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ABSTRACT

Pricing of American lookback options

using linear programming

by

Michael Alexander Wagner

The University of Wisconsin-Milwaukee, 2012
Under the Supervision of Professor Stockbridge

We will introduce the American lookback option in the Black-Scholes model. Af-

terwards we will examine the process it inherits and derive and formulate the linear

program needed to price it.

As an approximation, we will apply a time-discretization and a truncation of the

infinite space. The requirements for a solution are weakened and the optimization

problem is reduced to base functions,being linear functions.

In the end we study the numerical results following from the above computations.

ii



Table of Contents

1 Introduction 1
1.1 Black-Scholes Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Lookback Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3.1 Fixed strike lookback options . . . . . . . . . . . . . . . . . . 6
1.3.2 Floating strike lookback options . . . . . . . . . . . . . . . . . 7

2 Linear Programming 8
2.1 Dimension reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2 Deriving the LP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.3 LP-Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3 Approximation 19
3.1 Time discretization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.2 Finite elements in space . . . . . . . . . . . . . . . . . . . . . . . . . 22

4 Numerical Results 26
4.1 Matrix Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.2 American Lookback Put . . . . . . . . . . . . . . . . . . . . . . . . . 27

5 Conclusion 36

Bibliography 38

iii



List of Figures

1.1 Stock movement in example 1.2.2 . . . . . . . . . . . . . . . . . . . . 4

3.1 Linear functions for ns = 2 . . . . . . . . . . . . . . . . . . . . . . . . 24

4.1 Stopping probabilities for nt = 50 and ns = 50. . . . . . . . . . . . . . 30

4.2 Maximising function . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.3 Stopping probabilities for M0 = 110 . . . . . . . . . . . . . . . . . . . 34

4.4 Maximising function . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

iv



List of Tables

4.1 Price . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.2 Iterations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.3 Time in seconds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.4 Price for M = 0.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.5 Iterations for M = 0.2 . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.6 Time in seconds for M = 0.2 . . . . . . . . . . . . . . . . . . . . . . . 31

4.7 Option with M0 > S0 . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

v



1

Chapter 1

Introduction

Options have become extremely popular investment vehicles. Two of the main

reasons are the systematic way of pricing them, which gives confidence while buying

or selling them, and the corresponding manner of hedging the risks taken on by the

sellers of the options. An American lookback option involves the combination of

two exotic features: early exercise feature and lookback feature.

In chapter 1 we will introduce the basic model of the thesis. We will explain what

an option is and describe a lookback option both of European one and its American

counterpart.

The fundamental question of the thesis is how to price the above option. Our way is

a linear programming approach. An American option has two uncertainties (running

maximum and stock price at execution). In chapter 2 we reduce the dimension of

the stochastic process and derive the necessary LP.

Since we cannot model the infinte horizon on time and state space, we have to

truncate the space. In chapter 3 we will first discretize the time horizon and then

we limit the state space down to finite elements.

The goal in chapter 4 is to show numerical results of our theoretical work. In order

to implement the LP, we need to make it more accessible for the computer. So

we will rewrite the LP in terms of matrices and vectors. In 4.2 the results of the

computations are presented.



2

1.1 Black-Scholes Model

As a beginning of this chapter we will briefly introduce the standard Black-Scholes-

Merton model ( see e.g.[8] and [2]) as it forms the basis of our later computations.

With the Black-Scholes-Merton model we can try to describe the price of an option

and its underlying stock over time.

The model considers two kinds of stocks, a risk-free bank account B = (Bt)t≥0

earning interest at rate r > 0, called bond, and a risky asset S = (St)t≥0, called

stock. An asset is a financial object whose value is known at present but is liable

to change in the future.1 We assume that the bank account is a function of time t,

satisfying the differential equation

dBt = rBtdt, B0 > 0 ,

which can be solved as

Bt = B0e
rt .

To generate the paths St(ω) of the price of our underlying asset, we use a geometric

Brownian motion W = (W P
t )t≥0 defined on a probability space (Ω,F ,P) where

F = (Ft)t≥0 is the σ-algebra generated by the Brownian motion. That is,

dSt
St

= µ dt+ σ dW P
t , S0 = s0 > 0 (1.1)

where µ denotes the mean return rate and σ > 0 the constant volatility.

1.2 Options

Based on the previous section, where we have introduced the model for the financial

market, we will cover the idea of options.

Options have become extremely popular for two of the main reasons being their

attractiveness for investors with the intention of hedging, and there being a sys-

tematic way of pricing them, which gives confidence while buying or selling them.

1see [5, chapter 1.1]
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This systematic way of pricing for common options such as European Options is

the famous Black-Scholes formula. Depending on the character of the option, more

exotic options may not have a closed formula, and in those cases we have to rely on

computational algorithms.2

In this thesis, we will only take European and American options into concern.

Definition 1.2.1. A European option gives its holder the right, but not the obligation

to buy or sell to the writer a prescribed asset for a prescribed price at a prescribed

time. A call option gives the holder the right to buy, a put option gives her the right

to sell.3

Example 1.2.2. A simple constructed example for a European call option as in

definition 1.2.1 is the following. Two parties agreed on a European call option. The

price can either go up from initial $100 up to $110 in one unit of time ( being the

expiration date) or down to $90. The prescribed price for the asset is the initial stock

price. If the stock goes up in case 1, then the holder will make use of the option,

since it allows him to buy the price 10$ cheaper than at the stock market. On the

other hand, if the stock goes down, then he won’t use the option, since it is cheaper

to buy the asset directly from the market.

Neither one of the cases from example 1.2.2 results in a loss for the holder, respec-

tively at win for the writer. Therefore the writer will not give out the stock for

free and wants compensation for this imbalance. The value of the option is this

compensation. So the question arises, how high it has to be, so that it is a fair game

for both sides, in order to attract enough market participants.

Example 1.2.2 gives an idea of how the payoff, generated by the option, behaves.

The writer has to pay the difference between the prescribed price and the market

price of the option, as in the first case, or nothing, as in the second case. Let

ΦC(ST ) be the payout function of the call option, T be the expiration date and K

the prescribed price. Then

ΦC(ST ) = (ST −K)+ = max {ST −K, 0} ,
2see [5, chapter 1.2]
3see [5, chapter 1.1]
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Figure 1.1: Stock movement in example 1.2.2

and a similar approach yields to the payoff function ΦP for the European put option

ΦP (ST ) = (K − ST )+ = max {K − ST , 0} .

