
University of Wisconsin Milwaukee

UWM Digital Commons

Theses and Dissertations

May 2013

Behavior of Random Dynamical Systems of a
Complex Variable
Simon Albert Wagner
University of Wisconsin-Milwaukee

Follow this and additional works at: https://dc.uwm.edu/etd

Part of the Mathematics Commons

This Thesis is brought to you for free and open access by UWM Digital Commons. It has been accepted for inclusion in Theses and Dissertations by an

authorized administrator of UWM Digital Commons. For more information, please contact open-access@uwm.edu.

Recommended Citation
Wagner, Simon Albert, "Behavior of Random Dynamical Systems of a Complex Variable" (2013). Theses and Dissertations. 391.
https://dc.uwm.edu/etd/391

https://dc.uwm.edu/?utm_source=dc.uwm.edu%2Fetd%2F391&utm_medium=PDF&utm_campaign=PDFCoverPages
https://dc.uwm.edu/etd?utm_source=dc.uwm.edu%2Fetd%2F391&utm_medium=PDF&utm_campaign=PDFCoverPages
https://dc.uwm.edu/etd?utm_source=dc.uwm.edu%2Fetd%2F391&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/174?utm_source=dc.uwm.edu%2Fetd%2F391&utm_medium=PDF&utm_campaign=PDFCoverPages
https://dc.uwm.edu/etd/391?utm_source=dc.uwm.edu%2Fetd%2F391&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:open-access@uwm.edu


Behavior of Random Dynamical Systems

of a Complex Variable

by

Simon Wagner

A Thesis Submitted in
Partial Fulfillment of the

Requirements for the Degree of

Master of Science

in
Mathematics

at

The University of Wisconsin-Milwaukee
May 2013



ABSTRACT

Behavior of Random Dynamical Systems

of a Complex Variable

by

Simon Wagner

The University of Wisconsin-Milwaukee, 2013
Under the Supervision of Professor Suzanne Boyd

In this thesis we examine some methods of adding noise to the discrete dynamical

system z 7→ z2 + c, in the complex plane. We compare the “Traditional Random

Iteration”: choosing a sequence of c-values and applying that sequence of maps to

the entire plane, versus what we introduce as “Noisy Random Iteration”: for each

z and for each iterate calculated, we choose a different c-value. We examine two

methods of choices for c: (1) Uniform distribution on a neighborhood of c, versus

(2) a Bernoulli choice from two values {a, b}, with varying probability p in [0, 1] that

c = a. We show the results of computer investigations, provide definitions and prove

some initial results about Noisy Random Iteration. Finally, we leave the audience

with some open questions and directions for future research.
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Chapter 1

Definitions and Examples of
Classical and Random Iterations

In order to describe the behavior of Random Iterations of functions, we first need

to provide some definitions concerning classical, deterministic chaotic dynamical

systems.

1.1 Classical Iteration

The following definitions are provided in [5].

Definition 1.1.1. The orbit of a number x0 under a function f is defined as the

sequence of points x0, x1 = f(x0), x2 = f 2(x0),· · · , xn = fn(x0) = f(xn−1),· · · . The

point x0 is called the seed of the orbit. In this thesis, we iterate polynomials of the

form fc(z) = z2 + c, where z and c are complex numbers. fn
c (z) is meant to be the

n-th iteration of the function fc(z).

Note that instead of writing a complex number in the form z = a + b i, we will

write it in the form z = (a, b).

Now we define a chaotic dynamical system.
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Definition 1.1.2. A dynamical system f is called chaotic if three conditions are

fulfilled:

1. Periodic points of f are dense,

2. the function f is transitive and

3. f depends sensitively on initial conditions.

We say f is transitive if for any pair of points x and y and any ǫ > 0 there is a

third point z within ǫ of x whose orbit comes within ǫ of y. The function f depends

sensitively on initial conditions if there is a β > 0 such that for any x and any ǫ > 0

there is a y within ǫ of x and a k such that the distance between fk(x) and fk(y) is

at least β.

Now we define the filled Julia set Kc, the Julia set Jc, the Basin of Attraction

Ac(∞) and the Mandelbrot set M .

Definition 1.1.3. The filled Julia set Kc of a polynomial fc is the set of points

whose orbits are bounded. So Kc = {z | |fn
c (z)| 6→ ∞ as n → ∞}. The Julia set

Jc, the place where all of the chaotic behavior of a complex function occurs, is the

boundary of the filled Julia set. Furthermore, we define the Basin of Attraction

of ∞ as Ac(∞) = {z | |fn
c (z)| → ∞ as n → ∞} = C \Kc.

Definition 1.1.4. The Mandelbrot set M consists of all c-values such that the

orbit of 0, which is the critical point of fc(z), is bounded. That is M = {c ∈ C |

|fn
c (0)| 6→ ∞ as n → ∞} = {c ∈ C | c ∈ Kc}. Note that f

′

c(z) = 2z and thus the

only critical point of fc(z) = z2 + c is 0 since f
′

c(0) = 0.

Remark 1.1.5. Note that M is a subset of the c-plane, whereas the filled Julia set

Kc is a subset of the z-plane.

Theorem 1.1.6. Equivalently to the definition of the Mandelbrot set, it holds that

M = {c | Kc is connected }. Further, if |c| > 2, then the Julia set is equal to the

filled Julia set, i.e. Jc = Kc and Jc is a Cantor set.
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Theorem 1.1.6 is proven in [4] and involves deeper mathematics than we will

discuss in this thesis.

Another important theorem that we will use to draw pictures of Julia sets, is the

following:

Theorem 1.1.7. The filled Julia set Kc is contained inside the closed disk of radius

max(|c|, 2). That is, Kc ⊆ {z | |z| ≤ max(|c|, 2)}.

To prove this theorem, the following two lemmas are required.

Lemma 1.1.8. (The Escape Criterion) If |z| ≥ |c| > 2, then |fn
c (z)| → ∞ as

n → ∞. This means that z /∈ Kc and z ∈ Ac(∞).

Remark 1.1.9. Note that Lemma 1.1.8 implies that if |c| > 2, Kc is a subset of the

closed disc with center 0 and radius |c|, i.e. if |c| > 2, then Kc ⊆ {z | |z| < |c|}.

For the case, where |c| ≤ 2, we can extend the Escape Criterion as follows:

Lemma 1.1.10. If |z| > max{|c|, 2}, then |fn
c (z)| → ∞ as n → ∞. Hence z /∈ Kc.

