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ABSTRACT

Infinitely Generated Clifford Algebras

and Wedge Representations of gl∞|∞

by

Bradford J. Schleben

The University of Wisconsin-Milwaukee, 2015
Under the Supervision of Dr. Yi Ming Zou

The goal of this dissertation is to explore representations of gl∞|∞ and associ-

ated Clifford superalgebras. The machinery utilized is motivated by developing an

alternate superalgebra analogue to the Lie algebra theory developed by Kac [17].

Kac and van de Leur first developed a super analogue, but it had various departures

from a natural extension of their Lie algebra approach, made most certainly for the

physics consequences. In an effort to establish a natural mathematical analogue,

we construct a theory distinct from the super analogue developed by Kac and van

de Leur [16]. We first construct an irreducible representation of the Lie superalge-

bra gl∞|∞ on an infinite-dimensional wedge space F that permits the presence of

infinitely many odd parity vectors. We then develop corresponding operators on F

which serve as generators for a new Clifford superalgebra, whose structure is also

examined. From here, we extend our representation to ĝl∞|∞, the central extension

of gl∞|∞, and develop a correspondence between a subsuperalgebra of ĝl∞|∞ and

the Clifford superalgebra previously constructed. Finally, we begin to provide a

context to study all Clifford algebras of an infinite-dimensional non-degenerate real

quadratic space X. We focus mainly on developing the Clifford group and examining

its connection to the group of orthogonal automorphisms on X.
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Chapter 1

Background

1.1 Introduction

Infinite dimensional Lie theory has received great interest from both the mathe-

matics and theoretical physics communities since the 1960s. The progenitors of Lie

theory saw these structures as groups of symmetries of an object, and the corre-

sponding set of infinitesimal transformations. The issue of classifying simple finite-

dimensional Lie algebras of vector fields was solved by Wilhelm Killing and Elie

Cartan over one-hundred years ago. Since then, the theory of finite-dimensional

Lie groups and Lie algebras continually developed, but a resurgence in the study of

infinite-dimensional Lie algebras did not occur until the mid-1960’s with the work

of I.M. Singer and Shlomo Sternberg [28], which outlined the machinery of filtered

and graded Lie algebras.

At the present, infinite-dimensional Lie groups and algebras, along with their

representations, is a mature field. There are four classes of infinite-dimensional Lie

groups and algebras that have been studied fairly extensively. First, the Lie al-

gebras of vector fields, along with the corresponding groups of diffeomorphisms of

a manifold, especially the cohomology theory of infinite-dimensional Lie algebras

of vector fields on a finite-dimensional manifold. This area, along with classifying

representations of the groups of diffeomorphisms of a manifold, yielded many geo-

metric applications. Next, the class of Lie groups or algebras of smooth mappings of

a given manifold on to a finite-dimensional Lie group or algebra, has received study

1
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from mathematicians and theoretical physicists. Most of the study here has been

limited to specific families of representations [18]. Third is the class consisting of

classical Lie groups and algebras of operators in a Hilbert or Banach space, which

focuses again on the structure of these Lie groups and algebras, as well as their

representations. Finally, the fourth class is the class of Kac-Moody algebras. This

area has seen the most growth in recent years, and has been the most fruitful topic

in infinite dimensional Lie theory.

To motivate our study, we now give a very brief account of Boson-Fermion cor-

respondence, culminating in an overview of the super-analogue developed by [16].

In particle physics, the state space for a system of a variable number of elementary

particles is often called the Fock space. Here there are two distinct types of ele-

mentary particles, bosons and fermions, and each have different Fock spaces. In the

case of fermionic Fock spaces, they can be viewed naturally as representations of a

Clifford algebra, whose generators can be identified with the adding or removing a

particle in a given pure energy state. Similarly, a bosonic Fock space is naturally

realized as a representation of a Weyl algebra. To study the symmetries of Fock

spaces, we are interested in the various algebras that naturally act on Fock spaces,

and how these actions are related to each other and our Clifford algebra generators.

If we have a fermionic Fock space F over C, it is then an infinite-dimensional

vector space. We can find a standard basis, which can be indexed in various ways. In

Chapter 2 we discuss an indexing by Maya diagrams, the related charged partitions,

and ordered wedge products. A bosonic Fock B space can be viewed as a space of

polynomials in infinitely many variables over C. That way, we can find a standard

basis for B using Schur functions. Then, using the fact that Schur functions are

indexed by partitions, we can define a bijection between the standard bases of F

and B, which will then be extended to a vector space isomorphism. It is important

to note that there are many isomorphisms of vector spaces B and F . The chosen

construction outlined in [17, 18] and Chapter 2 is adopted to study representation

theory of the algebra acting on the space. A natural question centers on how these

constructions may be extended to the Lie superalgebra theory. Lie superalgebras
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are a generalization of Lie algebras to a Z2-grading, and these superalgebras are

important in describing supersymmetry in theoretical physics. This area was first

explored by Kac and van de Leur in [16] with a particular super Fock space. Our

motivation for delving into the super-analogue was to find a construction that felt

more “natural” given the action of the Lie superalgebra gl∞|∞ on a different super

Fock space, and the potential for representation theoretic results.

We now look at the super analogue available in [16]. Kac and van de Leur

constructed a representation of gl∞|∞ by first defining a Clifford superalgebra Cl
with generators ψi, ψ

∗
i . Next they defined the associated spin module V , that served

as the super Fock space, with a non-zero even monomial |0〉 as a generator. This is

done by taking an infinite-dimensional complex vector superspace Ψ, which is simply

a Z2-graded vector space, and then identifying Ψ with the space of column vectors

whose coordinates are indexed by 1
2
Z. Then V is the infinite wedge space generated

as a Cl-module by the infinite monomial |0〉 = v0∧ v−1∧ v−2∧ . . . made of infinitely

many nonzero even vectors. The so-called standard representation of gl∞|∞ on Ψ,

which is the infinite dimensional analogue of the standard representation of the Lie

super algebra gl(m,n), can be realized using the Clifford superalgebra via the map

Eij → (−1)|j|ψiψ
∗
j

Hence a representation of π of gl∞|∞ can be defined on the spin module V . This

then admits two separate decompositions of V ,

V =
⊕
m∈Z

Vm and V =
⊕
m∈Z

V(f);m

via charge number and fermionic charge number, respectively.

The former decomposition yields spaces that are invariant and irreducible with

respect to gl∞|∞, and therefore lends itself to study of the highest weight theory

of gl∞|∞. In fact, by utilizing the relations of the Clifford superalgebra this study

reveals that no non-trivial highest weight representation of gl∞|∞ is unitary. In-

terestingly, each of these decompositions comes into play in developing the super

analogue of the boson-fermion correspondence.
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In order to see this, we extend the previous representation to the Lie superalge-

bra a∞|∞ and its central extension ā∞|∞, thus allowing us to introduce the principal

subsuperalgebra g̃ of ā∞|∞. The basis elements e(n), f(n), λ(n), and µ(n) of this

subsuperalgebra g̃ play an important role in the super boson-fermion correspon-

dence, and can be described in terms of the generators of Cl.
View ψi and ψ∗i as operators mapping V into its formal completion V̂ , and

introduce generating series of ψi and ψ∗i :

ψ0̄(z) =
∑
i∈Z

ψiz
i, ψ∗0̄(z) =

∑
i∈Z

ψiz
−i

ψ1̄(z) =
∑
i∈ 1

2
+Z

ψiz
i, ψ∗1̄(z) = −

∑
i∈ 1

2
+Z

ψiz
−i

Now define the projection P to be the generating series for the sum of projections

of Pm of V onto Vf(m). Also, let Q be an appropriate operator mapping a fermionic

charge space V(f),m to V(f),m+1. One then has a way of explicitly describing the

generating series of the ψi and ψ∗i in terms of the well-known vertex operator

Γ(z) = Γ−(z)Γ+(z) : V → V̂ ,

where

Γ−(z) = exp

(∑
n>0

λ(−n)

n
zn

)
, Γ+(z) = exp

(
−
∑
n>0

λ(n)

n
z−n

)
.

The following “nice” description of these operators is known as the super boson-

fermion correspondence:

Theorem (Super boson - fermion correspondence [16]).

ψ0̄(z) = P (z) Q Γ−(z) Γ+(z)

ψ∗0̄(z) = Q−1 P (z)−1 Γ−(z)−1 Γ−1
+ (z)

ψ1̄(z) = −P (z) Q Γ−(z) e(z) Γ+(z)

ψ∗1̄(z) = Q−1 P (z)−1 Γ−(z)−1 f(z) Γ−1
+ (z)
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There are various immediate applications of this correspondence. First, this

provides an explicit way of comparing expressions for q-dimensions of representa-

tions of g̃1|1, through which new combinatorial identities were derived by computing

characters of representations of gl∞|∞ in two different ways. In addition, a series

of irreducible highest weigh modules of the affine superalgebra g̃n|n are constructed,

and an explicit formula for the q-dimension is found [16].

We will begin by introducing basic definitions and results that will be utilized

throughout this paper. The goal here is to provide a simple introduction and refer-

ence, as these structures will be discussed in greater detail throughout the remaining

chapters.

1.2 Partitions

In this section, we will briefly review and introduce some basic structures and prop-

erties that will prove helpful in connecting and visualizing abstract structures in the

following chapters.

A partition can be thought of as a finite (or infinite where only finitely many

parts are non-zero) tuple

λ = (λ1, λ2, . . . )

of weakly decreasing non-negative integers

λ1 ≥ λ2 ≥ λ3 . . .

where at most finitely many λi are non-zero. We say that the length of the partition,

`(λ), is equal to the number of non-zero parts λi, and for any partition, the size of

the partition is the sum of all its parts,

n =
∑̀
i=1

λi.

We say that λ is a partition of n, denoted λ ` n. A common notation for a partition

is simply the sequence of values of the λi’s, except that if a particular value of a



6

λi is repeated one shows this by putting an appropriate power on that value. For

example, the partition λ = (3, 3, 2, 1, 1) of n = 10 would be written as

(32, 2, 12).

It is often useful to represent a partition in a particular way, that is as a collection

of unit squares on then integer lattice. For a partition λ = (λ1, λ2, . . . , λ`) of n, we

say that a Young diagram of shape λ is an array of n boxes in ` rows, left aligned

such that row i contains λi boxes.

Example 1.2.1. The seven partitions of the integer 5 are given below with their

corresponding Young diagrams

(5) (4, 1) (3, 2) (3, 1, 1) (2, 2, 1) (2, 1, 1, 1) (1, 1, 1, 1, 1)

We can give further structure to these shapes by assigning a labeling of cells of

a Young diagram. A semistandard Young tableau is a labeling of a Young diagram

T which is weakly increasing along rows and strictly increasing down columns. For

example,

1 1
2 3
4

1 2
2 3
3

1 2
2 5
4

If we require labeling to be strictly increasing along rows and down columns, we

then call the labeling a standard Young tableau .

1 2
3 4
5

1 3
2 5
4

1 4
2 5
3

These are all different tableaux of the same shape given by the partition λ =

(2, 2, 1) of 5. We will mainly see these structures in Chapter 2 and Appendix A.
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There is an ever-expanding amount of literature on the role that Young diagrams,

Young tableaux, and their variants, play in representation theory. It is worth men-

tioning that every partition of n determines a Young diagram which determines an

irreducible representation of the symmetric group Sn. The symmetric group on a fi-

nite set of n symbols is the group whose elements are permutations of the n symbols,

and the group operation is composition. In fact, all inequivalent irreducible repre-

sentations of Sn over the complex numbers are determined by partitions of n (and

thus Young diagrams). The dimension of an irreducible representation associated

with a given Young diagram is then determined via the product of the what is known

as the hook-lengths of all its elements. Further, the Robinson-Schensted Correspon-

dence and its generalizations yield a plethora of applications of these structures in

relation to representation theory ideas. For an introduction to these connections,

see [25].

The last thing we need to define in this section are Schur polynomials. These

polynomials form a basis for the space of all symmetric polynomials, and there are

various ways to go about defining them. A Schur polynomial depends on a partition

λ of a positive integer n, and we will use that relationship to define it here.

Definition 1.2.2. Fix λ and a bound N on the size of the entries in each semis-

tandard tableau T . Then let

xT =
N∏
i=1

xji

where j is the number of i’s in T . Then the Schur polynomial is

sλ(x1, . . . , xN) :=
∑

semistandard T

xT

Example 1.2.3. We will construct a basic example using λ = (2, 1). First we will

give all the possible semistandard tableaux of shape λ,

1 1
2

1 1
3

1 2
2

1 2
3

1 3
2

1 3
3

2 2
3

2 3
3

Then the Schur polynomial corresponding to λ is

s(2,1)(x1, x2, x3) = x1
2x2 + x1

2x3 + x1x2
2 + x1x2x3 + x1x3x2 + x1x3

2 + x2
2x3 + x2x3

2
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These polynomials are certain homogeneous symmetric polynomials in n indeter-

minates with integer coefficients and correspond to the irreducible representations of

Sn. One of the main problems in the field of representation theory is the decomposi-

tion of a representation into irreducible components realized as irreducible modules.

For example, the Littlewood-Richardson rule can be used in a general linear group

to find the decomposition of a tensor product into irreducibles by looking at the

corresponding Schur functions. We revisit Schur polynomials in Chapter 2 and give

them a unique context there.

1.3 Lie algebras

In this section we will present some elementary definitions and properties of the

theory of Lie algebras and Lie superalgebras. The goal is to provide several fun-

damental definitions that are needed through the following chapters. For more

thorough treatments, one should see [15, 6]. More advanced readers may want to

skip to Chapter 2.

Until Chapter 4, we will work over the field of complex numbers C. We begin

with the definition of a Lie algebra.

Definition 1.3.1. A complex Lie algebra is a vector space g over C with an

bilinear operation

[·, ·] : g× g→ g, x, y ∈ g

called the Lie bracket (or commutator), such that the following axioms are satisfied:

• It is skew symmetric: [x, x] = 0 which implies [x, y] = −[y, x] for all x, y ∈ g.

• It satisfies the Jacobi Identitiy: [x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0.

As Chapter 2 will be dealing with representations of Lie algebras, we want to

define the following:

Definition 1.3.2. A Lie algebra homomorphism is a linear map ϕ ∈ Hom(g, h)

between two Lie algebras g and h such that it is compatible with the Lie bracket:

ϕ([x, y]) = [ϕ(x), ϕ(y)]
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Note that the bracket on the left-hand side is taken in g, while on the right-hand

side is taken in h.

Example 1.3.3. We will now look at a very important and basic Lie algebra. Let

V be a vector space and let End(V ) be the set of endomorphisms of V , which is an

associative algebra. Then End(V ) equipped with the bracket [X, Y ] = XY − Y X
forms a Lie algebra called the general linear Lie algebra, denoted gl(V ). When

V = Cn, we also write gl(n) for gl(V ). Now a representation of a Lie algebra g

on V is a Lie algebra homomorphism:

π : g→ gl(V ).

If dimV = n, we choose an ordered basis {vi}ni=1 for V , with the elementary

matrices accordingly denoted Eij, then gl(V ) can be realized as n × n complex

matrices.

We now give a short discussion of the exterior algebra in Lie algebra case, as we

will see it again in Chapter 2. Given a vector space V , the exterior algebra ΛV is

generated by the elements of V using the operations of addition and scalar multi-

plication, an associative binary operation ∧ called the exterior or wedge product.

These operations are subject to the identities necessary for ΛV to be an associative

algebra, as well as the identity

v ∧ v = 0 for all v in V .

As we are working over C, we may replace the relation v ∧ v = 0 by the relation

v ∧ w = −w ∧ v

for all v, w ∈ V . If we are not in characteristic 2, then the second relation implies

the first, while the converse holds in any characteristic. The exterior algebra of a

vector space V is also called the Grassmann algebra associated with V .



10

1.4 Lie superalgebras

In order to establish the necessary background for Chapter 3, we will begin with

the superalgebra analogues to many of the definitions found in the previous section.

We begin with a vector superspace V , which is a vector space that is endowed with

a Z2-grading

V = V0̄ ⊕ V1̄.

For a finite-dimensional superspace, its dimension is often given as the sum

dimV = dimV0 + dimV1. For a homogeneous element v ∈ Vi, the parity of v is

denoted |v| = ī, ī ∈ Z2. An element in V0̄ is called even , and an element in V1̄ is

called odd. Given two superspaces, V and U , the space of linear transformations

from V to U is also a superspace. In particular, the space of endomoporphisms of

V is a vector superspace, and will be denoted End(V ).

Definition 1.4.1. A superalgebra A is a vector superspace equipped with a bi-

linear multiplication satisfying AiAj ⊆ Ai+j, for i, j ∈ Z2

One understands modules overA, and subalgebras and ideals ofA in a Z2-graded

sense. As expected, a superalgebra containing no nontrivial ideal is called simple.

Definition 1.4.2. A homomorphism between modules M and N of a superalge-

bra A is a linear map f : M → N satisfying

f(am) = af(m), a ∈ A,m ∈M.

