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ABSTRACT

On the Riesz representation for optimal

stopping problems

by

Markus Schuster

The University of Wisconsin-Milwaukee, 2015
Under the Supervision of Professor Stockbridge

In this thesis we summarize results about optimal stopping problems analyzed with

the Riesz representation theorem. Furthermore we consider two examples: Firstly

the optimal investment problem with an underlying d-dimensional geometric Brow-

nian motion. We derive formulas for the optimal stopping boundaries for the one-

and two-dimensional cases and we find a numerical approximation for the boundary

in the two-dimensional problem. After this we change the focus to a space-time

one-dimensional geometric Brownian motion with finite time horizon. We use the

Riesz representation theorem to approximate the optimal stopping boundaries for

three financial options: the American Put option, American Cash-or-Nothing option

and the American Asset-or-Nothing option.
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Chapter 1

Introduction

1.1 Literature review

This thesis is based on chapter three of the habilitation treatise “On Stochastic

Control and Optimal Stopping in Continuous Time” by Sören Christensen [1] which

is common work with Paavo Salminen. In this paper Christensen and Salminen

considered an optimal stopping time problem where the value function is bounded.

They manage to rewrite the value function with the help of the Riesz representation

as an integral over the unknown stopping set. Thus the optimal stopping problem

reduces to an integral equation. Furthermore they prove that the solution of this

problem characterizes the stopping set uniquely.

1.2 Optimal stopping problems

An optimal stopping problem can be formulated as follows: Find a function V (the

value function) and a stopping time τ∗ (optimal stopping time) such that

V (x) ∶= sup
τ∈M

Ex (e−rτg(Xτ)) = Ex (e−rτ
∗
g(Xτ∗)) ,

where (Xt)(t≥0) is a strong Markov process taking values in E ⊂ Rd, x ∈ E, r ≥ 0, T ∈
[0,∞] is the time horizon of the problem, M is the set of all stopping times in the

natural filtration of X with values in [0, T ] and g ∶ Rd
+ ↦ R+ is the reward function.
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Chapter 2

Preliminaries

In this chapter we will review general results about optimal stopping problems in-

cluding those by Christensen and Salminen.

2.1 r-excessive functions

First, we will consider a general result. For that reason we define the terms r-

excessive and lower semicontinuous functions:

Definition 2.1.1. A non-negative, measurable function u is called r-excessive for a

real-valued strong Markov process X if the following two conditions hold:

Ex(e−rtu(Xt)) ≤ u(x) ∀ t ≥ 0, x ∈ E,

lim
t→0

Ex(e−rtu(Xt)) = u(x) ∀ x ∈ E.

Definition 2.1.2. A function u is called lower semicontinuous on E if

lim inf
x→x0

u(x) ≥ u(x0) ∀ x0 ∈ E.

Theorem 2.1.3 ([4, p. 124]). Let X be a Markov process and g ∶ Rn
+ ↦ R+ be a

lower semicontinuous, positive reward function which satisfies the condition

Ex (sup
t≥0

g(Xt)) < ∞.
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Then the value function V exists and can be characterized as the smallest r-excessive

majorant of g. Moreover, the optimal stopping time is the first entrance time into

the set

S ∶= {x ∈ E ∶ g(x) = V (x)}.

So, the question of the existence of the value function is solved, but there is no

known explicit solution. The approach of Christensen and Salminen is to describe

the value function via the Riesz Representation Theorem for excessive functions. In

the following two chapters we examine two examples of processes where their theory

can be applied. The first is the multidimensional geometric Brownian motion and

the second is the time-space process with limited time.

2.2 The Riesz representation of excessive func-

tions

The general idea of the Riesz representation is to rewrite an r-excessive function

as a sum of an r-harmonic function and a potential. Therefore we define harmonic

functions.