In order to find a value for an option, we have to make the following assumptions

(see e.g. [2, Page 640] and [11, Chapter 2.1]):

• the short-term interest rate r is known and constant through time;

• the stock pays no dividend or other distributions;

• there are no transaction costs in buying or selling the stock or the option;

• it is possible to borrow any fraction of the price of a security to buy it or to

hold it, at the short-term interest rate;

• there are no penalties to short-selling;

• the underlying asset follows a known stochastic process;

• markets are complete.

Especially noteworthy and of great importance for this thesis is the following type

of option.
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Definition 1.2.3. An American option gives its holder the right, but not the obli-

gation to buy or sell to the writer a prescribed asset for a prescribed price at any

time until the expiration date.

When we compare definition 1.2.3 and 1.2.1, we notice the new policy on the exercise

time. In contrast to example 1.2.2 with only two time points, one of the previous

assumptions was a complete market, which implies that assets and options can be

traded any time. So we need to know more about the value process of the option

than only its initial worth.

Let Q be the risk-neutral probability measure introduced via the Radon-Nikodym

derivative. Then we get by the Girsanov theorem (see e.g. [6, Chapter 3.5]) that

the new process WQ ia again a Q-Brownian motion with

dW P
t = WQ

t +
r − µ
σ

t for t ≥ 0.

Under the new probability measure Q the differential equation (1.1) can be rewritten

as
dSt = St

(
µ dt+ σ dW P

t

)
= St

(
µ dt+ σ dWQ

t + σ
r − µ
σ

dt

)
= St

(
(µ+ r − µ) dt+ σ dWQ

t

)
= St

(
r dt+ σ dWQ

t

)
.

(1.2)

The arbitrage-free, risk-neutral price for an option with payoff Φ(ST ) at time 0 is

e−rTEQ [Φ(ST )] .

Let V (t) denote the price of the option at time t ∈ [0, T ]. One can prove (see for

instance [10, Chapter 5]) that V (t) must be

V (t) = e−r(T−t)EQ [Φ(ST )|Ft] .

1.3 Lookback Options

As in the previous section, we will start to introduce this class of option by having

a look at the European counterpart (compare [4] and [5]).



6

We can divide European lookback options mainly into fixed strike lookback options

and floating strike lookback options.

1.3.1 Fixed strike lookback options

Lookback options are members of the path-dependent options. The payoff of the

previous options depended only on the stock price at exercise. But now, the holder

“looks back” over the whole path of the stock to determine the payoff. He might be

looking at the maximum, minimum, average, etc.

Definition 1.3.1. A European fixed strike lookback call option with exercise date

T , T > 0, and strike price K, K > 0, is a security whose payoff at time T , is

ΦfixC (ST ) =

(
max

(
L, max

0≤t≤T
St

)
−K

)
+

. (1.3)

Here, L is a positive constant with L ≥ S0. It can be interpreted as the maximum

level of the stocks past (t < 0) prices. Depending on the size of L and K, (1.3)

simplifies into the two following cases:

• ΦfixC (ST ) =

(
max

0≤t≤T
St −K

)
+

for K ≥ L;

• ΦfixC (ST ) = max

(
L, max

0≤t≤T
St

)
−K = L−K +

(
max

0≤t≤T
St − L

)
+

for K ≥ L.

So the payoff of the option is mainly determined by the difference between the all-

time maximum and K, respectively L. A closed form for the price of the option from

1.3.1 can be found in [4, section 4].

We can define a European fixed strike lookback put option equivalently to definition

1.3.1.

Definition 1.3.2. A European fixed strike lookback put option with exercise date T ,

T > 0, and strike price K, K > 0, is a security whose payoff at time T , is

ΦfixP (ST ) =

(
K −min

(
L, min

0≤t≤T
St

))
+

. (1.4)
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L > 0 can be interpreted as the minimum level of the stocks past (t < 0) prices.

Depending on L and K, two cases are possible:

• ΦfixP (ST ) =

(
K − min

0≤t≤T
St

)
+

for K ≤ L;

• ΦfixP (ST ) = K −min

(
L, min

0≤t≤T
St

)
for K > L.

A closed form for the price of the option from 1.3.1 can be found in [4, section 4].

The American counterpart can be exercised at any time until expiration. So from

section 1.2 we can derive the American version of (1.3) and (1.4). When we exercise

at time τ , the option pays

ΦfixC (Sτ ) =

(
max

(
L, max

0≤t≤τ
St

)
−K

)
+

;

ΦfixP (Sτ ) =

(
K −min

(
L, min

0≤t≤τ
St

))
+

.

1.3.2 Floating strike lookback options

The floating strike lookback option differs from the fixed strike option in terms of

the strike. As the strike in the latter option was predetermined, the strike in the

floating strike option is the stock price at exercise, and hence it deviates.

The payoff of the European option is

ΦfloatC (ST ) =

(
max

(
L, max

0≤t≤T
St

)
− ST

)
+

with L ≥ S0 > 0. The payoff of the put is

ΦfloatP (ST ) =

(
ST −min

(
L, min

0≤t≤T
St

))
+

.

Analog to section 1.3.1, the American option can be exercised at any time until

expiration. When we exercise at time τ , the American floating strike options pay

ΦfixC (Sτ ) =

(
max

(
L, max

0≤t≤τ
St

)
− Sτ

)
+

;

ΦfixP (Sτ ) =

(
Sτ −min

(
L, min

0≤t≤τ
St

))
+

.
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Chapter 2

Linear Programming

2.1 Dimension reduction

The differential equation in (1.1) can be solved explicitly by applying Ito’s formula

to ln(St), which gives us

St = s0 exp

{
(r − σ2

2
)t+ σWQ

t

}
, t ≥ 0 , (2.1)

where Q is the risk-neutral measure and WQ is a standard Q-Brownian-motion (see

e.g. [10]).

Since lookback options rely on the running extrema of the stock price maximum,

we need to introduce the running maximum Mt and the running minimum mt as

Mt = M0 ∨ max
0≤s≤t

Ss ,

mt = m0 ∧ min
0≤s≤t

Ss.
(2.2)

The initial values M0 and m0 are included to allow flexibility about the initial

extrema.

To price, or equivalently find an optimal strategy, an American lookback option

with maturity T at time t = 0, we have to solve the following optimization problem

for a call

max
τ∈T

EQ
(
e−rτ (Sτ −mτ )

)
and for a put

max
τ∈T

EQ
(
e−rτ (Mτ − Sτ )

)
.
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Let T be the set of all stopping times relative to {Ft}, such that 0 ≤ τ ≤ T .