Definition 1.4.3. A Lie superalgebra is a superalgebra g = g0⊕g1 with a bilinear

operation

[·, ·] : g× g→ g

called the Lie superbracket (or supercommutator), such that the following two ax-

ioms are satisfied for homogeneous elements

• Skew-supersymmetry: [a, b] = −(−1)|a|·|b|[b, a].
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• Super Jacobi identity: [a, [b, c]] = [[a, b], c] + (−1)|a|·|b|[b, [a, c]].

For a Lie superalgebra g = g0 ⊕ g1, the even part g0 is a Lie algebra. Hence, if

g1 = 0, then g is just a usual Lie algebra.

Definition 1.4.4. Let g and h be Lie superalgebras. A Lie superalgebra homo-

morphism is an even linear map ϕ : g→ h satisfying

ϕ([a, b]) = [ϕ(a), ϕ(b)], for all a, b ∈ g.

Example 1.4.5. Let End(V ) denote the endomorphisms of a super vector space

V . End(V ) is a super vector space itself, where End(V )0 are the endomorphisms

preserving parity, and End(V )1 are those reversing it.

Analogous to the Lie algebra case, equip End(V ) with the supercommutator,

and it forms a Lie superalgebra called the general linear Lie superalgebra and

denoted by gl(V ). Further, when V = Cm|n, we write gl(m|n) for gl(V ). Next,

assign an ordered basis for V , where {vi}mi=1 are the even basis vectors belonging

to V0, and {vi}m+n
i=m+1 are the odd basis vectors of V1. Let Eij be the corresponding

elementary matrices, then gl(m|n) can be realized as (m + n) × (m + n) complex

matrices of the block form

g =

[
a b
c d

]
where a, b, c, and d are respectively m×m, m× n, n×m, and n× n matrices.

Remark 1.4.6. It is worth noting that we can make any associative superalgebra

A into a Lie superalgebra by taking assigning it the super-commutator,

[a, b] = ab− (−1)|a||b|ba

We will need to consider the tensor product of two superalgebras V and W ,

which is a superalgebra V ⊗W with a multiplication given by,

(v1 ⊗ w1)(v2 ⊗ w2) = (−1)|w1||v2|(v1v2 ⊗ w1w2).

Note that if either V or W is even, this becomes the ordinary ungraded tensor

product, though it still yields a graded tensor. However, in general, the super
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tensor product is distinct from the tensor product of V and W regarded as ungraded

algebras. So the category of vector superspaces admits tensor products that have a

natural Z2-grading. If V and W are super vector spaces, then we have for V ⊗W ,

(V ⊗W )0 = (V0 ⊗W0)⊕ (V1 ⊗W1)

(V ⊗W )1 = (V0 ⊗W1)⊕ (V1 ⊗W0)

Then V ⊗W ∼= W ⊗ V by the commutativity map

αV,W : V ⊗W → W ⊗ V

where v⊗w 7→ (−1)|v||w|w⊗v. This is a special case of what is commonly called the

“sign rule”. This principle appears frequently when dealing with Lie superalgebras.

For a vector superspace V , the exterior algebra ΛV is often called the Grassmann

algebra over V . This ΛV , or Λ·V , is the free graded superalgebra on V . Explicitly,

this is the quotient of the tensor algebra T (V ) by the ideal generated by elements

of the form

v ⊗ w + (−1)|v|·|w|w ⊗ v.

The product in this algebra is denoted with a wedge, and called the wedge product.

It obeys the relation

v ∧ w = −(−1)|v|·|w|w ∧ v.

This will be of vital importance to us in Chapter 3.

The final introductory definition begins with a perfect Lie superalgebra g, mean-

ing if g = [g, g]. Then we have the following definition:

Definition 1.4.7. Let a be a Lie superalgebra over a commutative ring k. A short

exact sequence of Lie superalgebras

0 - c - u
α

- a - 0

is called a central extension of a by c if the image of c is central in u. Thus,

c1̄ = {0} and [c, u] = 0. Here, c is called the kernel of the central extension. We

denote the above central extension by α : u→ a.
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1.5 Thesis outline

The remainder of this thesis is organized as follows: in Chapter 2 we follow the work

of Kac in [17, 18] to construct the fermionic Fock space F . We will utilize a basis of

semi-infinite monomials in F and identify these elements with both Maya diagrams

and Young diagrams. We then introduce the Lie algebra gl∞ of linear operators,

which will be realized as

gl∞ = {(aij)i,j∈Z | only a finite number of aij are non-zero }.

We will relate the action of gl∞ on F with wedging and contracting operators on F ,

which we will show generate a Clifford algebra.

We then gear up for introduction of the Boson-Fermion correspondence by ex-

tending our representation to the larger Lie algebra a∞ and its central extension a∞.

We then construct an important subalgebra of a∞ called a Heisenberg Lie algebra.

Chapter 2 concludes by examining the machinery needed for relating the Clifford al-

gebra and Heisenberg Lie algebra in the context of what is called the boson-fermion

correspondence.

In Chapter 3, we will provide our approach in developing an analogue of Chap-

ter 2 in the super case. Here we construct a new irreducible representation for the Lie

superalgebra gl∞|∞ and its central extension, ĝl∞|∞. We then develop correspond-

ing operators used first to generate a new Clifford superalgebra Ĉl, then embed

gl∞|∞ into Ĉl. We then develop a new subsuperalgebra s of ĝl∞|∞, and establish

correspondence between elements of s and elements from our new Clifford superalge-

bra. Further analysis of representation theoretical consequences of our construction

is done, followed by an outline of the issues with our approach, and current open

questions.

In Chapter 4, we briefly review the well-known classification of finite-dimensional

Clifford algebras of a real (resp. complex) quadratic space. As a foundation of our

interest in the infinite-dimensional representation theory of Lie algebras and superal-

gebras, we began to examine infinitely-generated Clifford algebras via the approach

of quadratic forms. This chapter serves as a guideline and motivation for some of
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the extended results that close out the main body of this dissertation. The appen-

dices will consist of a connection between the representation theory in Chapter 3

and Young diagrams that should serve useful in dimensional computations, and a

series of important computational proofs from Chapter 3.



Chapter 2

Wedge representations of affine
Lie algebras

We will recall the fermionic Fock space F and the corresponding bosonic space B.

We examine the a natural identification between these two spaces, which is part of

the well-known boson-fermion correspondence. This connection is important to this

dissertation as it gives a non-trivial relationship between a Clifford algebra and a

Heisenberg Lie algebra (realized as a subalgebra of the Weyl algebra) that act on

F and B. To accomplish this we introduce a series of Lie algebras. Originally, the

following served, in part, as a representation theoretical interpretation of the Dirac

theory of the positron. We will follow [17] fairly closely and a complete description

of the results which follow, along with many others, can be found there and in [18]

2.1 The Fermionic Fock Space

Take an infinite dimensional vector space

V =
⊕
j∈Z

Cvj

with a fixed basis {vi}i∈Z. We will mainly concern ourselves with a space F con-

structed from V called the fermionic Fock space. To construct F , we first need the

exterior (wedge) product on V , which is associative and anti-symmetric so that

v ∧ w = −w ∧ v.

15
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We then introduce F as the complex vector space with a bsis consisting of semi-

infinite monomials vi0 ∧ vi1 ∧ . . . , with ij ∈ Z, that satisfy

1. i0 > i−1 > i−2 . . .

2. ik = ik−1 − 1 for k � 0

According to Dirac’s positron theory, the first condition reflects what is often referred

to as the Pauli exclusion principle. Also, in the context of that theory, the latter

condition relates that all but a finite number of negative energy states are occupied

[17]. We will refer to semi-infinite monomials simply as monomials for the remainder

of this chapter. We call the monomial

v0 ∧ v−1 ∧ v−2 ∧ . . .

the vacuum vector of charge 0. Further, we will define the charge decomposition

F =
⊕
m∈Z

F (m)

by letting

|m〉 = vm ∧ vm−1 ∧ vm−2 ∧ . . .

denote the vacuum vector of charge m. Then each F (m) is the linear span of all

monomials which differ from |m〉 in finitely many positions, that is, those of charge

m.

Example 2.1.1. According to this definition, both the monomial

v9 ∧ v7 ∧ v5 ∧ v3 ∧ v0 ∧ v−3 ∧ v−4 ∧ . . .

and the monomial

v13 ∧ v5 ∧ v4 ∧ v0 ∧ v−1 ∧ v−3 ∧ v−4 ∧ . . .

are elements of F (2).
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It is convenient to define the energy of a monomial as in [18], as opposed to

Dirac’s equivalent definition which appeared years earlier. Given a monomial ϕ of

charge m, we can then associate to it a partition, as defined in Chapter 1,

λϕ = (λ0, λ1, . . . )

by assigning λj = ij − (m− j). This establishes a bijective correspondence between

the set of all monomials of a given charge m and the set of all partitions. Next,

define the energy of ϕ to be equal to the size |λϕ| of the associated partition, namely

|λϕ| =
∑
i

λi.

Now if we let F
(m)
k denote the linear span of all semi-infinite monomials of charge

m and energy k, we have the vector space decomposition:

F (m) =
⊕

F
(m)
k .

By the above construction, we have a corresponding q-dimension

dimq F
(m) :=

∑
k∈Z

dimF
(m)
k qk =

1

(q)∞
(†)

where dimF
(m)
k = p(k), or the number of partitions of k, and (†) is the corresponding

generating function.

There are multiple ways to view monomials. One is using Maya diagrams, or a

two-coloring of integers. Each colored integer is usually called a stone. We typically

view vectors of V present in a monomial as black stones in the corresponding Maya

diagram, and absent vectors as white stones.

Example 2.1.2. Given the monomial

ϕ = v6 ∧ v5 ∧ v2 ∧ v0 ∧ v−1 ∧ v−2 ∧ v−3 ∧ v−4 ∧ . . . ,

the corresponding Maya diagram is shown in the below figure.

6 5 4 3 2 1 0 −1 −2 −3 −4
· · ·
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It is well-known that there is a one-to-one correspondence between the set of

Maya diagrams and the set of Young diagrams. We illustrate the connection with

ϕ from above.

Begin with the Maya diagram for ϕ and determine the charge of ϕ. In our

example, ϕ differs from |3〉 in only a finite number of places, so the charge is 3.

Then fix the corresponding position of the Maya diagram as the origin. We then

arrange the positions i in the Maya diagram with i > 3 down the vertical axis

perpendicular to the tail end of the monomial, creating a portion of an integer

lattice. Now, to construct the corresponding Young diagram, begin with the first

filled position of ϕ, so 6, and create a ray moving right one unit. Now, we move

onto the next possible position, 5, and continue the ray in the following manner:

• If 5 is a filled position, continue with a horizontal ray one unit to the right;

• If 5 is an unfilled position, continue with a vertical unit ray one unit up.

We continue this pattern until our series of rays intersects with the horizontal axis.

By filling in the unit grid, we see we have created a Young diagram corresponding

to a particular monomial of charge 3. In fact, we know the energy of this monomial

as well, which is the integer that the Young diagram is partitioning. Figure 2.1 is

the corresponding construction of the Young diagram for ϕ.

. . .

6 5
4

3

2
1

•

•

• • •

6

5

4

3 2 1 0 −1

◦

◦ ◦

Figure 2.1: Connection between Maya and Young Diagrams
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2.2 The basic representation of gl∞

The following construction of the basic representation of gl∞, as well as the corre-

sponding highest weight theory of GL∞ is well-documented since [17]. The repre-

sentation theoretical results stemming from these concepts are applicable to soliton

equations in the MKP hierarchies, many of which have been realized by the Kyoto

school, beginning with Jimbo and Miwa [14], and continuing later with the addition

of Date [22].

We begin by identifying V with the space of column vectors whose coordinates

are indexed by Z, and having all but a finite number of them equal to 0, via the

map ∑
j

cjvj → (cj)j∈Z.

We introduce the Lie algebra

gl∞ = {(aij)i,j∈Z | all but finitely many aij are 0 }

with the usual Lie bracket and the usual action on V :

Eijvj = vi.

Remark 2.2.1. We can view gl∞ as a Kac-Moody Algebra on the Chevalley gen-

erators

ei = Ei,i+1, fi = Ei+1,i, hi = Ei,i − Ei+1,i+1, i ∈ Z,

where its Dynkin diagram is the infinite chain extending in both directions [17].

· · · · · ·

We then want to define a representation πm of gl∞ on F (m) inspired by the action

of gl∞ on F (m). Given a monomial vi0 ∧ vi1 ∧ · · · ∈ F (m), our representation πm will

be defined by
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πm(Eij)(vi0 ∧ vi1 ∧ . . . )

= Eijvi0 ∧ vi1 ∧ · · ·+ vi0 ∧ Eijvi1 ∧ vi2 ∧ · · ·+ . . .

=
∑
ik∈Z

· · · ∧ vik−1
∧ Eijvik ∧ vik+1

It is useful to reiterate that multilinearity and anticommutativity are satisfied

here, which is often used to highlight the Pauli exclusion principle, ensuring that a

monomial of the form,

· · · ∧ v ∧ · · · ∧ v ∧ . . .

will be 0. This fact, paired with the corresponding action of πm(Eij) on an ensemble,

corresponds to the effect of electromagnetic radiation. For more on this connection,

see [17].

Proposition 2.2.2 ([17]). The representation πm is an irreducible representation

of gl∞ on F (m).

We now define a representation on all F

π =
⊕
m∈Z

πm,

and consider the principal gradation of gl∞,

gl∞ =
⊕
j∈Z

gj,

by letting deg(Eij) = j− i. Here gk = span(Eij) for Eij that has degree j. Then we

have

[gi, gj] = gi+j (2.1)

π0(gi)Fj ⊆ Fj−i, F0 = C|0〉 (2.2)

This gradation will be useful when extending the representation π to a larger

Lie algebra.
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2.3 Wedging and contracting operators

For j ∈ Z, we introduce the wedging and contracting operators ψj and ψ∗j on F as

the following:

ψj(vi0 ∧ vi1 ∧ . . . ) =

{
0 if j = is for some s,

(−1)svi1 ∧ . . . vis ∧ vj ∧ vis+1 ∧ . . . if is > j > is+1.

ψ∗j (vi0 ∧ vi1 ∧ . . . ) =

{
0 if j 6= is for all s,

(−1)s+1vi1 ∧ . . . vis−1 ∧ vis+1 ∧ . . . if j = is.

We then have the following result via straight-forward calculations.

Proposition 2.3.1 ([18]). Given the operators ψj and ψ∗j on F as defined above,

the following relations hold:

ψiψ
∗
j + ψ∗jψi = δij

ψiψj + ψjψi = 0

ψ∗iψ
∗
j + ψ∗jψ

∗
i = 0

Corollary 2.3.2 ([18]). The operators ψj and ψ∗j generate a Clifford algebra, de-

noted Cl.

Further, the Cl-module F is irreducible and

ψj(|0〉) = 0 for j ≤ 0 ; ψ∗j (|0〉) = 0 for j ≥ 0

Here Cl is the Clifford algebra associated with the space

V =
∑
i

Cψi +
∑
i

Cψ∗i

with symmetric bilinear form (ψi|ψ∗j ) = δij.

Proposition 2.3.3 ([18]). The Fock space F is the spin module of Cl associated

with the subspace

U =
∑
i≤0

Cψi +
∑
i>0

Cψ∗i
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One next sees that the embedding π : gl∞ → Cl given by

π(Eij) = ψiψ
∗
j

defines a representation π of gl∞ on F , thus also yielding a representation πm of gl∞

on F (m) for each m ∈ Z. The representation π0 of gl∞ on F (0) is called the basic

representation.

Now, we want to introduce a few tools that will serve us later when setting

up part of the boson-fermion correspondence. If we have a collection of numbers

λ = {λi}i∈Z, we say the highest weight representation πλ of gl∞ is an irreducible

representation on a vector space L(λ) which admits a highest weight vector vλ, such

that

vλ 6= 0, πλ(Eij)vλ = 0 for i < j; πλ(Eii)vλ = λivλ.

Much can be said about L(λ) as a result of, in part, the PBW theorem (see [17]),

but we want to note that, provided the λi are real, L(λ) carries a unique Hermitian

form 〈, 〉, called the contravariant Hermitian form. This form satisfies

〈vλ, vλ〉 = 1, and (πλ(A))∗ = πλ(
tĀ), for A ∈ gl∞. (2.3)

We next introduce the infinite complex matrix group

GL∞ = {A = (aij)ij |A is invertible and all but a finite number of the aij − δij are 0},

whose Lie algebra is gl∞. Further, we can define a representation R0 of GL∞ on

F (0) by

R0(Eij)(vi0 ∧ vi1 ∧ . . . ) = Eijvi0 ∧ Eijvi1 ∧ Eijvi2 ∧ . . .

where Eij ∈ GL∞.

Then the irreducible representation R0 corresponds to the irreducible π0 via

expπ0(A) = R0(expA)

for A ∈ gl∞.
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We introduce this because, not only are the interesting highest weight represen-

tations of gl∞ exponentiated to GL∞, but GL∞ will also be used in providing the

machinery for the boson-fermion correspondence. For more on the highest weight

representations of gl∞, and their corresponding representations of GL∞ (when pos-

sible), see [17].