Definition 2.2.1. A non-negative measurable function h is called r-harmonic on A

if

h(x) = Ex(e−rτAu(XτA)),

where τA ∶= inf{t ∶Xt ∉ A}.

For the definition of a potential we refer to Kunita and Watanabe [12]. For the

following results we use the resolvent kernel Gr of a geometric Brownian motion

which is introduced in Section 3.1.

Theorem 2.2.2 ([1]). Let u be a locally integrable r-excessive function for a d-

dimensional geometric Brownian motion X. Then u can be represented uniquely as

the sum of a r-harmonic function h and an r-potential p. For the potential p there
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exists a unique Radon measure σ depending on u and r on Rd
+ such that for all

x ∈ Rd
+

p(x) = ∫
Rd+
Gr(x, y)σ(dy),

Moreover, if u is additionally bounded, then h ≡ 0.
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Chapter 3

Optimal investment problem

In this chapter we look at the optimal investment problem which is one of the

most famous optimal stopping problems in continuous time with multidimensional

underlying process. First we introduce the underlying stochastic process, which we

model with a geometric Brownian motion.

3.1 Model introduction: Multi-dimensional geo-

metric Brownian Motion

To define a d-dimensional geometric Brownian motion, we begin with the d-dimensional

Brownian motion

W = ((W (1)
t , . . . ,W

(d)
t ))

t≥0

started at (0, . . . ,0) such that for t ≥ 0

E(W (i)
t ) = 0, E ((W (i)

t )2) = t, E(W (i)
t W

(j)
t ) = σi,jt, i, j = 1, . . . , d

where the covariance matrix Σ ∶= (σi,j)di,j=1 with σi,i ∶= 1 is non-singular. A d-

dimensional geometric Brownian motion is a diffusion X in Rd
+ with the components

defined by

X
(i)
t =X(i)

0 exp(aiW (i)
t + (µi −

1

2
a2i ) t) , i = 1, . . . , d,
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where ai ≠ 0 for i = 1, . . . , d. Note that X is a standard Markov process, see [8, p.

45]. The Green or resolvent kernel for X is given by

Gr(x, y) ∶= ∫
∞

0
e−rtp(t;x, y) dt,

where x, y ∈ Rd
+ and p is a transition density of X.

3.2 Setup

The value function for the optimal investment problem is defined by

vα(x) ∶= sup
τ∈M

Ex(e−rτ(X(0)
τ − α1X

(1)
τ − . . . − αdX(d)

τ )+), x ∈ Rd+1
+ ,

where the time horizon is infinite, r > 0, (X(0)
t , . . . ,X

(d)
t )t≥0 is a (d + 1)-dimensional

geometric Brownian motion and α ∈ Rd
+ is the weight vector.

With the help of Girsanov’s theorem we can set w.l.o.g. X
(0)
t =K. So the new value

function is

V (x) = sup
τ

Ex (e−rτ (K −
d

∑
i=1

X
(i)
τ )

+

) , (3.1)

which is an optimal stopping problem with lower semiconinuous reward function

g(x) = (K−∑di=1 xi)+. Christensen and Salminen used in [1] the Riesz representation

to obtain the following theorem:

Theorem 3.2.1. For all x ∈ Rd
+ it holds that

V (x) = ∫
S
Gr(x, y)σ(y)m(dy),

where S is the optimal stopping set,

σ(y) = rK +
d

∑
i=1

(µi − r)yi,

and m is an absolutely continuous measure with respect to the Lebesgue measure.
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A corollary of the latter theorem is the characterization of the the boundary of

the optimal stopping set S:

Corollary 3.2.2. Let g be the reward function of the optimal stopping problem

(g(x) = (K −∑di=1 xi)+). Then, the integral equation

g(x) = ∫
S
Gr(x, y)σ(y)m(dy) (3.2)

holds for all x ∈ ∂S and characterizes the optimal stopping set uniquely.

