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Abstract

SOME RESULTS ON PSEUDO-COLLAR STRUCTURES ON
HIGH-DIMENSIONAL MANIFOLDS

by

Jeffrey Joseph Rolland

The University of Wisconsin-Milwaukee, 2015
Under the Supervision of Prof. Craig R. Guilbault

In this paper, we provide expositions of Quillen’s plus construction for high-dimensional

smooth manifolds and the solution to the group extension problem. We then develop

a geometric procedure due for producing a “reverse” to the plus construction, a con-

struction called a semi-s-cobordism. We use this reverse to the plus construction

to produce ends of manifolds called pseudo-collars, which are stackings of semi-h-

cobordisms. We then display a technique for producing “nice” one-ended open man-

ifolds which satisfy two of the necessary and sufficient conditions for being pseudo-

collarable, but not the third. Finally, we recall a different, but very difficult to enact

in practice, procedure due to J.-C. Hausmann and P. Vogel which enumerates the

class of all semi-s-cobordisms for a given closed manifold, but does not tell when this

set is non-empty. We show a connection between Hausmann-Vogel’s technique for

producing semi-s-cobordisms and our technique for producing semi-s-coborisms.
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Chapter 1

INTRODUCTION

1.1 Informal Overview and Historical Motivation

We work in the category of smooth manifolds, but all our results apply equally well

to the categories of PL and topological manifolds. The manifold version of Quillen’s

plus construction provides a way of taking a closed smooth manifold M of dimension

n ≥ 5 whose fundamental group G = π1(M) contains a perfect normal subgroup P

which is the normal closure of a finite number of elements and producing a compact

cobordism (W,M,M+) to a manifold M+ whose fundamental group is isomorphic to

Q = G/P and for which M+ ↪ W is a simple homotopy equivalence. By duality,

the map f ∶ M → M+ given by including M into W and then retracting onto M+

induces an isomorphism f∗ ∶ H∗(M ;ZQ) → H∗(M+;ZQ) of homology with twisted

coefficients. By a clever application of the s-Cobordism Theorem, such a cobordism

is uniquely determined by M and P (see [7] P. 197).

In “Manifolds with Non-stable Fundamental Group at Infinity I” [10], Craig Guilbault

outlines a structure to put on the ends of an open smooth manifold N with finitely

many ends called a pseudo-collar, which generalizes the notion of a collar on the end of
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a manifold introduced in Siebenmann’s dissertation [34]. A pseudo-collar is defined

as follows. Recall that a manifold Un with compact boundary is an open collar if

Un ≈ ∂Un × [0,∞); it is a homotopy collar if the inclusion ∂Un ↪ Un is a homotopy

equivalence. If Un is a homotopy collar which contains arbitrarily small homotopy

collar neighborhoods of infinity, then we call Un a pseudo-collar. We say that an open

n-manifold Nn is collarable if it contains an open collar neighborhood of infinity, and

that Nn is pseudo-collarable if it contains a pseudo-collar neighborhood of infinity.

Each pseudo-collar admits a natural decomposition as a sequence of compact cobor-

disms (W,M,M−), where W is a semi-h-cobordism (see Definition 1.1.2 below). It

follows that the cobordism (W,M−,M) is a one-sided h-cobordism (a plus cobordism

if the homotopy equivalence is simple). (This somewhat justifies the use of the symbol

“M−” for the right-hand boundary of a semi-h-cobordism, a play on the traditional

use of M+ for the right-hand boundary of a plus cobordism.)

The general problem of a reverse to Quillen’s plus construction in the high-dimensional

manifold category is as follows.

Problem 1.1.1 (Reverse Plus Problem). Suppose G and Q are finitely-presented

groups and Φ ∶ G↠ Q is an onto homomorphism with ker(Φ) perfect. Let Mn (n ≥ 5)

be a closed smooth manifold with π1(M) ≅ Q.

Does there exist a compact cobordism (W n+1,M,M−) with

1 - ker(ι#) - π1(M−)
ι#- π1(W ) - 1

equivalent to
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1 - ker(Φ) - G
Φ
- Q - 1

and M ↪W a (simple) homotopy equivalence.

Notes:

� The fact that G and Q are finitely presented forces ker(Φ) to be the normal

closure of a finite number of elements. (See, for instance, [10] or [34].)

� Closed manifolds Mn (n ≥ 5) in the various categories with π1(M) isomorphic

to a given fintely presented group Q always exist. In the PL category, one can

simply take a presentation 2-complex for Q, K, embed K in Sn+1, take a regular

neighborhood N of K in Sn+1, and let M = ∂N . Similar procedures exist in the

other categories.

The following terminology was first introduced in [16].

Definition 1.1.2 (1-Sided e-Cobordism). Let Nn be a compact smooth manifold. A

1-sided e-cobordism (W,N,N−) is a cobordism so that N ↪ W is a homotopy

equivalence (necessarily simple if e = s and not necessarily simple if e = h). [A 1-sided

e-cobordism (W,N,N−) is so-named presumably because it is “half an e-cobordism”].

One wants to know under what circumstances 1-sided e-cobordisms exists, and, if

they exists, how many there are.

There are some cases in which 1-sided s-cobordisms are known not to exist. For

instance, if P is fintely presented and perfect but not superperfect, Q = ⟨e⟩, and

M = Sn, then a solution to the Reverse Plus Problem would produce an M− that is
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a homology sphere. But it is a standard fact that a manifold homology sphere must

have a a superperfect fundamental group! (See, for instance, [23].) (The definition of

superperfect will be given in Definition 3.1.1.)

The key point is that the solvability fo the Reverse Plus Problem depends not just

upon the group data, but also upon the manifold M with which one begins. For

instance, one could start with a group P which is finitely presented and perfect but

not superperfect, let N− be a manifold obtained from the boundary of a regular

neighborhood of the embedding of a presentation 2-complex for P in Sn+1, and let

(W,N−,N) be the result of applying Quillen’s plus construction to to N− with respect

to all of P . Then again Q = ⟨e⟩ and Φ ∶ P ↠ Q but N clearly admits a semi-s-

cobordism, namely (W,N,N−) (however, of course, we cannot have N a sphere or N−

a homology sphere).

Hausmann and Vogel’s work in [16], [17], and [18] provides a partial solution to the

Reverse Plus Problem in the case the kernel group is locally perfect, that is, when every

element of the kernel group is contained in a finitely generated perfect subgroup. They

set up an obstruction theory which puts solutions to a given Reverse Plus Problem

in one-to-one correspondence with a carefully defined collection of maps {XM ,BG+}.

So, the Reverse Plus Problem asks whether this set is non-empty for a specific set of

initial data. (As noted above, the set {XM ,BG+} may well be empty.) Our Theorem

1.2.1 bypasses their theory and gives a direct method for constructing a solution to

the Reverse Plus Problem in certain stiuations. Their theory was unknown to us at

the time we proved Theorem 1.2.1, but, in retrospect, our result can be viewed as

a proof that their classifying set is non-empty in certain situations - an issue which

they addressed in only a few select cases.

Per [6], the group G = ⟨x, y, t ∣ y = [y, yx], txt−1 = y⟩ admits a subgroup H = ⟨x, y ∣ y =
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[y, yx]⟩ with the properties that the normal closure of H in G, ncl(H;G), is perfect,

G/ncl(H;G) ≅ Z, and that no finitely generated subgroup of ncl(H;G) contains a

non-trivial perfect subgroup. So, ncl(H;G) is perfect but not locally perfect. Thus,

there are instances of the Reverse Plus Problem to which Hausmann and Vogel’s work

does not apply at all. Unfortunatly, Theorem 1.2.1 does not apply to these instances,

either.

1.2 Statements of the Main Results

Theorem 1.2.1 (Existence of 1-sided s-cobordisms). Given 1 → S → G → Q → 1

where S is a finitely presented superperfect group, G is a semi-direct product of Q

by S, and any n-manifold N with n ≥ 6 and π1(M) ≅ Q, there exists a solution

(W,N,N−) to the Reverse Plus Problem for which N ↪ W is a simple homotopy

equivalence.

One of the primary motivations for Theorem 1.2.1 is that it provides a “machine” for

constructing interesting pseudo-collars. As an application, we use it to prove:

Theorem 1.2.2 (Uncountably Many Pseudo-Collars on Closed Manifolds with the

Same Boundary and Similar Pro-π1). Let Mn be a closed smooth manifold (n ≥ 6)

with π1(M) ≅ Z and let S be the fintely presented group V ∗V , which is the free preduct

of 2 copies of Thompson’s group V . Then there exists an uncountable collection of

pseudo-collars {Nn+1
ω ∣ ω ∈ Ω}, no two of which are homeomorphic at infinity, and

each of which begins with ∂Nn+1
ω =Mn and is obtained by blowing up countably many

times by the same group S. In particular, each has fundamental group at infinity that

may be represented by an inverse sequence



1.3. Notation 6

Z ��
α1

G1
��
α2

G2
��
α3

G3
��
α4

. . .

with ker(αi) = S for all i.

As noted above, our work allows the construction of a wide variety of pseudo-collars.

In a related but different direction, we expand upon an example by Guilbault and

Tinsley found in [12], by describing a procedure for constructing a wide variety of very

nice ends which nevertheless do not admit pseudo-collar structures. More specifically,

we prove:

Theorem 1.2.3 (Existence of Non-Pseudo-Collarable “Nice” Manifolds). Let Mn be

an orientable, closed manifold (n ≥ 6) such that π1(M) contains an element t0 of

infinite order and π1(M) is hypo-Abelian (defined in Section 5.1). Then there exists

a 1-ended, orientable manifold W n+1 with ∂W =M in which all clean neighborhoods

of infinity have finite homotopy type, but which does not have perfectly semistable

fundamental group at infinity. Thus, W n+1 is absolutely inward tame but not pseudo-

collable.

1.3 Some Notational Conventions

Throughout, N denotes the set of natural numbers (note 0 ∈ N), Z denotes the integers,

Q denotes the rational numbers, R denotes the real numbers, and C denotes the

complex numbers.

I is the closed unit interval [0,1]. Dn = {x ∈ Rn ∣ ∣∣x∣∣ ≤ 1} is the n-disk. Sn = ∂Dn+1 is

the n-sphere.
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Zn denotes the integers mod n. Fpn denotes the field with pn elements, p a prime.
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Chapter 2

THE PLUS CONSTRUCTION

FOR HIGH DIMENSIONAL

MANIFOLDS AND THE

SOLUTION TO THE GROUP

EXTENSION PROBLEM

In this chapter, we present an overview of the plus construction and the solution to

the group extension problem. Neither of these constructions are original work due to

the author; they are, however, fundamental background material necessary for under-

standing the author’s work. 1-sided s-cobordisms have the property that, when read

in one direction (sometimes called “semi-s-cobordisms”) are “reverse plus construc-

tions”, but when read in the other direction are “forward” plus constructions, so we

provide some information on 1-sided s-cobordisms, as well as 1-sided h-cobordisms.

Also, solving the group extension problem, as well as some of the subtleties involved



2.1. Review of The Plus Construction 9

in solving the group extension problem (such as the distinction between a semi-direct

product and other solutions utilizing the same abstract kernel), are crucial to under-

standing the author’s work on a reverse to the plus construction, so some information

on the solution to the group extention problem is included. The reader familiar with

both of these techniques may safely skip this chapter.

2.1 Review of The Plus Construction in High Di-

mensions

In this section, we give an exposition of the Manifold Plus Construction in High

Dimensions. The Plus Construction is a well-known and important work originally

due to Quillen in [29]. The manifold version is a bit more complicated, due to framing

issues, and seems to be a part of the folklore: see [14].

Theorem 2.1.1 (The Manifold Plus Construction in High-Dimensions). Let Mn be a

closed smooth manifold of dimension n ≥ 5 such that G = π1(M,⋆) contains a perfect

normal subgroup P which is normally generated in G by a finite number of elements.

Let Φ ∶ G → Q = G/P be the quotient map. Then there is a compact cobordism

(W,M,M+) to a manifold M+ with the following properties:

� the short exact sequence

1 - ker(ι#) - π1(M−)
ι#- π1(W ) - 1

is equivalent to
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1 - P - G
Φ
- Q - 1

� the inclusion ι ∶M+ ↪W is a simple homotopy equivalence

� the map f ∶M →M+ given by including M into W and then retracting W onto

M+ induces an isomorphism f∗ ∶ H∗(M ;ZQ) → H∗(M+;ZQ) of homology with

twisted coefficients

� The manifold M+ is unique up to a diffeomorphism, and W is unique up to a

diffeomorphism rel M and M+.

Next, we turn our attention to the functoriality of the plus construction. Our basic

approach is based upon [24], adopted for the manifold categories.

Theorem 2.1.2. Let Mn be a closed smooth manifold of dimension n ≥ 5 such that

G = π1(M,⋆) contains a perfect normal subgroup P which is normally generated in G

by a finite number of elements. Suppose Nn is a closed smooth manifold and there is

a smooth map f ∶ M → N such that f#(P ) = ⟨e⟩ ≤ π1(N). Then there are smooth

maps ιM ∶M →M+ and f+ ∶M+ → N such that f = f+ ○ ιM

Corollary 2.1.3 (The Plus Construction is Functorial). Given smooth manifolds M

and N and a smooth map f ∶M → N , suppose there are perfect normal subgroups P of

G = π1(M) and P ′ of G′ = π1(N) such that P and P ′ are normally finitely generated

in G and G′ respectively and f#(P ) ≤ P ′. Then there are smooth maps ιM ∶M →M+,

ιN ∶ N → N+, and f+ ∶ M+ → N+ such that f+ ○ ιM = ιN ○ f , where M+ is the result

of the plus construction applied to M with respect to P and N+ the result of the plus

construction applied to N with respect to P ′.
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Definition 2.1.4. A cobordism (W,M,M+) or (W,M+,M) is a 1-sided h-cobordism

if M+ ↪ W is a homotopy equivalanence. A cobordism (W,M,M+) or (W,M+,M)

is a 1-sided s-cobordism if M+ ↪W is a simple homotopy equivalanence.