Remark 1.1.11. Notice that Lemma 1.1.10 tells us that if |c| ≤ 2, then Kc

is a subset of the closed disc with center 0 and radius 2, i.e. if |c| ≤ 2, then

Kc ⊆ {z | |z| < |2|}.

Note that the proofs of Lemma 1.1.8 and Lemma 1.1.10 can be found in [5] and

therefore we omit those proofs. Thanks to those lemmas, we can prove Theorem

1.1.7.

Proof. (of Theorem 1.1.7) Recall that Lemma 1.1.8 states that if |c| > 2, then

Kc ⊆ {z | |z| < |c|} and Lemma 1.1.10 says that if |c| ≤ 2, then Kc ⊆ {z | |z| < |2|}.

Putting both of those lemmas together, we get that for all c-values it holds that

Kc ⊆ {z | z ≤ max(|c|, 2)}.

The next result is useful since it helps to state later on an algorithm to draw Kc.
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Corollary 1.1.12. If for some k ≥ 0, |fk
c (z)| > max{|c|, 2}, then it follows that

∃λ > 0 s.t. |fk+1
c (z)| > (1 + λ)|fk

c (z)| and so |fn
c (z)| → ∞ as n → ∞.

Note that the proof of this corollary is provided in [5].

The following theorem will help us to draw the Mandelbrot set for fc(z) = z2+ c.

Theorem 1.1.13. The Mandelbrot set (for fc(z) = z2+c) is contained in the closed

disk with center 0 and radius 2, i.e. M = {c ∈ C | c ∈ Kc} ⊆ {c | |c| ≤ 2}.

Note this theorem follows from the following result:

Lemma 1.1.14. If |c| > 2, then |fn
c (0)| → ∞ as n → ∞, so 0 /∈ Kc and 0 ∈ Ac(∞).

The proof of this lemma is provided again by [5].

When we want to draw a Julia set or a Mandelbrot set, we do not need to iterate

all points in a grid. This is because, due to the stated theorems, it is already clear

that the orbit of some points escape to infinity. In the following, we will describe

an algorithm to draw either a Julia set or a Mandelbrot set. If the orbit of a

point escapes, then it will be colored white, whereas points will be colored black if

they do not escape within the first N iterations, where N is the maximum number

of iterations we choose. Thus, black points will only yield an approximation of

Julia sets and of the Mandelbrot set, since black points could still escape after the

first N iterations. Hence, the higher the number of iterations is, the better is the

approximation of the respective set. Usually N = 250 suffices to draw pictures for

fc(z) = z2 + c.

Algorithm 1.1.15. First, we describe an algorithm, which tells us how to draw a

Julia set. Recall that Lemma 1.1.10 says that if |z| > max{|c|, 2}, then |fn
c (z)| → ∞

as n → ∞. Thus, for all points outside of the grid [−R,R]2, where R := max{|c|, 2},

the orbit escapes and so we color those points white. First, we choose a maximum

number of iterations N . Now, for each point z within the grid, we compute the

first N points of the orbit of z. Recall that Corollary 1.1.12 says, that the orbit
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of z escapes if for some k ≥ 0, |fk
c (z)| > max{|c|, 2}. Thus, we have to check if

|fk
c (z)| > max{|c|, 2} for some k ≤ N and if it is the case, then we stop iterating and

color the point z white. On the other side, if |fk
c (z)| ≤ max{|c|, 2} for all k ≤ N ,

then we color the point z black. Hence, the black points yield an approximation of

Kc.

Algorithm 1.1.16. Now we describe an algorithm for drawing a Mandelbrot set.

Recall that Lemma 1.1.14 says that if |c| > 2, then the orbit of 0 under fc escapes

to infinity. So we can color those points white and thus we only have to figure

out what happens to c-values with |c| ≤ 2. So when we draw a Mandelbrot set,

we only have to regard c-values within a [−2, 2] × [−2, 2] - grid. First, we choose a

maximum number of iterations N . Then, for each c-value in the grid, we compute

the first N points of the orbit of 0 under fc, i.e. we compute fk
c (0) ∀ k = 1, · · · , N .

Recall that for |c| ≤ 2, Corollary 1.1.12 says that if for some k ≥ 0, |fk
c (z)| > 2,

then |fn
c (z)| → ∞ as n → ∞. Thus, if for some k ≤ N |fk

c (0)| > 2, then we stop

iterating and color the point c white. If |fk
c (0)| ≤ 2 for all k ≤ N , then we color the

point c black. So the black points are an appoximation for the Mandelbrot set M .

Figure 1.1: The black points in this figure depict an approximation for the Mandel-
brot set, calculated with Algorithm 1.1.16.

All of the pictures in this thesis are generated with the program Dynamics Ex-

plorer, available for download at [2]. In this thesis, the pictures of the Mandelbrot
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set and the Julia sets will be painted with different colors instead of using only

black and white. The color shade of a point is changing accordingly to the number

of iterations the point needs before it is clear whether the point escapes to infinity

or whether the point belongs to Kc.

Figure 1.1 shows the Mandelbrot set M , drawn in a [−2, 2]2 - grid. Recall that

the black points are those which do not escape within the first N iterations. Since

there might be points, which did not escape within the first N iterations, but which

escape after the Nth iteration, the black points are only an approximation for the

Mandelbrot set.

Figure 1.2 shows Julia sets obtained by applying Algorithm 1.1.15. In Subfigure

1.2(a) we can see the Julia set for c = (−1, 0). This Julia set is called the “Basilica”.

Subfigure 1.2(b) illustrates the Julia set for c = (−0.12, 0.75). This set is called the

“Rabbit”.

(a) Jc, c = (−1, 0) (Basilica) (b) Jc, c = (−0.12, 0.75) (Rabbit)

Figure 1.2: Both subfigures show Julia sets, where either c = (−1, 0) (the Basilica)
or c = (−0.12, 0.75) (the Rabbit).

Figure 1.3 shows two Julia sets,whose c-values are in the main cardioid of the

Mandelbrot set and close to each other. The c-values of the Julia sets are c1 = (0, 0)

or c2 = (0, 0.05). We observe that the two Julia sets are very similar, so for c1 ≈ c2

we observe that Jc1 ≈ Jc2 as sets.
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(a) Jc, c = (0, 0) (b) Jc, c = (0, 0.05)

Figure 1.3: This is a illustration of two Julia sets, whose c-values are close to each
other. Subfigure (a) illustrates a Julia set with c = (0, 0) and Subfigure (b) shows a
Julia set with c = (0, 0.05).