3.3 Solution of the optimal investment problem

when d = 1

Christensen and Salminen derived a formula for the one-dimensional optimal stop-

ping problem for µ = r using the density for the geometric Brownian motion with

respect to the speed measure (see [9, p. 13]). We will now derive the formula for

the stopping boundary without restrictions on µ using the density for the geometric

Brownian motion with respect to the Lebesgue measure. The proof has the same

structure as the one for the two-dimensional case in [1].

Theorem 3.3.1. The optimal stopping region in the one-dimensional optimal in-

vestment problem is S = (0, x∗] where

x∗ =
K − (2r̂)−1/2 rK

m1+
√
2r̂

(2r̂)−1/2 µ−r

m1+
√
2r̂+a

+ 1
, (3.3)

m1 ∶= µ−0.5a2

a and r̂ ∶= r + 1
2m

2
1.

Proof. First notice that Lemma 3.1 in [1] yields that the stopping set is a closed

south-west connected subset of (0,K). Hereby south-west connected means that if

x ∈ S, then so is y for all 0 < y ≤ x. Therefore S has the form (0, x∗] and the only

point on the boundary is x∗ and thus left side of (3.2) in x∗ is equals K − x∗. For

the right side of (3.2) consider Wt, the underlying Brownian motion of Xt. Then

the density of Wt is given by

fWt(x) =
1√
2πt

exp{−x
2

2t
} .
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Formula (29) in Erdelyi et al. [2] p.146 yields

∫
∞

0
e−rtfWt(x)dt =

2√
2π

(x
2

2r
)
1/4

K0.5 (
√
x2

√
2r)

= 2√
2π

(x
2

2r
)
1/4√π

2
∣x∣−1/2

√
2r

−1/2
exp(−∣x∣

√
2r)

= (2r)−1/2 exp(−∣x∣
√

2r),

where K0.5 is the modified Bessel function of second kind given by (see [10, p. 1021])

K0.5(z) =
√
π

2
z−1/2e−z, z > 0.

Introduce Zt =Wt +m1t where m1 = µ−0.5a2

a . Then the density of Zt is given by

fZt(x) =
1√
2π

exp{−(x −m1t)2
2t

} = fWt(x) exp{2xm1 −m2
1t

2
} .

Since Xt = x1 exp{aZt}, we get for the density of Xt started in x1

fXt(x) =
∂

∂x
P(Xt ≤ x) =

∂

∂x
P(Xt

x1
≤ x

x1
) = ∂

∂x
P(aZt ≤ log

x

x1
)

= ∂

∂x
P(Zt ≤

1

a
log

x

x1
) = 1

xa
fZt (

1

a
log

x

x1
) = 1

xa
fZt (x̂) ,

where x̂ ∶= 1
a log x

x1
.

So now we are ready to find the Green function. Notice that for x1 > x⇒ x̂ < 0,

Gr(x1, x) = ∫
∞

0
e−rtfXt(x)dt

= ∫
∞

0
e−rt

1

xa
fZt(x̂) dt

= ∫
∞

0
e−rt

1

xa
exp{2x̂m1 −m2

1t

2
} fWt(x̂) dt

= 1

xa
exp{x̂m1}∫

∞

0
exp{−(r +m2

1/2)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

=r̂

t}fWt(x̂) dt
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= 1

xa
exp{x̂m1}(2r̂)−1/2 exp{−∣x̂∣

√
2r̂}

x1>x= 1

xa
(2r̂)−1/2 exp{m1 +

√
2r̂

a
log ( x

x1
)}

= 1

xa
(2r̂)−1/2 ( x

x1
)

m1+
√

2r̂

a

Finally, we can calculate the right side of (3.2). Note that σ(y) = rK + (µ − r)y.