2.4 Vertex Operator Realization

Let us introduce two new Lie algebras: ¯gl∞ and ā∞, where

gl∞ =

{
(aij)i,j∈Z| there are finitely many non-zero aij

on and below the diagonal

}
and

a∞ =

{
(aij)i,j∈Z | for each k, the number of non-zero aij

with j ≤ k and i ≥ k is finite

}
Both of these Lie algebras act on a completion of V ,

V = {
∑
j∈Z

cjvj | cj = 0 for j � 0}.

There is an obvious extension of πm to gl∞. However, if we try to extend the

representation π0 (respectively, πm) to the Lie algebra a∞, we encounter a problem.

Consider

π0(
∑
i∈Z

λiEii)|0〉 = (λ0 + λ−1 + . . . )|0〉

which is a potentially divergent series. This anomaly is removed by changing the

representation π as follows:

π̂(Eij) =

{
π(Eij) if i 6= j or i = j > 0

π(Eii)− I for i ≤ 0

Note that this simply kills the vacuum vector |0〉.
Thus we get a projective representation of a∞. We now introduce the central

extension a∞ = a∞ ⊕ Cc with center Cc and bracket

[x, y] = xy − yx+ α(x, y)c,
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where the cocycle α is defined by

α(Eij, Eji) =− α(Eji, Eij) = I if i ≤ 0 < j

α(Eij, Eji) = 0 for all other cases

The usefulness of introducing a∞ is that we can consider the shift matrix:

Λk =
∑
i∈Z

Ei,i+k

A simple calculation in a∞ yields

[Λk,Λn] = kδk,−nc. (2.4)

By making a note of the distinct sets of elements in a∞,

{Λk | k > 0} and {Λk | k < 0},

along with central element c, it is clear we have an infinite-dimensional Heisenberg

Lie algebra .

Definition 2.4.1. The subalgebra

s =
∑
k 6=0

CΛk + Cc,

will be called the principal subalgebra of a∞, and is often also known as the oscillator

algebra.

We then restrict πm of a∞ on F (m) to s and have the following result.

Proposition 2.4.2 ([18]). As s-modules, the a∞-modules F (m) are irreducible.

2.5 Boson - Fermion Correspondence

We will now, as a source of motivation, outline the remaining machinery necessary

for the boson-fermion correspondence. More details can be found in [18, 17]. Our
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purposes for including this here are to outline ideas for which we hope to cultivate

analogues in the super case.

The operators ψj and ψ∗j introduced in the last section are called free fermions.

The bosonization process involves introducing free bosons:

αn = π̂(Λn),

and writing them explicitly by

αn =
∑
j∈Z

ψjψ
∗
j+n if n ∈ Z\{0}

α0 =
∑
j>0

ψjψ
∗
j −

∑
j≤0

ψ∗jψj.

We now introduce the bosonic Fock space

B = C[x1, x2, . . . , q, q
−1],

which is a polynomial algebra on indeterminates x1, x2, . . . , q, q−1. Further, we

take the decomposition of B via

B =
⊕
m∈Z

B(m)

where B(m) = qmC[x1, x2, . . . ].

We then want to define a representation of the oscillator algebra s on B by:

πB(Λn) =
∂

∂xn
, πB(Λ−n) = nxn,

πB(Λ0) = q
∂

∂q
, πB(c) = I

where n > 0. Then as a result of Proposition 2.4.2, and the fact that the canonical

commutation relations are unique, there is a unique isomorphism of s-modules

σ : F → B

such that σ(|m〉) = qm.
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The map σ transports the Hermitian form on F to a Hermitian form on B. The

principal gradation

B(m) = ⊕k≥0B
(m)
k

is defined by

deg xj = j,

where the degree of a product is clearly the sum of the degrees. The transported

irreducible representation π̂Bm, along with the contravariant Hermitian form 〈, 〉, must

satisfy

〈1, 1〉 = 1, and (r̂Bm(Λk))
∗ = r̂Bm(Λ−k). (2.5)

A straightforward calculation yields that the Hermitian form given by

〈P,Q〉 = P (
∂

∂x1

,
1

2

∂

∂x2

, . . . )Q(x)|x=0

satisfies (2.5).

Through σ, the operator of multiplication by q can be transported from B to F ,

obtaining the operator on F , likewise denoted q, that yields

q|m〉 = |m+ 1〉, qψi = ψi+1q

for m, i ∈ Z. Now, the fermionization process consists of constructing fermions

ψj and ψ∗j in terms of bosons αi. We thus introduce the generating series

ψ(z) =
∑
j∈Z

zjψj, ψ∗(z) =
∑
j∈Z

z−jψ∗j

which map F into its formal completion F̂ . Note that we have two transported

operators

σψ(z)σ−1, σψ∗(z)σ−1 : B → B̂,

where B̂ is the formal completion of B. The relations of operators on F ,

[αj, ψ(z)] = zjψ(z)], [αj, ψ
∗(z)] = −zjψ(z)],
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transport to B as follows:

[
∂

∂xj
, σψ(z)σ−1] = zj(σψ(z)σ−1), [xj, σψ(z)σ−1] =

z−j

j
(σψ(z)σ−1).

This is important, because up to a constant factor (depending on z) there is only

one operator which maps B(m) into B(m+1) that satisfies these relations [17]. We

can then define the operators

Γ+(z) = exp
∑
n≥1

z−n

n
αn, Γ−(z) = exp

∑
n≥1

zn

n
α−n.

If we view z as a formal parameter, then Γ± can be viewed as generating series of

operators on F ,

Γ±(z) =
∑
n∈Z+

Γ±z
∓n.

We can see these operators in the bosonic picture as

Γ+(z) = exp
∑
n≥1

z−n

n

∂

∂xn
, Γ−(z) = exp

∑
n≥1

znxn.

The last machinery we provide here is that with any partition λ = (λ1, λ2, . . . ),

we associate the Schur polynomial Sλ(x). In order to see what this polynomial is, we

introduce the “elementary” Schur polynomials in a slightly different manner than

Chapter 1 via the following generating series:∑
m∈Z

zm Sm(x) = exp
∑
n≥1

znxn

Then we have:

Sm(x) = 0 for m < 0, S0(x) = 1, and

Sm(x) =
∑

m1+2m2+···=m

xm1
1

m1!

xm2
2

m2!
. . . for m > 0.
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To clarify, consider the first few elementary Schur polynomials

S1(x) =x1,

S2(x) =
1

2
x2

1 + x2

S3(x) =
1

6
x3

1 + x1x2 + x3,

Now, if we have a partition λ = (λ1, λ2, . . . ), the associated Schur polynomial

will be

Sλ(x = det(Sλi+j−i(x))1≤i,j≤|λ|

where x = (x1, x2, . . . ). For example, the some basic examples include:

S(1,1) = det

[
S1 S2

1 S1

]
=

1

2
x2

1 − x2 ,

S(2,1) = det

[
S2 S3

1 S1

]
=

1

3
x3

1 − x3 ,

S(2,2) = det

[
S2 S3

S1 S2

]
=

1

12
x4

1 − x1x3 + x2
2 ,

Finally, recall that given a semi-infinite monomial ϕ ∈ F (m) there is an associated

partition λϕ - defined in Section 2.1 - and thus an associated Schur polynomial.

Explicitly, each monomial will correspond to Sλϕ(x).

There are a few more tools needed to prove the following boson-fermion corre-

spondence. This is due to a few calculations relying on extending the representation

R of the group GL∞ to a new representation of the group

G̃L∞ =

{
a = (aij)i,j∈Z | a is invertible and all but a finite number of

aij − δij with i ≥ j are 0

}
See [18] for the complete proof, however we have provided the machinery for

which we aim to derive analogues in Chapter 3, so we simply state the theorem

here.
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Theorem 2.5.1 (Boson - Fermion Correspondence). (a) As defined above, for z ∈
C×:

ψ(z) = zα0Γ−(z)Γ+(z)−1

ψ∗(z) = q−1z−α0Γ−1
− Γ+(z)

(b) If ϕ ∈ F (m) is a semi-infinite monomial, then

σ(ϕ) = qmSλϕ(x)
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Chapter 3

Wedge representations of affine
Lie superalgebras

3.1 The result of Kac and van de Leur

As mentioned in Chapter 1, Kac and van de Leur constructed a representation

of gl∞|∞ by first defining a Clifford superalgebra Cl with generators ψi, ψ
∗
i , and

then the associated spin module V with a non-zero even vector |0〉 as a generator.

Given an infinite-dimensional complex vector superspace Ψ, which one identifies

with the space of column vectors whose coordinates are indexed by 1
2
Z, the standard

representation of gl∞|∞ on Ψ associated to the Clifford superalgebra. From here, the

spin module is decomposed and used in developing a super analogue of the boson-

fermion correspondence [16]. Our interest is in developing the machinery of a new

analogue to Chapter 2. The motivation for revisiting something similar but distinct

from Kac and van de Leur originated while studying their superalgebra analogue

to the Lie algebra case, and some key differences in their approach. First, they

began by defining generators of a Clifford superalgebra. This dictated the infinite-

dimensional wedge space they used, which was restricted in construction (thus so was

the spin module). Also, unlike the Lie algebra case, this construction did not follow

from a natural infinite wedge representation of gl∞|∞. Due to the limitations of its

infinite wedge space, some interesting structural questions that the super analogue

should present were not addressed. As their approach lost some of the expected
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structural analogues from the Lie algebra case, and the Clifford superalgebra was no

longer directly motivated by the representation of gl∞|∞, we decided to construct an

analogue that may address these issues. The two main distinctions in our approach

are, first, we wanted a super analogue of the Fock space that allowed for infinitely

many odd vectors. Second, we wanted to construct a representation of this new

space that would naturally yield generators for a Clifford superalgebra, which is

decidedly different from the approach in [16]. From here, we would look to establish

a correspondence similar to the boson-fermion correspondence. This explicit link

would serve as a launch pad to representation theoretical results. Although we are

examining distinct structures (other than gl∞|∞) from Kac and van del Leur, our

results are clearly motivated by their work, and we will utilize their notation when

our analogue mirrors theirs.

3.2 A gl∞|∞ representation

Take an infinite dimensional superspace

V =
⊕
j∈ 1

2
Z

Cvj

with even basis vectors {vi | i ∈ Z} and odd basis vectors {vk | k ∈ 1
2

+Z}, yielding

the Z2-gradation

V = V0̄

⊕
V1̄

where we designate the parity of vi as p(i) or |i| ∈ Z2, with even basis vectors in V0̄

and odd basis vectors in V1̄. Now consider that the superalgebra

gl∞|∞ = {(aij)i,j∈ 1
2
Z | all but finitely many aij are zero},

together with the supercommutator [·, ·] forms a Lie superalgebra, as defined in

Chapter 1. One may also see gl∞|∞ as in [15], that is as a contragradient Lie

superalgebra of infinite rank on Chevalley generators

ei = Ei,i+1, fi = Ei+1,i,

hi = Ei,i − Ei+1,i+1,
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where i ∈ 1
2
Z and Eij is the usual basic matrix units with (i, j) entry 1 and the rest

are 0.

It is clear that gl∞|∞ operates on V via the multiplication of a matrix and a

column vector,

Eijvj = vi .

We define the parity of Eij as |Eij| = |i+ j| = |i|+ |j| ∈ Z2.

We now introduce F as the vector space with basis consisting of monomials

vi0 ∧ vi1 ∧ vi2 ∧ . . . where ik ∈ 1
2
Z such that

• i0 ≥ i1 ≥ i2 ≥ . . .

• in = in−1 − 1
2

for n� 0.

Here the possibility for duplicate vectors is realized with odd vectors, given that

in the superalgebra case, the relation

v ∧ w = −(−1)|v||w|w ∧ v , (3.1)

defines the wedge product.

In essence, while in these formulas we assume multilinearity (i.e., · · · ∧ (αu +

βv) ∧ · · · = α(· · · ∧ u ∧ . . . ) + β(· · · ∧ v ∧ . . . )), the Pauli exclusion principle (· · · ∧
u∧ · · · ∧u∧ · · · = 0) no longer applies in general due to the presence of odd vectors.

Let m(i) denote the multiplicity of an odd vector vi in a monomial in F. What is

unique now is that F contains monomials with infinitely many odd vectors, which

will create a new smattering of issues when studying the structure of F.

Definition 3.2.1. Define the charge decomposition

F =
⊕
m∈ 1

2
Z

F(m)

by letting |m〉 = vm∧vm− 1
2
∧vm−1∧vm− 3

2
∧ . . . denote the vacuum vector of charge

m. Then F(m) is the linear span of the monomials which differ from |m〉 only at a

finite number of places.
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The space F(0) is the linear span of monomials that differ from |0〉 = v0 ∧ v− 1
2
∧

v−1 ∧ v− 3
2
∧ . . . in a finite number of spaces. The difference in positions between

monomials in F(m) may occur via the presence of some vi with i > 0, or via odd

vectors vi with m(i) > 1.

Remark 3.2.2. In the Lie algebra case discussed in Chapter 2, we had a clear

bijection between the semi-infinite monomials of a given charge and the set of all

partitions, Par. Our monomials have changed, and although the difference between

indexing by 1
2
Z or Z can be handled via a simple doubling map, a possible issue

comes from the allowing of multiple non-distinct odd vectors in ϕ.

Given a monomial ϕ ∈ F(m), consider what happens when we associate a parti-

tion λ = (λ0, λ1, . . . ) with ϕ = vi0 ∧ vi1 ∧ . . . by comparing it to the vacuum vector

|m〉 via

λ = (i0 −m, i1 − (m− 1

2
), i2 − (m− 1), . . . ).

Clearly λi = 0 for i � 0, since ϕ has charge m. However, say vik−1
and vik are the

same odd vector vj, then λk−1 = j − (m− k−1
2

) < j − (m− k
2
) = λk, which means λ

does not belong to Par because it is not a finite non-increasing sequence. We note

that each added multiple of an odd vector present in ϕ ∈ F(m) must be accompanied

by the removal of a vi with i > m in order for ϕ to remain with charge m. We will

revisit this in the next section when we have more tools with which to study F(m).

We return to F and note that that action of the Lie superalgebra gl∞|∞ on F(0)

is

Eij · (vi0 ∧ vi1 ∧ . . . ) =
∑
k≥0

(−1)
|Eij |

k−1∑
l=0
|il|
vi0 ∧ · · · ∧ Eijvik ∧ . . .

Define the representation r0 of the Lie superalgebra gl∞|∞ on F(0) by:

r0(Eij)(vi0 ∧ vi1 ∧ . . . ) =
∑
k≥0

δj,ik(−1)k(−1)
|j|

k−1∑
l=0
|il|
vi ∧ vi0 ∧ · · · ∧ v̂ik ∧ . . . (3.2)

By construction, beginning with the Lie superalgebra action and utilizing multilin-

earity, we have that

r0([Eij, Ekl]) = [r0(Eij), r0(Ekl)].
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We ensured that our resulting monomial remains in F(0) (meaning the position of

vi is not an issue) due to properties of the wedge product. Thus, our resulting

monomial is truly in the span of the basis elements of F as defined earlier. We will

further examine the reasoning behind this choice in the next section.

Also, this is always a finite sum as each monomial contains finitely many positions

filled with vj’s. Refer to (3.2) and note when |j| = 0̄ or |i| = 0̄ there can be at most

one term. Upon further examination, we need to consider the possibility of repeated

odd vectors in our monomial. Here we will let Φ = {k | ik = j } and examine when

|j| = 1̄.

r0(Eij)(vi0 ∧ vi1 ∧ . . . ) =
∑
k≥0

δj,ik(−1)k(−1)
|j|

k−1∑
l=0

|il|
vi ∧ vi0 ∧ · · · ∧ v̂ik ∧ . . .

=
∑
k∈Φ

δj,ik(−1)k(−1)
|j|

k−1∑
l=0
|il|
vi ∧ vi0 ∧ · · · ∧ v̂ik ∧ . . .

Note that all duplicates of vj are in consecutive positions. Thus, when applying r0

the resulting monomials in each term of the summand will be the same, with simply

a different sign depending on position. Now write Φ = {q, q+1, . . . , q+(t−1), q+t},
where q = min{Φ}, and note m(j) = |Φ|. We can thus simplify the sum utilizing

the fact that the resulting monomial is equivalent to having moved viq , simply with

the additional sign for moving vi past each vj that precedes it in the monomial.

Proposition 3.2.3. Let r0,Φ, q, and t be defined as above. Then

r0(Eij)(vi0 ∧ vi1 ∧ . . . ) = m(j)(−1)q(−1)
|j|

q−1∑
l=0
|il|
vi ∧ vi0 ∧ · · · ∧ v̂iq ∧ . . . (3.3)

Proof. Case 1: |j| = 0̄ = |i|,
If m(j) 6= 1 or m(i) 6= 0, then r0(Eij) = 0.

So let m(j) = 1 and m(i) = 0, then

r0(Eij)(vi0 ∧ vi1 ∧ . . . ) = (−1)qvi ∧ vi0 ∧ · · · ∧ v̂iq ∧ . . .