Subfigure 1.4(a) shows a Julia set for c = (0, 1), which is called a dendrite. In fact,

the point (0, 1) is not in the interior of M but instead on its boundary. This Julia

set is of importance since Kc = Jc. It turns out that this is not a Cantor set and

in fact the Julia set is connected. In Subfigure 1.4(b) we can see a Julia set where

Kc = Jc but which is a Cantor set, so the Julia set is disconnected. Next, Subfigure

1.4(b) and Subfigure 1.4(c) show that if c varies for example between c = (0.255, 0)

and c = (0.25, 0), Jc varies continuously with c but Kc does not vary continously.

Instead, Kc only varies continuously inside of a connected component of M . Also,

Subfigure 1.4(c) is not a Cantor set.

(a) Jc, c = (0, 1) (b) Jc, c = (0.255, 0) (c) Jc, c = (0.25, 0)

Figure 1.4: Subfigures (a) and (b) show Julia sets, where Kc = Jc. In Subfigure
(a) the Julia set is a dendrite, which is not a Cantor set, whereas in Subfigure (b)
the Julia set is a Cantor set. Subfigures (b) and (c) are examples, where Jc varies
continuously with c but Kc does not. Subfigure (c) is not a Cantor set.
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1.2 Random Iterations of a collection of functions

Overview. In the “classical” case the behavior of iterations of functions f(z) =

z2+ c has been studied already. We will call this the Classical Iteration. Now we

try to understand the behavior of iterations of a collection of functions fe(z) = z2+e,

such that the complex number e belongs to a set E. At each step of iteration, a

different function is applied, that is another e-value is chosen.

In this thesis we examine two ways of choosing the e-values to iterate the func-

tions. One way is to somehow choose a sequence {en}
N
n=1 such that for all n, en ∈ E.

After that, apply those en to the function fe(z) to compute the N th point in the

orbit of the function for each z. Thus, we compute feN ◦ feN−1
◦ · · · ◦ fe2 ◦ fe1(z),

to get the N th point in the orbit. We call this way of choosing the e-values the

Traditional Random Iteration. This way was for example used by [3], [7] and

[1]. Our new approach is to apply for each z at the nth iteration an en(z) ∈ E to

the function fe(z) to compute the next point in the orbit. Thus, for each z, we

compute feN (z) ◦ feN−1(z) ◦ · · · ◦ fe2(z) ◦ fe1(z)(z), to get the N th point in the orbit. We

will call this the Noisy Random Iteration. So either, in the Traditional Random

Iteration, a sequence {en}
N
n=1 is chosen and this sequence is applied to the function

fe(z) for every z in the grid. Or, in the Noisy Random Iteration, for every single z

in the grid, there is chosen a different sequence {en(z)}
N
n=1 and applied to fe(z).

Remark 1.2.1. In both, the Traditional Random Iteration and the Noisy Random

Iteration, their are many ways of how we could choose the set E and sequences of

e-values from E. For example the set E could be E = {c+ ǫ | ‖ǫ‖∞ < δ}, for some

δ > 0 and some fixed c, where the sequence {en}
N
n=1 (or the sequences {en(z)}

N
n=1)

could be chosen uniformly distributed in [−δ, δ]2. The set E could also be E = {a, b},

where a is chosen if a sample of a Bernoulli distributed random variable takes value

1 and b is chosen if it takes value 0. So choosing E = {c+ ǫ | ‖ǫ‖∞ < δ}, where the

ǫ-values are uniformly distributed in [−δ, δ]2, will be called Uniform Ball (Noisy

or Traditional) Random Iteration, depending on how the ǫ-values are chosen

and how the functions are being iterated. Furthermore, if we choose E = {a, b} as
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stated before, then we will talk aboutBernoulli (Noisy or Traditional) Random

Iteration, also depending on the way of choosing the ǫ-values and iterating the

functions.

1.3 Examples of Julia sets close to the Rabbit

In the following, we want to show examples of the Classical Iteration, the Uniform

Ball Traditional Random Iteration and the Uniform Ball Noisy Random Iteration

where the c-values are close to the Rabbit. Also, we want to compare the two

different kinds of iterations with each other.

Examples of Classical Iterations. First, we want to examine some Julia sets

close to the Rabbit, that is Julia sets with c-values close to c = (−1.2, 0.75). The

Rabbit, which we get by Classical Iteration is illustrated in Subfigure 1.5(a). In

Subfigure 1.5(b) we can see a Julia set, also created by Classical Iteration, whose

c-value is in some sense “close” to the c-value of the Rabbit. The c-value in this

Subfigure is given by c = (−0.129593, 0.695327). Note that we can see a lot of

self-similarity in each of those two pictures, that means each component of Kc is

shaped alike, so there is almost the same amount of roundness in each component

of Kc. Furthermore, Figure 1.5 shows that for both c-values there is a loose “3-fold

symmetry” about points where the components of Kc meet. Hence, Julia sets with

close c-values created by Classical Iteration seem to be very similar.
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(a) Jc, c = (−1.2, 0.75), Rabbit (b) Jc, c = (−0.129593, 0.695327)

Figure 1.5: Both subfigures show Julia sets created by Classical Iteration. Subfigure
(a) shows the Rabbit and in Subfigure (b) the c-value is chosen close to the c-value
of the Rabbit.

Examples of Uniform Ball Traditional Random Iterations. Next, we

choose a c-value close to the Rabbit and a random sequence of e-values, where

E = {c + ǫ | |ǫ| ≤ δ}. In the following we choose δ = 0.09, so that the ǫ-values

influence the behavior of the iteration of fe(z) not to little, but also not to much.

We choose the ǫ-values in the set E to be uniformly distributed in [−0.09, 0.09]2.

Recall that in the Uniform Ball Traditional Random Iteration we apply the sequence

{en}
N
n=1 to fe(z) = z2 + e, where e ∈ E for every z.

To see a variety of Julia sets obtained through Traditional Random Iteration,

we could either fix a c-value and vary the choice of the sequence {en}
N
n=1 or we fix

a sequence {en}
N
n=1 and vary c. Note that we choose the latter for no particular

reason. We observe, that for different chosen c-values in the neighborhood of a

certain c-value we get different results.

Subfigure 1.6 shows that applying the sequence {en}
N
n=1 to fe(z) and we let

c = (−0.129593, 0.695327), then we get a Julia set which still resembles the Rabbit.