∫
x∗

0
Gr(x∗, y)σ(y)dy = ∫

x∗

0

1

ya
(2r̂)−1/2 ( y

x∗
)

m1+
√

2r̂

a

(rK + (µ − r)y) dy

=(2r̂)
−1/2

a
(x∗)−

m1+
√

2r̂

a [rK a

m1 +
√

2r̂
y

m1+
√

2r̂

a + (µ − r) a

m1 +
√

2r̂ + a
y

m1+
√

2r̂+a
a ]

x∗

0

=(2r̂)−1/2 [ rK

m1 +
√

2r̂
+ µ − r
m1 +

√
2r̂ + a

x∗] .

Thus (3.2) yields

K − x∗ = (2r̂)−1/2 [ rK

m1 +
√

2r̂
+ µ − r
m1 +

√
2r̂ + a

x∗]

⇔ x∗ =
K − (2r̂)−1/2 rK

m1+
√
2r̂

(2r̂)−1/2 µ−r

m1+
√
2r̂+a

+ 1
.

Corollary 3.3.2. The optimal stopping set in the case µ = r is S = (0, x∗] where

x∗ = γK

1 + γ and γ = 2r

a2
.

Proof. Note that the denominator of (3.3) is 1 for µ = r and moreover

2r̂ = 2r +m2
1 =

r2

a2
+ r + 1

4
a2 = (r

a
+ 1

2
a)

2

,

⇒(2r̂)−1/2 = (r
a
+ 1

2
a)

−1

= a

r + 1
2a

2
.
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Thus formula (3.3) yields that

x∗ =K − (2r̂)−1/2 rK

m1 +
√

2r̂
=K − a

r + 1
2a

2

rK
2r
a

=K − K

1 + γ = γK

1 + γ . (3.4)

3.4 The 2-dimensional case

In this section we have a look at the two-dimensional optimal investment problem.

Lemma 3.1 in [1] yields that the stopping set S is a closed, convex and south-west

connected subset of {(x1, x2) ∈ R2
+ ∶K −x1−x2 > 0}. By parametrizing the boundary

of the stopping set by a curve x2 = γ(x1) such that S = {(x1, x2) ∈ R2
+ ∶ x1 ≤ γ(x1)},

we can write the characterization (3.2) in the 2-dimensional case by

K − x1 − γ(x1) = ∫
x∗1

0
∫

γ(y1)

0
Gr((x1, γ(x1)), (y1, y2))σ(y1, y2)m(dy). (3.5)

Note that γ(x∗1) = 0 (formula (3.3) for x∗1 where µ = µ1 and a = a1) and respectively

is γ(0) = x∗2 (formula (3.3) where µ = µ2 and a = a2). Moreover, it is to remark

that the formulation of the problem allows µ1 and µ2 which are differing from the

market interest rate r. Thus we are not allowed to always use formula (3.4) which

was indicated in [1].

Christensen and Salminen developed in the same style as in the previous section

a formula for the Green function: Let Xt = (X(1)
t ,X

(2)
t ) be a geometric Brownian

motion which starts in (x1, x2), then

Gr((x1, x2), (u, v)) = ∫
∞

0
e−rtfXt(u, v) dt

= 1

π
√

1 − ρ2
1

a1a2uv
exp(− 1

2(1 − ρ2)Aρ(û, v̂;m1,m2))K0

⎛
⎝
√
r̂

√
2Bρ(û, v̂)

1 − ρ2
⎞
⎠
,

where ρ ∶= E (W (1)
1 W

(2)
1 ), m1 ∶= (µ1 − 1

2a
2
1) /a1, m2 ∶= (µ2 − 1

2a
2
2) /a2,

Bρ(x, y) ∶= x2 − 2ρxy + y2,
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Aρ(x, y;m1,m2) ∶= 2ρ(m2x +m1y) − 2(m1x +m2y),

û ∶= 1

a1
log

u

x1
, v̂ ∶= 1

a2
log

v

x2
, r̂ ∶= r + Bρ(m1,m2)

2(1 − ρ2) , and

K0 is the modified Bessel function of second kind given by (see formula 9.6.21 in

[11, p. 376])

K0(u) = ∫
∞

0

cos(uv)√
1 + v2

dv, u > 0.