Definition 2.1.5. Let (W,M,M+) or (W,M+,M) be a 1-sided s-cobordism. Then

(W,M+,M) is called a semi-s-cobordism (although this term isn’t used much in

the modern literature) and (W,M,M+) is called a plus cobordism.

There is an analog of the Plus Construction in the CW complex category; see, for

instance, Proposition 4.40 on page 374 in [15] and its generalization in the paragraph

immediately following the proof. We state this generalization for completeness.

Theorem 2.1.6. Let X be a connected CW complex with P ≤ π(X) a perfect sub-

group. Then there is a CW complex X+ with π(X+) ≅ π1(X)/P and a map f ∶X →X+

inducing a quotient map on fundamental groups and isomorphisms on all homology

groups with ZQ coefficients.

2.2 Review of The Solution to the Group Exten-

sion Problem

In this section, we give an exposition of the Group Extension Problem. The following

presentation of the solution to the Group Extension Problem is based upon [26]

Chapter IV, section 8; the reader is referred there for more details. We include this

presentation for completeness.

Definition 2.2.1. Let K and Q be given groups. We say that a group G solves the

group extension problem for Q and K or that G is an extension of Q by K [WARNING:

some authors use the reverse terminology and say G is an extension of K by Q] if

there exists a short exact sequence
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1 - K
ι
- G

σ
- Q - 1

Let Aut(K) denote the automorphism group of K. Define µ ∶ K → Aut(K) to be

µ(k)(k′) = kk′k−1. Then the image of µ in Aut(K) is called the inner automorphism

group of K, Inn(K). The inner automorphism group of a group K is always normal

in Aut(K). The quotient group Aut(K)/Inn(K) is called the outer automorphism

group Out(K). The kernel of µ is called the center of K, Z(K); it is the set of all

k ∈K such that for all k′ ∈K,kk′k−1 = k′. One has the exact sequence

1 - Z(K) - K
µ
- Aut(K) α

- Out(K) - 1

Two group extensions 1 → K → G → Q → 1 and 1 → K → G′ → Q → 1 are said to be

congruent if and only if there is an isomorphism γ ∶ G → G′ such that the following

diagram commutes:

1 - K
ι
- G

σ
- Q - 1

1

=

?
- K

=

? ι′
- G′

γ

? σ′
- Q

=

?
- 1

=

?

Any group extension of Q by K, 1 → K → G → Q → 1, determines a homomorphism

θ ∶ G→ Aut(K) determined by conjugation: θ(g)(k′) = ι−1(gι(k′)g−1), if ι ∶K → G is
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the inclusion map. Note this is well-defined, as gι(k′)g−1 ∈ ι(K), as ι(K) is normal in

G. Let ξ ∶ Aut(K) → Out(K) denote the projection map. Note ι(K) ⊆ ker(ξ ○ θ), as

follows. First, observe θ(ι(k))(k′) = ι−1(ι(k)ι(k′)ι(k)−1) = kk′k−1 = µ(k)(k′) meaning

θ○ ι = µ. Next, see that, since µ(K) = Inn(K), we have (ξ ○θ)(ι(K)) = ξ((θ○ ι)(k)) =

ξ(µ(K)) = ξ(Inn(K)) = < e >. Therefore, as ker(σ) = ι(K) ⊆ ker(ξ ○ θ), we have a

derived homomorphism ψ ∶ Q→ Out(K).

So, any group extension determines a homomorphism ψ ∶ Q→ Out(K). We call such

a homomorphism an outer action of Q on K. The homomorphism ψ records the way

in which K appears as a normal subgroup of G. A pair of groups K and Q together

with an outer action ψ of Q on K is called an abstract kernel.

The general problem of group extensions is to classify all group extensions up to

congruence. Note that congruent extensions determine the same outer action.

Theorem 2.2.2 (Obstructions to Group Extensions). Given a abstract kernel (Q,K,ψ),

interpret the center of K, Z(K), as a Q-module, with the action q.z = φ(q)(z) for

any choice of automorphism φ ∶ K → K with φ ⋅ Inn(K) = ψ. Then we may as-

sign a cohomology class which vanishes if and only if (Q,K,ψ) gives rise to a group

extension.

Theorem 2.2.3 (Classification of Group Extensions). If an abstract kernel (Q,K,ψ)

has 0 obstruction, then the set of congruence classes of extensions with abstract kernel

(Q,K,ψ) is in bijective correspondence with the set H2(Q;Z(K)), where Z(K) has

the module structure given in Theorem 2.3.7. This correspondence associates the

0 ∈ H2(Q;Z(K)) with the semi-direct product of Q by K with the given outer action

(see below).

It is important to note that this theorem only classifies group extensions up to con-

gruence, not isomorphism. That is to say, two group extensions G and G′ may use
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the same abstract kernel but different elements of H2(Q;Z(K)) and therefore would

not be congruent, but may still be isomorphic as groups. Indeed, it is theoretically

possible that two group extensions may use different abstract kernels and still give

rise to isomorphic extensions.

Definition 2.2.4. A semi-direct product of Q by K, G = K ⋊ Q, is a group

extension of Q by K which splits, that is, for which there exist homomorphisms j ∶

G→K and k ∶ Q→ G such that ι ○ j = idK and k ○ σ = idQ.

Remark 2.2.5. The semi-direct product is the most basic group extension of Q by

K for any given outer action ψ of Q on K; H2(Q;Z(K)) acts on the semi-direct

product for the given outer action and permutes it to any other group extension. The

semi-direct product for a given outer action ψ is the only group extension that has

an isomorphic copy of Q living inside G with an embedding k ∶ Q → G satisfying

k ○ σ = idQ.

Theorem 2.2.6 (Normal Form for Semi-Direct Products). Here we are viewing K

and Q as subgroups of G. Let G = K ⋊Q, where K is generated by {α1, α2, . . .}, Q

is generated by {β1, β2, . . .}, and ψ ∶ Q → Out(K) is the outer action. Then each

element of G admits a normal form as a product of generators of Q and K where all

the generators of K are on the left and all the generators of Q are on the right.

Proof Proof is by double induction on the number of generators of Q not all on

the right and the number of generators of K between the collection of generators of

Q entirely on the right and the first generator of Q not entirely on the right in a given

representation of g ∈ G.

First, suppose there is one generator of Q separated from the collection of generators

of Q entirely on the right and there is one generator of K separating this generator

of Q from the collection of generators of Q entirely on the right. Then we have
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g = αi1 ⋅ . . . ⋅ αip ⋅ βj ⋅ αi ⋅ βj1 ⋅ . . . ⋅ βjq . Then βj ⋅ αi ⋅ β−1
j = ψ(βj)(αi), which implies

βj ⋅ αi = ψ(α)(βj) ⋅ βj. Thus g = αi1 ⋅ . . . ⋅ αip ⋅ ψ(α)(βj) ⋅ βj ⋅ βj1 ⋅ . . . ⋅ βjq , and g admits

a normal form. This establishes the basis case for the second induction.

Suppose the inductive hypothesis for the second induction; that is, suppose whenever

there is one generator of Q separated from the collection of generators of Q entirely

on the right and there are m− 1 generators of K separating this generator of Q from

the collection of generators of Q entirely on the right, then this element of G admits

a normal form where all the generators of K come first and all the generators of Q

come last. Now, suppose there is one generator of Q separated from the collection of

generators of Q entirely on the right and there are m generators of K separating this

generator of Q from the collection of generators of Q entirely on the right. Then we

have g = αi1 ⋅ . . . ⋅αip ⋅βj1 ⋅ . . . ⋅βjm ⋅αi ⋅βjm+1 ⋅ . . . ⋅βjm+q . Then βjm ⋅αi ⋅β−1
Jm

= ψ(βjm)(αi),

which implies βjm ⋅αi = ψ(βjm)(αi)⋅βjm . Thus g = αi1 ⋅. . .⋅αip ⋅βj1 ⋅. . .⋅βjm−1 ⋅ψ(αi)(βjm)⋅

βjm ⋅ . . . ⋅ βjm+q , and g admits a normal form. This establishes the inductive step for

the second induction.

This also establishes the base case for the first induction.

Now, suppose the inductive hypothesis for the first induction; that is, suppose that

whenever g ∈ G has a representation where there are n − 1 generators of Q separated

from the collection of generators of Q entirely on the right and there are m generator

of K separating the generator of Q closest to the collection of generators of Q entirely

on the right, then this element of G admits a representation with n − 1 generators of

Q separated from the collection of generators of Q entirely on the right and there are

(m − 1) + l generators of K separating the generator of Q closest to the collection of

generators of Q entirely on the right for some natural number l. Suppose that g ∈ G

has a representation where there are n generators of Q separated from the collection
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of generators of Q entirely on the left and there are m generator of K separating the

generator of Q closest to the collection of generators of Q entirely on the left. Then

we have g = αi1 ⋅ . . . ⋅αip ⋅βj1 ⋅ . . . ⋅βjm ⋅αi ⋅βjm+1 ⋅ . . . ⋅βjm+q . Then βjm ⋅αi ⋅β−1
jm

= ψ(βjm)(αi),

which implies βjm ⋅αi = ψ(βjm)(αi)⋅βjm . Thus g = αi1 ⋅. . .⋅αip ⋅βj1 ⋅. . .⋅βjm−1 ⋅ψ(βjm)(αi)⋅

βjm ⋅ βjm+1 ⋅ . . . ⋅ βjm+q , and g admits a normal form.

Corollary 2.2.7 (Presentations for Semi-Direct Products). Let G = K ⋊ Q, where

K is presented by {α1, α2, . . . , ∣r1, r2, . . .} and Q is presented by {β1, β2 . . . , ∣s1, s2, . . .}.

Then G admits a presentation as

G ≅ ⟨αi, βj ∣rk, sl, βjαi(ψ(βj)(αi))−1⟩ (2.2.1)

where ψ is the outer action and each ψ(βi)(αj) is a word in the αj’s

Proof Since by Corollary 2.2.6, each word has a unique normal form given by

sliding all the α’s to the left and all the β’s to the right, the slide relators, as well as

the defining relators from each group, are relators in the semi-direct product. Since

each word can be put in normal form using only these relators, there is a presentation

using only these relators.

Remark 2.2.8. A relator βiαjβ−1
i (ψ(βi)(αj))−1 is sometimes called a slide relator,

and the word ψ(βi)(αj) represents “the price for moving βi across αj”. Note that

in a direct product, we have the trivial outer action of Q on K, and so we have

ψ(βi)(αj) = αj; there is, in some sense, no price to pay for sliding an element of

the quotient group across an element of the kernel group - the two groups commute.

Semi-direct products are like direct products, except that there is a price to pay for

sliding a quotient group element across a kernel group element.



17

Chapter 3

A GEOMETRIC REVERSE TO

THE PLUS CONSTRUCTION IN

HIGH DIMENSIONS

3.1 A Handlebody-Theoretic Reverse to the Plus

Construction

In this section, we will describe our partial solution to the Reverse Plus Problem. Our

solution applies to superperfect (defined in Definition 3.1.1 below), finitely presented

kernel groups. Also, our solution applies to the case that the total group G of the

group extension 1 → K → G → Q → 1 is a semi-direct product (defined in Definition

2.2.4 above). This is an important special case of a hard problem.

It is, however, we believe, easy to use and easy to understand. We feel that in the

situations where our solution applies (superperfect, finitely presented kernel group

and semi-direct product for the total group of the group extension), we have reduced
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the topological problem of solving the Reverse Plus Problem to an algebraic problem

of computing a semi-direct product of two groups Q and K by identifying an outer

action of Q on K; this is supposed to be the goal of algebraic topology in general.

Definition 3.1.1. A group G is said to be superperfect if its first two homology

groups are 0, that is, if H1(G) =H2(G) = 0. (Recall a group is perfect if and only if

its first homology group is 0.)

Example 3.1.2. A perfect group is superperfect if it admits a finite, balanced presen-

tation, that is, a finite presentation with the same number of generators as relators.

(The converse for finitely presented superperfect groups is false.)

Lemma 3.1.3. Let S be a superperfect group. Let K be a cell complex which has

fundamental group isomorphic to S. Then all elements of H2(K) can be killed by

attaching 3-cells.

Proof By Proposition 7.1.5 in [8], there is a K(S,1) which is formed from K

by attaching cells of dimension 3 and higher. Let L be such a K(S,1). Then L3

is formed from K2 by attaching only 3-cells, and H2(L3) ≅ H2(L), as L is formed

from L3 by attaching cells of dimension 4 and higher, which cannot affect H2. But

H2(L) ≅ H2(S) by definition and H2(S) ≅ 0 by hypothesis. Thus, all elements of

H2(K) can be killed by attaching 3-cells.

Lemma 3.1.4 (Equivariant Attaching of Handles). Let Mn be a smooth manifold,

n ≥ 5, with M one boundary component of W with π1(M) ≅ G. Let P ⊴ G and

Q = G/P . Let M be the cover of M with fundamental group P and give H∗(M ;Z) the

structure of a ZQ-module. Let 2k + 1 ≤ n and let S be a finite collection of elements

of Hk(M ;Z) which all admit embedded spherical representatives which have trivial

tubular neighborhoods. If k = 1, assume all elements of S represent elements of P .

Then one can equivariantly attach (k + 1)-handles across S, that is, if S =
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{sj,q ∣ q ∈ Q} is the collection of lifts of elements of S to M , one can attach (k + 1)-

handles across tubular neighborhoods of the sj,q so that each lift sj,q projects down

via the covering map p to an element sj of S and so that the covering map extends

to send each (k + 1)-handle Hj,q attached across a tubular neighborhood of sj,q in M

bijectively onto a handle attached across the projection via the covering map of the

tubular neighborhood of the element sj in M .