With (2.1) we can transform the optimization problem for the put

EQ
(
e−rτ (Mτ − Sτ )

)
= EQ

(
e−rτSτ

(
Mτ

Sτ
− 1

))
= EQ

(
e−rτs0e

(r−σ
2

2
)τ+σWQ

τ

(
Mτ

Sτ
− 1

))
= s0EQ

(
e−

σ2

2
τ+σWQ

τ

(
Mτ

Sτ
− 1

))
.

(2.3)

Now we define with e−
σ2

2
τ+σWQ

τ the new measure P̃ by the Radon-Nikodym derivative

dP̃
dQ

= exp

(
−σ

2

2
τ + σWQ

τ

)
on FT .

Then by a change of measure (2.3) is equivalent to

max
τ∈T

s0EP̃

(
Mτ

Sτ
− 1

)
. (2.4)

Let Yt :=
Mt

St
with Mt and St as before. The following theorems shall give us more

insight into the structure of this process. Compare [9, Chapter 3].

Theorem 2.1.1. The process Y is Markov with respect to the measure P̃.

Proof. By the definition, we get

Yt+∆ =
max {M0; max0≤s≤t+∆ Ss}

St+∆

= max

{
max0≤s≤t Ss
St · St+∆/St

;
maxt<s≤t+∆ Ss/St

St+∆/St
,
M0

St+∆

}
= max

{
Yt ·

1

St+∆/St
;

maxt<s≤t+∆ Ss/St
St+∆/St

}
. (2.5)

By (2.1) we have for all t < u ≤ t+ ∆ for the P̃ Brownian motion W P̃

Su
St

= exp

{
σ(W P̃

u −W P̃
t ) + (r +

σ2

2
)(u− t)

}
.
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Therefore (2.5) implies by the independent and stationary increments of the Brow-

nian motion that

P̃ (Yt+∆|Ft) = P̃ (Yt+∆|Yt)

which proves the Markov property.

Theorem 2.1.2. The process Y on (Ω,F , P̃) is an at {1} reflected geometric Brow-

nian motion having drift −r that takes values on [1,∞)

Proof. From the Girsanov theorem (see for instance [6, Chapter 3.5]), it follows,

that WQ
t − σt is a standard P̃ Brownian motion and hence WQ

t = W P̃
t + σt

EP̃

(
Mt

St

)
= EP̃

M0 ∨max0≤s≤t s0 exp
{

(r − σ2

2
)s+ σWQ

s

}
s0 exp

{
(r − σ2

2
)t+ σWQ

t

}


= EP̃

M0 ∨max0≤s≤t s0 exp
{

(r − σ2

2
)s+ σ(W P̃

s + σs)
}

s0 exp
{

(r − σ2

2
)t+ σ(W P̃

t + σt)
}


= EP̃

M0 ∨max0≤s≤t s0 exp
{

(r + σ2

2
)s+ σW P̃

s

}
s0 exp

{
(r + σ2

2
)t+ σW P̃

t

}
 .

(2.6)

Now we define

S̃t := s0 exp

{
(r +

σ2

2
)t+ σW P̃

t

}
,

M̃t := M0 ∨ max
0≤s≤t

S̃t

and

Ỹt :=
M̃t

S̃t
.

Observe that (2.6) yields

EP̃ (Yt) = EP̃

(
Mt

St

)
= EP̃

(
M̃t

S̃t

)
= EP̃

(
Ỹt

)
.
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Since M̃ is a nondecreasing process of locally bounded variation, Itô’s formula is

applicable and hence

dỸt = d(
M̃t

S̃t
) = M̃t d(

1

S̃t
) +

1

S̃t
d(M̃t)

= M̃t

{
− 1

S̃2
t

dS̃t +
1

2

1

S̃3
t

2σ2S̃2
t dt

}
+
dM̃t

S̃t

= M̃t

{
− 1

S̃t

(
(r + σ2) dt+ σ dW P̃

t

)
+
σ2

S̃t
dt

}
+
dM̃t

S̃t

= −M̃t

S̃t

(
r dt+ σ dW P̃

t

)
+
dM̃t

S̃t
.

(2.7)

From (2.7) follows

dỸt = −Ỹt(r dt+ σ dW P̃
t ) +

dM̃t

S̃t
; (2.8)

or equivalently in integral notation

Ỹt = Ỹ0 − r
∫ t

0

Ỹu du− σ
∫ t

0

Ỹu dW
P̃
u +

∫ t

0

dM̃t

S̃t
.

Similarly, we get by another application of Itô’s formula for any function f = f(Ỹ ) ∈
C2 ([1,∞))

df(Ỹt) = f ′(Ỹt) dỸt +
1

2
f ′′(Ỹt)σ

2Ỹ 2
t dt ;

or equivalently in integral notation

f(Ỹt) = f(Ỹ0)− r
∫ t

0

Lf(Ỹu) du− σ
∫ t

0

f(Ỹu)Ỹu dW
P̃
u +

∫ t

0

f ′(Ỹu)
dM̃t

S̃t
, (2.9)

with the differential operator

L = −ry ∂
∂y

+
σ2

2
y2 ∂

2

∂y2
.

Observe that this is the infinitesimal generator of a geometric Brownian motion.

From the definition of M̃ and S̃ we can derive the following properties in a P̃-

a.s.sense. Clearly, M̃t is a monotone increasing process and M̃t ≥ S̃t. Since Mt, St >

0 for all 0 ≤ t ≤ T , so are M̃t, S̃t.
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The process M̃t increases if and only if M̃t = S̃t, which is equivalent to Ỹt = 1. So if

Ỹt > 1 then dM̃t = 0 and

∫ t

0

I
(
Ỹu > 1

)
dM̃u = 0, t > 0. So we can write (2.9) as

f(Ỹt) = f(Ỹ0)− r
∫ t

0

Lf(Ỹu) du−σ
∫ t

0

f(Ỹu)Ỹu dW
P̃
u +

∫ t

0

f ′(Ỹu)
dM̃t

S̃t
I
(
Ỹu = 1

)
du .

(2.10)

Still (2.10) does not give a lot of insight into the behavior of the process at the event

Ỹt = 1. So in our next step, we will show that the process is reflected at {1} for any

t ∈ [0, T ], or equivalently ∫ t

0

I
(
Ỹu = 1

)
du = 0 (P̃-a.s.). (2.11)

With Fubini’s theorem we get

EP̃

{∫ T

0

I
(
Ỹu = 1

)
du

}
=

∫ T

0

EP̃

{
I
(
Ỹu = 1

)}
du

=

∫ T

0

P̃
(
Ỹu = 1

)
du . (2.12)

Since a Brownian motion has an a.e. absolutely continuous distribution, so has S̃ as

a function of WP̃. Therefore, also the distribution of Ỹ is a.e. absolutely continuous

and a.e. P̃
(
Ỹu = 1

)
= 0. Hence, (2.12) is of size 0 and so must (2.11) be.