We can see that this Julia set is still connected, but there is less self-similarity in

the shape of each component of Kc.
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(a) Jc, c = (−0.12, 0.75), Rabbit (b) Jc, c = (−0.129593, 0.695327)

Figure 1.6: Subfigure (a) shows the Rabbit created by Classical Iteration. In Sub-
figure (b) we can see a Julia set, whose c-value is close to the c-value of the Rabbit
and which was created by Uniform Ball Traditional Random Iteration. Subfigure
(b) still looks like the Rabbit, but with less self-similarity.

But if we take other c-values in the neighborhood of c = (−0.12, 0.75), then we

get Julia sets which in rough outline still look like the Rabbit, but the Julia sets are

not connected anymore. Figure 1.7 illustrates some Julia sets, where some portions

of Kc are missing. That is, there are many points whose orbits were bounded under

Jc with c = (−0.12, 0.75), but which are not bounded for some c-values in the

neighborhood c = (−0.12, 0.75).

(a) J(−0.141086,0.724676) (b) J(−0.123511,0.688790) (c) J(−0.097296,0.692368) (d) J(−0.174156,0.730279)

Figure 1.7: All subfigures show Julia sets close to the Rabbit, created by Uniform
Ball Traditional Random Iteration. For those c-values, the Julia sets are discon-
nected and large areas of Kc are missing.
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Comparison of Uniform Ball Traditional Random Iteration with Uni-

form Ball Noisy Random Iteration. Now we look at an example, which illus-

trates the difference between the Uniform Ball Traditional Random Iteration and

the Uniform Ball Noisy Random Iteration. Recall that for the Uniform Ball Noisy

Random Iteration for every z there is another sequence {en(z)}
N
n=1 which is ap-

plied to fe(z). For both kinds of iteration, we let E = {c + ǫ | ‖ǫ‖∞ ≤ 0.09} and

c = (−0.174156, 0.730279). Figure 1.8 illustrates the difference between the picture

we get using the Uniform Ball Traditional Random Iteration and the one we get

with our Uniform Ball Noisy Random Iteration. The picture, which was created

by using the Uniform Ball Noisy Random Iteration looks sandy and messy but in

a more uniform way than the picture obtained using the Uniform Ball Traditional

Random Iteration. We could say that the picture we get when we are using the

Uniform Ball Noisy Random Iteration yields a more accurate approximation of the

Julia set for c = (−0.174156, 0.73279) than the picture created by the Uniform Ball

Traditional Random Iteration, where the same sequence of ǫ-values was applied for

each z in the grid.

(a) Jc, c = (−0.174156, 0.730279),
Traditional Random Iteration

(b) Jc, c = (−0.174156, 0.73279),
Noisy Random Iteration

Figure 1.8: This figure compares the Uniform Ball Traditional Random Iteration
with the Uniform Ball Noisy Random Iteration. Subfigure (a) illustrates a Julia
set which was created by using the Uniform Ball Traditional Random Iteration.
Subfigure (b) shows a Julia set which was created by using the Uniform Ball Noisy
Random Iteration.
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Chapter 2

Bernoulli Noisy Random Iteration

In the previous chapter, we iterated fe(z) = z2 + e with E = {c + ǫ | ‖ǫ‖∞ < δ},

where e ∈ E and the ǫ-values were uniformly distributed in [−δ, δ]2. In this chapter,

we are iterating fe(z) = z2 + e for every z under the same sequence {en}
N
n=1 chosen

from E = {a, b}. At each step of iteration, a use a sample of a Bernoulli distributed

random variable to decide if we iterate fa(z) or fb(z). For the Bernoulli distributed

random variable it holds that P(e = a) = p and P(e = b) = 1 − p. Recall that we

call this the Bernoulli Noisy Random Iteration.

2.1 Bernoulli Noisy Random Iteration including

Julia sets

Bernoulli Noisy Random Iteration with Basilica and circle. First, we want

to illustrate two examples of a Bernoulli Noisy Random Iteration which involves two

different Julia sets. In our first example we choose a = (−1, 0) and b = (0, 0). In

our Bernoulli Noisy Random Iteration we draw a sample of a Bernoulli distributed

random variable for every z and for every iteration. Suppose we always draw a,

then we iterate always fe(z) = z2 + (−1, 0). In this case, the Julia set we get is the

Basilica. However, if the sample is b, then we iterate fe(z) = z2 over and over again

and thus the Julia set we get a circle with radius 1.
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Now we vary p and take a look at the corresponding Julia sets. Figure 2.1

illustrates this. If p changes from p = 1 to p = 0.85, we can see only minor changes

and so the Julia set for p = 0.85 still resembles the Basilica. As p gets smaller and

smaller the pictures resembles more and more the circle. As p approaches p = 0.15

we can see this very well and finally for p = 0 we get the circle.

Bernoulli Noisy Random Iteration with dendrite and Rabbit. Another

example of a Bernoulli Noisy Random Iteration which includes two Julia sets would

be to choose either a = (0, 1) with probability p and b = (−0.12, 0.75) with prob-

ability 1 − p. If p = 1, then the set we get is a dendrite, since we always iterate

fe = z2+(0, 1). On the other hand, if p = 0, then we iterate fe = z2+(−0.12, 0.75)

for every z and at each step of iteration and thus the Julia set we get is the Rabbit.

To get a better imagination of what happens if p varies, Figure 2.2 shows pictures

for different values of p. We can see that if p changes from p = 1 to p = 0.85, the

picture we get still looks like the dendrite. As p decreases, the picture looks more

and more sandy. As p approaches p = 0.15, we can see that the sandy pictures

resemble more and more the Rabbit. Finally, for p = 0 we get the Rabbit.
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(a) p = 1 (Basilica) (b) p = 0.85

(c) p = 0.60 (d) p = 0.40

(e) p = 0.15 (f) p = 0 (circle)

Figure 2.1: This figure illustrates Bernoulli Noisy Random Iterations of fe(z) = z2+e
where e ∈ {(−1, 0), (0, 0)} for different probabilities p.
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(a) p = 1 (dendrite) (b) p = 0.85

(c) p = 0.60 (d) p = 0.40

(e) p = 0.15 (f) p = 0 (Rabbit)

Figure 2.2: This figure illustrates Bernoulli Noisy Random Iterations of fe(z) = z2+e
where e ∈ {(0, 1), (0, 0)} for different probabilities p.
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2.2 Bernoulli Noisy Random Iteration including

the Mandelbrot set

A different type of iteration that we introduce now is the mixing of a Julia set with

the Mandelbrot set under utilization of a Bernoulli distributed random variable.