= m(j)(−1)q(−1)
|j|

q−1∑
l=0
|il|
vi ∧ vi0 ∧ · · · ∧ v̂iq ∧ . . .
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Case 2: |j| = 0̄ and |i| = 1̄,

If m(j) 6= 1, then r0(Eij) = 0.

So let m(j) = 1, then for any multiplicity of vi, we have

r0(Eij)(vi0 ∧ vi1 ∧ . . . )

= (−1)qvi ∧ vi0 ∧ · · · ∧ v̂iq ∧ . . .

= m(j)(−1)q(−1)
|j|

q−1∑
l=0
|il|
vi ∧ vi0 ∧ · · · ∧ v̂iq . . .

Case 3: |j| = 1̄, |i| = 0̄,

If m(j) 6= 1 or m(i) 6= 0, then r0(Eij) = 0.

So let m(j) = 1 and m(i) = 0, then

r0(Eij)(vi0 ∧ vi1 ∧ . . . )

= (−1)q(−1)
|j|

q−1∑
l=0

|il|
vi ∧ vi0 ∧ · · · ∧ v̂iq ∧ . . .

= m(j)(−1)q(−1)
|j|

q−1∑
l=0

|il|
vi ∧ vi0 ∧ · · · ∧ v̂iq ∧ . . .

Case 4: |i| = 1̄, |j| = 1̄,

Then for any multiplicity of both vi and vj, we have

r0(Eij)(vi0 ∧ vi1 ∧ . . . )

=
t−1∑
r=0

(−1)q+r(−1)r|i||j|(−1)
|j|

q−1∑
l=0
|il|
vi ∧ · · · ∧ v̂iq ∧ . . .

= (−1)q(−1)
|j|

q−1∑
l=0
|il|
vi ∧ · · · ∧ v̂iq ∧ . . .

+ (−1)q+1(−1)|i||j|(−1)
|j|

q−1∑
l=0
|il|
vi ∧ · · · ∧ v̂iq ∧ · · ·+

...

+ (−1)q+t−1(−1)(t−1)|i||j|(−1)
|j|

q−1∑
l=0
|il|
vi ∧ · · · ∧ v̂iq ∧ . . .

= m(j)(−1)q(−1)
|j|

q−1∑
l=0

|il|
vi ∧ vi0 ∧ · · · ∧ v̂iq ∧ . . .
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We can introduce the principal gradation gl∞|∞ =
⊕

j∈ 1
2
Z gj by putting deg

Eij = j − i, so that we have [gi, gj] = gi+j. Now, we induce a principal gradation

F(0) =
⊕
k∈ 1

2
Z

F
(0)
k

which is consistent with the gradation of gl∞|∞, meaning for a ∈ gi,

r0(a)F
(0)
j ⊆ F

(0)
j−i. (3.4)

Explicitly, F
(0)
k is the linear span of all elements of F(0) of the form

r0(Ei1j1)r0(Ei2j2) . . . r0(Einjn)|0〉 (3.5)

where
n∑
`=1

i` −
n∑
`=1

j` = k.

Here we will call k the energy of a monomial in F(m) and at times may refer to the

corresponding decomposition as the energy decomposition. Note, that although we

have not calculated dimq F
(m), it is evident (and further addressed in Section 3.3)

that dimF(m) < ∞. This is useful in understanding the application of the PBW

theorem for Lie superalgebras. For more on the superalgebra version of the PBW

Theorem, see [26, 23, 15].

We defined r0 with the hope that we would be able to use it to study F(0)

further. In the following theorem, we see that F(0) has no non-trivial proper invariant

subspaces under r0.

Theorem 3.2.4. The representation r0 of gl∞|∞ is irreducible on F(0).

Proof. To show the r0 is irreducible, first we will use the orthogonal energy decom-

position constructed earlier

F(0) =
⊕
k≥0

F
(0)
k .

Suppose W ⊆ F(0) is an invariant subspace with respect to r0. Then W and W⊥

must respect the the energy decomposition of F(0). We can view F(0) as being
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generated by |0〉, as any monomial of charge m can be described as an element of

the gl∞|∞ orbit of |0〉. This can be seen clearly considering, given any monomial

ϕ ∈ F(0) can be written as

vi0 ∧ vi1 ∧ · · · ∧ vi2k ∧ v−k− 1
2
∧ v−k−1 ∧ . . .

Then we can describe ϕ as an element of the gl∞|∞ orbit of |0〉 via

r0(Ei0,0)r0(Ei1,−1
2

) . . . r0(Ei2k,−k)|0〉.

Not only is F(0) generated by |0〉, but then F
(0)
0 is spanned by |0〉. As both W and

W⊥ respect the energy decomposition, |0〉 must be contained in only one of W or

W⊥. If |0〉 ∈ W , clearly each F
(0)
k belongs to W , thus W = F(0) and W⊥ = 0. A

similar argument is made if |0〉 ∈ W⊥.

Further, we can similarly define the representation rm of gl∞|∞ on F(m) for every

m ∈ 1
2
Z. As each space F(m) can be generated by its corresponding vacuum vector

|m〉, a similar argument to the above can be made for each m ∈ 1
2
Z.

Corollary 3.2.5. For each m ∈ 1
2
Z, the representation rm of gl∞|∞ on F(m) is

irreducible.

We now have a representation

r =
⊕
m∈ 1

2
Z

rm.

of gl∞|∞ on F. We will need to revisit this representation and its properties in

greater detail when we consider the central extension of gl∞|∞ in Section 3.5.

3.3 Creation and annihilation operators

We next look to develop creation (wedging) and annihilation (contracting) operators

that will allow us to connect our representation of gl∞|∞ to an algebraic structure

that will further enable our study of r and F. That structure will be a Clifford

superalgebra.
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Now for j ∈ 1
2
Z, we introduce two operators ψ̃j and ψ̃∗j on F by the following:

ψ̃j(vi0 ∧ vi1 ∧ . . . ) =

{
0 if |j| = 0̄, and j = ik for some k

vj ∧ vi0 ∧ vi1 ∧ . . . if j 6= is,∀s, or |j| = 1̄

ψ̃∗j (vi0 ∧ vi1 ∧ . . . ) =


0 if j 6= ik for all k,

m(j)(−1)k(−1)
|j|

k−1∑
l=0
|il|
vi0 ∧ · · · ∧ v̂ik ∧ . . .

if j = ik ∃ k,
where k = min (Φ)

Note that if |j| = 0̄ and m(j) > 1 then the monomial vi0 ∧ vi1 ∧ . . . is simply 0.

Proposition 3.3.1. Given the representation r of gl∞|∞ on F,

r(Eij) = ψ̃iψ̃
∗
j

Proof. The proof is simply computational due to our construction. We can look at

r0, as each rm is similarly defined on F(m).

ψ̃iψ̃
∗
j (vi0 ∧ vi1 ∧ . . . ) = δj,ikm(j)(−1)k(−1)

|j|
k−1∑
l=0

|il|
vi ∧ vi0 ∧ vi1 ∧ · · · ∧ v̂ik ∧ . . .

= δj,ikm(j)(−1)q(−1)
|j|

q−1∑
l=0
|il|
vi ∧ vi0 ∧ vi1 ∧ · · · ∧ v̂iq ∧ . . .

= r(Eij)(vi0 ∧ vi1 ∧ . . . )

Combining the previous two results with (3.5), we have the following result which

will eventually be extended to a larger Lie superalgebra.

Corollary 3.3.2. The space F
(m)
k is the linear span the elements of the form

ψ̃in . . . ψ̃i1ψ̃
∗
jn . . . ψ̃

∗
j1
|m〉

where
n∑
`=1

i` −
n∑
`=1

j` = k.



39

Note that the ψ̃ik need not be distinct in the case that ik is odd. Although

F
(m)
k is the linear span of these elements, we do not have a nice way to compute

dimF
(m)
k yet, as we did in the Lie algebra case (read: partition, Young diagram).

To understand F(m), we want to examine this further. We will outline the process

here, but rigorously develop it in Appendix A.

Consider that even operators still behave nicely - meaning we can only contract

even vector vi if that vector is present in |m〉 and can only wedge in vi if it is not

present, else we annihilate the monomial. However, odd vectors may be wedged in

anywhere, and in any finite multiplicity. This creates a problem trying to establish

a correspondence between monomials and nice combinatorial tools, such as Young

diagrams.

Then another way to realize F(m) might be to write any element in F
(m)
k in the

form

ψ̃tsis . . . ψ̃
t1
i1
ψ̃∗jp . . . ψ̃

∗
j1
|m〉 (3.6)

where
s∑
`=1

i`t` −
p∑

γ=1

jγ = k.

Here tα = 1 if |α| = 0, and (3.6) can be ordered such that

is < is−1 and jp > jp−1. (3.7)

We can even further require jp ≤ m to cut out the superfluous contracting of non-

present vectors.

One should suspect that there is a combinatorial method for computing dimq F
(m)

by using a configuration similar to the above to compute dimF
(m)
k . We begin this

process in Appendix 2. In summary, by assigning a new form for each monomial via

the PBW theorem, we can construct four Young diagrams that correspond to four

types of operators present in the new form:

• odd vectors created with index less than the charge,

• odd vectors created with index greater than the charge,
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• even vectors created with index greater than the charge,

• vectors contracted from |m〉.

This is done via a natural arrangement that is expressed with our operators. Then

we assign the distance between each the index of a vector and the charge m to be

half of the length of a row in a corresponding Young diagram. We can then uniquely

determine a Young diagram for each of the above for types of operators, creating

a unique 4-tuple of Young diagrams for each monomial. This is useful because we

then know exactly which vectors are present in our monomial, and should be able

to use this to study the dimF
(m)
k . As mentioned, this area requires more attention

and is thus relegated to Appendix A.

3.4 Generating a Clifford Superalgebra

A central aspect of the Boson-Fermion correspondence was creating a connection be-

tween the language of Clifford algebras and that of Heisenberg Lie algebras. Clifford

algebras have an impressive and far-reaching role in various mathematical studies

and applications. Studying these algebras, as well as constructing them, is what led

us to the Kac papers that motivate this dissertation.

Previous results in constructing infinitely generated Clifford algebras are in-

cluded in Chapter 4. Our original goal stemming from [17] was to construct a new

representation of gl∞|∞ (now laid out in the previous sections), corresponding op-

erators that would generate a Clifford superalgebra for which we could study the

structure and related representation theory.

Here we view the operators ψ̃i, and ψ̃∗i in the context of generators of a Clifford

superalgebra. We begin with the following lemma.

Lemma 3.4.1. Given ψ̃i, ψ̃
∗
i as defined above, they satisfy the following relations

(1) ψ̃iψ̃
∗
j + (−1)|i||j|ψ̃∗j ψ̃i = (−1)|i|δi,j,

(2) ψ̃iψ̃j + (−1)|i||j|ψ̃jψ̃i = 0,

(3) ψ̃∗i ψ̃
∗
j + (−1)|i||j|ψ̃∗j ψ̃

∗
i = 0.
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Proof. In each of the following, let

ϕ = vi0 ∧ vi1 ∧ . . . .

For (1), let Θ1 = ψ̃iψ̃
∗
j + (−1)|i||j|ψ̃∗j ψ̃i. Then if i 6= j, we have

Θ1(ϕ) = δj,iqm(j)(−1)q(−1)
|j|

q−1∑
l=0
|il|
vi ∧ vi0 ∧ vi1 ∧ · · · ∧ v̂iq ∧ . . .

+ (−1)|i||j|δj,iqm(j)(−1)q+1(−1)|i||j|(−1)
|j|

q−1∑
l=0
|il|
vi ∧ vi0 ∧ vi1 ∧ · · · ∧ v̂iq ∧ . . .

= δj,iqm(j)(−1)q(−1)
|j|

q−1∑
l=0
|il|
vi ∧ vi0 ∧ · · · ∧ v̂iq ∧ . . .

+ δj,iqm(j)(−1)q+1(−1)
|j|

q−1∑
l=0

|il|
vi ∧ vi0 ∧ · · · ∧ v̂iq ∧ . . .

= 0

Now for when i = j, it is clear that when |i| = 0̄,

(ψ̃iψ̃
∗
i + (−1)|i|ψ̃∗i ψ̃i)(ϕ) = (ψ̃iψ̃

∗
i + ψ̃∗i ψ̃i)(ϕ) = ϕ.

However, when |i| = 1̄, we need to be careful, as

(ψ̃iψ̃
∗
i + (−1)|i|ψ̃∗i ψ̃i)(ϕ) = (ψ̃iψ̃

∗
i − ψ̃∗i ψ̃i)(ϕ).

Now, if vi is present in the monomial ϕ, then

ψ̃iψ̃
∗
i (ϕ)− ψ̃∗i ψ̃i(ϕ) = m(i)(−1)q(−1)

|i|
q−1∑
l=0
|il|
vi ∧ vi0 ∧ vi1 ∧ · · · ∧ v̂iq ∧ . . .

− (m(i) + 1)(−1)q(−1)
|i|
q−1∑
l=0
|il|
vi ∧ vi0 ∧ vi1 ∧ · · · ∧ v̂iq ∧ . . .

= −ϕ

as the second term will have one more vi present when contracting, thus having a

coefficient of (m(i) + 1) while the other signs match by construction (this is easily

seen if the first monomial is re-ordered after applying the contracting operator).
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If vi is not present, then the first term annihilates the monomial, and we have

(ψ̃iψ̃
∗
i − ψ̃∗i ψ̃i)(ϕ) = −ψ̃∗i ψ̃i(ϕ)

= −(−1)q(−1)
|i|
q−1∑
l=0
|il|
vi ∧ vi0 ∧ vi1 ∧ · · · ∧ v̂iq ∧ . . .

which we can reorder, returning vi to the position vacated by viq , yielding the desired

result of

(ψ̃iψ̃
∗
i − ψ̃∗i ψ̃i)(ϕ) = −ϕ.

Thus, for |i| ∈ Z2,

ψ̃iψ̃
∗
i + (−1)|i|ψ̃∗i ψ̃i = (−1)|i|I.

Now for (2), see that if i 6= j then

(ψ̃iψ̃j + (−1)|i||j|ψ̃jψ̃i)(ϕ) = vi ∧ vj ∧ vi0 ∧ . . . + (−1)|i||j|vj ∧ vi ∧ vi0 ∧ . . .

= vi ∧ vj ∧ vi0 ∧ . . . − (−1)2|i||j|vi ∧ vj ∧ vi0 ∧ . . .

= 0

However, if i = j, consider first if |i| = 0̄, then

(ψ̃iψ̃j + (−1)|i||j|ψ̃jψ̃i)(ϕ) = (ψ̃iψ̃i)(ϕ) + (ψ̃iψ̃i)(ϕ)

= 0

as applying the same even wedging operator twice annihilates the monomial. If

|i| = 1̄, then

(ψ̃iψ̃j + (−1)|i||j|ψ̃jψ̃i)(ϕ) = (ψ̃iψ̃i)(ϕ)− (ψ̃iψ̃i)(ϕ)

= 0



43

For (3), without loss of generality take q > k. Then we see that

ψ̃∗i ψ̃
∗
j + (−1)|i||j|ψ̃∗j ψ̃

∗
i

= ψ̃∗i

δj,iqm(j)(−1)q(−1)
|j|

q−1∑
l=0
|il|
vi0 ∧ · · · ∧ v̂iq ∧ . . .


+ (−1)|i||j|ψ̃∗j

δi,ikm(i)(−1)k(−1)
|i|
k−1∑
l=0
|il|
vi0 ∧ · · · ∧ v̂ik ∧ . . .



= δj,iqδi,ikm(i)m(j)(−1)q+k(−1)
|j|

q−1∑
l=0
|il|

(−1)
|i|
k−1∑
l=0
|il|
vi0 ∧ · · · ∧ v̂ik ∧ · · · ∧ v̂iq ∧ . . .

+ (−1)|i||j|δj,iqδi,ikm(j)m(i)(−1)q+k−1(−1)
|j|
(

(
1−1∑
l=0
|il|)−|i|

)

· (−1)
|i|
k−1∑
l=0

|il|
vi0 ∧ · · · ∧ v̂ik ∧ · · · ∧ v̂iq ∧ . . .

= δj,iqδi,ikm(i)m(j)(−1)q+k(−1)
|j|

q−1∑
l=0
|il|

(−1)
|i|
k−1∑
l=0

|il|
vi0 ∧ · · · ∧ v̂ik ∧ · · · ∧ v̂iq ∧ . . .

+ δj,iqδi,ikm(j)m(i)(−1)q+k−1(−1)
|j|

q−1∑
l=0

|il|
(−1)

|i|
k−1∑
l=0

|il|
vi0 ∧ · · · ∧ v̂ik ∧ · · · ∧ v̂iq ∧ . . .