Property (2.11) tells us, that the process Ỹt spends 0 time at the boundary {1} and

so this point is an instant reflection point or a non-sticky boundary.

The previously introduced differential operator L is the the infinitesimal generator

of the process Ỹ on functions f ∈ C2 limited by the condition f ′(1+) = 0. as already

stated L is the infinitesimal generator of a geometric Brownian motion with drift

−r. So Ỹ is a geometric Brownian motion with instant reflection at {1}, which

proves theorem 2.1.2.

Let Y m
t :=

mt

St
with mt and St as before. Analog to the previous theorems 2.1.1 and

2.1.2 the following two lemmas can be proved.

Lemma 2.1.3. The process Y m is Markov with respect to the measure P̃.
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Lemma 2.1.4. The process Y m on (Ω,F , P̃) is an at {1} reflected geometric Brow-

nian motion having drift −r that takes values on (0, 1].

By applying theorem 2.1.2, and the dimension-reduction it inherits, we can re-

duce the initial bi-dimensional stopping problem down to a unidimensional. There-

fore (2.4) is equivalent to

max
τ∈T

s0EP̃ (Yτ − 1) . (2.13)

Denote

ϕt =

∫ t

0

I
(
Ỹu = 1

) dM̃u

S̃u
.

Observe that ϕt is a non-negative process, only increasing when Ỹt = 1. It is the

local time process of Ỹ at 1. According to (2.8) we get

dỸt = −Ỹt(r dt+ σ dW P̃
t ) + dϕt . (2.14)

2.2 Deriving the LP

Another formulation of (2.13) of the price for an American lookback put option is{
Maximize: max

τ∈T
s0EP̃ (Yτ − 1)

Subject to: Ỹ is a geometric Brownian motion with drift −r, reflected at 1,

(2.15)

and analog for the call option{
Maximize: max

τ∈T
s0EP̃ (1− Y m

τ )

Subject to: Ỹ m is a geometric Brownian motion with drift −r, reflected at 1,

The approximation methods in chapter 3 rely on basis functions. Therefore we want

to reformulate the optimal stopping problem 2.15 using Itô’s formula.

We know from theorem 2.1.2 that Ỹ is a process satisfying the differential equation

(2.14). Hence, by Itô’s formula, for a function f = f(Ỹ ) ∈ C2([1,∞)) we get

f(Ỹt)− f(Ỹ0)−
∫ t

0

AỸ [f ](Ỹu)du−
∫ t

0

f ′(Ỹu) dϕu (2.16)
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is again a martingale with AỸ [f ](y) = −ryf ′(y) +
σ2

2
y2f ′′(y).

The beneficial aspect of constraint (2.16) is the following: If (2.16) is fulfilled by all

functions f ∈ C2([1,∞)), then Ỹ complies with the constraint in (2.15). So we can

reformulate the optimal stopping problem (2.15) as{
Maximize: max

τ∈T
s0EP̃ (Yτ − 1)

Subject to: (2.16) is a martingale for all f ∈ C2([1,∞)).
(2.17)

When we now have again a look at the differential equation of Ỹ in (2.14), then we

see, that drift and the instantaneous volatility are state dependent, occurring from

the fact that it is a geometric Brownian motion.

In order to simplify later implementations, we try to remodel it by a drifted Brownian

motion. By this, we reach constant coefficients for drift and volatility and smaller

values.

Apply the ln to Ỹ and denote

Xt := ln Ỹt.

Lemma 2.2.1. Let X be as above. X is drifted Brownian motion taking values in

[0,∞) with instant reflection at {0} and drift −r.

Proof. Observe that Xt ∈ [0,∞), due to Ỹt ∈ [1,∞) for all t ≥ 0.

dXt = d ln Ỹt

=
1

Ỹt
dỸt +

1

2

(
ln Ỹt

)′′
d
[
Ỹ
]
t

=
1

Ỹt
dỸt −

σ2

2
dt

= −
{
r dt+ σ dW P̃

t

}
+
dϕt

Ỹt
− σ2

2
dt

= −
{(

r +
σ2

2

)
dt+ σ dW P̃

t

}
+
dϕt

Ỹt
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Observe that(
ln Ỹt

)′′
d[Ỹ ]t =

(
ln Ỹt

)′′
(dỸt)

2

=
−1

Ỹ 2
t

(
−Ỹt(r dt+ σ dW P̃

t ) + dϕt

)2

= −
(
r dt+ σ dW P̃

t

)2

+
1

Ỹt

(
r dt+ σ dW P̃

t

)
(dϕt)−

1

Ỹ 2
t

(dϕt)
2

= −
(
r dt+ σ dW P̃

t

)2

= −σ2 dt .

Now compare the dynamics from (2.18) with those we examined in the proof for

theorem 2.1.2. By analogy we can find, that the first part in brackets is the diffusion

of a ordinary drifted Brownian motion. As before, ϕt increases, when Ỹt = 1, or

equivalently Xt = ln Ỹt = 0. So we can precede as earlier and show, that X is a

drifted Brownian motion with instant reflection at {0}

The differential equivalent (2.18) can be simplified using the following fact: ϕ is the

local time process of Ỹ at {1} and hence also for X and {0}. Therefore when ϕt

increases, then Ỹt = 1 and the denominator Ỹt in (2.18) can be dropped.

So the maximizing function of our optimal stopping problem is

max
τ∈T

s0EP̃
(
eXτ − 1

)
.

From lemma 2.2.1 and Itô’s formula we can derive for f ∈ C2([0,∞))

df(Xt) = f ′(Xt) dXt +
1

2
f ′′(Xt)d[X]t

= f ′(Xt)

{
−
[(
r +

σ2

2

)
dt+ σ dW P̃

t

]
+ dϕt

}
+
σ2

2
f ′′(Xt) dt

=

[
−f ′(Xt)

(
r +

σ2

2

)
+
σ2

2
f ′′(Xt)

]
dt− σf ′(Xt) dW

P̃
t + f ′(Xt) dϕt .

(2.18)

Denote for f ∈ C2([0,∞))

AX [f ](x) = −f ′(x)

(
r +

σ2

2

)
+
σ2

2
f ′′(x).