Proof Hk(M ;Z) has the structure of a ZQ-module. The action of Q on S per-

mutes the elements of S. For each embedded sphere sj in S, lift it via its inverse

images under the covering map to a pairwise disjoint collection of embedded spheres

sj,q. (This is possible since a point of intersection or self-intersection would have

to project down to a point of intersection or self-intersection (respectively) by the

evenly-covered neighborhood property of covering spaces.) The sj,q all have trivial

tubular neighborhoods. Attach an (k + 1)-handle across the tubular neighborhood of

the elements sj of the S. For each j ∈ {1, . . . , ∣S∣} and q ∈ Q attach an (k + 1)-handle

across the spherical representative sj,q; extend the covering projection so it projects

down in a bijective fashion from the handle attached along sj,q onto the handle we

attached along sj.

Lemma 3.1.5. Let A,B, and C be R-modules, with B a free R-module (on the basis

S), and let Θ ∶ A⊕B → C be an R-module homomorphism. Suppose Θ∣A is onto.

Then ker(Θ) ≅ ker(Θ∣A)⊕B.

Proof Define φ ∶ ker(Θ∣A)⊕B → ker(Θ) as follows. For each s ∈ S, where S is a

basis for B, choose α(s) ∈ A with Θ(α(s),0) = Θ(0, s), as Θ∣A is onto. Extend α to

a homomorphism from B to A, and note that α has the same property for all b ∈ B.

Then set φ(x, b) = (x − α(b), b).

(Well-defined) Let x ∈ ker(Θ∣A) and b ∈ B. Then Θ(φ(x, b)) = Θ(x − α(b), b) =
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Θ(x,0) +Θ(−α(b),0) +Θ(0, b) = 0 + −Θ(α(b),0) +Θ(0, b) = 0 + −Θ(0, b) +Θ(0, b) = 0.

So, φ is well-defined.

Define ψ ∶ ker(Θ) → ker(Θ∣A)⊕B by ψ(z) = (π1(z) + α(π2(z)), π2(z)), where π1 ∶

A⊕B → A and π2 ∶ A⊕B → B are the canonical projections.

(Well-defined) Let z ∈ ker(Θ). It is clear that π2(z) ∈ B, so it remains to prove that

π1(z) + α(π2(z)) ∈ ker(Θ∣A). [Note Θ(z) = Θ∣A(π1(z)) +Θ∣B(π2(z)) ⇒ Θ∣A(π1(z)) =

−Θ∣B(π2(z)). Note also, by definition of α, Θ(α(π2(z))) = Θ(0, π2(z))]. We compute

Θ∣A(π1(z) + α(π2(z))) = Θ∣A(π1(z)) + Θ(α(π2(z))) = −Θ∣B(π2(z)) + Θ(0, π2(z)) =

−Θ(0, π2(z)) +Θ(0, π2(z)) = 0. So, ψ is well-defined.

(Homomorphism) Clear.

(Inverses) Let (x, b) ∈ ker(Θ∣A)⊕B. The ψ(φ(x, b)) = ψ(x−α(b), b) = (π1(x−α(b), b)+

α(π2(x − α(b), b)), π2(x − α(b), b)) = (x − α(b) + α(b), b) = (x, b).

Let z ∈ ker(Θ). Then φ(ψ(z)) = φ(π1(z) + α(π2(z)), π2(z)) = (π1(z) + α(π2(z)) −

α(π2(z)), π2(z)) = (π1(z), π2(z)) = z.

So, φ and ψ are inverses of each other, and the lemma is proven.

Definition 3.1.6. A k-handle is said to be trivially attached if and only if it is

possible to attach a canceling k + 1-handle.

Here is our solution to the Reverse Plus Problem in the high-dimensional manifold

category.

Theorem 1.2.1(An Existence Theorem for Semi-s-Cobordisms). Given 1 → S →

G → Q → 1 where S is a finitely presented superperfect group, G is a semi-direct
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product of Q by S, and any closed n-manifold N with n ≥ 6 and π1(N) ≅ Q, there

exists a solution (W,N,N−) to the Reverse Plus Problem for which N ↪W is a simple

homotopy equivalence.

Proof Start by taking N and crossing it with I. Let Q ≅ ⟨α1, . . . , αk1 ∣r1, . . . , rl1⟩ be

a presentation for Q. Let S ≅ ⟨β1, . . . , βk2 ∣s1, . . . , sl2⟩ be a presentation for S. Take a

small n-disk D inside of N × {1}. Attach a trivial 1-handle h1
i for each βi in this disk

D. Note that because they are trivially attached, there are canceling 2-handles k2
i ,

which may also be attached inside the disk together with the 1-handles D∪{h1
i }. We

identify these 2-handles now, but do not attach them yet. They will be used later.

Attach a 2-handle h2
j across each of the relators sj of the presentation for S in the

disk together with the 1-handles D ∪{h1
i }, choosing the framing so that it is trivially

attached in the manifold that results from attaching h1
i and k2

i (although we have not

yet attached the handles k2
i ). Note that because they are trivially attached, there are

canceling 3-handles k3
j , which may also be attached in the portion of the manifold

consisting of the disk D together with the 1-handles {h1
i } and the 2-handles {k2

i }. We

identify these 3-handles now, but do not attach them yet. They will be used later.

By Corollary 2.2.7, let

G ≅⟨α1, . . . , αk1 , β1, . . . , βk2 ∣r1, . . . , rl1 , s1, . . . , sl2 , βjαi(ψ(βj)(αi))−1⟩ (3.1.1)

be a presentation forG. Attach a 2-handle f 2
i,j for each relator qjkiq−1

j φ(ki)−1, choosing

the framing so that it is trivially attached in the result of attaching the h1
i , k

2
i , h

j
2 and

k3
j . This is possible since each of the relators becomes trivial when the k2

i ’s and k3
i ’s

are attached. Note that because the f 2
i,j are trivially attached, there are canceling

3-handles g3
i,j. We identify these 3-handles now, but do not attach them yet. They
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will be used later. Call the resulting cobordism with only the h1
i ’s, the h2

j ’s, and the

f 2
i,j’s attached (W ′,N,M ′) and call the right-hand boundary M ′.

Note that we now have π1(N) ≅ Q, π1(W ′) ≅ G, and ι# ∶ π1(M ′) → π1(W ) an

isomorphism because, by inverting the handlebody decomposition, we are starting

with M ′ and adding (n − 1)- and (n − 2)-handles, which do not affect π1 as n ≥ 6.

Consider the cover W ′ of W ′ corresponding to S. Then the right-hand boundary of

this cover, M ′, also has fundamental group isomorphic to S by covering space theory.

Also, the left-hand boundary of this cover, Ñ , has trivial fundamental group.

Consider the handlebody chain complex C∗(W ′, Ñ ;Z). This is naturally a ZQ-module

complex. It looks like

0 - C3(W ′, Ñ ;Z) - C2(W ′, Ñ ;Z) ∂
- C1(W ′, Ñ ;Z) - C0(W ′, Ñ ;Z) - 0

= = ≅ ≅ = =
0 - 0 -

l2

⊕
i=1

ZQ⊕
k1∗k2
⊕
j=1

ZQ
∂
-

k2

⊕
i=1

ZQ - 0 - 0

where C2(W ′, Ñ ;Z) decomposes as A = ⊕l2
i=1 ZQ, which has a ZQ-basis obtained by

arbitrarily choosing one lift of the 2-handles for each of the h2
j , and B = ⊕k1⋅k2

j=1 ZQ,

which has a ZQ-basis obtained by arbitrarily choosing one lift of the 2-handles for each

of the f 2
i,j. Set C = C1(W ′, Ñ ;Z) ≅ ⊕k2

i=1 ZQ (as ZQ-modules). Choose a preferred

basepoint ∗ and a preferred lift of the the disk D to a disk D in M . Decompose ∂ as

∂2,1 = ∂∣A and ∂2,2 = ∂∣B

Since S is perfect, we must have l2 ≥ k2, as we must have as many or more relators

as we have generators in the presentation for S to have no 1-dimensional homology.
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We examine the contribution of ∂2,1 to H2(W ′, Ñ ;Z). It will be useful to first

look downstairs at the Z-chain complex for (W ′,N). Let A′ be the submodule of

C2(W ′,N ;Z) determined by the h2
j ’s and let C ′ be C1(W ′,N ;Z), which is generated

by the h1
i ’s. Then A′ is a finitely generated free abelian group, so, the kernel K ′ of

∂′2,1 ∶ A′ → C ′ is a subgroup of a finitely generated free abelian group, and thus K ′ is

a finitely generated free abelian group, say on the basis {k1, . . . , ka}

Claim 3.1.7. ker(∂2,1) is a free ZQ-module on a generating set of cardinality ∣a∣.

Proof The disk D has ∣Q∣ lifts of itself to M , ala Lemma 3.1.4. Now, Q acts as

deck transformations on M , transitively permuting the lifts of D as the cover M is

a regular cover. A preferred basepoint ∗ and a preferred lift of the the disk D to a

disk D in M have already been chosen for the identification of C∗(W ′, Ñ ;Z) with

the ZQ-module C∗(W ′,N ;ZQ). Let the handles attached inside the preferred lift D

be our preferred lifts h1
i and let the lifts of the h2

js that attach to D ∪ (∪h1

i ) be our

preferred 2-handles h
2

j .

Note that none of the qh1
i spill outside the disk qD and none of the qh2

j spill outside

the disk qD ∪ (∪qh1

i ). This implies ∂2,1(h
2

j) ∈ {zih1
i ∣ zi ∈ Z} ≤ {ziqih1

i ∣ ziqi ∈ ZQ}

and so ∂2,1(qh2
j) ∈ {ziqh1

i ∣ zi ∈ Zqt ≤ ZQ}. This mean if q1 ≠ q2 are in Q and c1

and c2 are lifts of chains in A to D, then ∂2,1(q1c1 + q2c2) = 0 ∈ ZQ if and only if

∂2,1(c1) = ∂2,1(c2) = 0 ∈ Z; (�).

With this in mind, let ki be a lift of the chain ki in a generating set for K ′ in the

disk D to D. Then ∂2,1(ki) = 0. Moreover, Q transitively permutes each ki with the

other lifts of ki to the other lifts of D. Now, suppose ∂2,1(c) = 0, with c an element

of C2(W ′,N ;ZQ). By (�), we must have c = ∑m
t=1 ntqtkt with nt ∈ Z and qt ∈ Q. This

proves the kt’s generate ker(∂2,1).
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Finally, suppose some linear combination ∑a
i=1(∑ntqt)ki is zero. Then, as qt1kt1 and

qt2kt2 cannot cancel if qt1 ≠ qt2 , it follows that all nt are zero. This proves the ki’s are

a free ZQ-basis for ker(∂2,1). This proves the claim.

Now, we have ∂2 ∶ A⊕B → C. Recall S is a finitely presented, superperfect group, and

W’ contains a 1-handle for each generator and a 2-handle for each relator in a chosen

finite presentation for S. It then follows that ker(∂1)/im(∂2∣A) ≅ 0, as if Λ contains

the collection of lifts of 1-handles for each generator of S and the collection of lifts of

2-handles for each relator of S, then Λ = 0 as a ZQ-modules and Λ = ker(∂1)/im(∂2∣A).

But C0(W ′, Ñ ;Z) = 0, so ker(∂1) = C. This implies ∂2∣A is onto. By Lemma 3.1.5,

we have that ker(∂2) ≅ ker(∂2∣A)⊕B. By the previous claim, ker(∂2∣A) is a free and

finitely generated ZQ-module. Clearly, B is a free and finitely generated ZQ-module.

Thus, ker(∂2) ≅H2(W ′, Ñ ;Z) is a free and finitely generated ZQ-module.

By Lemma 3.1.3, we may choose spherical representatives for all elements ofH2(W ′;Z).

By the Long Exact Sequence in homology for (W ′, Ñ), we have

⋯ - H2(W ′;Z) - H2(W ′, Ñ ;Z) - H1(Ñ ;Z) - ⋯

= = ≅

⋯ - H2(W ′;Z) -- H2(W ′, Ñ ;Z) - 0 - ⋯

so any element of H2(W̃ ′,N ;Z) also admits a spherical representative.

So, we may choose spherical respresentatives for any element of H2(W ′,N ;ZQ). Let

{sk} be a collection of embedded, pair-wise disjoint 2-spheres which form a free, finite

ZQ-basis for H2(W ′,N ;ZQ).
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Note that the {sk} can be arranged to live in right-hand boundary M ′ of W ′. To do

this, view W ′ upside-down, so that it has (n−2)− and (n−1)−handles attached. For

each sk, make it transverse to the (2-dimensional) co-core of each (n−2)−handle, then

blow it off the handle by using the product structure of the handle less the co-core;

do the same thing with the (n − 1)−handles. Finally, use the product structure of

N × I to push sk into the right-hand boundary.

If we add the k2
i , h

3
j and g3

i,j to W ′, and similarly make sure the k2
i s, k

3
j s, and g3

i,js do

not intersect the {sk}s, and call the resulting cobordism W ′′, we can think of the {sk}

as living in the right-hand boundary of (W ′′,N,M ′′). Note that W ′′ is diffeomorphic

to N × I.

We wish to attach 3-handles along the collection {sk} and, later, 4-handles com-

plimetary to those 3-handles. A priori, this may be impossible; for instance, there

is a framing issue. To make this possible, we borrow a trick from [13] to alter the

2-spheres to a useable collection without changing the elements of H2(W ′,N ;ZQ)

they represent.