First, we pick a parameter b ∈ C and we fix a probability p ∈ [0, 1]. Next, for each

point c in the grid and for each step of iteration, we set E = {c, b}. Again, for every

z, we iterate fe(z) = z2 + e, where e ∈ E = {c, b} and with initial seed z = 0, under

the same sequence {en}
N
n=1. Here, P(e = c) = p and P(e = b) = 1 − p. Finally, we

color the point c accordingly to whether the orbit of 0 escapes or not.

Now we want to state two examples of a Bernoulli Noisy Random Iteration which

includes a Julia set and the Mandelbrot set. First we want to analyze the behavior of

fe(z) with b = (−1, 0), so E = {c, (−1, 0)}. If p = 1, then we iterate fe(z) = z2 + c

over and over again, so we simply get the Mandelbrot set. If p = 0, then we

always iterate fe = z2 + (−1, 0) and thus we get the Basilica. If p varies between

0 and 1, then at each step of iteration and for each z, either fe(z) = z2 + c or

fe(z) = z2+(−1, 0) is being iterated. Figure 2.3 illustrates this for different p-values.

This figure shows that if p gets closer to 1, the corresponding picture resembles more

the Mandelbrot set whereas if p gets closer to 0, it looks more like the Basilica.

We want to look at another example, so we choose b = (0, 0), so E = {c, (0, 0)}.

Thus, for each c and at each step of iteration, we either iterate fe(z) = z2 + c or

fe(z) = z2 + (0, 0) = z2. As in our last example, for p = 1 we get the Mandelbrot

set. In the case where p = 0, we are always iterating fe(z) = z2 and thus we get

a circle as our Julia set. In Figure 2.4 we can see the according Bernoulli Noisy

Random Iterations which include the Mandelbrot set for different values of p. We

observe that when p gets closer to 1, the picture resembles the Mandelbrot set and

for p-values close to 0 the picture we get looks more like the circle.

We refer the reader to the article [8] in which such an iteration was studied for

quadratic maps of one real variable.
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(a) p = 1 (Mandelbrot set) (b) p = 0.85

(c) p = 0.60 (d) p = 0.40

(e) p = 0.15 (f) p = 0 (Basilica)

Figure 2.3: Illustration of Bernoulli Noisy Random Iterations of fe(z) = z2+e where
e ∈ {(c, (−1, 0)} for different probabilities p.
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(a) p = 1 (Mandelbrot set) (b) p = 0.85

(c) p = 0.60 (d) p = 0.40

(e) p = 0.15 (f) p = 0 (circle)

Figure 2.4: This figure illustrates Bernoulli Noisy Random Iterations of fe(z) = z2+e
where e ∈ {(c, (0, 0)} for different probabilities p.
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Chapter 3

Definitions and Theorems on
Noisy Random Iteration

3.1 Definitions

So far, we chose the set E without paying a lot of attention on the probability mea-

sure on E. However, we were aware of the fact that elements e in E are drawn with

certain probabilities. So for example we said that for E = {c+ ǫ | ‖ǫ‖∞ < δ}, the

variable ǫ was uniformly distributed and for E = {a, b} we said that the probability

of drawing a is p and of drawing b is 1 − p. But now we want to introduce a new

notation which we will use from now on.

Notation 3.1.1. Let B be a σ-algebra of subsets of E and µ be a measure µ : B →

[0,∞) which is σ-additive, µ(∅) = 0 and µ(E) = 1. Then we denote E = (E, µ) to

be the probability space (E,B, µ).

As a shorthand, we will write E = {c + ǫ | ‖ǫ‖∞ < δ, uniformly} for the case

where E = {c + ǫ | ‖ǫ‖∞ < δ} and ǫ is uniformly distributed in [−δ, δ]2. Also, we

will write E = {{a, b}, Bern(p)} for the case where E = {a, b} and P(e = a) = p,

P(e = b) = 1− p.

Notation 3.1.2. For n ∈ N we define {fn
E (z)}

∞
n=1 to be an orbit of z under a choice

of e1(z), e2(z), · · · ∈ E. More precise {fn
E (z)}

∞
n=1 := {· · · ◦ fen(z) ◦ · · · ◦ fe1(z)(z)}.
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Additionally, we define {fn
E (z)} := {fk

E (z)}
n
k=1 = {fen(z) ◦ · · · ◦ fe1(z)(z)} to be an

orbit until the n-th iteration.

Notation 3.1.3. If the point z escapes to infinity, then we define the random

variable XE−orbit(z) to take value 1. On the other hand, if z does not escape, then

XE−orbit(z) is defined to be 0.

Remark 3.1.4. In general, a probability is assigned to each of the possible outcomes

of a random experiment by a probability distribution. In our case, XE−orbit(z) can

take value 0 or 1 and so XE−orbit is a discrete random variable. A discrete probability

distribution assigns to each of the possible outcomes of XE−orbit a certain probability.

Note that the summation of the probabilities for all possible outcomes must be 1.

Thus, in our case P (XE−orbit(z) = 0) + P (XE−orbit(z) = 1) = 1.

Notation 3.1.5. We define pE−escapes(z) to be the probability that a failure occurs,

that is XE−orbit(z) = 0. Thus pE−escapes(z) is the probability that the orbit of a point

z escapes to infinity. Additionally we define pE−bounded(z) to be the probability that

the orbit of z is bounded. Thus we have pE−escapes(z) = P (XE−orbit(z) = 0) and

pE−bounded(z) = P (XE−orbit(z) = 1). Since P (XE−orbit(z) = 0) + P (XE−orbit(z) = 1)

= 1, it follows that pE−bounded(z) = 1− pE−escapes(z).

Notation 3.1.6. Let M be the number of times we calculate {fn
E (z)} for a fixed

point z and a fixed number of iterations n.

Law of Large Numbers. By the Law of Large Numbers [6], the sample average
X1+X2+···+XM

M
converges to the expected value ν for M → ∞, where the random vari-

ables X1, X2, · · · is an infinite sequence of independent and identically distributed

random variables with E(X1) = E(X2) = · · · = ν. Thus, the more times we are cal-

culating {fn
E (z)} in order to calculate pE−bounded(z), the more precise is the result.