Then again by Itô’s formula and (2.18),

f(Xt)− f(X0)−
∫ t

0

AX [f ](Xu) du−
∫ t

0

f ′(Xu) dϕu (2.19)



16

is a martingale. Therefore the optimal stopping problem (2.17) becomes{
Maximize: max

τ∈T
s0EP̃

(
eXτ − 1

)
Subject to: (2.19) is a martingale for all f ∈ C2([0,∞)).

(2.20)

Let Xm
t = ln Ỹ m

t . Then we get analog to the previous computations

f(Xm
t )− f(Xm

0 )−
∫ t

0

AX [f ](Xm
u ) du−

∫ t

0

−f ′(Xm
u ) dϕu , (2.21)

and the optimal stopping problem for the call is{
Maximize: max

τ∈T
s0EP̃

(
1− eXτ

)
Subject to: (2.21) is a martingale for all f ∈ C2([0,∞)).

2.3 LP-Formulation

Sections 1.2 and 1.3 yield, that the examined options have an expiration date, de-

noted by T , which indicates that the optimal exercise strategy τ ∗ depends on the

time horizon. Also the approximation methods in chapter 3 rely on a separation of

variables into a time and a space component.

Hence, instead of defining our linear program by the process X in the state space

[0,∞), we consider the process (t,X) in the time-state-space [0, T ] × [0,∞). Let

γ ∈ C([0, T ]), then

γ(t)f(Xt)− γ(0)f(X0)−
∫ t

0

[γ(u)AX [f ](Xu) + γ′(u)f(Xu)] du−
∫ t

0

γ(u)f ′(Xu) dϕu

(2.22)

is a martingale with respect to the filtration Ft, if (X,ϕ) in (2.19) is a martingale

for all f ∈ C2([0,∞)).

Clearly, the stopping time τ is bounded by T and by the optional sampling theorem

applied to (2.22) we get

0 = E
[
γ(τ)f(Xτ )− γ(0)f(X0)−

∫ τ

0

γ(u)AX [f ](Xu) + γ′(u)f(Xu) du

−
∫ τ

0

γ(u)f ′(Xu) dϕu

]
. (2.23)



17

For a stopping time τ , let υτ be the joint distribution of (τ,X(τ)) and µ0 the time-

space expected occupation measure with

µ0(G) = E
[∫ τ

0

IG(t,X(t))dt

]
∀G ∈ B ([0, T ]× [0,∞)) .

We define the expected occupation measure µ1 with respect to the local time process

as

µ1(G) = E
[∫ τ

0

IG(t,X(t))dϕt

]
∀G ∈ B ([0, T ]× [0,∞)) ,

where ξ denotes the local time process of X at 0.

Since µ1 is concentrated on ([0, T ]× {0}), we can simplify the notation for µ1 by

µ1(G) := µ1(G × {0}) for each Borel set G on [0, T ].

Denote

A[γf ](t, x) = γ(t)AX [f ](x) + γ′(t)f(x).

When we rewrite the expectation (2.23) in terms of υτ , µ0 and µ1, we get

0 =

∫
([0,T ]×[0,∞))

γ(t)f(x) dυτ (dt× dx)− γ(0)f(X0)

−
∫

([0,T ]×[0,∞))

A[γf ](t, x)µ0(dt× dx)

−
∫

([0,T ]×{0})
γ(t)f ′(x)µ1(dt× dx).

(2.24)

The original optimal stopping problem for the American lookback put option is

equivalent to

Maximize S0

∫
(ex − 1)υτ (dt× dx)

Subject to γ(0)f(x0) =

∫
([0,T ]×[0,∞))

γfdυτ

−
∫

([0,T ]×[0,∞))

A[γf ](t, x)µ0(dt× dx)

−
∫

([0,T ]×{0})
B[γf ](t, 0)µ1(dt× dx)

∀ (γ, f) ∈ D,
υτ ∈ P ([0, T ]× [0,∞)) ,
µ0 ∈M ([0, T ]× [0,∞)) with total mass <= T,
µ1 ∈M ([0, T ]) .

(2.25)
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with P the set of probability measures,M the set of finite measures and the domain

D = {(γ, f) : γ ∈ C1[0, T ], f ∈ C2
c [0,∞)}. The generators A and B are given by

A[γf ](t, x) = γ(t)

[
−(r +

σ2

2
)f ′(x) +

σ2

2
f ′′(x)

]
+ γ′(t)f(x)

B[γf ](t, x) = γ(t)f ′(x) .
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Chapter 3

Approximation

3.1 Time discretization

In section 2.3 we have derived the LP-formulation for the American lookback put

option (2.25). The first step in our numerical implementation is the finite discretiza-

tion of the time horizon [0, T ].

For this purpose, let nt be a sufficiently large number of time steps {t1, t2, . . . , tnt},
which are to be chosen equidistant in [0, T ].

For the time derivatives we choose a one-sided finite difference approach ( see e.g.

[7, chapter 5]) for the derivative over time. We can choose between either a forward

or a backward difference approach. If the velocity at a point is non-negative, then

we need to use a forward difference. If it is negative on the other hand, we have

to use backward difference. This scheme is called “upwind” approximation method.

As we move forward in time, we have to choose the forward-difference approach.
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So our lp-program (2.25) becomes

Maximize S0

nt∑
j=1

∫
(ex − 1)υτ (tj, dx)

Subject to γ(0)f(x0) =
nt∑
j=1

∫
[0,∞)

γ(tj)fυτ (tj, dx)

−
nt∑
j=1

∫
[0,∞)

Ã[γf ](tj, x)µ0(tj, dx)

−
nt∑
j=1

B̃[γf ](tj, 0)µ1(tj, 0)

∀ (γ, f) ∈ D,
υτ ∈ P ([0, T ]× [0,∞)) ,
µ0 ∈M ([0, T ]× [0,∞)) with total mass ≤ T,
µ1 ∈M ([0, T ]) ,

(3.1)

in which the generators Ã and B̃ are given by

Ã[γf ](tj, x) = γ(tj)

[
−(r +

σ2

2
)f ′(x) +

σ2

2
f ′′(x)

]
+
γ(tj+1)− γ(tj)

T/nt
f(x)

B̃[γf ](tj, x) = γ(tj)f
′(x) .