Claim 3.1.8. For each sk, we may choose a second embedded 2-sphere tk with the

property that

� tk represents the same element of π2(M ′′) as sk (as elements of π2(W ′), they

will be different)

� each tk misses the attaching regions of all the {h1
i },{k2

i },{h2
j},{k3

j},{f 2
i,j} and

{g3
i,j}

� the collection of {tk} are pair-wise disjoint and disjoint from the entire collection

{sk}

Proof Note that each canceling (2,3)-handle pairs h2
j and k3

j and f 2
i,j and g3

i,j form
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an (n + 1)-disks attached along an n-disk which is a regular neighborhood of a 2-

disk filling the attaching sphere of the 2-handle. Also, each canceling (1,2)-handle h1
i

and k2
i forms an (n + 1)-disk in N × {1} attached along an n-disk which is a regular

neighborhood of a 1-disk filling the attaching sphere of the 1-handle. We may push a

given sk off the (2,3)-handle pairs and then off the (1,2)-handle pairs, making sure not

to pass back into the (2,3)-handle pairs. Let tk be the end result of the pushes. Make

the collection {tk} pair-wise disjoint and disjoint from the {sk}’s by tranversality,

making sure not to pass back into the (1,2)- or (2,3)-handle pairs.

Replace each sk with sk#(−tk), an embedded connected sum of sk with a copy of tk

with its orientation reversed.

Since the tk’s miss all the handles attached to the original collar N × I, they can

be pushed into the right-hand copy of N . Thus, sk and sk#(−tk) represent the

same element of H2(W ′,N ;ZQ). Hence, the collection {sk#(−tk)} is still a free

basis for H2(W ′,N ;ZQ). Furthermore, each sk#(−tk) bounds an embedded 3-disk

in the boundary of W ′′. This means each sk#(−tk) has a product neighborhood

structure, and we may use it as the attaching region for a 3-handle h3
l . Choose

the framing of h3
l so that it is a trivially attached 3-handle with respect to W ′′,

and choose a canceling 4-handle k4
l . We identify these 4-handles now, but do not

attach them yet. They will be used later. Call the resulting cobordism with the

h1
i , h

2
j , f

2
i,j, and h3

l attached (W ′′′,N,M). Let W (iv) be M × I with the k2
i , k

3
j , and

k4
k’s attached. Then W ′′′⋃MW (iv) has all canceling handles and so is diffeomorphic

to N × I. Clearly, W ′′′⋃MW (iv) strong deformation retracts onto the right-hand

boundary N . Despite all the effort put into creating (W ′′′,M,N), (W (iv,M,N), or,

more precisely, (W (iv,N,M) (modulo torsion) will be seen to satisfy the conclusion

of the theorem.

We are note yet finished with (W ′′′,N,M) yet. In order to prove (W (iv,M,N) satisfies
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the desired properties, we must study W ′′′ more carefully. Note that since ker(∂2) is

a free, finitely generated ZQ-module and {h3
k} is a set whose attaching spheres are

a free ZQ-basis for ker(∂2), ∂3 ∶ C3(W ′′′,N ;ZQ) → C2(W ′′′,N ;ZQ) is onto and has

no kernel. This means H3(W ′′′,N ;ZQ) ≅ 0. Clearly, H∗(W ′′′,N ;ZQ) ≅ 0 for ∗ ≥ 4 as

C∗(W ′′′,N ;ZQ) ≅ 0 for ∗ ≥ 4.

Thus, H∗(W ′′′, Ñ ;Z) ≅ 0, i.e., H∗(W ′′′,N ;ZQ) ≅ 0. (*)

However, this is not the only homology complex we wish to prove acyclic; we also

wish to show that H∗(W ′′′,M ;ZQ) ≅ 0.By noncompact Poincare duality, we can

do this by showing that the relative cohomology with compact supports is 0, i.e.,

H∗
c (W ′′′, Ñ ;Z) ≅ 0.

By the cohomology with compact supports, we mean to take the chain complex that

has linear functions f ∶ Ci(W ′′′, Ñ ;Z) → Z from the relative handlebody complex of

the intermediate cover of W ′′′ with respect to K to Z relative to Ñ , that is, that

sends all of the handles of the universal cover of N to 0 and that is nonzero on

only finitely many of the qhj’s. The fact that δ is not well-defined, that is, that g

has compact supports depends on the fact that C∗(W ′′′, Ñ ;Z) is locally finite, which

in turn depends on the fact that W ′′′ is a covering space of a compact manifold,

with finitely many handles attached.The co-boundary map δ∗ will send a cochain

f in Ci
c(W ′′′, Ñ ;Z) to the cochain g in Ci+1

c (W ′′′, Ñ ;Z) which sends g(∂(njqihj) to

δ(f)(njqihj) for qi ∈ Q and njhj ∈ Ci(W ′′′,N ;Z).

Clearly, δ1 ∶ C0
c (W ′′′, Ñ ;Z) → C1

c (W ′′′, Ñ ;Z) and δ4 ∶ C3
c (W ′′′, Ñ ;Z) → C4

c (W ′′′, Ñ ;Z)

are the zero maps. This means we must show ker(δ2) = 0, i.e., δ2 is 1-1, and im(δ3) =

C3, i.e., δ3 is onto. Finally, we must show exactness at C2
c , that is, we must show

im(δ2) = ker(δ3).
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Consider the acyclic complex

0 - C3(W ′′′, Ñ ;Z) - C2(W ′′′, Ñ ;Z) ∂
- C1(W ′′′, Ñ ;Z) - 0

This admits a section ι ∶ C1(W ′′′, Ñ ;Z) → C2(W ′′′, Ñ ;Z) with the property that

∂3(C3)⊕ ι(C1) = C2

(ker(δ2) = 0) Let f ∈ C1
c (W ′′′, Ñ ;Z) be non-zero, that is, let f ∶ C1(W ′′′, Ñ ;Z) → 0

have compact support and that there is a c1 ∈ C1(W ′′′, Ñ ;Z) with c1 ≠ 0 and f(c1) ≠ 0.

As ∂2 is onto, choose c2 ∈ C2(W ′′′, Ñ ;Z) with c2 ≠ 0 and ∂2(c2) = c1. The δ2(f)(c2) =

f(∂2(c2)) = f(c1) ≠ 0, and δ2(f) is not the zero cochain.

(im(δ3) = C3) Let g ∈ C3
c (W ′′′, Ñ ;Z) be a basis element with g(qh3

i ) = 1 and all other

g(q′h3
i′) = 0. We must show there is an f ∈ C2

C(W ′′′, Ñ ;Z) with δ3(f) = g. Consider

∂3(qh3
i ). This is a basis element for C2(W ′′′, Ñ ;Z).

Choose fk,l ∈ C2
c (W ′′′, Ñ ;Z) to have fk,l(∂3(qh3

i )) = 1 and 0 otherwise. Then δ3(f)(qih3
j) =

f(∂3(qih3
j)) = 1 = g(qh3

i ).

This proves δ3(f) = g, and δ3 is onto.

(im(δ2) = ker(δ3))

Clearly, if f ∈ im(δ2), then δ3(f) = 0, as δ is a chain map.

Suppose δ3(f) = 0 but f ≠ 0. Consider ι(qh1
i ) = c2,i ∈ C2(W ′′′, Ñ ;Z). This is a basis

element for C2(W ′′′, Ñ ;Z).

Set g(qh1
i ) = f(c2,i).
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Then δ2(g)(c2,i) = g(∂2(c2,j)) = g(qh1
i ) = f(c2,i), and we are done.

So, H∗
C(W ′′′, Ñ ;Z) ≅ 0, soH∗(W ′′′,M ;Z) ≅ 0 by Theorem 3.35 in [15], andH∗(W ′′′,M ;Z) ≅

0

Note that we again have π1(N) ≅ Q, π1(W ′′′) ≅ G, and ι# ∶ π1(M) ≅ π1(W ′′′)

an isomorphism, as attaching 3-handles does not affect π1, and, dually, attaching

(n − 3)-handles does not affect π1 for n ≥ 6.

We read W (iv) from right to left. This is (almost) the cobordism we desire. (We

will need to deal with torsion issues below.) Note that the left-hand boundary of

W (iv) read right to left is N and the right-hand boundary of W (iv) read right to left

is M . Moreover, W (iv) read right to left is N × I with [(n + 1) − 4]-, [(n + 1) − 3]-,

and [(n + 1) − 2]-handles attached to the right-hand boundary. Since n ≥ 6, adding

these handles does not affect π1(W (v)). Thus, we have ι# ∶ π1(N) → π1(W (v)) is an

isomorphism; as was previously noted, π1(M) ≅ G.

Let H ∶W ′′′⋃MW (iv) →W ′′′⋃MW (iv) a strong deformation retraction onto the right-

hand boundary N . We will produce a retraction r ∶ W ′′′⋃MW (iv) → W (iv). Then

r ○ H will restrict to a strong deformation retraction of W (iv) onto its right-hand

boundary N . This, in turn, will yield a strong deformation retraction of W (iv) read

right to left onto its left-hand boundary N .

Note that by (*), H∗
C(W ′′′, Ñ ;Z) ≅ 0. By Theorem 3.35 in [15], we have that

H∗(W ′′′,M ;Z) ≅ 0, and H∗(W ′′′,M ;ZQ) ≅ 0, respectively, by the natural ZQ struc-

ture on C∗(W ′′′;Z).

To get the retraction r, we will use the following Proposition from [11].
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Proposition 3.1.9. Let (X,A) be a CW pair for which A ↪ X induces a π1 iso-

morphism. Suppose also that L ⊴ π1(A) and A ↪ X induces Z[π1(A)/L]-homology

isomorphisms in all dimensions. Next suppose α1, . . . , αk is a collection of loops in

A that normally generates L. Let X ′ be the complex obtained by attaching a 2-cell

along each αl and let A′ be the resulting subcomplex. Then A′ ↪ X ′ is a homotopy

equivalence. (Note: In the above situation, we call A ↪ X a mod L homotopy

equivalence.)

Since H∗(W ′′′,M ;ZQ) = 0, we have that by Proposition 3.1.9, W ′′′ union the 2-

handles f 2
j strong deformation retracts onto M union the 2-handles f 2

j . One may now

extend via the identity to get a strong deformation retraction r ∶W ′′′⋃M ⋃2-handlesW (iv) →

W (iv). Now r ○H is the desired strong deformation retraction, of both W (iv) onto its

right-hand boundary N and W (iv) read backwards onto its left-hand boundary N .

Now, suppose, for the cobordism (W (iv),N,M), we have τ(W (iv),N) = A ≠ 0. As

the epimorphism η ∶ G → Q admist a left inverse ζ ∶ Q → G, by the functoriality

of Whitehead torsion, we have that Wh(η) ∶ Wh(G) → Wh(q) is onto and ad-

mits a left inverse Wh(ζ) ∶ Wh(q) → Wh(G). Let B have A + B = 0 in Wh(Q)

and set B′ = Wh(ζ)(B). By The Realization Theorem from [32], there is a cobor-

dism (R,M,N−) with τ(R,M) = B′. If W = (W (iv) ∪M R), by Theorem 20.2 in

[4], τ(W,N) = τ(W (iv),N) + τ(W,W (iv)). By Theorem 20.3 in [4], τ(W,W (iv)) =

Wh(η)(τ(R,M)). So, τ(W (iv),N) +Wh(η)(τ(R,M) = A +Wh(η)(B′) = A +B = 0,

and (W,N,N−) is a 1-sided s-cobordism.
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Chapter 4

USING THE REVERSE PLUS

CONSTRUCTION TO BUILD

PSEUDO-COLLARS

4.1 Some Preliminaries and the Main Result

Our goal in this section is to display the usefulness of 1-sided s-cobordisms by using

them to create large numbers of topologically distinct pseudo-collars (to be defined

below), all with similar group-theoretic properties.

We start with some basic definitions and facts concerning pseudo-collars.

Definition 4.1.1. Let W n+1 be a 1-ended manifold with compact boundary Mn. We

say W is inward tame if W admits a co-final sequence of “clean” neighborhoods of

infinity (Ni) such that each Ni is finitely donimated. [A neighborhood of infinity

is a subspace the closure of whose complement is compact. A neighborhood of infinity

N is clean if (1) N is a closed subset of W (2) N ∩∂W = ∅ (3) N is a codimension-0
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submanifold with bicollared boundary.]

Definition 4.1.2. A manifold Nn with compact boundary is a homotopy collar if

∂Nn ↪ Nn is a homotopy equivalence.

Definition 4.1.3. A manifold is a pseudo-collar if it is a homotopy collar which

contains arbitrarily small homotopy collar neighborhoods of infinity. A manifold is

pseudo-collarable if it contains a pseudo-collar neighborhood of infinity.

Pseudo-collars naturally break up as 1-sided s-cobordisms. That is, if N1 ⊆ N2 are

homotopy collar neighborhoods of infinity of an end of a pseudo-collarable manifold,

the cl(N2/N1) is a cobordism (W,M,M−), where M ↪ W is a simple homotopy

equivalence. Taking an decreasing chain of homotopy collar neighborhoods of infinity

yields a decomposition of a pseudo-collar as a “stack” of 1-sided s-cobordisms.

Conversely, if one starts with a closed manifold M and uses the techniques of chapter

3 to produce a 1-sided s-cobordisms (W1,M,M−), then one takes M− and again

uses the techniques of Chapter 3 to produce a 1-sided s-cobordisms (W2,M−,M−−),

and so on ad infinitum, and then one glues W1 ∪W2 ∪ . . . together to produce an

(n + 1)−dimensional manifold Nn+1, then N is a pseudo-collar.

So, 1-sided s-cobordisms are the “correct” tool to use when constructing pseudo-

collars.