Application of the Law of large numbers. Due to the Law of large numbers,

we calculate the probability that the orbit of z escapes as follows:

pE−escapes(z) = lim
M→∞

1

M

M∑

m=1

XE−orbit(z).
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Remark 3.1.7. When we regard the set E = {a, b}, we use in each step of itera-

tion of {fn
E (z)} a sample of a independent and identically distributed Bernoulli(p)-

distributed random variable. Also, in the case when E = {c+ǫ | |ǫ| < δ, uniformly},

the ǫ-values are uniformly distributed random variables which are independent and

identically distributed. Thus, in both cases, the law of large numbers holds.

Definition 3.1.8. For a fixed set E and a fixed random process for drawing el-

ements from E to perform iterations on a set of z-values in the plane, we define

KE(r) := {z | pE−bounded(z) ≥ r}, where r ∈ (0, 1]. Furthermore, KE := KE(1) =

{z | pE−bounded(z) = 1} = “KE − inf” and KE :=
⋃
r>0

KE(r) = {z | pE−bounded(z) > 0}

= “KE−sup”. The Basin of Attraction of∞ can be written in terms ofKE as follows:

AE(∞) := {z | pE−bounded(z) = 0}. Note AE(∞) = C \KE = {z | pE−escapes(z) = 1}.

Note that for Figure 1.8, Figure 2.1 and Figure 2.2, the set E and a random

process was fixed, so the definitions above apply to them.

Definition 3.1.9. Now, let E = E(c) be a set of complex numbers which de-

pends continuously on a complex parameter c. So for example fix a parameter

b, where b is complex and let E = {c, b}. Another example would be to fix

a δ > 0 and set E = {E, µ}, where E = {c + ǫ | ‖ǫ‖∞ < δ}. We define

ME(r) := {c | pE−bounded(0) ≥ r}, where r ∈ (0, 1]. Additionally, ME := ME(1) =

{c | pE−bounded(0) ≥ 1} = {c | pE−bounded(0) = 1}= “ME−inf” andME :=
⋃
r>0

ME(r) =

{c | pE−bounded(0) > 0} = “ME − sup”.

Note that for Figure 2.3 and Figure 2.4 we fixed a b ∈ C and we let E = {c, b}.

So the above definitions apply to those figures.
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3.2 Statement of theorems and proofs

In this section, we will prove analogs for the Noisy Random Iteration of the theorems

in Section 1.1.

Notation 3.2.1. We set SE = sup
e∈E

|e| and IE = inf
e∈E

|e|. Here, |e| denotes the

modulus of e.

So for example for E = {c + ǫ | |ǫ| < δ}, SE = |c| + δ and IE = |c| + δ. For

E = {a, b}, SE = max{|a|, |b|} and IE = min{|a|, |b|}.

First of all, we want to state the analog of Theorem 1.1.7, which was about the

location of the filled Julia set using Classical Iteration.

Theorem 3.2.2. The setKE is contained inside the closed disk of radius max{2, SE},

i.e. KE ⊆ {z | |z| < max{2, SE}}.

In order to be able to prove this theorem, we will prove two lemmas first.

Lemma 3.2.3. (Escape Criterion for Noisy Random Iteration.) (analog

to Lemma 1.1.8)

If |z| ≥ SE > 2, then pE−escapes(z) = 1, which means that z /∈ Kc and so z ∈ Ac(∞).

Proof. Suppose |z| ≥ SE > 2 and let {en(z)}
∞
n=1 ⊆ E. We want to prove by

induction that pE−escapes(z) = 1.

|fe1(z)| = |z2 + e1(z)| ≥ |z|2 − |e1(z)|

> |z|2 − SE ≥ |z2| − |z|

= |z|(|z| − 1) > |z|(1 + λ).

Since |z| > 2, we can find a λ > 0 such that |z| − 1 > 1 + λ and thus the last

inequality holds. So far we have shown that |fe1(z)(z)| > |z|(1 + λ).
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Now we suppose that fn−1
E

(z) = fen−1(z)(f
n−2
E

)(z) > |z|(1 + λ)n−1 holds. Then,

|fn
E (z)| = fen(z)(f

n−1
E

)(z) = |(fn−1
E

)2 + en(z)|

≥ (fn−1
E

)2 − |en(z)| > (fn−1
E

)2 − (SE)

> ((1 + λ))n−1|z|)2 − |z| > (1 + λ)n−1|z|2 − |z|

= (1 + λ)n−1|z|(|z| − 1)) > (1 + λ)n−1|z|(1 + λ)

= (1 + λ)n|z|.

Thus for this arbitrarily chosen sequence from E, the orbit escapes. Hence, {fn
E (z)}

tends surely to infinity for n → ∞, that is pE−escapes(z) = 1.

As for the Classical Iteration, we can extend the Escape Criterion for the Noisy

Random Iteration for the case that SE < 2 as follows.

Lemma 3.2.4. (analog to Lemma 1.1.10)

If |z| ≥ max{SE, 2}, then ∃λ > 0 s.t. |fn
E (z)| > (1 + λ)n|z| for all n and so

fn
E (z) → ∞ as n → ∞. Thus pE−escapes(z) = 1, which means that z /∈ Kc and

z ∈ Ac(∞).

Proof. Notice that in Lemma 3.2.3 we only used the facts that |z| ≥ SE, |z| > 2 and

|en(z)| < SE. Thus it is sufficient to assume that |z| ≥ max{SE, 2}. Then we can

apply the same arguments as in the proof of Lemma 3.2.3 to obtain pE−escapes(z) = 1.

Proof. (of Theorem 3.2.2) We need to show that KE < max{2, SE}}. Recall that

Lemma 3.2.4 says that if |z| ≥ max{SE, 2}, then fn
E (z) → ∞ as n → ∞. Note

that if fn
E (z) → ∞ as n → ∞, then z /∈ KE . Thus it follows immediately that

KE ⊆ {z | |z| < max{2, SE}}, which completes the proof.

Remark 3.2.5. If SE > 2, then KE = {z | pE−bounded(z) > 0} ⊆ {|z| < SE}. So

for example for any E = (E, µ) with some probability measure µ we can say that if

E = {c + ǫ | |ǫ| < δ}, then KE ⊆ {|z| < |c| + δ}. For the case where E = {a, b} it

follows that KE ⊆ {|z| < max{|a|, |b|}.
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In the following we will state and prove a corollary, which is helpful to set up and

algorithm to draw the sets ME(r) and ME(r).