= 0

Finally, when i = j, consider first if |i| = 0̄, then

(ψ̃∗i ψ̃
∗
j + (−1)|i||j|ψ̃∗j ψ̃

∗
i )(ϕ) = (ψ̃∗i ψ̃

∗
i )(ϕ) + (ψ̃∗i ψ̃

∗
i )(ϕ)

= 0 + 0

as applying the same even contracting operator twice annihilates the monomial. If

|i| = 1̄, then

(ψ̃∗i ψ̃
∗
j + (−1)|i||j|ψ̃∗j ψ̃

∗
i )(ϕ) = (ψ̃∗i ψ̃

∗
i )(ϕ)− (ψ̃∗i ψ̃

∗
i )(ϕ)

= 0
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Citing the lemma and the well-known definition of Clifford superalgebra, we have

our result:

Theorem 3.4.2. The operators ψ̃j and ψ̃∗j generate a Clifford superalgebra Ĉl.

We can then appeal to Corollary 3.3.1 for the following:

Corollary 3.4.3. The Lie superalgebra gl∞|∞ embeds into the Clifford superalgebra

Cl via

r(Eij) = ψ̃iψ̃
∗
j .

Note that Lemma 3.4.1 paired with the previous two results gives us a completely

new Clifford superalgebra, distinct from Kac and van de Leur’s. The Clifford su-

peralgebra Ĉl does not have a positive form, and this raises interesting structural

questions.

We now take a moment to highlight our reasoning for the particular positioning

of vi when defining the representation r0 of gl∞|∞ on F.

Remark 3.4.4 (Explanation for bringing vi to front of monomial). Recall that our

original goal was to construct an infinitely generated Clifford algebra from a repre-

sentation of gl∞|∞. If we simply took the Lie superalgebra action, there would be

a problem with explicitly defining our Clifford superalgebra generators as operators

on gl∞|∞. That is, if ϕ = vi0 ∧ vi1 ∧ . . . , consider r would be

r(Eij)(ϕ) =
∑
k≥0

δj,ik(−1)
|Eij |

k−1∑
l=0
|il|
vi0 ∧ · · · ∧ vik−1

∧ Eijvik ∧ . . .

=
∑
k≥0

δj,ik(−1)
|Eij |

k−1∑
l=0

|il|
vi0 ∧ · · · ∧ vik−1

∧ vi ∧ . . . (3.8)

The operators would both need to take into account the parity of i due to the

possible sign coming from taking |Eij| = |i| + |j| involved in each operator. This

issue precludes the possibility of independent operators ψ̃j and ψ̃∗j composing in

a way that allows us construct Ĉl.



45

A natural instinct would be to then place vi in its proper place considering the

index ordering. Assume that k > p, then doing so would result in an additional sign

factor

(−1)k−p(−1)
|i|
k−1∑
l=p
|il|
,

which relies on the position of both ik and ip. This seems to cause a similar problem.

However, after developing much of the theory found in this chapter, we revisited this

representation and were able to construct corresponding operators that served as

Clifford superalgebra operators using cases.

For computational purposes and time constraints, we maintain our reordering of

the monomial, placing vi in the first position. We can thus express the representation

in terms of independent operators. We intend to revisit the reordering where vi is

placed in its proper position considering the index ordering.

We return to the Clifford superalgebra Ĉl, and we wish to develop a correspond-

ing spin module. In order to do so, we first highlight a few necessary results.

Proposition 3.4.5. As a Ĉl-module, F is irreducible.

Proof. As F is non-zero, it will be irreducible if F = Ĉlϕ for all non-zero ϕ ∈ F.

This is clear, as Ĉlϕ ⊆ F since the operators generating Ĉl are operators on F, the

orbit by definition is in F. Further, since monomials form a basis for F, if we take

a monomial ϕ ∈ F it belongs to some F(m) by our charge decomposition. Now, by

Corollary 3.3.2, that element can be written in terms of elements of Ĉl acting on the

vacuum vector |m〉.

It is straightforward to check that in addition to relations in Lemma 3.4.1, we

have

ψ̃j|0〉 = 0, for j ≤ 0, |j| = 0̄; ψ̃∗j |0〉 = 0 for j ≥ 0.

One can associate Ĉl with the space

U =
∑
i

Cψ̃i +
∑
i

Cψ̃∗i .
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with bilinear form (ψ̃i|ψ̃∗j ) = (−1)|i|δij. The reason for the signage here is easily

checked with Lemma 3.4.1.

Now given a maximal isotropic subspace W of U , the Clifford superalgebra has

a unique irreducible module called the spin module which admits a non-zero vector

which W annihilates. We consider the subspace of U given by

W =
∑
i≤0
|i|=0̄

Cψ̃i +
∑
i>0

Cψ̃∗i .

Proposition 3.4.6. The subspace W of U is maximally isotropic.

Proof. Consider the nonzero vector |0〉 = v0∧v− 1
2
∧v−1 . . . for which we see W |0〉 =

0. This is clear, as any element in W can only create an even vector with index

i ≤ 0, and that even vector is already present in |0〉. Also, an element in W can

only contract a vector with index i ≥ 0, which will not be present in |0〉. Thus, by

the definitions of both ψi and ψ∗i , W is isotropic.

Seeing that W is maximally isotropic is fairly straightforward by the construction

of our operators. Let X ) W be maximally isotropic. Then X must contain one of

the following:

(1) a generator ψi with i > 0 or |i| = 1̄, or

(2) a generator ψ∗i with i ≤ 0.

We immediately eliminate the possibility of X containing an element ψi with |i| = 1̄,

as this operator will not kill any monomial. If X contains ψi with i > 0, then for

any monomial ϕ ∈ F, either ψi(ϕ) 6= 0 or ψ∗i (ϕ) 6= 0, depending on whether vi

is present. Yet, both ψi and ψ∗i are in X. A similar argument can be made if X

contains ψi with i ≥ 0 to show that Xϕ 6= for any ϕ ∈ F.

Lastly, it is evident that |0〉 generates F as a Ĉl−module as we can take |0〉 to any

other vacuum vector |m〉 by applying necessary operators ψi or ψ∗i (see Corollary

3.3.2). We say F is the spin module associated with the subspace W . It is worth

noting that |0〉 is not the only monomial that W annihilates, due to the possible
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presence of multiple odd vectors. However, these monomials all generate F as a

Ĉl-module as well.

The Clifford superalgebra Ĉl has been constructed, with F as its spin module, and

we have embedded gl∞|∞ into Ĉl. We now turn our focus to larger Lie superalgebras.

3.5 The central extension ĝl∞|∞

For this section, we will be looking at a central extension of the Lie superalgebra

gl∞|∞. The definition of a central extension of a Lie superalgebra can be found in

Definition 1.4.7, and more details concerning this particular central extension can

be found in [5]. Let Φ be as defined before Proposition 3.2.3.

Now let

ĝl∞|∞ = gl∞|∞ ⊕ Cc

be the central extension of gl∞|∞ by a one-dimensional center Cc given by the 2-

cocycle

α(A,B) := Str([J,A]B)

where J =
∑

r≤0Err. Also, we define the supertrace of a matrix C by

Str C =
∑
r∈ 1

2
Z

(−1)2rcrr.

If we assign the Cartan subalgebra h̄ =
∑

r∈ 1
2
ZCErr ⊕ Cc degree 0, we maintain a

1
2
Z-gradation

ĝl∞|∞ =
⊕
k∈ 1

2
Z

(ĝl∞|∞)k,

where degEij = j − i.
However, if we try to extend the representation r0 (respectively, rm) to the Lie

superalgebra ĝl∞|∞, we encounter a problem when we consider

r0(
∑
i∈ 1

2
Z

λiEii)|0〉.
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Consider that for every i ∈ Φ, r0(Eii) sends vi in a given position to vi in the first

position of the monomial. That is we have

λ0v0 ∧ v− 1
2
∧ · · ·+ σ(−1

2
)λ− 1

2
v− 1

2
∧ v0 ∧ v−1 ∧ · · ·+ . . .

where σ(i) is the sign gained from applying r0(Eii). Now, simple rearranging by

moving vi to its original position yields∑
i≤0

σ(i)λi|0〉

where i ∈ 1
2
Z. The above series may very well be divergent in this context. There is

a similar issue in the Lie algebra case and in Kac and van de Leur’s existing super

analogue, albeit with a bigger algebra. However, given we have a new representation

on a different space, we need an new analogue.

We can remove this one with ease by changing the representation r0 as follows:

r̂0(Eij) = r0(Eij), if i 6= j or i = j > 0

r̂0(Eii) = r0(Eii)− I, for i ≤ 0 (3.9)

r̂0(c) = I

It is important to see that this kills the vacuum vector |0〉. First, the sign

obtained from taking Eii to the appropriate position in |0〉 will be positive, as

|Eii| = |i| + |i| = 0̄. Then acting on vi with Eii results in |0〉. Now, although

wedging vi back to the front position will acquire a sign dependent on the parity of

i and all the vectors it passes, the result is clearly equivalent to having left vi in its

position, which is the vacuum vector itself.

We define r̂m using rm, for all m ∈ 1
2
Z, in a similar way. Then r0 extends to

obtain a linear representation of ĝl∞|∞ on the space F(0) (resp, r̂m to F(m)). These

are irreducible by the construction of our extension. Define the representation

r̂ =
⊕
m∈ 1

2
Z

r̂m

of ĝl∞|∞ on F.



49

If we recall our principal gradation from earlier,

ĝl∞|∞ =
⊕
j∈ 1

2
Z

(ĝl∞|∞)k,

this then induces a principal gradation of F(m) consistent with the gradation of

ĝl∞|∞, namely

F(m) =
⊕
k∈ 1

2
Z

F
(m)
k .

So now for a ∈ (ĝl∞|∞)i,

rm(a)F
(m)
j ⊆ F

(m)
j−i .

Again, we can describe the space F
(m)
k explicitly in terms of the linear span of

elements in F(m) of the form

rm(Ei1j1)rm(Ei2j2) . . . rm(Einjn)|m〉 (3.10)

where
n∑
`=1

i` −
n∑
`=1

j` = k.

A result similar to Corollary 3.3.2 follows, allowing us to view these elements

in terms of the Clifford superalgebra generators. These elements form a basis for

F
(m)
k . Using the PBW Theorem for superalgebras together with the above, we could

assume that js < is for all 1 ≤ s ≤ n, and it would then follow that F
(m)
k = 0 for

k < 0 and F
(m)
0 = C|m〉.

We now look to construct a subsuperalgebra, s, of ĝl∞|∞ for which the F(m)

modules considered as modules of s will remain irreducible. In this effort, we hope

to establish a clear correspondence between our constructed Clifford superalgebra

and this new subalgebra.

We begin by defining the following elements,

λΨ(n) =
∑
k∈Ψ

Ek,k+n, µΨ(n) =
∑
k∈Ψ

Ek− 1
2
,k+n− 1

2
,

eΨ(n) =
∑
k∈Ψ

Ek− 1
2
,k+n, fΨ(n) =

∑
k∈Ψ

Ek,k+n− 1
2
,
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where Ψ is a finite subset of Z. Our next goal is to show that these elements, together

with the central element c from ĝl∞|∞, actually form a basis of a subsuperalgebra of

ĝl∞|∞, which will be s. To do so, we determine the following commutation relations

for s (the proofs to these are in Appendix B).

Note that γ(n) is the number of elements in (Φ1 ∩Φ2) ∩ {1, 2, . . . , n} (an expla-

nation for its appearance is in the appendices).

Proposition 3.5.1. The following commutation relations hold in ĝl∞|∞,

[λΨ1(n), eΨ2(m)] = −eΨ1∩Ψ2(m+ n), [λΨ1(n), fΨ2(m)] = fΨ1∩Ψ2(m+ n),

[µΨ1(n), eΨ2(m)] = eΨ1∩Ψ2(m+ n), [µΨ1(n), fΨ2(m)] = −fΨ1∩Ψ2(m+ n),

[λΨ1(n), λΨ2(m)] = γ(n)δm,−nc, [µΨ1(n), µΨ2(m)] = −γ(n)δm,−nc,

[λΨ1(n), µΨ2(m)] = 0,

[eΨ1(n), fΨ2(m)] = λΨ1∩Ψ2(m+ n) + µΨ1∩Ψ2(m+ n)− nδm,−cc

This issue is revisited in the next section, and warrants further study beyond

this dissertation.

Proposition 3.5.2.

r̂m(fΨ(n))|m〉 = 0, for n ≥ 1 r̂m(λΨ(n))|m〉 = 0 for n > 0,

r̂m(c) = I, r̂m(λΨ(0))|m〉 = 0,

r̂m(µΨ(0))|m〉 = (m(k − 1

2
)− 1)|m〉

Proof. We will prove the first relation here, while the remaining computations are

similar and can be found in Appendix B. We examine the first relation,

r̂m(f(n))|m〉 =
∑
k∈Ψ

(Ek,k+n− 1
2
)|m〉

=
∑
k∈Ψ

σ(k)vk ∧ vm ∧ · · · ∧ ˆvk+n− 1
2
∧ (3.11)

where σ(k) = m(k)(−1)q(−1)
|k|

q−1∑̀
=0
|i`|

from Proposition (3.3.2). Consider that the

sum in (3.11) will be 0 when

k + n− 1

2
> m
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due to vk+n− 1
2

not being in |m〉. Also, the sum in (3.11) is 0 when

k < m

due to vk being present in |m〉. Combining these two cases we see (3.11) = 0 when

n− 1
2
> 0 =⇒ n ≥ 1, as n ∈ Z.

We have formed s using the elements λΨ(n), µΨ(n), eΨ(n), and fΨ(n) and the

central element c. Our goal now is to describe these elements in terms of the Clifford

superalgebra generators, ψ̃i, ψ̃
∗
i . First we must revisit Lemma 3.4.1 to account for

some issues when examining ψiψ
∗
i . Recall that, for |i| ∈ Z2,

ψ̃iψ̃∗i + (−1)|i|ψ̃∗i ψ̃i = (−1)|i|I. (3.12)

Now we look to write the elements of s in terms of ψ̃i and ψ̃∗i , making note of

the above equality. We introduce a method of composing the expressions ψ̃i, ψ̃
∗
i to

account for (3.12).

Definition 3.5.3. The composition extension of expressions ψ̃iψ̃∗j will be given

by

:: ψ̃iψ̃∗j :: =

{
ψ̃iψ̃

∗
j if i 6= j, or if i = j > 0,

ψ̃iψ̃
∗
j − I if i = j, i ≤ 0,

By this composition, if i 6= j then by (3.9) there is no need for adjustment. For

if i = j > 0, we appeal to both (3.9) and Lemma 3.4.1. However, if i = j ≤ 0,

according to (3.9), our representation annihilates the appropriate vacuum vector.

Note that if |i| = 0, then we can appeal to Lemma 3.4.1 to see

r̂(Eii)(ϕ) = (ψ̃iψ̃∗i − I)(ϕ)

= −ψ̃∗i ψ̃i(ϕ)

= 0,

as desired. However, if |i| = 1, and we appeal to Lemma 3.4.1, we have the relation

(ψ̃iψ̃∗i + I)(ϕ) = −ψ̃∗i ψ̃i(ϕ),
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which does immediately apply to our definition of r̂. The issue is that ψ̃i does not

annihilate the monomial for odd i. It is important to notice that altering (3.9) to

allow the above definition to utilize Lemma 3.4.1 in this last case where i = j ≤ 0,

and |i| = 1 would cause a problem with well-definedness in our representation.

Hence, the adjustment is made here instead, forcing us to associate :: ψ̃iψ̃
∗
j :: with

ψ̃iψ̃
∗
j − I = 0 according to (3.9). We now give a correspondence that results from

Proposition 3.3.1, our definition of r̂ in (3.9), and the above composition extension.

It should be noted that for i 6= j, this is simple by design.

Theorem 3.5.4. Given the composition extension of ψ̃iψ̃∗j ,

λΨ(n) =
∑
k∈Ψ

:: ψ̃kψ̃∗k+n ::, µΨ(n) =
∑
k∈Ψ

:: ψ̃k− 1
2
ψ̃∗k+n− 1

2
::,

eΨ(n) =
∑
k∈Ψ

:: ψ̃k− 1
2
ψ̃∗k+n ::, fΨ(n) =

∑
k∈Ψ

:: ψ̃kψ̃∗k+n− 1
2

:: .

As a result of our new construction, there are some lingering questions that need

to be addressed. The first is how to develop the last theorem starting first from the

Clifford superalgebra. Here the first step would seem to be defining the generating

series of the Clifford superalgebra operators:

ψ̃0̄(z) =
∑
i∈Z

ψ̃iz
i, ψ̃∗0̄(z) =

∑
i∈Z

ψ̃iz
−i

ψ̃1̄(z) =
∑
i∈ 1

2
+Z

ψ̃iz
i ψ̃∗1̄(z) = −

∑
i∈ 1

2
+Z

ψ̃iz
−i

where z ∈ C×. These operators would map F into its formal completion F. In order

to construct the formal completion of F, we first need to let F(m) denote the formal

completion of F(m), and then put

F̂ =
∏
m∈ 1

2
Z

F(m).

Another lingering question that is mentioned in Section 3.2 and Appendix A

involves what dimq F
(m) is precisely. However, as that question may almost be
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understood, the first question noted is how to explicitly formulate the rest of our

correspondence.