Definition 4.1.4. The fundamental group system at ∞, π1(ε(X), r), of an end

ε(X) of a non-compact topological space X, is defined by taking a cofinal sequence of

neighborhoods of ∞ of the end of X, N1 ⊇ N2 ⊇ N3 ⊇ . . . ,, a proper ray r ∶ [0,∞) →

X, and looking at its related inverse sequence of fundamental groups π1(N1, p1) ←

π1(N2, p2) ← π1(N3, p3) ← . . . (where the bonding maps are induced by inclusion and

the basepoint change isomorphism, induced by the ray r).
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Such a fundamental group system at infinity has a well-defined associated pro-fundamental

group system at infinity, given by its equivalence class inside the category of inverse

sequences of groups under the below equivalence relation.

Definition 4.1.5. Two inverse sequences of groups (Gi, αi) and (Hi, βi) are said

to be pro-isomorphic if there exists subsequences of each, which may be fit into a

commuting ladder diagram as follows:

G1
�
α1

G2
�
α2

G3
�
α3

G4
�
α4

. . .

H1
�
β1�
g 2

� f
1

H2
�
β2�
g 3

� f
2

H3
�
β3�
g 4

� f
3

. . .

A more detailed introduction to fundamental group systems at infinity can be found

in [8] or [9].

Definition 4.1.6. An inverse sequence of groups is stable if is it pro-isomorphic to

a constant sequence G← G← G← G. . . with the identity for bonding maps.

The following is a theorem of Brown from [3].

Theorem 4.1.7. The boundary of a manifold M is collared, i.e., there is a neighbor-

hood N of ∂M in M such that N ≈ ∂M × I.

The following is from Siebenmann’s Thesis, [34].

Theorem 4.1.8. An open manifold W n+1 (n ≥ 5) admits a compactification as an

n + 1-dimensional manifold with an n-dimensional boundary manifold Mn if

(1) W is inward tame

(2) π1(ε(W )) is stable for each end of W , ε(W )

(3) σ∞(ε(W )) ∈ K̃0[Zπ1(ε(W ))] vanishes for each end of W , ε(W )
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Definition 4.1.9. An inverse sequence of groups is semistable or Mittag-Leffler

if is it pro-isomorphic to a sequence G1 ↞ G2 ↞ G3 ↞ G4 . . . with epic bonding maps.

Definition 4.1.10. An inverse sequence of finitely presented groups is perfectly

semistable if and only if is it pro-isomorphic to a sequence G1 ↞ G2 ↞ G3 ↞ G4 . . .

with epic bonding maps and perfect kernels.

The following two lemmas show that optimally chosen perfectly stable inverse se-

quences behave well under passage to subsequences.

Lemma 4.1.11. Let

1 - K
ι
- G

σ
- Q - 1

be a short exact sequence of groups with K,Q perfect. Then G is perfect.

Proof Follows from Lemma 1 in [10]. Let g ∈ G. Then σ(g) ∈ Q, so σ(g) =

Πk
i=1[xi, yi], xi, yi ∈ Q, as Q is perfect. But, now, σ is onto, ∃ui ∈ G with σ(ui) = xi

and vi ∈ G with σ(vi) = yi. Set g′ = Πk
i=1[ui, vi]. Then

σ(g ⋅ (g′)−1) = σ(g) ⋅ σ(g′)−1 = Πk
i=1[xi, yi] ⋅ (Πk

i=1[xi, yi])−1 = 1 ∈ Q.

Thus, g ⋅ (g′)−1 ∈ ι(K), and ∃rj, sj ∈K with g ⋅ (g′)−1 = ι(Πl
j=1[rj, sj], as K is perfect.

But, finally, g = [g ⋅ (g′)−1] ⋅g′ = Πl
j=1[ι(rj), ι(sj)] ⋅Πk

i=1[ui, vi], which proves g ∈ [G,G].

Lemma 4.1.12. If α ∶ A → B and β ∶ B → C are both onto and have perfect kernels,

the (β ○ α) ∶ A→ C is onto and has perfect kernel.
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Proof (Perfect kernel) Set K = ker(α),Q = ker(β),G = ker(β ○ α)

Claim 4.1.13. K = ker(α∣G) ∶ G→ B

Proof (⊆) Let g ∈ G have α(g) = e ∈ B Then g ∈ A and α(g) = e ∈ B, so G ∈K

(⊇) Let k ∈K. Then α(k) = e ∈ B, so β(α(k)) = β(e) = e ∈ Q. Thus (β ○α)(k) = e ∈ C,

and k ∈ G. Since α(k) = e ∈ B, this shows k ∈ ker(α∣G).

The following is a result from [12].

Theorem 4.1.14 (Guilbault-Tinsley). A non-compact manifold W n+1 with compact

(possibly empty) boundary ∂W =M is pseudo-collarable if and only if

(1) W is inward tame

(2) π1(ε(W )) is perfectly semistable for each end of W , ε(W )

(3) σ∞(ε(W )) ∈ K̃0[Zπ1(ε(W ))] vanishes for each end of W , ε(W )

So, the pro-fundamental group system at infinity of a pseudo-collar is perfectly

semistable. As is outlined in Chapter 4 of [9], the pro-fundamental group system

at infinity is independent of base ray for ends with semistable pro-fundamental group

at infinity, and hence for 1-ended pseudo-collars.

Theorem 1.2.2(Uncountably Many Pseudo-Collars on Closed Manifolds with the

Same Boundary and Similar Pro-π1). Let Mn be a closed smooth manifold (n ≥ 6)

with π1(M) ≅ Z and let S be the fintely presented group V ∗V , which is the free preduct

of 2 copies of Thompson’s group V . Then there exists an uncountable collection of

pseudo-collars {Nn+1
ω ∣ ω ∈ Ω}, no two of which are homeomorphic at infinity, and

each of which begins with ∂Nn+1
ω =Mn and is obtained by blowing up countably many

times by the same group S. In particular, each has fundamental group at infinity that

may be represented by an inverse sequence
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Z ��
α1

G1
��
α2

G2
��
α3

G3
��
α4

. . .

with ker(αi) = S for all i.

We give a brief overview of our strategy. We will start with the manifold S1 × Sn−1,

which has fundamental group Z. We let S be the free product of 2 copies of Thomp-

son’s group V , which is a fintely presented, superperfect group for which Out(S) has

torsion elements of all orders. Then we will blow Z up by S to semi-direct products

Gp1 , Gp2 , Gp3 , ..., in infintely many different ways using different outer automorphisms

φpi of prime order. We will then use the theorem of last chapter to blow up S1 ×Sn−1

to a manifolds Mp1 , Mp2 , Mp3 , ..., by cobordisms Wp1 , Wp2 , Wp3 , ... . We will then

use different automorphisms, each with order a prime number strictly greater than

the prime order used in the last step, from the infinite group Out(S) to blow up

each of Gp1 , Gp2 , Gp3 , ..., to a different semi-direct products by S, and will then use

the theorem of last chapter to extend each of Wp1 , Wp2 , Wp3 , ..., in infintely many

different ways.

Continuing inductively, we will obtain increasing sequences ω of prime numbers de-

scribing each sequence of 1-sided s-cobordisms. We will then glue together all the

semi-s-cobordisms at each stage for each unique increasing sequence of prime numbers

ω, creating for each an (n + 1)-manifold Nn+1
ω , and show that there are uncountably

many such pseudo-collared (n+ 1)-manifolds Nω, one for each increasing sequence of

prime numbers ω, all with the same boundary S1 ×Sn−1, and all the result of blowing

up Z to a semi-direct product by copies of the same superperfect group S at each

stage. The fact that no two of these pseudo-collars are homeomorphic at infinity will

follow from the fact that no two of the inverse sequences of groups are pro-isomorphic.
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Much of the algebra in this chapter is aimed at proving that delicate result.

Remark 4.1.15. There is an alternate strategy of blowing up each the fundamental

group Gi at each stage by the free product Gi ∗ Si; using a countable collection of

freely indecomposible kernel groups {Si} would then allow us to create an uncountable

collection of pseudo-collars; an algebraic argument like that found in [35] or [5] would

complete the proof. However, they would not have the nice kernel properties that our

construction has.

It seems likely that other groups than Thompson’s group V would work for the

purpose of creating uncountably many pseudo-collars, all with similar group-theoretic

properties, from sequences of 1-sided s-cobordisms. But, for our purposes, V possesses

the ideal set of properties.

4.2 Some Algebraic Lemmas, Part 1

In this section, we go over the main algebraic lemmas necessary to do our strategy of

blowing up the fundamental group at each stage by a semi-direct product with the

same superperfect group S.

Thompson’s group V is finitely presented, superperfect, simple, and contains torsion

elements of all orders. Note that simple implies V is centerless, Hopfian, and freely

indecomposable.

An introduction to some of the basic properties of Thompson’s group V can be found

in [22], There, it is shown that V is finitely presented and simple. It is also noted

in [22] that V contains torsion elements of all orders, as V contains a copy of every

symmetric group on n letters, and hence of every finite group. In [2], it is noted that

V is superperfect. We give proofs of some of the simpler properties.



4.2. Some Algebraic Lemmas, Part 1 38

Lemma 4.2.1. Every non-Abelian simple group is perfect

Proof Let G be a simple, non-Abelian group, and consider the commutator sub-

group K of G. This is not the trivial group, as G is non-Abelian, and so by simplicity,

must be all of G. This shows every element of G can be written as a product of com-

mutator of elements of G, and so G is perfect.

Definition 4.2.2. A group G is Hopfian if every onto map from G to itself is an

isomorphism. Equivalently, a group is Hopfian if it is not isomorphic to any of its

proper quotients.

Lemma 4.2.3. Every simple group is Hopfian.

Proof Clearly, the trivial group is Hopfian.

So, let G be a non-trivial simple group. Then the only normal subgroups of G are

G itself and ⟨e⟩, so the only quotients of G are ⟨e⟩ and G, respectively. So, the only

proper quotient of G is ⟨e⟩, which cannot be isomorphic to G as G is nontrivial.

Let S = P1 ∗P2 be the free product of 2 copies of V with itself. This is clearly finitely

presented, perfect (by Meyer-Vietoris), and superperfect (again, by Meyer-Vietoris).

Note that S is a free product of non-trivial groups, so S is centerless. In [21], it is

noted that free products of Hofpian, finitely presented, freely indecomposable groups

are Hopfian, so S = V ∗ V is Hopfian. S (and not V itself) will be the superperfect

group we use in our constructions.

We need a few lemmas.

Lemma 4.2.4. Let A,B,C,and D be non-trivial groups. Let φ ∶ A ×B → C ∗D be a

surjective homomorphism. Then one of φ(A × {1}) and φ({1} ×B) is trivial and the

other is all of C ∗D
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Proof

Let x ∈ φ(A×{1})∩φ({1}×B). Then x ∈ φ(A×{1}), so x commutes with everything

in φ({1}×B). But x ∈ φ({1}×B), so x commutes with everything in φ(A×{1}). As

φ is onto, this implies φ(A × {1}) ∩ φ({1} ×B) ≤ Z(C ∗D).

But, by a standard normal forms argument, the center of a free product is trivial! So,

φ(A×{1})∩φ({1}×B) ≤ Z(C∗D) = 1. However, this implies that φ(A×{1})×φ({1}×

B) = C∗D. By a result in [1], a non-trivial direct product cannot be a non-trivial free

product. (If you’d like to see a proof using the Kurosh Subgroup Theorem, that can

be found in many group theory texts, such as Theorem 6.3.10 of [31]. An alternate,

much simpler proof due to P.M. Neumann can be found in [25] in the observation

after Lemma IV.1.7). Thus, φ(A× {1}) = C ∗D or φ({1} ×B) = C ∗D and the other

is the trivial group. The result follows.

Corollary 4.2.5. Let A1, . . . ,An be non-trivial groups and let C ∗D be a free product

of non-trivial groups. Let φ ∶ A × . . . ×An → C ∗D be a surjective homomorphism.

Then one of the φ({1} × . . .Ai × . . . × {1}) is all of C ∗D and the rest are all trivial.

Proof

Proof is by induction.

(n = 2) This is Lemma 4.2.4.

(Inductive Step) Suppose the result is true for n − 1. Set B = A1 × . . . × An−1. By

Lemma 4.2.4, either φ(B×{1}) is all of C ∗D and φ({1}×An) is trivial or φ(B×{1})

is trivial and φ({1} ×An) is all of C ∗D.

If φ(B × {1}) is trivial and φ({1} ×An) is all of C ∗D, we are done.
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If φ(B×{1}) is all of C∗D and φ({1}×An) is trivial, then, by the inductive hypothesis,

we are also done.

Corollary 4.2.6. Let S1, S2, . . . , Sn all be copies of the same non-trivial free product,

and let ψ ∶ S1×S2× . . .×Sn → S1×S2× . . .×Sn be a isomorphism. Then ψ decomposes

as a “matrix of maps” ψi,j, where each ψi,j = πSj ○ ψ∣Si (where πSj is projection

onto Sj), and there is a permutation σ on n indices with the property that each

ψσ(j),j ∶ Sσ(j) → Sj is an isomorphism, and all other ψi,j’s are the zero map.

Proof

By Lemma 4.2.5 applied to πSj ○ ψ, we clearly have a situation where each πSj ○ ψ∣Si
is either trivial or onto. If we use a schematic diagram with an arrow from Si to Sj

to indicate non-triviality of a map ψi,j, we obtain a diagram like the following.

S1 × S2 × S3 × S4 × S5 × S6 × S7 × . . . Sn

. . .

S1

?
× S2

-

× S3

-
× S4

?
× S5

?
× S6

�
× S7

-

× � . . . � Sn
?

where a priori some of the Si’s in the domain may map onto multiple Sj’s in the

target, and there are no arrows eminating from some of the Si’s in the domain.