Since there are only finitely-many states in [0, T ], it is sufficient to use finitely-many

functions γi. A simple choice is the indicator function on the time steps γi(t) = Iti(t),
for all i = 1, . . . , nt. So the measures υτ , µ0 and mu1 have on the time axis only

mass on the time points t0 . . . tnt .
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With this choice for the γi, the lp-program (3.1) turns into

Maximize S0

nt∑
j=1

∫
(ex − 1)υτ (tj, dx)

Subject to Iti(0)f(x0) =
nt∑
j=1

∫
[0,∞)

Iti(tj)f(x)υτ (tj, dx)

−
nt∑
j=1

∫
[0,∞)

Ã[Itif ](tj, x)µ0(tj, dx)

−
nt∑
j=1

B̃[Itif ](tj, 0)µ1(tj, 0)

∀i ∈ {1, . . . , nt}∀ (γi, f) ∈ D,
υτ (tj, ·), µ0(tj, ·) ∈M ([0,∞)) ,
µ1(tj) ≥ 0 , j = 1, . . . , nt,
nt∑
j=1

υτ (tj, [0,∞)) = 1,

nt∑
j=1

µ0(tj, [0,∞)) ≤ T,

(3.2)

The generators ˜̃A and ˜̃B are

Ã[Itif ](tj, x) = Iti(tj)
[
−(r +

σ2

2
)f ′(x) +

σ2

2
f ′′(x)

]
+

Iti(tj+1)− Iti(tj)
T/nt

f(x),

B̃[Itif ](tj, x) = Iti(tj)f ′(x).

After simplifications we get as the martingale constraint in (3.2)

Iti(0)f(x0) =

∫
[0,∞)

f(x)υτ (ti, dx)−
∫

[0,∞)

nt
T
f(x)µ0(ti−1, dx)

−
∫

[0,∞)

([
−(r +

σ2

2
)f ′(x) +

σ2

2
f ′′(x)

]
− nt
T
f(x)

)
µ0(ti, dx)

−f ′(0)µ1(ti, 0)
∀i ∈ {1, . . . , nt}∀ (γi, f) ∈ D.
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In order to reduce the degree of the generators, we use partial integration for the

term

∫
([0,T ]×[0,∞))

A[γf ](t, x)µ0(dt× dx) from the Martingal-constraint

∫ ∞
0

σ2

2
f ′′(x)µ0(ti, x)dx =

[
σ2

2
f ′(x)µ0(ti, x)

∞
x=0

−
∫ ∞

0

σ2

2
f ′(x)

d

dx
µ0(ti, x)dx

=
σ2

2
f ′(∞)µ0(ti,∞)− σ2

2
f ′(0)µ0(ti, 0)

−
∫ ∞

0

σ2

2
f ′(x)

d

dx
µ0(ti, x)dx.

(3.3)

So with (3.3) the martingale-constraint in the lp-program (3.2) becomes

Iti(0)f(x0) =

∫
[0,∞)

f(x)υτ (ti, dx)−
∫

[0,∞)

nt
T
f(x)µ0(ti−1, dx)

−
∫

[0,∞)

(
−(r +

σ2

2
)f ′(x)− nt

T
f(x)

)
µ0(ti, dx)

−σ
2

2
f ′(∞)µ0(ti,∞) +

σ2

2
f ′(0)µ0(ti, 0) +

∫ ∞
0

σ2

2
f ′(x)

d

dx
µ0(ti, x)dx

−f ′(0)µ1(ti, 0)
∀i ∈ {1, . . . , nt}∀ (γi, f) ∈ D.

(3.4)

We presumed f has compact support, hence f ′(∞).

3.2 Finite elements in space

In the previous section 3.1 we discretized the time horizon [0, T ] into {t1, t2, . . . , tnt}.
Our next step is the truncation of the infinite-space [0,∞) into [0,M ] for a suffi-

ciently big M in order to create the approximation space for the numerical method.

With this truncation our measures and densities have mass only on [0,M ]. But due

to the normal distribution of the increments of the Brownian motion, the process

can exceed the border M with positive probability. Therefore we have to make sure,

that also our process stays in [0,M ].

We want to reflect the process at M so as to keep it bounded. We introduce the

new generator BM

BM [γf ](t, x) = −γ(t)f ′(x)
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with the reflection measure only having mass when x = M .

So the optimal stopping problem is

Maximize S0

∫
(ex − 1)υτ (dt× dx)

Subject to γ(0)f(x0) =

∫
([0,T ]×[0,M))

γ(t)f(x)υτ (dt× dx)

−
∫

([0,T ]×[0,M))

A[γf ](t, x)µ0(dt× dx)

−
∫

([0,T ]×{0})
B[γf ](t, 0)µ1(dt× dx)

+

∫
([0,T ]×{M})

BM [γf ](t,M)µ1(dt× dx)

∀ (γ, f) ∈ D,
υτ ∈ P ([0, T ]× [0,∞)) ,
µ0 ∈M ([0, T ]× [0,∞)) with total mass ≤ T,
µ1 ∈M ([0, T ]) .

(3.5)

So as in section 3.1 the martingale constraint in (3.5) becomes

Iti(0)f(x0) =

∫
[0,∞)

fυτ (ti, dx)−
∫

[0,∞)

nt
T
f(x)µ0(ti−1, dx)

−
∫

[0,∞)

(
−(r +

σ2

2
)f ′(x)− nt

T
f(x)

)
µ0(ti, dx)

+
σ2

2
f ′(0)µ0(ti, 0) +

∫ ∞
0

σ2

2
f ′(x)

d

dx
µ0(ti, x)dx

−f ′(0)µ1(ti, 0) + f ′(M)µ1(ti,M)
∀i ∈ {1, . . . , nt}∀ (γi, f) ∈ D.

(3.6)

With the results from section 3.1 we could limit our search for the densities and

measures υτ , µ0 and µ1 on ([0, T ] × [0,∞)) down to the discrete cases υiτ (x) :=

υτ (ti, x), µi0(x) := µ0(ti, x), µi1 := µ1(ti, 0) and µiM := µ1(ti,M) on ({ti} × [0,M ])

for all i ∈ {1, . . . nt} .

Now we seek the approximated densities υ1
τ . . . υ

nt
τ and µ1

0 . . . µ
nt
0 and point masses

µ1
1 . . . µ

nt
1 and µ1

M . . . µntM using only finitely-many elements.

For each tk we write

υkτ (x) = ak,0g0(x) + . . . ak,nsgns(x),
µk0(x) = bk,0g0(x) + . . . bk,nsgns(x),

µk1 = ck,
µkM = dk,
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Figure 3.1: Linear functions for ns = 2

where g0(x) . . . gns(x) are base functions.