Question 3.5.5. Can a result similar to Theorem 3.5.4 be found that describes the

ψi and ψ∗i in terms of the λΦ(n), eΦ(n), fΦ(n), and µΦ(n)?

Many questions involving the generating series of ψ(z) and ψ∗(z) remain, and

hinge on the issue of divergence. An answer to this question would involve the

creation of an analogue to the vertex operators Γ− and Γ+ from Chapter 2, and

could also address what the corresponding construction of s using the algebra of

Laurent polynomials may be. Fully understanding this correspondence would also

yield more information about our representation r̂, including answer to the following

question:

Question 3.5.6. Does the representation r̂ of ĝl∞|∞ on F remain irreducible when

restricted to s?

Addressing the previous question would involve showing an s-invariant subspace

of F is ĝl∞|∞ invariant, and should follow quickly once Question 3.5.5 is answered.

Question 3.5.7. What is the formulation of sections 3.2 through 3.5 when taken

from the Weyl superalgebra instead of the Clifford superalgebra approach?

The boson-fermion correspondence helped bridge the language of Weyl algebras

and Clifford algebras, and [16] has done that in a different superalgebra setting. It

would be interesting to see the distinctions created by the formulation here when

approaching this theory from the Weyl superalgebra viewpoint.

Finally, our main motivation for this study was constructing the Clifford su-

peralgebra in Section 3.4. There are many open questions about the structure of

infinite-dimensional Clifford algebras and superalgebras, and I would like to study

the structure of this Clifford superalgebra, see [31, 29].
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3.6 A note on a∞|∞

Let’s return again to the wedge representation r0 of gl∞|∞ on the space F(0). Now,

we introduce the Lie superalgebra a∞|∞ containing gl∞|∞, defined as

ā∞|∞ =

{
(aij)i,j∈ 1

2
Z | for each k the number of non-zero aij

with j ≤ k and i ≥ k is finite

}
Here ā∞|∞ acts on a completion of V , namely

V̄ = {
∑
j∈ 1

2
Z

cjvj | cj = 0 for j � 0}.

However, if we try to extend the representation r0 (respectively, rm) to the Lie

superalgebra ā∞|∞, we encounter a more serious problem than before. We still see

that

r0(
∑
i∈ 1

2
Z

λiEii)|0〉 =
∑
i≤0

σ(i)λi|0〉.

If this were the only issue, we could simply solve this problem as we did in the

previous section. To better visualize the problem, introduce the shift matrix

Λk =
∑
i∈ 1

2
Z

Ei,i+k.

Then for any k,

r0(λk)vi0 ∧ vi1 ∧ . . . = r0(
∑
i∈ 1

2
Z

Ei,i+k)vi0 ∧ vi1 ∧ . . .

=
∑
i∈ 1

2
Z

r0(Ei,i+k)vi0 ∧ vi1 ∧ . . . .

This last sum will now have infinitely many terms.

If this issue of well-definedness were resolved, we could consider the central ex-

tension a∞|∞ = ā∞|∞ ⊕ Cc with center Cc and bracket

[x, y] = xy − (−1)|x||y|yx+ α(x, y)c,
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where the cocycle α is defined by

α(Eij, Eji) =− (−1)|i||j|α(Eji, Eij) = 1 if i ≤ 0 < j

α(Eij, Eji) = 0 for all other cases .

Further, compute

[Λk,Λn] =

{
2δk,−nc if |i| = |j| = 1̄

δk,−nc else.

Looking at these elements as generators of a subalgebra along with central element

c, one can view them in a similar way as the previous section, i.e.

λ(n) =
∑
k∈Z

Ek,k+n, µ(n) =
∑
k∈Z+ 1

2

Ek,k+n,

e(n) =
∑
k∈Z

Ek− 1
2
,k+n, f(n) =

∑
k∈Z

Ek,k+n− 1
2
,

where the λ(n) and µ(n) are the even generators. These two results permit us to

think of the subalgebra they generate as a Heisenberg Lie superalgebra. For more,

see [8].
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Chapter 4

Clifford Algebra Theory

The study of Clifford algebras has intrigued scores of brilliant mathematical the-

orists, geometers, physicists, and engineers over the past century. Many of these

well-known mathematicians - the likes of Chevellay, Bott, Weyl, and Atiyah - have

become well known for other theoretical and applied work as well, but produced

essential work in the theory of Clifford (or geometric) algebras [1, 7, 9, 30]. Much

of the theoretical work in this area set the stage for many geometrical and physical

applications, which have been unearthed by the likes of Shale and Stinespring [27]

and Hestenes [13]. Work on the Dirac theory, for example, where the main success

was a real formulation of the theory within the real Clifford algebra R1,3 = M2(H)

has been spurred by Hestenes, Lounesto, and others [12, 21, 20]. Recent applications

have reached from cosmology and quantum theory to gravitation and computational

geometry [4, 2]. The particular theory of infinitely generated Clifford algebra has

also been expanding recently, with the focus varying from orthogonal groups [3], to

ideal structures [31], to more general theory [29]. All of these avenues are of interest

to the author and help illustrate the ever-expanding reach of the theory of Clifford

algebras. The classification of finite-dimensional real Clifford algebras is well-known,

as is the complex case. Our approach to infinitely generated Clifford algebras of real

quadratic forms runs parallel to the existing finite dimensional theory, with the goal

of better understanding the structural parallels to the finite dimensional algebras.

Thus, we will look at the finite-dimensional case first.
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4.1 Classification of finite-dimensional Clifford al-

gebras

Ian Porteous’ “Clifford Algebras and the Classical Groups” [24] provides a study

of the Clifford algebras of real quadratic forms and their complexifications. The

central result of his book, the classification of the conjugation anti-involution of the

Clifford algebras Rp,q, lends to an exhaustive treatment of the generalizations of the

orthogonal and unitary groups known as the classical Lie groups. Porteous goes to

great lengths to show how well-adapted various Clifford algebras are to the study of

the classical groups. Here we will begin with the classification of finite-dimensional

Clifford algebras, which led to our study of the infinite-dimensional cases.

The following overview of the finite dimensional approach gives a frame parallel

to what we want to establish in the infinite dimensional case. We will slightly

reform our definition to the case of a real quadratic space V . The complex case is

straightforward and well-known. [24]

First, we will introduce the quadratic form on a K-linear space V , which we will

use to construct a Clifford algebra. Here we take the characteristic of K to be not 2,

and mention that the reason for notating the field K will become clear at the outset

of our classification of the real Clifford algebras of finite-dimension.

Definition 4.1.1. A quadratic form is a pair (V, q), where q : V → K such that

1. q(µx) = λ2q(x), x ∈ V, λ ∈ K;

2. the map b : V × V → K defined by b(x, y) = (q(x + y) − q(x) − q(y))/2 is

bilinear.

The map b is often called the polar of q.

Another way to realize this is given a basis {ei}ni=1 for V , and x =
∑n

i=1 xiei, we

have

q(x) = X tQX,

where X is the column vector of the xi and Q is a symmetric matrix having b(ei, ej)

as ij-th entry. Note that we may assign a canonical basis of V . Further, if V = Kn
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and {ei}ni=1 is the canonical basis of V , we can identify any quadratic form on V

with a homogeneous polynomial in n variables of degree 2 over K by

q(x1, . . . , xn) =
∑

1≤i,j≤n

qijxixj

where the qij are the entries of the symmetric matrix Q, called the coefficient matrix

of q.

A real linear space with quadratic form will be called a (real) quadratic space,

and such a space is said to be positive-definite, if for all nonzero x ∈ V , we have

q(x) > 0. Also, if X and Y are real quadratic spaces with a symmetric scalar

product ·, then a map f : X → Y is said to be an orthogonal map if it is linear and,

for all a, b ∈ X,

f(a) · f(b) = a · b.

The possible non-degenerate quadratic forms are classified by pairs (p, q) called

the signature of the form, where p+ q = n and in some basis of Rn we can write

q(x) =

p∑
i=1

x2
i −

n∑
i=p+1

x2
i .

The real linear space with this form is often denoted Rp,q.

Example 4.1.2. Euclidean space is an example of a quadratic space with signature

(n, 0).

Example 4.1.3. The linear space R2n with the scalar product

(x, y) 7→
∑

1≤i≤n

(xiyn+i + xn+iyi)

is typically denoted R2n
hb , with R2

hb being known as the standard hyperbolic plane.

Example 4.1.4. An important example is Minkowski space. It is R4 with

q(x1, x2, x3, x4) = x2
1 − x2

2 − x2
3 − x2

4

Typically, the x1 = ct−coordinate comes from physics, where c is the speed of the

light (often set to 1 for theoretical reasoning), and t is time.
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If we have a quadratic space (V, q) with polar b, and subspace W ⊆ V . Define

the orthogonal complement of W , which we will need later on, as

W⊥ = {v ∈ V | b(v, w) = 0 for all w ∈ W}.

In other words, W⊥ is the maximal subspace of V which is orthogonal to W .

It is useful to understand there are multiple ways of defining quadratic forms.

Below is a well-known result connecting four of these avenues:

Theorem 4.1.5 ([19]). For n ∈ Z, there are canonical bijections between the fol-

lowing sets:

1. The set of homogeneous quadratic polynomials q(t) = q(t1, . . . , tn).

2. The set of homogeneous quadratic functions on Kn.

3. The set of symmetric bilinear forms on Kn.

4. The set of symmetric n× n matrices on Kn.

We now wish to draw out the idea of a Clifford algebra for a non-denegerate

real quadratic space. Thus, we begin with a formation of Clifford algebras using a

quadratic form.

Definition 4.1.6. A Clifford algebra, C(V, q), is a unital associative algebra over

K together with a linear map ι : V → C(V, q) satisfying

ι(v)2 = −q(v)1, for all v ∈ V,

defined by the following universal property that given any associative algebra A over

K and any linear map j : V → A such that j(v)2 = −q(v)1A for all v ∈ V , there is

a unique homomorphism f : C(V, q)→ A such that the diagram commutes:

V
ι
- C(V,Q)

A

f

?

................

j
-
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It should be noted that the minus sign in the above definition can be removed

by replacing the quadratic space V with its negative. However, it often arises in

applications, and we will keep it for the outset. From here out, we will assume that

our real quadratic spaces are non-degenerate.

A Clifford algebra for an n-dimensional space V may always be constructed as

follows [10]: Begin with the tensor algebra

T (V ) =
⊕
n≥0

V ⊗n = R⊕ V ⊕ (V ⊗ V )⊕ (V ⊗ V ⊗ V )⊕ . . . ,

and then enforce the fundamental identity by taking a suitable quotient. In our

case we want to set C(V, q) = T (V )/I(q) where I(q) is the two-sided ideal in T (V )

generated by all elements of the form

{v ⊗ v + q(v) · 1 for all v ∈ V }.

Since the ideal I(q) ⊂ T (V ) is generated by elements of even degree, the Clifford

algebra C(V, q) = C inherits a Z2 grading:

C = C0 ⊕ C1

with C0 spanned by products of an even number of elements in V and C1 being

spanned by products of an odd number. Further, C has dimension 2n and, in some

literature, is referred to as the universal Clifford algebra.

As we move toward classifying Clifford algebras, we need a few more definitions.

Definition 4.1.7. The double field 2K is the K-linear space K2 assigned the

product

(a, b)(c, d) = (ac, bd), for all a, b, c, d,∈ K

It is worth noting that a direct sum decomposition V0 ⊕ V1 of a K-linear space

V may be regarded as a 2K-module structure for V by setting

(λ, µ)v = λv0 + µv1, for all v ∈ V and (λ, µ) ∈ 2K.

Also, we will be using the notation K(n) to denote the full matrix algebra of all

n×n matrices with real entries, with matrix multiplication as the product. See that



61

2K may be identified with the subalgebra of K(n) consisting of the diagonal n × n
matrices.

A 2n-dimensional real Clifford algebra for an n-dimensional quadratic space V is

said to be a universal Clifford algebra. Due to our definition of a Clifford algebra,

in conjunction with the following theorem and its corollaries, we will focus on these

universal Clifford algebras. We will see that for such a space, one can always choose

as Clifford algebra the space of endomorphism of some finite-dimensional linear

space over R,C,H,2 R, or 2H, where H is the set of quaternions.

Theorem 4.1.8 ([24]). Let C be a Clifford algebra for an n-dimensional real quadratic

space V , with dim C = 2n, and let D be a Clifford algebra for a real quadratic space

U , and suppose that τ : V → U is an orthogonal map. Then there is a unique algebra

map τC : C → D sending 1C to 1D and a unique algebra-reversing map (τC)
∼ : C → D

sending 1C to 1D such that following diagrams commute.

V
t

- U

C

ι

? tC - B

ι

?

U
ι

- V

C

ι

? tC - B

ι

?

Corollary 4.1.9 ([24]). Let C and D be 2n-dimensional Clifford algebras for an

n-dimensional real quadratic space V . Then C ∼= D.

Corollary 4.1.10 ([24]). Let D be a Clifford algebra for an n-dimensional quadratic

space V . Then D is isomorphic to some quotient of any given 2n-dimensional Clif-

ford algebra C for V .

The classification of Clifford algebras for the non-degenerate quadratic spaces

Rp,q reduces to the classification of universal Clifford algebras. We recall [24] the

construction of the universal algebra Rp+1,q+1 for Rp+1,q+1 given Rp,q for Rp,q.

If V is a linear space over K or 2K, where K = R, C, H, and if we take a generating

orthonormal subset S of End(V ) of type (p, q), then we can create a subset of
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End(V 2) of type (p + 1, q + 1) that generates the real algebra End(V 2)⊗RR(2).

Namely, this set is {[
a 0
0 −a

]
a ∈ S

}
∪
{[

0 1
1 0

]
,

[
0 −1
1 0

]}
.

Now using the fact that R is a universal Clifford algebra for R0,0 and applying

an induction argument with the above construction, we can state that following

proposition.

Proposition 4.1.11 ([24]). For n ∈ Z+, the endomorphism algebra R(2n) is a

universal Clifford algebra for the space Rn,n.

As Rn,n,
∼= R(2n), the existence of a universal Clifford algebra for an arbitrary n-

dimensional real quadratic space is a direct result of the following two propositions.

Proposition 4.1.12 ([24]). If V is a non-degenerate n-dimensional real quadratic

space, then V is isomorphic to a subspace of Rn,n.

Proposition 4.1.13 ([24]). If C is a Clifford algebra for real quadratic space V , and

W is a linear subspace of V , then the subalgebra of V generated by W is a Clifford

algebra for W .

So we have outlined the construction of the universal Clifford algebra for any

finite-dimensional quadratic space, and low-dimensional Clifford algebras are some

well-known spaces. Several of these will be used as the basis for the classification

of all finite-dimensional Clifford algebras. For example, R itself is a Clifford algebra

not only R0,0, but also R1,0. Further, if we take C and H as real algebras, they are

Clifford algebras for R0,1 and R0,2, respectively. If we identify R0,3 with the linear

image of {i, j, k}, the space of pure quaternions, then H is a Clifford algebra for it.

We refer to [24] for a complete introduction to the classification, and we state

several essential results leading up to the table at the end of this section.

Proposition 4.1.14 ([24]). The universal Clifford algebras Rp+1,q and Rq+1,p are

isomorphic.
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Proposition 4.1.15 ([24]). For q = 0,1,2,3,4, the universal Clifford algebra R0,q is

isomorphic to R,C, H, 2H, H(2), respectively.

Proposition 4.1.16 ([24]). For all p, q,

Rp,q+4
∼= Rp,q ⊗ R0,4

∼= Rp,q ⊗H(2)

We reference one more result, which will allow us to complete our construction

of any Rp,q.

Proposition 4.1.17 ([24]). For all finite p, q,

Rp,q+8
∼= Rp,q ⊗ R(16)
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Now as we collect our previous constructions and results to give the table for

low-dimensional Clifford algebras Rp,q below.

Figure 4.1: Classification of Clifford algebras Rp,q

p ↓ , q → 0 1 2 3 4 5 6

0 R C H 2H H(2) C(4) R(8)

1 2R R(2) C(2) H(2) 2H(2) H(4) C(8)

2 R(2) 2R(2) R(4) C(4) H(4) 2H(4) H(8)

3 C(2) R(4) 2R(4) R(8) C(8) H(8) 2H(8)

4 H(2) C(4) R(8) 2R(8) R(16) C(16) H(16)

5 2H(2) H(4) C(8) R(16) 2R(16) R(32) C(32)

6 H(4) 2H(4) H(8) C(16) R(32) 2R(32) R(64)

7 C(8) H(8) 2H(8) H(16) C(32) R(64) 2R(64)

There are a several things here worth noting. The pattern from the top left

to the bottom right comes from our construction of Rp+1,q+1 from Rp,q. Also, the

notice the symmetry about the line q − p = −1. Clifford algebras have an 8-fold

periodicity over the real numbers, which is related to the same periodicities for

homotopy groups, and is called Bott periodicity. Clifford algebras also have a 2-fold

periodicity over the complex numbers, as every non-degenerate quadratic form on a

complex vector space is equivalent to the standard diagonal form.