By the injectivity of ψ, there must be at least one arrow eminating from each Si, while

by surjectivity of ψ, there must be at least one arrow ending at each Sj. Corollary

4.2.5 prevents more than one arrow from ending in a given Sj. By the Pidgeonhole

Principle, the arrows determine a one-to-one correspondence between the factors in

the domain and those in the range. A second application of injectivity now shows

each arrow represents an isomorphism.
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Note that the ψi,j’s form a matrix where each row and each column contain exactly one

isomorphism, and the rest of the maps are trivial maps - what would be a permutation

matrix (see page 100 in [30], for instance) if the isomorphisms were replaced by “1”’s

and the trivial maps were replaced by “0”’s.

Corollary 4.2.7. Let S1, S2, . . . , Sn all be copies of the same non-trivial Hopfian free

product, and let ψ ∶ S1 × S2 × . . . × Sn → S1 × S2 × . . . × Sm be a epimorphism with

m < n. Then ψ decomposes as a “matrix of maps” ψi,j = πSj ○ ψ∣Si, and there is a

1-1 function σ from the set {1, . . . ,m} to the set {1, . . . , n} with the property that

ψσ(j),j ∶ Sσ(j) → Sj is an isomorphism, and all other ψi,j’s are the zero map.

Proof

Begin with a schematic arrow diagram as we had in the previous lemma. By surjec-

tivity and Lemma 4.2.5, each of the m factors in the range is at the end of exactly

1 arrow. From there, we may conclude that each arrow represents an epimorphism,

and, hence, by Hopfian, an isomorphism.

To complete the proof, we must argue that at most one arrow can eminate from an

Si factor. Suppose to the contrary, that two arrows emanate from a given Si factor.

Then we have an epimorphism of Si onto a non-trivial direct product in which each

coordinate function is a bijection. This is clearly impossible.

4.3 Some Algebraic Lemmas, Part 2

Let Ω be the uncountable set consisting of all increasing sequences of prime numbers

(p1, p2, p3, . . .) with pi < pi+1. For ω ∈ Ω and n ∈ N, define (ω,n) to be the finite

sequence consisting of the first n entries of ω.
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Let pi denote the ith prime number, and for the group S = P1 ∗ P2, where each Pi is

Thompson’s group V , choose ui ∈ P1 to have order(ui) = pi.

Recall, if K is a group, Aut(K) is the automorphism group of K. Define µ ∶ K →

Aut(K) to be µ(k)(k′) = kk′k−1. Then the image of µ in Aut(K) is called the inner

automorphism group of K, Inn(K). The inner automorphism group of a group K is

always normal in Aut(K). The quotient group Aut(K)/Inn(K) is called the outer

automorphism group Out(K). The kernel of µ is called the center of K, Z(K); it is

the set of all k ∈K such that for all k′ ∈K,kk′k−1 = k′. One has the exact sequence

1 - Z(K) - K
µ
- Aut(K) α

- Out(K) - 1

Define a map Φ ∶ P1 → Out(P1 ∗ P2) by Φ(u) = φu, where φu ∈ Out(P1 ∗ P2) is the

outer automorphism defined by the automorphism

φu(p) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

p if p ∈ P1

upu−1 if p ∈ P2

(φu is called a partial conjugation.)

Claim 4.3.1. Φ ∶ P1 → Out(P1 ∗ P2) is an embedding

Proof Suppose Φ(u) is an inner automorphism for some u not e in P1. Since Φ(u)

acts on P2 by conjugation by u, to be an inner automorphism, Φ(u) must also act on

P1 by conjugation by u. Now, Φ(u) acts on P1 trivially for all p ∈ P1, which implies u

is in the center of P1. But P1 is centerless! Thus, no Φ(u) is an inner automophism

for any u ∈ P1.
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So, for each ui with prime order the ith prime pi, φui has prime order pi, as does every

conjugate of φui in Out(P1 ∗ P2), as Φ is an embedding.

Lemma 4.3.2. For any finite collection of groups A1,A2, . . . ,An, Πn
i=1Out(Ai) embeds

in Out(Πn
i=1A1).

Proof The natural map from Πn
i=1Aut(Ai) to Aut(Πn

i=1A1) which sends a Cartesian

product of automorphism individually in each factor to that product considered as an

automorphism of the product is clearly an embedding. Now, Inn(A1× . . .×An) is the

image under this natural map of Inn(A − 1) × . . . × Inn(An), because if bi ∈ Ai, then

(b1, . . . , bn)−1(a1, . . . , an)(b1, . . . , bn) = (b−1
1 a1b1, . . . , b−1

n anbn). So, the induced map on

quotient groups, from Πn
i=1Out(Ai) to Out(Πn

i=1A1), is also a monomorphism.

Now, because the quotient map Ψ ∶ Πn
i=1Out(Ai) → Out(Πn

i=1A1) is an embedding,

order(φ1, . . . , φn) in Out(Πn
i=1A1) is just lcm(order(φ1), . . . , order(φn)), which is just

its order in Πn
i=1Out(Ai). Moreover each conjugate of (φ1, . . . , φn) in Out(Πn

i=1A1) has

the same order lcm(φ1, . . . , φn). Finally, note that if each φi has prime order and each

prime occurs only once, then order(φ1, . . . , φn) = order(φ1) × . . . × order(φn).

Lemma 4.3.3. Let K be a group and suppose Θ ∶K⋊φZ→K⋊ψZ is an isomorphism

that restricts to an isomorphism Θ ∶K →K. Then φ and ψ are conjugate as elements

of Out(K)

Proof We use the presentations ⟨gen(K), a ∣ rel(K), akia−1 = φ(ki)⟩ and

⟨gen(K), b ∣ rel(K), bkb−1 = ψ(k)⟩ of the domain and range respectively, Since Θ

induces an isomorphism on the infinite cyclic quotients by K, there exists c ∈K with

Θ(a) = cb±1. We assume Θ(a) = cb, with the case Θ(a) = cb−1 being similar.

For each k ∈K, we have
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Θ(φ(k)) = Θ(aka−1)

= Θ(a)Θ(k)Θ(a)−1

= cbΘ(k)b−1c−1

= cψ(Θ(k))c−1

If we let ιc ∶ K → K denote conjugation by c, we have Θφ = ιcψΘ in Aut(K).

Quotienting out by Inn(K) and abusing notation slightly, we have Θφ = ψΘ or

ΘφΘ
−1 = ψ in Out(K).

Lemma 4.3.4. For any finite, strictly increasing sequence of primes (s1, s2, . . . , sn),

define φ(s1,...,sn) ∶ S1×. . .×Sn → S1×. . . Sn by φ(s1,...sn)(x1, . . . , xn) = (φu1(x1), . . . , φun(xn)),

where φui is the partial conjugation outer automorphism associated above to the ele-

ment ui with prime order si.

Let (s1, . . . , sn) and (ti, . . . , tn) be increasing sequences of prime numbers of length n.

Let G(s1,...,sn) = (S1 × . . . × Sn) ⋊φ(s1,...,sn) Z and G(ti,...,tn) = (S1 × . . . × Sn) ⋊φ(t1,...,tn) Z

be two semidirect products with such outer actions. Then G(s1,...,sn) is isomorphic to

G(ti,...,tn) if and only if for the underlying sets {s1, . . . , sn} = {t1, . . . , tn}.

Proof (⇒) Let θ ∶ G(s1,...,sn) → G(ti,...,tn) be an isomorphism. There are n factors

of S in the kernel group of each of G(ω,n) and G(η,n). Then θ must preserve the

commutator subgroup, as the commutator subgroup is a characteristic subgroup, and

so induces an isomorphism of the perfect kernel group K = S1 × S2 × . . . × Sn, say θ.

By Corollary 4.2.6, it must permute the factors of K, say via σ.

Now, the isomorphism θ must take the (infinite cyclic) abelianisation

G(s1,...,sn)/K(s1,...,sn) of the one to the (infinite cyclic) abelianisation

G(ti,...,tn)/K(ti,...,tn) of the other, and hence takes a generator of
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G(s1,...,sn)/K(s1,...,sn) (say aK(s1,...,sn)) to a generator of G(ti,...,tn)/K(ti,...,tn) (say

beK(ti,...,tn), where bK(ti,...,tn) is a given generator of G(ti,...,tn)/K(ti,...,tn) and e = ±1).

Then since θ takesK(s1,...,sn) = [G(s1,...,sn),G(s1,...,sn)] to [G(ti,...,tn),G(ti,...,tn)] =K(ti,...,tn),

it follows that θ takes a to a multiple of be, say c−1be where c lies in K(ti,...,tn) and

e = ±1.

Now, by 4.3.3, φ(s1,...,sn) is conjugate inOut(K) to φ(t1,...,tn), θ(φ(s1,...,sn))θ
−1 = φ(t1,...,tn).

But Ψ is an embedding by Lemma 4.3.1! This shows that order(φ(s1,...,sn)) = Πn
i=1si

and order(φ(t1,...,tn)) = Πn
i=1ti are equal, so, as each si and ti is prime and occurs

only once in each increasing sequence, by the Fundamental Theorem of Arithmentic,

{s1, . . . , sn} = {t1, . . . , tn}

(⇐) Clear.

Lemma 4.3.5. Let (ω,n) = (s1, . . . , sn) and (η,m) = (t1, . . . , tm) be increasing se-

quences of prime numbers with n >m.

Let G(ω,n) = (S1 × . . . × Sn) ⋊φ(ω,n) Z and G(η,m) = (S1 × . . . × Sm) ⋊φ(η,m) Z be two

semidirect products. Then there is an epimorphism g ∶ G(ω,n) → G(η,m) if and only if

{t1, . . . , tm} ⊆ {s1, . . . , sn}.

Proof The proof in this case is similar to the case n =m, except that the epimor-

phism g must crush out n −m factors of K(ω,n) = S1 × . . . × Sn by Corollary 4.2.7 and

the Pidgeonhole Principle and then is an isomorphism on the remaining factors.

(⇒) Suppose there is an epimorphism g ∶ G(ω,n) → G(η,m). Then g must send the com-

mutator subgroup of G(ω,n) onto the commutator subgroup of G(η,m). By Corollary

4.2.7, g must send m factors of K(ω,n) = S1 × . . . × Sn in the domain isomorphically

onto the m factors of K(η,m) = S1 × . . . × Sm in the range and sends the remaining

n −m factors of K(ω,n) to the identity. Let {i1, . . . , im} be the indices in {1, . . . , n} of
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factors in K(ω,n) which are sent onto a factor in K(η,m) and let {j1, . . . , jn−m} be the

indices in {1, . . . , n} of factors in K(ω,n) which are sent to the identity in K(η,m). Then

g induces an isomorphism between Si1 × . . .×Sim and K(η,m). Set Lm = Si1 × . . .×Sim

Also, by an argument similar to Lemmas 4.3.3 and 4.3.4, g sends sends the infinite

cyclic groupG(ω,n)/K(ω,n) isomorphically onto the infinite cyclic quotientG(η,m)/K(η,m).

Note that Lm⋊φ(si1 ,...,sim )Z is a quotient group of G(ω,n) by a quotient map which sends

Sj1×. . .×Sjn−m to the identity. Consider the induced map g′ ∶ Lm⋊φ(si1 ,...,sim )Z→ G(η,m).

By the facts that g′ maps Lm isomorphically onto K(η,m) and preserves the infinite

cyclic quotients, we have that the kernel of g must equal exactly Sj1 × . . .×Sjn−m ; thus,

by the First Isomorphism Theorem, we have that g′ is an isomorphism.

Finally, g′ is an isomorphism of Lm ⋊φ(si1 ,...,sim ) Z with G(ω,n) which restricts to an

isomorphism of Lm with St1 × . . . × Stm , so, by Lemma 4.3.3, we have φ(si1 ,...,sim)

is conjugate to φ(t1,...,tm), so, in Out(Πn
i=1A1), order(φ(si1 ,...,sim)) = order(φ(t1,...,tm)),

and thus, as each si and ti is prime and appears at most once, by an argument

similar to Lemma 4.3.4 using the Fundamental Theorem of Arithmetic, {t1, . . . , tm} ⊆

{s1, . . . , sn}.

(⇐) Suppose {t1, . . . , tm} ⊆ {s1, . . . , sn}. Choose a ∈ G(ω,n) with aK(ω,n) generating

the infinite cyclic quotient G(ω,n)/K(ω,n) and choose b ∈ G(η,m) with bK(η,m) generating

the infinite cyclic quotient G(η,m)/K(η,m). Set g(a) = b.

Send each element of Si (where Si uses an element of order ti in its semidirect product

definition in the domain) to a corresponding generator of Si (where Si uses an element

of order ti in its semidirect product definition in the range) under g. Send the elements

of all other Sj’s to the identity.
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Then g ∶ G(ω,n) → G(η,m) is an epimorphism. Clearly, g is onto by construction. It

remains to show g respects the multiplication in each group.

Clearly, g respects the mutltiplication in each Si and in Z

Finally, if αi ∈ Si and a ∈ Z,

g(aαi) = g(a)g(αi)

g(φsi(αi)a) = φti(g(αi))g(a)

using the slide relators for each group and the fact that si = ti, which implies φsi = φti .

So, g respects the multiplication in each group. This completes the proof.

4.4 Some Algebraic Lemmas, Part 3

Recall Ω is an uncountable set consisting of increasing sequences of prime numbers

(p1, p2, p3, . . .) with pi < pi+1. For ω ∈ Ω and n ∈ N, recall we have defined (ω,n) to be

the finite sequence consisting of the first n entries of ω.

Recall also that pi denotes the ith prime number, and for the group S = P1∗P2, where

each Pi is Thompson’s group V , we have chosen ui ∈ P1 to have order(ui) = pi.

Recall finally we have define a map Φ ∶ P1 → Out(P1 ∗ P2) (where each Pi is a

copy of Thompson’s group V ) by Φ(u) = φu, where φu ∈ Out(P1 ∗ P2) is the outer

automorphism defined by the automorphism

φu(p) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

p if p ∈ P1

upu−1 if p ∈ P2

(Recall φu is called a partial conjugation.)
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Set G(ω,n) = (S × S × . . . × S) ⋊φ(ω,n) Z.