Continuous, piecewise linear functions will be the class for those base functions. So

g0(x) . . . gns(x) will be of the form f0(x), fj(x) or fns(x), with

f0(x) =

 −
n

M

(
x− M

n

)
, x ∈

[
0,
M

n

]
,

0, otherwise,

fj(x) =


n

M

(
x− M

n
(j − 1)

)
, x ∈

[
(j − 1)

M

n
, j
M

n

]
,

− n

M

(
x− M

n
(j + 1)

)
, x ∈

[
j
M

n
, (j + 1)

M

n

]
,

0, otherwise,

fns(x) =


n

M

(
x− (n− 1)

M

n

)
, x ∈

[
(n− 1)

M

n
,M

]
,

0, otherwise.

Figure 3.1 is an example for M = 1 and ns = 2. With those base functions all

piecewise linear functions on the interval [0,M ] can be formed. With those new

base polynomials our maximizing function in the lp-program (3.2) becomes

Maximize S0

nt∑
j=1

ns∑
i=0

∫ M

0

(ex − 1)ajigi(x)dx,
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and the martingale-constraint from (3.4) is

Iti(0)f(0) =
ns∑
j=0

∫ M

0

f(x)ai,jgj(x)dx−
ns∑
j=0

∫ M

0

nt
T
f(x)bi−1,jgj(x)dx

−
ns∑
j=0

∫ M

0

(
−(r +

σ2

2
)f ′(x)− nt

T
f(x)

)
bi,jgj(x)dx

−
ns∑
j=0

σ2

2
f ′(M)bi,jgj(M) +

ns∑
j=0

σ2

2
f ′(0)bi,jgj(0)

+
ns∑
j=0

∫ M

0

σ2

2
f ′(x)bi,jg

′
j(x)dx− f ′(0)ci + f ′(M)di

∀i ∈ {1, . . . , nt}∀ (γi, f) ∈ D.

(3.7)

In the next step, we will replace f(x) in turns by the gj’s. So (3.7) becomes

Iti(0)gk(0) =
ns∑
j=0

∫ M

0

gk(x)ai,jgj(x)dx−
ns∑
j=0

∫ M

0

nt
T
gk(x)bi−1,jgj(x)dx

−
ns∑
j=0

∫ M

0

(
−(r +

σ2

2
)g′k(x)− nt

T
gk(x)

)
bi,jgj(x)dx

−
ns∑
j=0

σ2

2
g′k(M)bi,jgj(M) +

ns∑
j=0

σ2

2
g′k(0)bi,jgj(0)

+
ns∑
j=0

∫ M

0

σ2

2
g′k(x)bi,jg

′
j(x)dx− g′k(0)ci + g′k(M)di

∀i ∈ {1, . . . , nt}∀k ∈ {0, . . . , ns}.

Instead of searching for densities and measures, our problem reduces to finding the

maximizing factors a1,1 . . . ant,ns , b1,1 . . . bnt,ns , c1 . . . cnt and d1 . . . dnt .

Since υτ is a probability density, we get the additional constraint

nt∑
i=0

ns∑
j=0

∫ M

0

aijgj(x)dx = 1, (3.8)

and the time-space occupation measure µ0 is a finite measure with total mass ≤ T ,

therefore
nt∑
i=0

ns∑
j=0

∫ M

0

bijgj(x)dx ≤ T. (3.9)
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Chapter 4

Numerical Results

Based on the work derived until section 3.2 we will first implement a matrix version

of the previous lp problems and then show the numerical results. Since there exists

no closed form for the price of American Lookback options, the only waz to justify

the results is to compare it to previous works. For instance, the examples [1] and

[3] give a reference to justify the numbers.

4.1 Matrix Formulation

In this section we will implement the lp-program derived in chapter 2.

In order to tweak computations, we will try to formulate our lp-program in terms

of matrices. We start by rearranging terms

Iti(0)gk(0) =
ns∑
j=0

ai,j

∫ M

0

gk(x)gj(x)dx

−
ns∑
j=0

bi−1,j
nt
T

∫ M

0

gk(x)gj(x)dx

−
ns∑
j=0

bi,j

(∫ M

0

−(r +
σ2

2
)g′k(x)gj(x)dx− nt

T

∫ M

0

gk(x)gj(x)dx

)
+

ns∑
j=0

bi,j

(
σ2

2
g′k(0)gj(0)

)
+

ns∑
j=0

bi,j

∫ M

0

σ2

2
g′k(x)g′j(x)dx− cig′k(0) + dig

′
k(M)
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=
ns∑
j=0

(
ai,j −

nt
T
bi−1,j +

nt
T
bi,j

)∫ M

0

gk(x)gj(x)dx

−
ns∑
j=0

bi,j

(∫ M

0

−(r +
σ2

2
)g′k(x)gj(x)dx+

σ2

2
g′k(M)gj(M)

−σ
2

2
g′k(0)gj(0)−

∫ M

0

σ2

2
g′k(x)g′j(x)dx

)
−cig′k(0) + dig

′
k(M).

(4.1)

We define the matrices E and F as follows

Ekj =

∫ M

0

gk(x)gj(x)dx

Fjk =

∫ M

0

−(r +
σ2

2
)g′k(x)gj(x)dx− σ2

2
g′k(0)gj(0)

−
∫ M

0

σ2

2
g′k(x)g′j(x)dx.

Then we can rewrite (4.1) as vector products

Iti(0)gk(0) =
(
Ai,... −

nt
T
Bi−1,... +

nt
T
Bi,...

)
E...,k −Bi,...F...,k − Cig′k(0) +Dig

′
k(M),

with A = (aij)
nt,ns
i,j=1, B = (bij)

nt,ns
i,j=1, C = (ci)

nt
i=1 and D = (di)

nt
i=1.

The constraints (3.8) and (3.9) become

1 =
nt∑
i=0

ns∑
j=0

Aij

∫ M

0

gj(x)dx,

T ≥
nt∑
i=0

ns∑
j=0

Bij

∫ M

0

gj(x)dx ≥ 0.