The table can be summed up in the following theorem.

Theorem 4.1.18 (Classification theorem). . The Clifford algebra Rp,q is isomorphic

to the real associative algebras in the following table, where n = p+ q:



65

p− q mod(8) Rp,q

0, 6 R(2n/2)
1, 5 C(2(n−1)/2)
2, 4 H(2(n−2)/2)
3 H(2(n−3)/2)⊕H(2(n−3)/2)
7 R(2(n−1)/2)⊕ R(2(n−1)/2)

Figure 4.2: Bott Periodicity Table

4.2 Infinitely generated Clifford algebras

One of the early goals of this dissertation was to provide a context - similar to that

laid out in Porteous - for which to study Clifford algebras of an infinite-dimensional

non-degenerate real quadratic space X. In particular, the central focus was to bet-

ter understand the corresponding Clifford group and its connection to the group

of orthogonal automorphisms on X, or O(X). Several results were found early in

this pursuit, and they are included in this section. Further study is warranted in

this area, however current results expressed here lack the complexity of the rep-

resentation theoretical results previously discussed in this dissertation. Hence, this

approach has been waylaid due to interest in other research areas as of late. Regard-

less, the theory discussed here should connect with existing study of Clifford algebras

and infinite-dimensional spin groups [3]. Some basic statements extend from Por-

teous without alteration - those will not be mentioned here unless they prove vital

for a nontrivial result. As mentioned, we look to applications of Clifford algebras

to groups of quadratic automorphisms. Here X will be an infinite-dimensional non-

degenerate real quadratic space, and A will denote a real Clifford algebra for X.

Note that for each x ∈ X, we set x(2) = x−x = x̂x = −x2.

Proposition 4.2.1. Let g be an invertible element of A such that, for each x ∈ X,

(i) gxĝ−1 ∈ X, and

(ii) g−1xĝ ∈ X
then the map

ρg : x 7→ gxĝ−1
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is an orthogonal automorphism of X.

Proof. To see that ρg is an orthogonal map, see that for each x ∈ X,

(ρg(x))(2) = ̂(gxĝ−1)gxĝ−1

= ĝx̂g−1gxĝ−1

= x̂x

= x(2)

Furthermore, ρg is injective as gxĝ−1 = 0 =⇒ x = 0 (this argument does not follow

from orthogonality if X is degenerate). Finally, we want to prove ρg is surjective.

Take y ∈ X, and set x = g−1yĝ. Then x ∈ X by (ii), and furthermore

ρg(x) = ρg(g
−1yĝ) = g(g−1yĝ)ĝ−1 = y

Hence ρg is also surjective.

Note that there is no guarantee the condition (i) in the above implies that g−1xĝ

belongs to X, thus each condition is necessary for our purposes. As a result, g will

be said to induce or represent the orthogonal automorphism ρg and the set of all

such elements g will be denoted by Γ. Thus,

Γ(X) = { g | ρg is an orthogonal automorphism of X}

Proposition 4.2.2. Γ is a subgroup in A

Proof. For closure under multiplication, it is enough to see that ρgh(x) = ρg(ρh(x))

ρgh(x) = (gh)x(ĝh)−1

= g(hxĥ−1)ĝ−1

= ρg(ρh(x))

Closure with respect to inversion follows from that for all g ∈ Γ, the inverse of ρg is

ρg−1 , and thus is likewise an orthogonal automorphism of X. Finally, it is clear that

1A ∈ Γ.



67

Definition 4.2.3. The group Γ(X) = { g | ρg is an orthogonal automorphism of X}
is called the Clifford group for X in the Clifford algebra A.

In order to better represent the Clifford group, we want to expand on its relation

to the group of all orthogonal automorphisms on X. To do this will we need several

more tools.

Proposition 4.2.4. Let W ⊕ Y be an orthogonal decomposition of X. Then the

map w + y 7→ w − y is an orthogonal map and is a reflection of X in W .

Definition 4.2.5. A reflection in a linear hyperplane W is said to be a hyperplane

reflection. Further, if R{a} is the line in X spanned by a, then X = R{a}⊕R{a}⊥.

One goal is to connect the concept of a hyperplane reflection (or reflection of

codimension 1) to the Clifford group

Proposition 4.2.6. Take an invertible element a ∈ X, Then a ∈ Γ, and the map

ρa is a reflection in (R{a})⊥

Proof. Let a be as stated above, and write X = R{a} ⊕ (R{a})⊥. Any element of

X is then of the form λa+ b, where λ ∈ R, a · b = 0.

From Lemma 1.1, we see that ba = −ab and â = −a, by a ∈ X. We have:

ρa(λa+ b) = a(λa+ b)â−1

= −a(λa+ b)a−1

= −aλaa−1 +−aba−1

= −aλ− (−baa−1)

= −λa+ b

which is a reflection in (R{a})⊥
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Proposition 4.2.7. If a, b ∈ X are invertible such that a(2) = b(2), then a may be

mapped to b either by a single hyperplane reflection or a composite of two reflections.

Proof. First, we show that either a − b or a + b is invertible, and that they are

mutually orthogonal, then we will prove our result.

Clearly, a(2) = b(2) =⇒ (a+ b) · (a− b) = 0. Further,

(a+ b)(2) + (a− b)(2) = 2a(2) + 2b(2)

= 4a(2)

6= 0

as a being invertible means a(2) 6= 0. Hence, at least one of a + b and a − b is

invertible, as if both (a+ b)(2) and (a− b)(2) are zero, then a(2) must necessarily be

zero as well.

Now if a− b is invertible then,

ρa−b(a) = ρa−b(
1

2
(a− b) +

1

2
(a+ b))

= −1

2
(a− b) +

1

2
(a+ b)

= b

Whereas if a+ b is invertible, then ρbρa+b(a) = ρb(−b) = b.

Now we have the tools to say more about the elements of a Clifford group.

Theorem 4.2.8. Given an infinite dimensional non-degenerate real quadratic space

X, then the orthogonal automorphism ρg induced by an element g of Γ(X) can be

represented as a composite of a finite number of reflections.

Proof. As before, each element g ∈ Γ induces an orthogonal automorphism of X.

Now take {γλ : λ ∈ Ω} as generators for Clifford group Γ(X), where Ω is a possibly

infinite set. Then for any g ∈ Γ(X),

g =
∏
I⊂Ω

γI
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where this is a finite product under the group operation.

Then we examine ρg(x) as follows:

ρg(x) = (
∏
I⊂J

γI)x(
∏̂
I⊂J

γI)
−1 (4.1)

= (γαγβ . . . γω)x ̂(γαγβ . . . γω)
−1

= γαγβ . . . (γωxγ̂ω
−1) . . . γ̂β

−1γ̂α
−1

= ργα(ργβ(. . . (ργω(x)) . . . ))

Where γi ∈ Γ =⇒ ργi is an orthogonal automorphism for all i ∈ Ω.

Now denote y := γωxγ̂ω
−1. Then as x, y ∈ X, and X non-degenerate, we have

that x and y are invertible. Further, as

x(2) = ργ(x))(2) = y(2)

By Proposition 4.2.7, we can thus find at most two reflections (codimension 1) taking

x to y. We continue this procedure for each ργλ , where γλ ∈
∏
I⊂J

γI = g, then as

each product in (4.1) is finite, we have a finite number of reflections taking x to

ρg(x).

As each g ∈ Γ induces an orthogonal automorphism, ρg, which is equivalent to

the product of finitely many reflections, we say that any element of the Clifford

group can be represented by a finite number of reflections.

We will introduce some notation - suppose that {ei : i ∈ J} is a collection of

elements of an associative algebra A. Then, for each naturally ordered subset I of J ,

eI will denote the product
∏

i∈I ei. Here e∅ = 1, where ∅ denotes the empty set. The

next two propositions will play a key role in understanding the structure of both

the Clifford algebra and subgroups of the Clifford group. First, we take a moment

to mention the fact that a canonical basis can be found for A is due to Gross [11].

Proposition 4.2.9. Let A be a real associative algebra with unit element 1 (identi-

fied with 1 ∈ R) and suppose that {ei : i ∈ J} is a set of elements of A generating
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A such that, for any distinct i, j ∈ J ,

eiej + ejei = 0

Then the set {eI : I ⊂ J} spans A linearly.

Proposition 4.2.10. Let A be a Clifford algebra for non-degenerate real quadratic

space X. Then the set {eI : I ⊂ J} is linearly independent.

Proof. Let {ei : i ∈ J} be an ordered orthonormal basis for X (thus generating A).

Then for each I ⊂ J , eI is invertible in A and so is non-zero.

To prove that the set {eI : I ⊂ J} is linearly independent, it is enough to prove

that if there are real numbers λI , for each I ⊂ J , such that
∑

I⊂J λI(eI) = 0, then

for each K ⊂ J , λK = 0. Now since, for any K ⊂ J ,∑
K⊂J

λI(eI) = 0 ⇐⇒
∑
K⊂J

λI(eI)(eJ)−1 = 0

thus making λJ the coefficient of e∅, it is enough to prove that∑
I⊂J

λI(eI) = 0 =⇒ λ∅ = 0.

Suppose then that
∑

I⊂J λI(eI) = 0. Then for each i ∈ J and each I ⊂ J , ei either

commutes or anti-commutes with eI . Then,∑
I⊂J

λI(eI) = 0 =⇒
∑
I⊂J

λIei(eI)e
−1
i =

∑
I⊂J

ζI,iλI(eI) = 0

where ζI,i = ±1 depending on whether ei commutes or anti-commutes with eI .

It then follows that
∑

I λI(eI) = 0, with the summation over all I such that eI

commutes with each ei.

Now there is only one such subset of J , that is ∅, as e∅ = 0. (Note: That in

the finite dimensional case eJ would commute with everything if #J = dim X were

odd). This is because if I ⊂ J is such that #I is odd, then ei commutes with eI

for any i ∈ I and anti-commutes if i 6∈ I. A similar argument can be made if #I is

even, with any ei anti-commuting with eI if i ∈ I and commuting if i 6∈ I.
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So, as
∑

I λI(eI) = 0, with the summation over all I such that eI commutes with

each ei, we have that λ∅ = 0. From this, it follows that the subset {eI : I ⊂ J} is

linearly independent in A.

We wish to decompose the Clifford algebra A, and add more machinery to do

so. Consider the double field 2K consisting of the K-linear space K2 assigned the

product (a, b)(c, d) = (ac, bd). A direct sum decomposition X0 ⊕ X1 of a K-linear

space X may be regarded as a 2K-module structure for X by setting

(λ, µ)x = λx0 + µx1, for all x ∈ X and (λ, µ) ∈ 2K.

Conversely, any 2K-module structure for X determines a direct sum decomposi-

tion X0 ⊕X1 of X as a K-linear space in which X0 = (1, 0)X = {(1, 0)x : x ∈ X}
and X1 = (0, 1)X.

Proposition 4.2.11. Let t : X → X be a linear involution of the K-linear space X.

Then a 2K-module structure, and therefore a direct sum decomposition, is defined

for X by setting, for any x ∈ X,

(1, 0)x =
1

2
(x+ t(x)) and (0, 1)x =

1

2
(x− t(x)).

Definition 4.2.12. A super field Lα, with fixed field K, consists of a commutative

algebra L with unit 1 over a commutative field K and an involution α of L, whose

set of fixed points is the set of scalar multiples of 1, identified with K.

If you have an associative Lα algebra A with unit element, then A is an Lα -

Clifford algebra for X if it contains X as a K - linear subspace in such a way that,

for all x ∈ X, x(2) = −x2, provided also that A is generated as a ring by L and X

or, equivalently, as an L-algebra by 1 and X.

If we take a Clifford algebra A for a quadratic space X, then the main involution

induces a direct sum decomposition A0 ⊕ A1 of A, where

A0 = {a ∈ A : â = a} and A1 = {a ∈ A : â = −a}
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Then any element a ∈ A can be expressed as the sum of its even part a0 ∈ A0

and its odd part a1 ∈ A1. For example, take a = 1 + e0 + e1e2 + e0e1e2, we have

a0 = 1 + e1e2 and a1 = e0 + e0e1e2.

Lemma 4.2.13. Let a ∈ A be such that ax = xâ, for all x ∈ X, A being a Clifford

algebra for the non-degenerate real quadratic space X. Then a ∈ R.

Proof. Let a = a0 + a1, where a0 ∈ A0 and a1 ∈ A1. Then, since ax = xâ,

a0x = xa0 and a1x = −xa1 ,

for all x ∈ X, in particular for each element ei of some orthonormal basis {eλ : λ ∈
J} for X.

Take

a0 =
∑
I∈J

λI(eI),

where it must be that #I is even (by a0 ∈ A0) for each I. Then for a0 to commute

with each ei, we must have eI commuting with every ei. However, as with the proof

of Proposition 4.2.10, the only such subset of J for which this can occur is I = ∅,
as e∅ = 1. Hence a0 = λ∅(e∅) ∈ R.

We also want to see that if a1 anti-commutes with each ei then a1 = 0. By the

reasoning similar to the above, there is no such subset of I (as e∅ = 1 does not

anti-commute with each ei). Thus a1 = 0. Hence, a ∈ R.

Using this lemma, we can strengthen our connection between the Clifford group

and the group of orthogonal automorphisms on X.

Theorem 4.2.14. Given an infinite dimensional non-degenerate real quadratic space

X, then the map

ρX : Γ(X)→ O(X);

g 7→ ρg

is a group map with kernel R×.
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Proof. To prove ρX is a group map, let g, g′ ∈ Γ. Then, for all x ∈ X,

ρgg′(x) = gg′x(ĝg′)−1

= gg′xĝ′
−1
ĝ−1

= ρgρg′(x)

Hence, ρgg′ = ρgρg′ , which is what had to be proven.

Now suppose that ρg = ρg′ , for g, g′ ∈ Γ. Then, for all x ∈ X, gxĝ−1 = g′xĝ′
−1

,

implying that (g−1g′)x = x(ĝ−1g′). Therefore, g−1g′ ∈ R by the previous lemma.

Moreover, we have that g−1g′ is invertible and is therefore non-zero.

It is important to note that the map in this theorem is not necessarily surjective.

As a result of Theorems 4.2.8 and 4.2.14, any element of Γ is representable as the

reflection it induces, and thus by a composition of a finite number of reflections of

X. However, the group of orthogonal automorphisms of an infinite real quadratic

space X is much larger than the image of ρX . If we consider the image of ρX , or

set of orthogonal automorphism on X induced by g ∈ Γ, then we see any element

in the image is a composition of finitely many reflections corresponding to a finite

product of elements in X, stated as a simple corollary below.

Corollary 4.2.15. Any element g ∈ Γ(X) is representable as a product (not neces-

sarily unique) of a finite number of elements in X.

As with the usual study of the orthogonal group, an element g ∈ Γ that can

be represented as a product of an even number of elements in X will be called a

rotation and an element g represents an inversion if and only if g is the product

of an odd number of elements from X. The set of elements represented as an even

product will be denoted as Γ0(X) = Γ0. The set of elements represented as an odd

product will be denoted as Γ1(X). There are several straight forward consequences

of our construction, first noting that Γ0 = Γ ∩ A0 is a subgroup of Γ

Also, for any a ∈ A0, â = a, then the rotation induced by an element g of Γ0

is of the form x 7→ gxg−1. Similarly, since for any a ∈ A1, â = −a, the rotation

induced by an element g of Γ1 is of the form x 7→ −gxg−1.
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Finally, we want to close this chapter with a look toward future results helping

to shape this basic approach. First, we define a useful space,

Definition 4.2.16. Referring to the map from Theorem 4.2.14, we define

OΓ(X) = im(ρX) = {ρg | g ∈ Γ}

whose elements can be seen from Theorem 4.2.8 to be representable as a finite

number of reflections.

The Clifford group Γ(X), as constructed, is still quite large. As our goal is

now to represent OΓ(X) in a meaningful way, we may wish to find subgroups of

Γ that correspond to the known Pin and Spin groups. This is the next step in

developing this particular approach, and the next goal would be to develop analogues

to these subgroups of the Clifford group, and show they can be identified with

another construction of these groups, namely in [3].

In this vein, we may define a quadratic norm N on A as simply

N(a) = a−a

for any a ∈ A. Then one expects to find the analogues of the Pin and Spin group

in the form, namely

Pin(X) = {g ∈ Γ | |N(g)| = 1} and

Spin(X) = {g ∈ Γ0 | |N(g)| = 1}.

However, various issues remain unresolved when concerning N when applied to the

Clifford group due to the infinite-dimensional nature of Γ. However, this approach

remains viable and accessible due to its intuitive nature. Several open problems and

questions make themselves immediately available given the current developments.

Question 4.2.17. Once fully realized, will the defined Pin and Spin groups doubly

cover OΓ(X) and SOΓ(X) respectively?
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One expects the kernel in each case to be recognizable and possibly equivalent

due to the construction of both OΓ and the corresponding analogue of SO(X) which

we have denoted SOΓ(X).