Corollary 3.2.6. (analog to Corollary 1.1.12)

If for some k ≥ 0 and {e1, · · · , ek} we get |fk
E (z)| > max{SE, 2}, then for any

choices of {ek+1, ek+2, · · · } ⊆ E, then ∃λ > 0 s.t. |f j+1
E

(z)| > (1 + λ)|f j
E
(z)| for

every j ≥ k and so |fn
E (z)|

∞
n=1 escapes.

In order to prove this corollary, we first need to prove the following lemma.

Lemma 3.2.7. If |fk
E (z)| > max{SE, 2}, then |f j

E
(z)| > max{SE, 2} for j ≥ k.

Proof. Suppose |fk
E (z)| > max{SE, 2}, then

|fk+1
E

(z)| = |fek+1
(fk

E (z))| = |(fk
E (z))

2 + ek+1|

≥ |(fk
E (z))

2| − |ek+1| ≥ |(fk
E (z))

2| − SE

> max{SE, 2}
2 − SE.

Now, if SE > 2, then max{SE, 2} = |SE| and so

|fk+1
E

(z)| ≥ max{SE, 2}
2 − SE ≥ S2

E − SE

= SE(SE − 1) > SE = max{SE, 2}.

Now, if SE < 2, then max{SE, 2} = 2 and so

|fk+1
E

(z)| ≥ max{SE, 2}
2 − SE = 22 − SE

= 4− SE > 2 = max{SE, 2}.

So for both cases, SE > 2 and SE < 2 we have shown that |fk+1
E

(z)| ≥ max{SE, 2}.

Then it follows via induction that |f j
E
(z)| > max{SE, 2} for every j ≥ k.
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Proof. (of Corollary 3.2.6) Suppose |fk
E (z)| > max{SE, 2} for some k > 0 and let

{en}
∞
n=1 ⊆ E, then

|fk+1
E

(z)| = fek+1
(fk

E (z)) = |(fk
E (z))

2 + ek+1|

≥ |(fk
E (z))

2| − |ek+1|

≥ |(fk
E (z))

2| − |(fk
E (z))|

= |(fk
E (z))|(|(f

k
E (z))| − 1),

where the second inequality holds because |(fk
E (z))| > max{SE, 2} > |ek+1|.

Now, since |(fk
E (z))| > 2, we can find a λ > 0 s.t. |(fk

E (z))| − 1 > 1 + λ. Thus we

have

|fk+1
E

| = |(fk
E (z))|(|(f

k
E (z))| − 1)

> (1 + λ)|(fk
E (z))|.

Now recall the statement of Lemma 3.2.7: If |fk
E (z)| > max{SE, 2}, then |f j

E
(z)| >

max{SE, 2} for every j ≥ k. Together with |fk+1
E

(z)| > (1 + λ)|(fk
E (z))|, we have

that

|fn+k
E

(z)| > (1 + λ)n|(fk
E (z))| and finally |fn

E (z)| → ∞ as n → ∞, which concludes

the proof.

Remark 3.2.8. Note that Corollary 3.2.6 is useful for drawing pictures of iterations

of functions where any kind of Noisy Random Iteration is involved.

Remark 3.2.9. Naturally, we would like to prove an analog of Theorem 1.1.13,

which was about the location of the Mandelbrot set. This proof would be about

the location of the set ME . Recall that ME :=
⋃
r>0

ME(r) = {c | pE−bounded(0) > 0}.

However, we found out that such a theorem must be formulated very carefully to

depend on E , not just on SE and IE, so we leave this for future research. So the

analog for Theorem 1.1.13 does not hold.



27

Note that the Noisy Random Iteration with a Mandelbrot set and a Julia set

depends highly on the set E . This is because for this kind of iteration, the set E

is not fixed for every c-value. The issue of proving an analog of Theorem 1.1.13 is

that if SE and IE are far apart, even if they are both large, potential cancellation

in calculating fE(z) = z2 + e means we cannot ensure that the orbit of z = 0 will

escape. For example suppose en = −9 if n is odd and en = 3 if n is even. Then

f3(0) = 3, f−9(3) = 32 − 9 = 0, f3(0) = 3 and so on. Maybe the probability for this

event is 0, but there might be other cases where cancellation could occur. Thus, we

leave the proof to the reader of this thesis.



Chapter 4

Aggregate Images

When we analysed iterations of a function fE(z) = z2 + e with e ∈ E, we paid

especially attention to two different cases. First, we choose E = {c+ ǫ | ‖ǫ‖∞ ≤ δ},

where the ǫ-values were uniformly distributed in [−δ, δ]2. Next, for E = {a, b}, at

each step of iteration we either iterated fa(z) or fb(z). For both cases, we calculated

the orbit of all points z for a sequence {en}
∞
n=1 ⊆ E (or sequences {en(z)}

∞
n=1 ⊆ E)

exactly one time. Note that since the orbit of z, i.e. {fn
E (z)} could be different

for every single sequence of e-values, the corresponding picture is different for every

calculation of the orbits of all z-values in the plane. This was our motivation to

introduce KE(p) = {z | pE−bounded(z) ≥ p} and to prove where KE(p) is located.

We also defined the set ME(r) = {c | pE−bounded(z) ≥ r} and were able to state a

corollary, which is helpful to set up an algorithm to draw KE(r) and ME(r).

Now we want to illustrate how some sets KE(r) and ME(r) look like for different

p-values. To get an approximation for KE(r), we draw T times a picture of some

Random Iteration. We will call this picture an Aggregate Image. In an Aggregate

Image of KE(r), each pixel color is the average of the colors obtained for that pixel,

obtained by calculating the orbit of fe(z), i.e. {f
k
E (z)}

n
k=1 until the n-th iteration T

times.

The higher the number T of pictures we use to create an Aggregate Image is, the

more precise it will be. In the case where T = 1, the Aggregate Image is the same

28
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as the picture we get when we are applying some Random Iteration on fE(z) exactly

one time. We will call an Aggregate Image with T = 1 an Exemplary Image.