Since there is no known explicit expression for K0, we cannot expect to find an

explicit solution for the curve γ in (3.5). In the following, we are setting up an

numerical approach for solving for this curve. The general idea is to approximate

the integrals by a numerical quadrature, specifically the Gauss-Legendre quadrature.

This leads to a multidimensional root-finding problem.

Let w1, . . . ,wn be the Gauss-Legendre weights and l1, . . . , ln the nodes which are

in the interval (−1,1). Then the transformation b(li + 1)/2 brings the nodes into

the interval (0, b). Let t1, . . . , tn denote the nodes in (0, x∗1) and s
(j)
1 , . . . , s

(j)
n the

nodes between 0 and γ(tj) where x∗1 is given by (3.3). Then we make the following

approximations:

K − tj − γ(tj) = ∫
x∗1

0
∫

γ(y1)

0
Gr(tj, γ(tj), y1, y2)σ(y1, y2)dy

≈ ∫
x∗

0

γ(y1)
2

n

∑
i2=1

wi2Gr(tj, γ(tj), y1, si2(y1))σ(y1, si2(y1))dy1

≈ x
∗
1

2

n

∑
i1=1

γ(ti1)
2

n

∑
i2=1

wi1wi2Gr(tj, γ(tj), ti1 , s
(i1)
i2

)σ(ti1 , s
(i1)
i2

).

So the algorithm for approximating the curve is:
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Algorithm 1 Approximating of the 2-dimensional boundary

1: yinit = ... %an arbitrary start curve
2: for j = 1 to n do

3: (F (y))j = −(K − tj − yj) +
n

∑
i1=1

n

∑
i2=1

x∗1yi1
4 wi1wi2Gr(tj, yj, ti1 , s

(i1)
i2

)σ(ti1 , s
(i1)
i2

)
4: end for
5: solve F (y) = 0 with initial guess yinit

Algorithm (1) is to be understood as follows. We define in the for-loop a n-

dimensional function F and subsequently we try to find a root of F in line 5. For the

root-finding you could use the Levenberg-Marquardt method (see [7]) or the Trust-

Region-Reflective algorithm (see [5, 6]). We tried both algorithms. The Levenberg-

Marquardt algorithm converges faster, but the solution on the left boundary was

not monotone decreasing which is contradicting the south-west connected property

of the stopping region. So this algorithm converges to a solution which is not the

solution of our problem. In order to restrict the solutions to monotone decreasing

ones, we introduced boundary conditions for the solutions:

y(i) ≥ y(i − i), i = 2, . . . , n. (3.6)

Since the Levenberg-Marquardt algorithm does not allow boundary conditions, we

use the Trust-Region-Reflective algorithm which allows boundary conditions but not

such like in (3.6). In order to integrate the boundary conditions we changed the

objective function F to Fa where

F (y1, y2, . . . , yn) = Fa(y1, α2, . . . , αn) and

αi =
yi
yi−1

∈ (0,1], i = 2, . . . , n.

So the first argument of Fa is in the interval (0, x∗2),where x∗2 = γ(0) is the stopping

boundary of the one-dimensional case given in (3.3). All the other arguments of Fa

have to be between 0 and 1. The implementation in Matlab can be found in the

appendix.

The main problem of this algorithm is its complexity of O(n3) per function evalu-

ation of F where n is the number of Gauss-Nodes and therefore the high runtime
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Figure 3.1: Boundary for the 2-D case for parameters K = 1, µ1 = µ2 = r = 0.06, a1 =
a2 = 0.3, ρ = 0.

of the root-finding algorithm. For example, for 512 nodes we had a runtime of over

one minute for one function evaluation. That poses a problem for the root-finding

algorithm, since it usually evaluates the function several thousand times. In order

to decrease the runtime, we parallelized the for loop in line 2-4 of Algorithm 1 which

decreased the runtime to about 23 seconds with eight workers.