(4.2)

4.2 American Lookback Put

We will examine a newly issued six-month American put option. As in [1] and [3]

we will assume a volatility σ = 0.2, an initial price S0 = 100 and an interest rate

r = 0.1. The problem files of the lp’s were written with MATLAB and they were

solved by CPLEX on a multyprocessor-system with 4 x Dual-Core UltraSPARC-

IV+, 1.8 GHz, 32 MB L2 Cache and 96 GB RAM working on Solaris 10.
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Time steps nt
ns 50 60 70 80 90 100
50 10.565765 10.591681 10.609761 10.623192 10.633930 10.642717
60 10.474508 10.499860 10.518057 10.531501 10.542473 10.551187
70 10.409084 10.434215 10.452588 10.466191 10.477007 10.485665
80 10.359970 10.385325 10.403425 10.417170 10.427864 10.436495
90 10.321679 10.347019 10.365201 10.379028 10.389539 10.398287
100 10.291223 10.316563 10.334742 10.348354 10.359051 10.367724

Table 4.1: Price

Time steps nt
ns 50 60 70 80 90 100
50 4500 8215 7321 5706 7575 9086
60 6219 6357 7427 9050 5605 7100
70 5946 8531 6022 6782 11225 20199
80 6638 9150 11646 6599 9423 10655
90 9262 6007 12621 14573 63871 19701
100 17835 14578 14037 17482 12813 21214

Table 4.2: Iterations

Time steps nt
ns 50 60 70 80 90 100
50 7.84 19.89 20.23 18.13 23.91 39.03
60 13.03 15.85 23.17 37.83 22.91 35.96
70 14.9 27.64 22.74 34.21 87.25 230.28
80 18.77 34.25 49.93 33.42 65.52 101.2
90 29.51 25.65 62.1 87.3 908.12 160.97
100 101.24 97.07 83.55 114.93 150.54 198.26

Table 4.3: Time in seconds
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Time steps nt
ns 50 100 200
50 10.236346 10.312639 10.682042
100 10.126262 10.202569
200 10.071213 10.146185
300 10.032130

Table 4.4: Price for M = 0.2

We will start by a brief sensitivity analysis. Tables 4.1, 4.2 and 4.3 show the results of

the computations with above assumptions and the limit for the state space M = 0.35

. Without surprise, with an increasing number of time steps and base functions,

more iterations are needed and hence the computations need more time.

With the number of time points fixed and the number of base functions increasing,

the price drops. So the limitation to linear base functions, leads to an overpricing

of the option. As we dense the time steps, the price increases. Hence, the error due

to time discretization underestimates the price of the option.

In the next step, we will decrease the limit M for the state space. With M = 0.2

and increased number of base functions and time steps, we observe the results as in

figures 4.4, 4.5 and 4.6.

In [1, Table 1], Babbs computes the price of an American lookback put option using

a binomial model. Her computations point out, that the price of the option should

be around $10.17. So with M = 0.35 we will overestimate the price as figure 4.1

shows for a small amount of time points and base functions. With M = 0.2 the

price is rather underestimated. Hence, the truncation of the state horizon leads to

an underestimation of the option.

In [3, Table I], Conze and Viswanathan derive an upper bound for the American

lookback option. For a put option with expiration six month, they found the upper

bound to be $14, 89 for. So for neither M = 0.2 nor M = 0.35 this upper bound is

violated.

In figure In figure 4.1 we observe the stopping probabilities υkτ . In figure 4.2 we
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Figure 4.1: Stopping probabilities for nt = 50 and ns = 50.
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Time steps nt
ns 50 100 200
50 2559 6046 10814
100 6171 7701
200 12563 12762
300 9204

Table 4.5: Iterations for M = 0.2

Time steps nt
ns 50 100 200
50 3.86 28.71 114.83
100 21.14 48.54
200 91.61 166.27
300 94.28

Table 4.6: Time in seconds for M = 0.2

observe the maximizing function

Maximize S0

nt∑
j=1

ns∑
i=0

∫ M

0

(ex − 1)ajigi(x)dx.

The timespace spreads from 0 to nt, where nt represents the end of the time horizon,

and the spacespace from 0 to ns, where ns represents the limit M . As time progresses

the areas with positive probabilities are closer to 0. At the beginning of the lifetime

of the option the possible payoff must be very high in order to make the execution

of the option attractive enough, because the holder of the option gives up on the

chance of achieving an even higher payoff. At maturity the option is exercised in

any case. Even if the stock price is equal to the running maximum and the quotient

Xt = ln(
Mt

St
) = 0.

As we introduced the running maximumin chapter 2, we included a preexisting

maximum M0 to allow more flexibility. So with M0 > S0 and hence X0 > 0, the

option can be interpreted as an option issued earlier. We set M0 = 110 and choose

nt = 50 and ns = 50. Figure 4.7 shows the price. The probabilities curve looks in

shape exactly the same as before. The probabilities are shifted towards option-start

and the upper part of the space horizon.
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Figure 4.2: Maximising function
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Price Iteration Time
12.644335 2659 4,03 sec

Table 4.7: Option with M0 > S0

We can interpret this as that since the maximum starts up higher, exercising early

becomes more attractive.

As we compare the results of this chapter to, for instance, [1], we see that when we

increase only the amount of timepoints, or base functions, the price will wander off.

We need to increase both of them to get better results. Also, the linear programming

approach does not seem to be very efficient when we just want to get the price of

the option. Babbs got in her work results in way less time and Iterations. But her

binomial approach can only show the price of the option. Our approach not only

computes the price, but also the stopping probabilities.
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Figure 4.3: Stopping probabilities for M0 = 110
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Figure 4.4: Maximising function
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Chapter 5

Conclusion

After we introduced the model and described the character of lookback options, the

next step was to reduce the dimension odf the problem. We showed that the loga-

rithm of the ratio of maximum/ minimum and stock price is more feasible. Next,

we translated the problem into an LP. Since we are not able to consider the infinite

time-state space,we have to apply approximations.

Our first step was to disretize the time space and in a second step, we limited the

problem to only piecewise linear functions to approximate the test functions.

We reformulated the LP with above approximations and rewrote it in terms of ma-

trices and vectors. This was followed by the numerical results of the computations.

We were able to present the price of newly issued American options, together with

the resulting probabilities.

We examined the impact of increasing numbers of base functions and time points.

With the number of time points fixed and the number of base functions increasing,

the price drops. So the limitation to linear base functions, leads to an overpricing

of the option. As we dense the time steps, the price increases. Hence, the error due

to time discretization underestimates the price of the option.

Also, the effect of different truncations of the state space was presented. The chapter

about numerical results ended with an example of an earlier issued option. So we

tried to price an option during its lifetime, instead of prior to the life of the option.

The linear programming approach does not seem to be very efficient when we just
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want to get the price of the option. Babbs got in her work results in much less time

and iterations. But her binomial approach can only show the price of the option.

Our approach not only computes the price, but also the stopping probabilities.
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