Lemma 4.4.1. G(ω,n) ≅ S ⋊φwsn G(ω,n−1), where φwsn is partial conjugation by usn.

Proof First, note that there is a short exact sequence

1 - S
ι
- G(ω,n)

αn- G(ω,n−1) - 1

where ι takes S identically onto the nth factor, and α crushes out factor, as described

in Lemma 4.3.5.

Next, note that there is a left inverse j ∶ G(ω,n−1) → G(ω,n) to α given by (1) sending

the generator a of the Z from its image γn−1(a) in the semi-direct product

1 - (S × . . . × S) ιn−1- G(ω,n−1)
βn−1 - Z - 1

where γn−1 is a left inverse to βn−1, to its image γn(a) in

1 - (S × . . . × S) ιn- G(ω,n)
βn - Z - 1

where γn is a left inverse to βn

and (2) sending each of the images ιn−1(ti) of the elements ti of the Si associated with

φwsi in G(ω,n−1) in
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1 - (S × . . . × S) ιn−1- G(ω,n−1)
βn−1 - Z - 1

to the images ιn(ti) of the elements ti of the Si associated with φsi in G(ω,n) in

1 - (S × . . . × S) ιn- G(ω,n)
βn - Z - 1

for i ∈ {1, . . . , n − 1}

The existence of a left inverse proves the group extension is a semi-direct product.

The needed outer action for the final copy of S in G(ω,n) may now be read off the

defining data for G(ω,n) in the definition G(ω,n) = (S × S × . . . × S) ⋊φ(ω,n) Z, showing

that it is indeed partial conjugation by usn .

(Alternately, one may note there is a presentation for (S × S × . . . × S) ⋊φ(ω,n) Z that

contains a presentation for S ⋊φwsn G(ω,n−1)

Generators: z, the generator of Z, together with the generators of the first copy of S,

the generators of the second copy of S, ..., and the generators of the nth copy of S.

Relators defining Pi’s: the relators for the copy of P1 in the first copy of S, the relators

for the copy of P2 in the first copy of S, the relators for the copy of P1 in the second

copy of S, the relators for the copy of P2 in the second copy of S, , ..., and the relators

for the copy of P1 in the nth copy of S, the relators for the copy of P2 in the nth copy

of S.

Slide Relators: The slide relators between z and the generators of P2 in the first copy



4.4. Some Algebraic Lemmas, Part 3 50

of S due to the semi-direct product, the slide relators between z and the generators

of P2 in the second copy of S due to the semi-direct product, ..., the slide relators

between z and the generators of P1 in the nth copy of S due to the semi-direct product,

and the slide relators between z and the generators of P2 in the nth copy of S due to

the semi-direct product.)

Now, this way of looking at G(ω,n) as a semi-direct product of S with G(ω,n−1) yields

an inverse sequence (G(ω,n), αn), which looks like

G(ω,0) �
α0

G(ω,1) �
α1

G(ω,2) �
α2

. . .

with bonding maps αi ∶ G(ω,i+1) → G(ω,i) that each crush out the most recently added

copy of S.

A subsequence will look like

G(ω,n0)
�
αn0 G(ω,n1)

�
αn1 G(ω,n2)

�
αn2 . . .

with bonding maps αni ∶ Gω,nj) → Gω,ni) that each crush out the most recently added

nj − ni copies of S.

Lemma 4.4.2. If, for inverse sequences (G(ω,n), αn), where αn ∶ G(ω,n) → G(ω,n−1) is

the bonding map crushing out the most recently-added copy of S, ω does not equal η,

then the two inverse sequences are not pro-isomorphic.

Proof Let (G(ω,n), αn) and (G(η,m), βm) be two inverse sequences of group exten-

sions, assume there exists a commuting ladder diagram between subsequences of the
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two, as shown below. By discarding some terms if necessary, arrage that ω and η do

not agree beyond the term n0.

G(ω,n0)
�

α
G(ω,n2)

�
α

G(ω,n4)
�
α

. . .

. . .

G(η,m1)
�
β�

g n 2

�

f
m
1

G(η,m3)
�
β�

g n 4

�

f
m
3

. . .

By the commutativity of the diagram, all f ’s and g’s must be epimorphisms, as all

the α’s and β’s are.

Now, it is possible that g(ω,n2) is an epimorphism; by Lemma 4.3.5, (η,m1) might be a

subset of (ω,n2) when considered as sets. But, f(η,m3) cannot also be an epimorphism,

since (ω,n2) cannot be a subset of (η,m3) when considered as sets. Since the two

sequences can only agree up to n0, if (η,m1) is a subset of (ω,n2) when considered

as sets, then there must be an prime pi in (ω,n2) in between some of the primes

of (η,m1). This prime pi now cannot be in (η,m3) and is in (ω,n2), so we cannot

have (ω,n2) a subset of (η,m3) when considered as sets, so f(η,m3) cannot be an

epimorphism.

4.5 Manifold Topology

We now begin an exposition of our example.

Theorem 1.2.2(Uncountably Many Pseudo-Collars on Closed Manifolds with the
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Same Boundary and Similar Pro-π1). Let Mn be a closed smooth manifold (n ≥ 6)

with π1(M) ≅ Z and let S be the fintely presented group V ∗V , which is the free preduct

of 2 copies of Thompson’s group V . Then there exists an uncountable collection of

pseudo-collars {Nn+1
ω ∣ ω ∈ Ω}, no two of which are homeomorphic at infinity, and

each of which begins with ∂Nn+1
ω =Mn and is obtained by blowing up countably many

times by the same group S. In particular, each has fundamental group at infinity that

may be represented by an inverse sequence

Z ��
α1

G1
��
α2

G2
��
α3

G3
��
α4

. . .

with ker(αi) = S for all i.

Proof For each element ω ∈ Ω, the set of all increasing sequences of prime num-

bers, we will construct a pseudo-collar Nn+1
ω whose fundamental group at infinity is

represented by the inverse sequence (G(ω,n), α(ω,n)). By Lemma 4.4.2, no two of these

pseudo-collars can be homeomorphic at infinity, and the Theorem will follow.

To form one of the pseudo-collars, start with M = S1 × Sn−1 with fundamental group

Z and then blow it up, using Theorem 1.2.1, to a cobordism (W(s1),M,M(s1)) corre-

sponding to the group G(s1) (s1 a prime)..

We then blow this right-hand boundaries up, again using Theorem 1.2.1 and Lemma

4.4.1, to cobordisms (W(s1,s2),M(s1),M(s1,s2)) corresponding to the group G(s1,s2)

above.

We continue in the fashion ad infinitum.

The structure of the collection of all pseudo-collars will be the set Ω described above.
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We have shown that the pro-fundamental group systems at infinity of each pseudo-

collar are non-pro-isomorphic in Lemma 4.4.2, so that all the ends are non-diffeomorphic

(indeed, non-homeomorphic).

This proves we have uncountably many pseudo-collars, each with boundary M , which

have distinct ends.

Remark 4.5.1. The above argument should generalize to any manifold Mn with n ≥ 6

where π1(M) is a finitely generated Abelian group of rank at least 1 and any finitely

presented, superperfect, centerless, freely indecomposable, Hopfian group P with an

infinite list of elements of different orders (the orders all being prime numbers was a

convenient but inessential hypothesis). The quotient needs to be Abelian so that the

commutator subgroup will be the kernel group, which is necessarily superperfect; the

quotient group must have rank at least 1 so that there is an element to send into the

kernel group to act via the partial conjugation. The rest of the conditions should be

self-explanatory.
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Chapter 5

SOME ONE-ENDED

MANIFOLDS WHICH ARE NOT

PSEUDO-COLLARABLE

5.1 Hypo-Abelian Groups

In [12], Guilbault and Tinsley construct the first known example of an inward tame

but non-pseudo-collarable 1-ended manifolds with compact boundary. In fact, their

example satifies conditions (1) and (3) of Theorem 4.1.14 (a condition hereinafter

referred to as absolutely inward tame), but fails to be pseudocollarable because it

does not satisfy condition (2) of Theorem 4.1.14, that is, it does not have perfectly

semistable pro-fundamental group at infinity. Their example is based on a single

inverse sequence of groups, created specifically for the purpose of their example.

In this chapter, we present a more general strategy for creating absolutely inward tame

manifolds that are not pseudocollarable. Our construction begins with any manifold
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Mn, n ≥ 5, whose fundamental group is hypo-Abelian (to be defined below) and which

contains an element of infinite order. From this, we create a homotopy collar W n+1

whose boundary ∂W =M and is absolutely inward tame but is not pseudo-collarable.

Definition 5.1.1. A group G is said to hypo-Abelian if it contains no non-trivial

perfect subgroup.

Examples:

(1) If G is Abelian, then G is hypo-Abelian.

(2) Recall that a group is solvable if and only if its derived series

G = G0 ⊵ G(1) ⊵ G(2) ⊵ . . . ⊵ G(n) = ⟨e⟩

terminates at a finite length in the trivial group, where each G(i) = [G(i−1),G(i−1)].

Since the (possibly transfinite) derived series of a group always terminates in the

perfect core of the group (the largest perfect subgroup of the group), and solvable

groups have their derived series terminate in the trivial group, every solvable group

is hypo-Abelian.

(3) Free groups are hypo-Abelian

Since by the Nielsen-Schreier Theorem (see [28] and [33]), subgroups of free groups

are free.

(4) Free products of hypo-Abelian groups are hypo-Abelian.

This is because of the Kurosh Subgroup Theorem, which states that a subgroup of a

free product is F ∗λ∈Λ α−1
λ Pλαλ, where F is a free group and α−1

λ Pλαλ is a conjugate
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of a subgroup of one of the groups in the free product. Since free groups admit no

non-trivial perfect subgroups and each factor admits no non-trivial perfect subgroup,

there are no non-trivial perfect subgroups, and free products of hypo-Abelian groups

are hypo-Abelian.

(5) Every extension of a hypo-Abelian group by a hypo-Abelian group is hypo-

Abelian.

Lemma 5.1.2. Let

1 - K
ι
- G

σ
- Q - 1

be a short exact sequence of groups with K,Q hypo-Abelian. Then G is hypo-Abelian.

Proof

Let P ≤ G be perfect. Then σ(P ) is perfect, for if x = [y, z] in G, then σ(x) =

[σ(y), σ(z)] in Q. But Q is hypo-Abelian, so σ(P ) = ⟨e⟩ ≤ Q. This means

P ≤ ι(K). But K is hypo-Abelian, so ι(K) is hypo-Abelian, so P = ⟨e⟩.

(6) In [20], Howie shows that every right-angled Artin group (RAAG) is hypo-Abelian.

(7) Split amalgamated free products are hypo-Abelian

Definition 5.1.3. A monomorphism α ∶ A ↪ B is said to be split if there is a

homomorphism β ∶ B↠ A such that β ○ α = idA.

Definition 5.1.4. A group G is a split amalgamated free product if and only

if G may be expressed as an amalgamated free product B ∗A C, where one of the
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injections A↪ B or A↪ C splits.

The following is a theorem from [19].

Theorem 5.1.5 (Theorem E). Let T denote the class of hypo-Abelian groups. Then

T is closed under the operation of split amalgamated free products.

(The above result will be important in proving the main theorem of this chapter.)

(8) Every residually solvable group is hypo-Abelian.

(9) Every groupG has a “hypo-Abelianization” obtained by quotienting out its perfect

core, the largest perfect subgroup.

(10) The Baumslag-Solitar groups BS(1,n) given by ⟨t, x ∣ x = txnt−1⟩.

The Baumslag-Solitar group BS(1,n), In, fits into a short exact sequence

1 - Z[ 1

n
] - In

r
- Z - 1

To see this, note that a K(G,1) for In is given by taking a cylinder S1 × [0,1] and

glueing one end to the other by a degree n map; the covering space corresponding to

unraveling the generator going across the cylinder is a bi-infinite mapping telescope

of degree n maps of the circle to itself, which is easily seen to have the fundamental

group isomomorphic to Z[ 1
n]. The short exact sequence follows. By Lemma 5.1.2, In

is now hypo-Abelian.
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5.2 Algebraic Lemmas

The following establishes the group theory basis for our geometric example of a 1-

ended manifold W “built” from a closed manifold M with hypo-Abelian fundamental

group G0 and an element of infinite order t0. We construct inductively an inverse

sequence of amalgamated free products, first of G0 with the Baumslag-Solitar group

BS(1,2), I, and then of the newly constructed group Gj again with the Baumslag-

Solitar group BS(1,2), I2. This inverse sequence of groups will be the fundamental

group at infinity of our manifold W .

Theorem 5.2.1. Let G0 = ⟨A0 ∣ R0⟩ be a finitely presented hypo-Abelian group

that contains an element t0 of infinite order. Then there is an inverse sequence

of hypo-Abelian groups G0 ↞ G1 ↞ G2 ↞ G2 ↞ . . . such that for each i > 0,

Gj = ⟨Aj−1, tj ∣ Rj−1, tj = [tj, tj−1]⟩.

Proof First note thatG1 = ⟨A0, t1 ∣R0, t1 = t−1
1 t

−1
0 t1t0⟩ = ⟨A0, t1 ∣R0, t21 = t−1

0 t1t0⟩ =

⟨A0, t1 ∣ R0, t1 = t0t21t0⟩ ≅ G0 ∗⟨t0⟩ I2, where I2 is the Baumslag-Solitar group BS(1,2)

given by ⟨t, x ∣ x = tx2t−1⟩, with the generator t ∈ I2 identified with t0 ∈ G0, x ∈ I2

identified with t1 ∈ G1. We must show t0 has infinite order in G1 ≅ G0 ∗⟨t0⟩ I2 and t1

has infinite order in G1.