The blue line in Figure 3.1 shows the approximation of the stopping boundary

we obtained with Algorithm 1 and the black line is the only ellipsoid which is

going through the points (0, x∗2) and (x∗1,0). Note that we stopped the root-finding

algorithm after eleven iterations which included 6156 function evaluations and took

about 40 hours. The error measured in the Euclidean norm was decreased from 1.31

to 0.32. We observe that the curve is not completely smooth as we expected it to be.

The problem might be too few iterations of the solver or the solver itself. Further

analysis might be needed here. A second example with different parameters and

dependent geometric Brownian motions is shown in Figure 3.2. Again, the black

line is the only ellipsoid which is going through the points (0, x∗2) and (x∗1,0). This
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Figure 3.2: Boundary for the 2-D case for parameters K = 1, µ1 = 0.05, µ2 = 0.04, r =
0.06, a1 = 0.2, a2 = 0.3, ρ = 0.2.

time we stopped the algorithm after seven iterations which included 4104 function

evaluations and took about 28 hours. The error in the Euclidean norm was decreased

from 2.02 to 0.60. The plot also shows two areas which are not smooth.

In Figure 3.3 we plot the point-wise absolute error of the objective functions for

example 1 and 2 which were shown in Figures 3.1 and 3.2. We observed that the error

on the left boundary is a lot higher than for the rest of the x-values and therefore

almost all of the error for the whole curve is picked up on the left boundary. Thus,

the main concern should be to find a way how to decrease the error in this region. In

the following we are suggesting a way which might work, but was not implemented

by now. The main idea is to use the symmetry of the problem with respect to the

two geometric Brownian motions. By switching the indices of geometric Brownian

motion one and two, we can set up a new characterizing equation for the boundary.

The resulting boundary function γ(s) has to be the inverse of the boundary function

of the original problem γ(o). These observations led to Algorithm 2.
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Algorithm 2 Improved algorithm for the 2D boundary

1: y(o) = . . . %start curve for the original problem
2: y(s) = . . . %start curve for the symmetric problem
3: F (o) = . . . objective function for the original problem like in Algorithm 1
4: F (s) = . . . objective function for the symmetric problem like in Algorithm 1
5: while Error is bigger than a threshold do
6: Do one step with a root-finding algorithm for F (o) with start-value y(o)

7: ⇒ new y(o)

8: Do one step with a root-finding algorithm for F (s) with start-value y(s)

9: ⇒ new y(s)

10: Calculate an “inverse” for y(o) and y(s)

11: Set y(o) as weighted sum of y(o) and the “inverse” of y(s)

12: Set y(s) as weighted sum of y(s) and the “inverse” of y(o)

13: end while

Here are some explanations for Algorithm 2:

� Line 5: The term error is to be understand as norm of F (o)(y(o)) plus F (s)(y(s)).

� Line 10: The “inverse” of y(s) can be calculated by evaluating the nodes

t
(o)
1 , . . . , t

(o)
n , which are between 0 and x∗1, in a spline which is going through



16

the points (0, x∗2), (y
(s)
n , t

(s)
n ), . . . , (y(s)n , t

(s)
n ), (x∗1,0) where t

(s)
1 , . . . , t

(s)
n are the

Gauss nodes between 0 and x∗2. Respectively is to be calculated for the “in-

verse” of y(o).

� Line 11&12: Let wi denote the weight for node i ∈ {1, . . . , n}. Then y
(o)
i is

set to wiy
(o)
i + (1 −wi) times the “inverse” of y(s) evaluated in t

(o)
i . Hereby is

wi ∈ (0,1) small for small i since the error solution on the left boundary is big

and respectively is wi close to one for i close to n.