Aggregate Images of a Bernoulli Noisy Random Iterations of two Julia

sets. Figure 4.1 compares Exemplary Images of a Bernoulli Noisy Random Itera-

tions, where fE(z) = z2 + e, e ∈ {(−1, 0), (0, 0)} and p = 0.8 or p = 0.2 with the

according Aggregate Images for T = 100. Here, p = 0.8 means that e = (−1, 0)

with probability 0.8 and e = (0, 0) with probability 0.2, whereas p = 0.2 means that

e = (−1, 0) with probability 0.2 and e = (0, 0) with probability 0.8. So in Subfigure

4.1(a) we can see a Exemplary Image with p = 0.8. Here it is difficult to identify

in which areas the probability that the orbit escapes is about the same. However,

Subfigure 4.1(b) shows the according Aggregate Image for T = 100. We can see that

the Aggregate Image looks like a fractal and we can see areas where the probability

that the orbit escapes is 1 (for example in the center of the Basilica) and also areas,

where the probability that the orbit escapes is smaller but not 0. When we only

look at the picture, we cannot tell the exact probabilities that the orbit of points in

certain areas escape or not, but one could compute those by calculating the orbit

of a point z a large number of times and see how often the point escapes or not.

Subfigure 4.1(c) shows a Bernoulli Noisy Random Iteration with p = 0.8, whereas

Subfigure 4.1(d) illustrates the Aggregate Image for T = 100. As before, we can see

that there is a certain area, where orbits do not escape and also that there are other

areas where the orbit might escape or not.
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(a) Exemplary Image, T = 1, p = 0.8 (b) Aggregate Image, T = 100, p = 0.8

(c) Exemplary Image, T = 1, p = 0.2 (d) Aggregate Image, T = 100, p = 0.2

Figure 4.1: This figure compares Exemplary Images of Bernoulli Noisy Random
Iterations of fE(z) = z2 + e where e ∈ {(−1, 0), (0, 0)} and for certain p-values with
Aggregate Images.
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Aggregate Images of a Bernoulli Noisy Random Iterations including

the Mandelbrot set. We want to take a look at another example. Figure 4.2

compares the Bernoulli Noisy Random Iterations of fE(z) = z2 + e where e ∈

{z, (0, 0)} and for certain p-values with the Aggregate Images of the Bernoulli Noisy

Random Iterations. We can see that the Aggregate Images (see Subfigures 4.2(b)

and 4.2(d)) do not look as sandy as the Exemplary Images (see Subfigures 4.2(a) and

4.2(c)). The Aggregate Images show very precisely, in which area the probability

is 1 that the orbit does not escape. Furthermore we can see the Mandelbrot set

in Subfigure 4.2(b) more clearly than in Subfigure 4.2(a). Also, the Basilica in

Subfigure 4.2(d) is more clear than in Subfigure 4.2(c).

Aggregate Images of a Uniform Ball Noisy Random Iteration. Now, we

want to take a look at Aggregate Images of Uniform Ball Noisy Random Iterations.

Figure 4.3 compares the Uniform Ball Noisy Random Iterations of fE(z) = z2 + e

with an Exemplary Image of the Uniform Ball Noisy Random Iterations. We choose

E = {(−0.1225, 0.7325) + ǫ | |ǫ| ≤ δ} and vary the variable δ. Comparing the

Exemplary Image in Subfigure 4.3(a) with the Aggregate Image in Subfigure 4.3(b),

we can see that there are only two areas, where the Aggregate Image looks more

fuzzy than the Exemplary Image. In both of those pictures we chose δ = 0.01. But

if we increase δ, we can see that larger areas in the Aggreate Images look fuzzy

(regard Subfigure 4.3(d) and 4.3(f)). Regarding the Subfigures 4.3(f) and 4.3(f), we

can observe that the more sandy the Exemplary Image looks like, the more fuzzy

gets the Aggreate Image.
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(a) Exemplary Image, T = 1, p = 0.75 (b) Aggregate Image, T = 100, p = 0.75

(c) Exemplary Image, T = 1, p = 0.25 (d) Aggregate Image, T = 100, p = 0.25

Figure 4.2: This figure compares Exemplary Images of Bernoulli Noisy Random
Iterations of fE(z) = z2 + e where e ∈ {c, (0, 0)} and for certain p-values with
Aggregate Images.
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(a) Exemplary Image, T = 1, δ =
0.01

(b) Aggregate Image, T = 450,
δ = 0.01

(c) Exemplary Image, T = 1, δ =
0.03

(d) Aggregate Image, T = 350,
δ = 0.03

(e) Exemplary Image, T = 1, δ =
0.05

(f) Aggregate Image, T = 500,
δ = 0.05

Figure 4.3: This figure compares Examplary Images of Uniform Ball Noisy Random
Iterations of fE(z) = z2 + e where E = {(−0.1225, 0.7325) + ǫ | ‖ǫ‖∞ ≤ δ} with
Aggregate Images.
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Aggregate Images of an Enlagement of a Uniform Ball Noisy Random

Iteration. Finally, we want to regard an enlargement of an area in the Rabbit,

using Uniform Ball Noisy Random Iterations. Figure 4.4 compares an enlargement

of an Exemplary Image of Uniform Ball Noisy Random Iterations of fE(z) = z2 + e

where E = {(−0.1225, 0.7325) + ǫ | |ǫ| ≤ δ} with an enlargement of an Aggregate

Image. We can see that in the Aggregate Image it is more clear, which points to not

escape to infinity with probability 1. Again, we can observe, that the Exemplary

Image is sandy whereas the Aggregate Image is fuzzy.

(a) Exemplary Image, T = 1,
δ = 0.01

(b) Aggregate Image, T = 750,
δ = 0.01

Figure 4.4: This figure compares an enlargement of an Exemplary Image of a Uni-
form Ball Noisy Random Iteration of fE(z) = z2+e where E = {(−0.1225, 0.7325)+
ǫ | ‖ǫ‖∞ ≤ δ} with an enlargement of an Aggregate Image.



35

Chapter 5

Conjectures

In this thesis, we probably could find a huge amount of conjectures which we could

state. Any reader can look at the pictures in this thesis and formulate a lot more

conjectures. Here is a start:

Conjecture 5.0.1. Suppose we iterate fE(z) where E = {{c, b}, p}. For any p ∈ [0, 1],

if b ∈ M , then ∃ neighborhood B ∋ b, s.t. B ⊆ ME(1).

Conjecture 5.0.2. Suppose we iterate fE(z) where E = {{a, b}, p}. Then,

pE−bounded(z) → P(orbit of z is bounded under z2+a) as p → 1. On the other hand,

pE−bounded(z) → P(orbit of z is bounded under z2 + b) as p → 0.

Question 5.0.3. If E = {E, µ} depends continuously on a complex parameter c,

then for each r does the set KE(r) depend continuously on c?

Question 5.0.4. How does Aggregate Images of Traditional Random Iterations

compare to Aggregate Images of Noisy Random Iterations?
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