Another offshoot of this approach would be to connect this chapter to the idea of

infinite Clifford matrices and further develop such structures and their properties.

For example, the following question arises naturally form the developments made

here.

Question 4.2.18. If A is an infinitely generated real Clifford algebra for an infinite-

dimensional real quadratic space X, and A(∞) is the real algebra of infinite matrices

with entries in A, is there a space for which A(∞) is a real Clifford algebra?

One may suspect that the potential space in question would take the form of a

direct sum between X and a space of the form R∞,∞ where there are infinitely many

elements of each signature. However, the actual construction of such a space, while

showing it generates A(∞) as a real algebra along with {1}, remains unrealized.
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Appendix A

Young diagrams and F
(m)
k
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Given the above, it makes sense for us to re-examine our process and find another

way to study F(m). By the PBW Theorem, we can write any element in F
(m)
k in the

form

ψ̃t1i1 . . . ψ̃
ty
iy
ψ̃c1z1 . . . ψ̃

cw
zw ψ̃b1 . . . ψ̃bq ψ̃

∗
j1
. . . ψ̃∗jp |m〉, (A.1)

where |iα| = |zβ| = 1, |bγ| = 0, and we can require

is−1 < is < m ; m ≤ zs+1 < zs ; m ≤ bs+1 < bs ; js > js−1. (A.2)

Note that we can also impose that

js ≤ m and bγ > mB.3) (A.3)

to cut out the superfluous contracting of non-present vectors and wedging of present

even vectors, both of which would annihilate the monomial. This also removes the

case that an even vector is contracted and then immediately wedged back into the

monomial.

Given the setup in A.1, the following are true

y∑
`=1

i`t` +
w∑
`=1

z`c` +

q∑
`=1

b` −
p∑
`=1

j` = k, (A.4)

y + w + q = p

The latter condition holds because the monomial must be of charge m - meaning

we must contract the same number of vectors that we create. The condition A.4

gives the difference between the sum of all the added vector indices (allowing for

multiplicity in the odd cases) and the sum of all the contracted indices, which must

be k, the energy of the monomial.

We have arranged the wedging operators in a special way. We place the repeated

odd vectors whose indices are less than the charge at the beginning of the monomial

in weakly increasing order, followed by odd vectors whose indices are greater than

the charge in weakly decreasing order. Next, in strictly decreasing order, are the

even vectors whose index is greater than the charge. The remaining positions in
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our monomial are identical to the tail of |m〉. In addition, we have arranged the

contracting vectors in increasing order. This last choice is simply made for house-

keeping purposes. Obviously the order of these operators affects the sign of the

monomial, but we are concerned with the linear span of elements of this form, so

we are fine.

The motivation for the arrangement in A.1 is that we want to find a way to

represent each monomial in F(m) that will lend itself to computing dimq F
(m). One

way to do this is to compare each monomial in F
(m)
k to the charge m in a uniform

way, similar to the Lie algebra case in Chapter 2 that gave dimq F
(m)
k .

Let m ≥ 0, then consider the operators

ψ̃t1i1 . . . ψ̃
ty
iy

where is < is+1 < m. We construct a weakly decreasing sequence λ−(ϕ) that

corresponds to these (possibly repeated) odd vectors in the first positions and is

given by

• The first t1 components of λ−(ϕ) are given by λ−α = m− i1 for α = 1, 2, . . . , t1.

• The next t2 components are given by λ−β = (m− i2) for β = 1, 2, . . . , t2.

• This process continues until the last repeated odd vector position with index

less than the charge.

Note that as is−1 < is < m, the result is clearly a strictly decreasing tuple λ− =

(λ−1 , λ
−
2 , . . . ) where each component λ−` ∈ 1

2
Z. We can double each component of

λ− to find an integer partition and create the corresponding Young diagram. The

size of this partition will clearly be twice that of λ− (which λ− gives total distance

from m of all indices). Also, the length of the partition, or number of parts/rows,

is given by
y∑
`=1

t`.

Before we continue constructing other Young diagrams for operators of the dif-

ferent types in A.1, we highlight that it is not enough to simply know how many of
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these odd vectors exist and in what multiplicity. To truly get a correspondence with

each element of F
(m)
k we need to know exactly which of these vectors are present

and their multiplicity. This information is now encoded in our Young diagram by

relating each vector to m. Once we construct all of the necessary diagrams, we

should be able to recover k.

Second, consider the operators

ψ̃c1z1 . . . ψ̃
cw
zw

where zs > zs+1 > m. We construct the weakly decreasing sequence λ+(ϕ) that

corresponds to these (possibly repeated) odd vectors and is given by

• The first c1 components of λ+(ϕ) are given by λ+
α = (z1 − m) for α =

1, 2, . . . , c1.

• The next c2 components are given by λ+
β = (z2 −m) for β = 1, 2, . . . , c2.

• This process continues until the last repeated odd vector position with index

greater than or equal to the charge m.

Note that as zs > zs+1 > m, the result is clearly a strictly decreasing tuple λ+ =

(λ+
1 , λ

+
2 , . . . ) where each component λ+

` ∈ 1
2
Z. We can double each component of

λ+ to find an integer partition and create the corresponding Young diagram.

Third, we come to the operators

ψ̃b1 . . . ψ̃bq

with bs > bs+1 > m. We construct a strictly decreasing sequence using the even

vectors, vi where i > m, where our tuple µ = (µ1, µ2, . . . ) will be given by

µi = bi −m, for i = 1, . . . , q.

Then our sequence is decreasing and we again double the components of µ to yield

a partition and an associated Young diagram. We have encoded the precise vectors

wedged into the monomial, but we now must encode which vectors are contracted.
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Hence, look lastly at

ψ̃∗j1 . . . ψ̃
∗
jp |m〉

with js < js−1 < m. We again construct a simple decreasing sequence, where our

tuple ζ = (ζ1, ζ2, . . . ) will be given by

ζi = m− ji, for i = 1, . . . , p.

We create our Young diagram as before, and we now have for each monomial a

unique collection of four Young diagrams (λ−, λ+, µ, ζ). One should note that the

number of rows in ζ is equal to the sum of all the rows in λ−, λ+, and µ. Further,

identifying the exact dimension dimF
(m)
k should be possible using the tools we have

laid out, and thus so will be dimF(m), however this step remains unresolved.
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Appendix B

Computations in s
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Recall from Chapter 3 and [5] that ĝl∞|∞ is the central extension of gl∞|∞ by

the one-dimensional central element c, given by the 2-cocycle.

α(A,B) = Str([J,A]B)

where J =
∑

r≤0Err and the supertrace of a matrix C = (crs) is defined by

Str C =
∑
r∈ 1

2
Z

(−1)|r|crr.

Then the bracket inherited by s is given by

[X, Y ] = XY − (−1)|X||Y |Y X + α(X, Y )

for X, Y ∈ s. We refer to [5] and note that for A,B ∈ ĝl∞|∞, we have

Str(AB) = (−1)|A||B|Str(AB).

so for our 2-cocycle, we see

α(X, Y ) = Str([J,A]B) = Str(JAB − AJB). (B.1)

We want to compute some of the commutation relations of the subsuperalgebra

s (stated in ). First recall the basis elements,

λΨ(n) =
∑
k∈Ψ

Ek,k+n, µΨ(n) =
∑
k∈Ψ

Ek− 1
2
,k+n− 1

2
,

eΨ(n) =
∑
k∈Ψ

Ek− 1
2
,k+n, fΨ(n) =

∑
k∈Ψ

Ek,k+n− 1
2
,

along with the central element c.

There are a few notes to make before we begin. First, µ and λ are clearly even

elements (and parity preserving) and e and f are odd elements (parity reversing).

Recall that for the below computations, γ(n) is the number of elements in (Ψ1 ∩
Ψ2) ∩ {1, 2, . . . , n}. The need for this identification only arises when m = −n,

under which we always assume without loss of generality that n > 0. In these times

we are computing the supertrace, and γ(n) simply accounts for if there are zero

entries resulting from Ψ1 and Ψ2 being finite subsets of Z. Note that each of the

above elements are described in sums over Z as well. We be showing the following

computations hold:
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(1) [λΨ1(n), eΨ2(m)] = −eΨ1∩Ψ2(m+ n),

(2) [λΨ1(n), fΨ2(m)] = fΨ1∩Ψ2(m+ n),

(3) [µΨ1(n), eΨ2(m)] = eΨ1∩Ψ2(m+ n),

(4) [µΨ1(n), fΨ2(m)] = −fΨ1∩Ψ2(m+ n),

(5) [λΨ1(n), λΨ2(m)] = γ(n)δm,−nc,

(6) [µΨ1(n), µΨ2(m)] = −γ(n)δm,−nc,

(7) [λΨ1(n), µΨ2(m)] = 0,

(8) [eΨ1(n), fΨ2(m)] = λΨ1∩Ψ2(m+ n) + µΨ1∩Ψ2(m+ n)− γ(n)δm,−nc.

We see that whenever we are looking at

Str([J,A]B) = JAB − AJB

for λ, µ, e, and f , the only non-zero cases occur when the rows of A and the columns

of B are of the same parity, as that is the only time non-zero diagonal entries are

possible. We will refer to this condition as (†) to limit unnecessary computations.

Proof. (1) We want to show that [λΨ1(n), eΨ2(m)] = −eΨ1∩Ψ2(m+ n).

Consider first our 2-cocycle,

Str([J, λΨ1(n)]eΨ2(m))

= Str

∑
k∈Ψ1
k≤0

Ek,k+n

∑
j∈Ψ2

Ej− 1
2
,j+m −

∑
k∈Ψ1
k≤−n

Ek,k+n

∑
j∈Ψ2

Ej− 1
2
,j+m


= 0− 0
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Thus we have remaining

λΨ1(n)eΨ2(m)− (−1)|e||λ|eΨ2(m)λΨ1(n)

=
∑
k∈Ψ1

Ek,k+n

∑
j∈Ψ2

Ej− 1
2
,j+m −

∑
j∈Ψ2

Ej− 1
2
,j+m

∑
k∈Ψ1

Ek,k+n

= −
∑
j∈Ψ2

Ej− 1
2
,j+m

∑
k∈Ψ1

Ek,k+n

= −
∑

i∈Ψ1∩Ψ2

Ei− 1
2
,i+m+n

= −eΨ1∩Ψ2(m+ n)

(2) We want to show that[λΨ1(n), fΨ2(m)] = fΨ1∩Ψ2(m+ n),

Note that by (†) our 2-cocyle is 0, Then we have the remaining difference

λΨ1(n)fΨ2(m)− (−1)|f ||λ|fΨ2(m)λΨ1(n)

=
∑
k∈Ψ1

Ek,k+n

∑
j∈Ψ2

Ej,j+m− 1
2

−
∑
j∈Ψ2

Ej,j+m− 1
2

∑
k∈Ψ1

Ek,k+n

=
∑
k∈Ψ1

Ek,k+n

∑
j∈Ψ2

Ej,j+m− 1
2

= −
∑

i∈Ψ1∩Ψ2

Ei, i+m+ n− 1

2

= fΨ1∩Ψ2(m+ n)

(3) We want to show that [µΨ1(n), eΨ2(m)] = −eΨ1∩Ψ2(m+ n).

Note we can again apply (†) when computing the 2-cocycle. So we are left simply

with the term

µΨ1(n)eΨ2(m)− (−1)|e||µ|eΨ2(m)µΨ1(n),
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which is rewritten as∑
k∈Ψ1

Ek− 1
2
,k+n− 1

2

∑
j∈Ψ2

Ej− 1
2
,j+m −

∑
j∈Ψ2

Ej− 1
2
,j+m

∑
k∈Ψ1

Ek− 1
2
,k+n− 1

2

=
∑

i∈Ψ1∩Ψ2

Ei− 1
2
,i+m+n

= eΨ1∩Ψ2(m+ n)

(4) The computations are similar to (1).

(5) We want to show that [λΨ1(n), λΨ2(m)] = γ(n)δm,−nc

Finally, our 2-cocycle will yield a nonzero term.

Str([J, λΨ1(n)]λΨ2(m))

= Str

∑
k∈Ψ1
k≤0

Ek,k+n

∑
j∈Ψ2

Ej,j+m −
∑
k∈Ψ1
k≤−n

Ek,k+n

∑
j∈Ψ2

Ej,j+m


= Str

 ∑
i≤0

i∈Ψ1∩Ψ2

Ei,i+n+m −
∑

i∈Ψ1∩Ψ2
i≤n

Ei,i+n+m


= Str

 n∑
i=1

i∈Ψ1∩Ψ2

Ei,i+n+m


= δm,−n

n∑
i=1

i∈Ψ1∩Ψ2

(−1)|i|Eii where we take n = −m > 0

= γ(n)δm,−n
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Thus we have γ(n)δm,−nc resulting from our 2-cocycle. We also see that,

λΨ1(n)λΨ2(m)− λΨ2(m)λΨ1(n)

=
∑
k∈Ψ1

Ek,k+n

∑
j∈Ψ2

Ej,j+m −
∑
j∈Ψ2

Ej,j+m
∑
k∈Ψ1

Ek,k+n

=
∑

i∈Ψ1∩Ψ2

Ei,i+m+n −
∑

i∈Ψ1∩Ψ2

Ei,i+m+n

= 0

(6) The computations are similar to (5)

(7) The fact that [λΨ1(n), µΨ2(m)] = 0 is clear from considering their possible non-

zero entries and the definition of [·, ·].
(8) Our last relation to show is

[eΨ1(n), fΨ2(m)] = λΨ1∩Ψ2(m+ n) + µΨ1∩Ψ2(m+ n)− γ(n)δm,−nc.

For our 2-cocycle, we compute the supertrace,

Str([J, eΨ1(n)]fΨ2(m))

= Str

∑
k∈Ψ1
k≤0

Ek− 1
2
,k+n

∑
j∈Ψ2

Ej,j+m− 1
2
−
∑
k∈Ψ1
k≤−n

Ek− 1
2
,k+n

∑
j∈Ψ2

Ej,j+m− 1
2


= Str

 n∑
i=1

i∈Ψ1∩Ψ2

Ei− 1
2
,i− 1

2

 where we take n = −m > 0.

=
n∑
i=1

i∈Ψ1∩Ψ2

(−1)iEi− 1
2
,i− 1

2
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So we have the term −γ(n)δm,−nc combined with

eΨ1(n)fΨ2(m)− (−1)|e||f |fΨ2(m)eΨ1(n)

=
∑

i∈Ψ1∩Ψ2

Ei− 1
2
,i+m+n− 1

2
+

∑
i∈Ψ1∩Ψ2

Ei,i+m+n

= µ(m+ n) + λ(m+ n)

Thus we have our result.

Now we turn our attention to the computations involving our representation r̂

when restricted to the space s. These are the remaining proofs from ( ). We look

at the following relations:

(1) r̂m(fΨ(n))|m〉 = 0, for n ≥ 1,

(2) r̂m(λΨ(n))|m〉 = 0 for n > 0,

(3) r̂m(c) = I,

(4) r̂m(λΨ(0))|m〉 = 0,

(5) rm(µΨ(0))|m〉 = (m(k − 1
2
)− 1)|m〉,

Proof. (1) This is proven in Chapter 3.

(2) Compute

r̂m(λΨ(n))|m〉 = r̂m(
∑
k∈Ψ

(Ek,k+n))|m〉

= vk ∧ vm ∧ · · · ∧ v̂k+n ∧ . . . (B.2)

as |k| = |k+n| = 0̄. Consider that the sum in (B. ) will be 0 when k+n > m

due to vk+n not being in |m〉. Also, the sum in (3.11) is 0 when k < m as a

result of vk being even and present in |m〉. Combining these two inequalities

we see the sum is zero when n > 0, for n ∈ Z.

(3) This is immediate from the definition of r̂.
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(4) For this case, recall that r̂m(Eii) = (rm − I)(Eii). Then

r̂m(λΨ(0))|m〉 = (rm(
∑
k∈Ψ

Ek,k)− I)|m〉

=
∑
k∈Ψ

(−1)kvk ∧ vm ∧ · · · ∧ v̂k ∧ · · · − |m〉

= 0

where the last step is made by simply rearranging the even vector vk in the

left term back into the position in which it began.

(5) We again note that r̂m(Eii) = rm(Eii)− I. Then

r̂m(µΨ(0))|m〉 = (rm(
∑
k∈Ψ

Ek− 1
2
,k− 1

2
)− I)|m〉

=
∑
k∈Ψ

σ(k − 1

2
)vk− 1

2
∧ vm ∧ · · · ∧ v̂k− 1

2
∧ · · · − |m〉 (B.3)

where σ(k − 1
2
) = m(k − 1

2
)(−1)q(−1)

|k− 1
2
|
q−1∑̀
=0

|i`
from Proposition 3.3.2. Con-

sider that the sum in (3.11) will be 0 when k− 1
2
> m due to vk+n− 1

2
not being

in |m〉. Also, when k − 1
2
≤ m, we can move vk− 1

2
in the left term back where

it was in |m〉 and have

(B.3) = m(k − 1

2
)|m〉 − |m〉 = (m(k − 1

2
)− 1)|m〉.
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