The fact that t0 has infinite order in G1 follows from the facts that t0 has infinite order

in G0, t has infinite order in I2, and Britton’s Lemma, which states that each factor

in a free product with amalgamation embeds in the free product with amalgamation.

Similarly, the fact that t1 has infinite order in G1 follows from the fact that x has

infinite order in I2 and Britton’s Lemma.

Note that Gj = ⟨Aj−1, tj ∣ Rj−1, tj = t−1
j t

−1
j−1tjtj−1⟩ = ⟨Aj−1, tj ∣ Rj−1, t2j = t−1

j−1tjtj−1⟩ =

⟨Aj−1, tj ∣ Rj−1, tj = tj−1t2j tj−1⟩ ≅ Gj−1 ∗⟨tj−1⟩ I, where I is the Baumslag-Solitar group
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BS(1,2) given by ⟨t, x ∣ x = tx2t−1⟩, with the generator t ∈ I identified with t0 ∈ G0,

x ∈ I identified with t1 ∈ G1, and where tj has infinite order in Gj. Note that tj−1 has

infinite order in Gj as tj−1 has infinte order in Gj−1 by the inductive hypothesis, t has

infinite order in I2, and Britton’s Lemma again.

The onto map r ∶ I ↠ Z above induces an onto map rj ∶ Gj ↠ Gj−1 of the free product

with amalgamation Gj ≅ Gj−1 ∗⟨tj−1⟩ I.

By induction, Theorem E from [19] tells us that each Gj is hypo-Abelian.

It remains to show that tj has infinite order in Gj. This follows from the fact that x

has infinite order in I (again, by considering the earlier short exact sequence for I)

and Britton’s Lemma.

Remark 5.2.2. The inverse sequence used by Guilbault-Tinsley in [12] may now be

viewed as a special case of Theorem 5.2.1 in which G0 is infinite cyclic.

We have a very geometric proof that all the Gj’s are hypo-Abelian, derived before we

knew of Howie’s theorem. We give a brief sketch of the proof here.

Fact 5.2.3. Let p ∶ X̂(H) → X be a regular covering projection of CW complexes,

Z ⊆X be a connected subcomplex. Then p−1(Z) → Z is a covering map

Proof

This is Theorem 53.2 in [27].

Let Xj−1 be a K(Gj−1,1). Let p ∶ X̃j−1 → Xj−1 be the universal cover of Xj−1. Let Z

be a simple closed curve in Xj−1 representing tj−1. Let Aj−1 = {tj−1;Gj−1} ≅ Z. Let
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Hj−1 = {gAj−1 ∣ g ∈ Gj−1/Z} be an indexing set for the collection of path components

of p−1(Z). Then p−1(Z) ≡ {hR ∣ h ∈ Hj−1} as tj−1 has infinite order in Gj−1 and by

Fact 5.2.3 is a covering map.

Let Y be the K(I,1) described earlier. Let q ∶ Ŷ (Z[1
2]) → Y be the intermediate

cover of Y with corresponding to the normal subgroup Z[1
2] of I. Let Z ′ be a loop

in Y representing tj, a generator going across the cylinder. Then q−1(Z ′) is a single

line R in Ŷ (Z[1
2]) as tj has infinite order in I and by Fact 5.2.3 is a covering map.

Attach a copy of Ŷ (Z[1
2]) (briefly, Ŷ ) along its copy of R to each component of p−1(Z)

in X̃j−1, taking care to match up basepoint with copy of basepoint and so that the

image of 0 under the deck transformation taking 0 ∈ R to 1 ∈ R in the copy of R in

p−1(Z) in X̃j−1 matches up with the image of 0 under the deck transformation taking

0 ∈ R to 1 ∈ R in the copy of R in the copy of Ŷ (Z[1
2]). Call the resulting space

Q. Let Xj be a the adjunction space formed by gluing Xj−1 to Y along Z−2Z ′−1ZZ ′,

where Z ′ is the loop in Y reprsesenting tj and Z is the loop in Xj−1 representing tj−1.

An elementary but tedious argument gives the following.

Claim 5.2.4. (1) q ∶ Q → Xj evenly covers Xj (with an appropriate adjunction map

q as covering map)

(2) q ∶ Q→Xj is a regular cover

(3) There is a homomorphism Ψ ∶ π1(Q, ∗̃) ≅ ker(rj) and an isomorphism Φ ∶ Deck(r)

→ Gj−1, Gj−1 = π1(Xj−1), which makes the following diagram commute:

1 - π1(Q, ∗̃)
β
- π1(Xj,∗)

α
- Deck(r) - 1

1 - ker(rj)
Ψ
? ι

- Gj

Λ
? rj- Gj−1

Φ
?

- 1
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where α, β, and Λ are the canonical maps from covering space theory.

Since X̃j−1 is contractible, it is easy to check that π1(Q) is a possibly infinite free

product of copies of the Abelian group π1(Ŷ (K)) ≅ Z[1
2], which, by parts (1) and (4)

of the examples at the beginning of the section, is hypo-Abelian. We may now apply

Lemma 5.1.2 to conclude Gj is hypo-Abelian.

Recall Lemma 4.1 from [12].

Lemma 5.2.5. Let G0 ↞ G1 ↞ G2 ↞ G3 ↞ G4 . . . be an inverse sequence of hypo-

Abelian groups and non-injective epimorphisms. Then this inverse sequence is not

perfectly semistable.

5.3 Manifold Topology

Our primary contribution to the following theorem is contained in the algebra pre-

sented above. Since the handle-theoretic construction is nearly identical to that pro-

vided in Theorem 4.4 in [12], we provide only an outline. The reader is referred to

[12] for details.

Theorem 1.2.3(Existence of Non-Pseudo-Collarable “Nice” Manifolds). Let Mn be

an orientable, closed manifold (n ≥ 6) such that π1(M) contains an element t0 of

infinite order and π1(M) is hypo-Abelian. Then there exists a 1-ended, orientable

manifold W n+1 with ∂W =M in which all clean neighborhoods of infinity have finite

homotopy type, but which does not have perfectly semistable fundamental group at

infinity. Thus, W n+1 is absolutely inward tame but not pseudocollable.

Sketch of Proof
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We need to construct W n+1. We will construct W n+1 as promised so that a representa-

tive of pro-π1 is the inverse sequence provided by Theorem 5.2.1 with π1(M) playing

the role of G0. Then Lemma 5.2.5 will guarantee that W does not have perfectly

semi-stable fundamental group at infinity.

We will construct W n+1 by creating a sequence of compact cobordisms (Wi,Mi,Mi+1)

such that

a) The left-hand boundary of W0 is M with π1(M) hypo-Abelian and an element t0

of infinite order, and, for all i ≥ 1, the left-hand boundary of Wi, Mi, is the same

as the right-hand boundary of Wi−1.

b) For all i ≥ 0, π1(Mi) ≅ Gi, and Mi ↪Wi induces a π1 isomorphism.

c) The isomorphism between π1(Mi) abd Gi can be chosen so that we have a com-

mutative diagram

Gi−1
� Gi

π1(Mi−1)
≅ ?

� π1(Mi)
≅ ?

We will let

W n+1 =W0 ∪W1 ∪W2 ∪W3 ∪ . . .

Then for each i ≥ 1,

Ni =Wi ∪Wi+1 ∪Wi+2 ∪ . . .

is a clean, connected neighborhood of infinity. Moreover, by properties b) and c) and

repeated applications of Seifert-Van Kampen, the inverse system
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π1(N1, p1) ← π1(N2, p2) ← π1(N3, p3) ← . . .

is isomorphic to the inverse sequence from Theorem 5.2.1.

(i = 1) Start with Mn and cross it with I. Attach a trivial 1-handle α1
1 corresponding

to t1 to the right-hand boundary (abbreviated RHB) of M × I. Let t0 be the element

of infinite order in π1(M). Attach a 2-handle α2
1 for the relator t1 = [t1, t0] to the

RHB of M × I. Set Bn+1
1 to be (M × I) ∪ α1

1 ∪ α2
1.

Claim 5.3.1. Then M1 ↪ B1 induces a π1 isomorphism.

Proof

By inverting the handlebody decomposition, we may view B1 as the result of adding

the (n − 2)- and (n − 1)-handle to the RHB, M1, of B1 to produce M . But now

M1 ↪ B0 induces a π1 isomorphism, as n − 2 and n − 1 ≥ 3.

However, (B1,M,M1) is not the cobordism we seek.

Since the 1-handle α1
1 was trivially attached, we may attach a canceling 2-handle

β2
1 . But now the original 2-handle α2

1 is trivially attached (by observation of its

attaching loops with t1 killed), so we may attach a canceling 3-handle β3
1 . Set W n+1

1 =

(M1 × I) ∪ β2
1 ∪ β3

1

But now, B0 ∪ β2
1 ∪ β3

1 = B0 ∪M1 W0 ≈ M × I. Invert (W0,M1,M) so that it becomes

(W0,M,M1) with an (n − 3)-handle γn−3
1 and an (n − 2)-handle γn−2

1 attached to the

RHB of M × I. Then ι# ∶ π1(M) → π1(W0) is an isomorphism, as n − 3 and n − 2 ≥ 3.

(W0,M,M1) is the cobordism we seek.
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(inductive step) Mutatis mutandis the basis step. Start with Mn
i and cross it with I.

Attach a trivial 1-handle α1
i corresponding to ti+1 to the right-hand boundary (RHB)

of Mi × I. Attach a 2-handle α2
i for the relator ti+1 = [ti+1, ti] to the RHB of Mi × I.

Set Bn+1
i to be (Mi × I) ∪ α1

i ∪ α2
i .

Claim 5.3.2. Then Mi+1 ↪ Bi induces a π1 isomorphism.

Proof

By inverting the handlebody decomposition, we may view Bi as the result of adding

the (n − 2)- and (n − 1)-handle to the RHB, Mi+1, of Bi to produce Mi. But now

Mi+1 ↪ Bi induces a π1 isomorphism, as n − 2 and n − 1 ≥ 3.

However, (Bi,Mi,Mi+1) is not the cobordism we seek.

Since the 1-handle α1
i was trivially attached, we may attach a canceling 2-handle

β2
i . But now the original 2-handle α2

i is trivially attached (by observation of its

attaching loops with ti+1 killed), so we may attach a canceling 3-handle β3
i . Set

W n+1
i = (Mi+1 × I) ∪ β2

i ∪ β3
i

But now, Bi ∪β2
i ∪β3

i = Bi ∪Mi+1 Wi ≈Mi × I. Invert (Wi,Mi+1,Mi) so that it becomes

(Wi,Mi,Mi+1) with an (n−3)-handle γn−3
i and an (n−2)-handle γn−2

i attached to the

RHB of Mi × I. Then π1(Wi) ≅ Gi, as as n − 3 and n − 2 ≥ 3.

(Wi,Mi,Mi+1) is the cobordism we seek.

Set W n+1 =W0 ∪M1 W1 ∪M2 W2 ∪M3 W3 ∪M5 . . .

Define neighborhoods of infinity Ni =Wi ∪Mi
Wi+1 ∪Mi+1 Wi+2 ∪Mi+2 . . . for i ≥ 1. Then

each Ni is a connected neighborhood of infinity (clean except at i = 1).
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(Pro-Fundamental Group System) Note that by properties b) and c) and a repeated

application of Siefert-Van Kampen, the inverse sequence π1(N0, p0) ← π1(N1, p1) ←

π1(n2, p2) ← . . . is pro-isomorphic to G0 ← G1 ← G2 ← G3 ← . . ..

(Boundary) Also, clearly, ∂W =M .

(Each Clean Neighborhood has Finite Homotopy Type)

It suffices to identify a cofinal sequence of clean neighborhoods of infinity having

finite homotopy type. Toward that end, for each i ≥ 2, let N ′
i = β2

i−1 ∪ Ni, where

Ni =Wi ∪Mi
Wi+1 ∪Mi+1 Wi+2 ∪Mi+2 . . ..

The argument is complete when one shows that β2
i−1 ∪Mi−1 ↪ N ′

i is a homotopy

equivalence.

This follows easily from the fact that for each i ≥ 1, W ′
i strong deformation retracts

onto β2
i−1 ∪Mi, where W ′

i = Wi ∪ βi−1. The proof of this fact is explained in [12],

Proposition 4.4.

Proof

It suffices to show that β2
i−1 ∪Mi ↪ W ′

i is a homotopy equivalence. Let bn−2
i−1 be

a belt disk for β2
i−1 that intersects β̃2

i−1 in a belt disk b̃n−2
i−1 , where β̃2

i−1 is a tubular

neighborhood of the core disk of β2
i−1 that sits inside ˆβ2

i−1.

By the Paint Can Lemma (which states that a cube less one face strong deformation

retracts onto the remaining faces), β2
i−1∪Mi strong deformation retracts onto bn−2

i−1 ∪M ′
i

(♣).

By a similar move, W ′
i strong denormalformation retracts onto b̃n−2

i−1 ∪W ′′
i .
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But W ′′
i is a product, (�), so we may collapse b̃n−2

i−1 ∪W ′′
i onto bn−2

i−1 ∪M ′
i , which is a

strong deformation retract of β2
i−1 ∪Mi, by (♣).

To prove N ′
i strong deformation retracts onto β2

i−1 ∪ Mi (that is, that N ′
i strong

deformation retracts onto β2
i−1 ∪Mi), collapse W ′

i onto β2
i−1 ∪Mi, by the claim. But

now, for j > i, W ′
j strong deformation retracts onto (β2

j−1 ∪Mj) extends (via the

identity) to (Wj−1 ∪Mj
Wj) strong deformation retracts onto Wj−1, as β2

j−1 ⊆Wj. We

may assemble all these strong deformation retractions to get a strong deformation

retraction of N ′
i onto β2

i−1 ∪Mi.
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