)

states that the homogeneous coordinate ring C[D≤kn,m] decomposes as an SLn×SLm-

module in the following way:

C[D≤kn,m] ∼=
⊕
λ

L(λ)∗ ⊗ L(λ),

where the first representation in the tensor product is considered as an SLn-representation,

the second representation is considered as an SLm-representation, and λ runs through

all dominant integral weights such that depth(λ) ≤ min(n,m, k). From here on out,

we assume that k ≤ min(n,m), and we assume that depth(λ) ≤ k. Now, since SLn

is linear algebraic, we can replace the left action by inversion with the left action by

taking the transpose. This yields the decomposition
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C[D≤kn,m] ∼=
⊕
λ

L(λ)⊗ L(λ),

where the terms in the product are as before. As an SLn×SLm-representation, the

weights in the above decomposition run over the lattice cone 〈(ω1, ω1), . . . , (ωk, ωk)〉,
where we use the notation (λ, µ) to denote a dominant integral weight of G1 × G2

with λ, µ ∈ P+(g).

We again start by considering the simplest case that comes equipped with

a multi-grading. Let HSn,mq 〈(λ1, µ1), . . . , (λk, µk)〉 denote the multivariate series,

where the superscript denotes that we think of the λi as SLn-representations and

the µj as SLm-representations. Consider the determinantal variety D≤2
3,3 of rank at

most two 3 × 3 complex matrices. The decomposition of C[D≤2
3,3] into irreducible

representations of SL3 × SL3 has multivariate Hilbert series

HS3,3
q 〈(ω1, ω1), (ω2, ω2)〉,

where ω1, ω2 are the first two fundamental dominant weights of SL3. Note that this

is the multivariate Hilbert series of the coordinate ring of SL3 considered in §2 of

this chapter.

We can now begin increasing the size of n and m to obtain recursive relations on

the multivariate Hilbert series. We first consider increasing m. As we increase m−1

to m, we will add two new nonzero differential operators to the product, namely

those corresponding to the positive roots α1 + · · ·+ αm − 1 and α2 + · · ·+ αm − 1.

For these two postive roots, we have

c(ω1,ω1)(α1 + · · ·+ αm) = 1
m−1

,

c(ω2,ω2)(α1 + · · ·+ αm) = 1
m−1

,

c(ω2,ω2)(α2 + · · ·+ αm) = 1
m−2

.

Thus, we have the following.

Lemma. Let n,m > 3. Then

HSn,mq 〈(ω1, ω1), (ω2, ω2)〉 =(
1 + 1

m−2
q2

∂
∂q2

)(
1 + 1

m−1
q1

∂
∂q1

+ 1
m−1

q2
∂
∂q2

)
HSn,m−1

q 〈(ω1, ω1), (ω2, ω2)〉
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Note that our original choice to increase m does not actually affect the formula

in the recursion. The story is symmetric. If we had chosen to increase n instead of

m, we would still have two new partial differential operators, with m replaced by n.

Another thing to note is that this recursion is strikingly similar to the recursion

for the symmetric determinantal variety. This should come as no surprise, since

cnλ(α) = ncλ(α), and in either case, we are considering the same subset of the

fundamental dominant weights of SLn. For these reasons, we also get a similar

recursive relationship to that in Proposition 5.4.1.

Proposition 5.4.2. Let n,m > k + 1. Then

HSn,mq 〈(ω1, ω1), . . . , (ωk, ωk)〉 =∏k
i=1

(
1 + 1

m−i
∑k

j=i qj
∂
∂qj

)
HSn,m−1

q 〈(ω1, ω1), . . . , (ωk, ωk)〉.

The proof of Proposition 5.4.2 is identical to the proof of Proposition 5.4.1, and

is again valid if we switch the roles of n and m. In a lot of ways, the multivariate

series for D≤kn,m behaves similarly to that of SD≤kn .

5.5 A nice lattice cone in P+(sln)

Let G = SLn. In this case, let ω1, . . . , ωn−1 be the fundamental dominant weights of

G, and let α1, . . . , αn−1 be the set of simple roots for g. We would like to compute

HSq,r〈ω1, ωn−1〉 for n ≥ 3. Figure 5.5 describes the nonzero coefficients cωi(α) for

α ∈ Φ+ and j = 1, . . . , n− 1.

Using these coefficents, we can compute that HSq,r〈ω1, ωn−1〉 is equal to

n−2∏
i=1

(
1 +

q

i

∂

∂q

)(
1 +

r

i

∂

∂r

)(
1 +

q

n− 1

∂

∂q
+

r

n− 1

∂

∂r

)
1

(1− q)(1− r)
.

We can rearrange the above product, since the operators commute, to get the fol-

lowing.(
1 +

q

n− 1

∂

∂q
+

r

n− 1

∂

∂r

)(n−2∏
i=1

(
1 +

q

i

∂

∂q

)
1

1− q

n−2∏
i=1

(
1 +

r

i

∂

∂r

)
1

1− r

)
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Figure 5.5: Coefficients of the differential operators in HSq,r〈ω1, ωn−1〉

Note that
n−2∏
i=1

(
1 +

q

i

∂

∂q

)
1

1− q
=

1

(1− q)n−1
. Thus, the above simplifies to

(
1 +

q

n− 1

∂

∂q
+

r

n− 1

∂

∂r

)
1

(1− q)n−1(1− r)n−1
.

We apply the above partial differential operator, and simplify to get

HSq,r〈ω1, ωn−1〉 =
1− qr

(1− q)n(1− r)n
.

Note, that if we let G = SL2, we could still compute HSq,r〈ω1, . . . , ωn−1〉 =

HSq,r〈ω, ω〉, where ω is the sole fundamental dominant weight of G. In this case,

we compute that

HSq,r〈ω, ω〉 =
1− qr

(1− q)2(1− r)2
.

In this way, the above discussion holds even in the case that G = SL2 and the

weights ω1, ωn−1 are not independent.

There is a geometric interpretation of this example, using the First Fundamental

Theorem for GL(V ). Note that L(ωn−1) is the dual space of L(ω1). To put this
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example in a more general context, consider the subset X ∈ V ⊕ V ∗, where V is a

finite dimensional vector space with dual space V ∗ given by

X := {(v, λ) ∈ V ⊕ V ∗ | λ(v) = 0}.

Then X is an example of a null cone. These spaces have been extensively studied

in the context of Classical Invariant Theory. When V = L(ω1), the null cone X has

multivariate Hilbert series HSq〈ω1, ωn〉.
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