Some of the formulations have to be specified when coding this algorithm, e.g. the

weights wi and the type of spline which is used for the “inverses”.
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Chapter 4

The one-dimensional optimal
stopping problem with finite time
horizon

This chapter concerns the optimal stopping time problem for a space-time pro-

cess with finite time horizon. First we review general theoretical results, before

considering three specific examples: the American Put option, the American Cash-

or-Nothing put option and finally the American Asset-or-Nothing put option.

4.1 General theory

A one-dimensional geometric Brownian motion X with volatility σ2 and drift r (the

risk-free interest rate in the market) in space-time is the two-dimensional process

X̄ = ((t,Xt))0≤t≤T with the state space I = [0, T ) × R+. The differential operator

associated with X̄ is

Ḡ ∶= ∂

∂t
+ σ

2

2
x2

∂2

∂x2
+ rx ∂

∂x
,

and its resolvent/Green kernel is

Ḡr((s, x), (t, y)) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

e−r(t−s)p(t − s;x, y), s < t ≤ T,
0, t ≤ s < T,x ≠ y,
+∞, t = s < T,x = y,



18

where p(t;x, y) is the density of X of going in t time steps from x to y.

The following theorem summarizes the results of Christensen and Salminen:

Theorem 4.1.1. Let u be a bounded r-excessive function for X̄ on (0, T ) × R+

such that ∂u/∂t and ∂u/∂x are continuous on (0, T ) ×R+, and ∂u/∂x is absolutely

continuous as a function of the second argument. Then there exists a unique σ-finite

measure σ on (0, T ) ×R+ such that

u(s, x) = ∫ ∫
(0,T )×R+

Ḡr((s, x), (t, y))σ(dt, dy).

Moreover σ is absolutely continuous with respect to Lebesgue measure on (0, T )×R+

and is given by

σ(ds, dy) = (r − Ḡ)u(s, y) ds m(dy),

where m is the speed measure.

The value function for an option with payoff g ∶ R+ ↦ R+ is given by

V (s, x) ∶= sup
τ∈Ms,T

Ê(s,x) (e−r(τ−s)g(Xτ)) .

From the general theory of optimal stopping it is known that V is r-excessive for

the space-time process X̄ if the reward function is lower semicontinuous and the

stopping region consists of the points, where the value is equal to the reward, i.e.,

S ∶= {(s, x) ∶ V (s, x) = g(x)} .

We now use Theorem 4.1.1 to formulate a more general version of Theorem 4.1 in

[1].

Theorem 4.1.2. Let V ∶ (0, T ) ×R+ ↦ R+ be the value function for an option with

bounded payoff g ∶ R+ ↦ R+ which satisfies the conditions of Theorem 4.1.1 and

additionally for (t, y) ∈ int(S), let (r − Ḡ)g(y) = c for some constant c. Then the

price of the option at time s when Xs = x has the unique Doob-Meyer decomposition

V (s, x) = c∫
T

s
e−r(t−s)P̂s,x(Xt ∈ St) dt + Ês,x(e−r(T−s)g(XT )),

where P̂ denotes the martingale measure in the Black-Scholes market and St ∶= {y ∶
(t, y) ∈ S}.
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Proof. By using Theorem 4.1.1 we get σ(dt, dy) = (r−Ḡ)g(y) dt m(dy) = c dt m(dy)
for (t, y) ∈ int(S). Since V (T−, x) = g(x), we furthermore have σ(T, dy) = g(y)m(dy)
for y ∈ ST and otherwise σ = 0. That results in

V (s, x) = ∬
(0,T ]×R+

Ḡr((s, x), (t, y)) σ(dt, dy)

= ∬
int(S)

Ḡr((s, x), (t, y))(r − Ḡ)g(y) dt m(dy)

+∬
{T}×R+

Ḡr((s, x), (t, y))g(y) δ{T}(dt) m(dy)

= c∬
int(S)

Ḡr((s, x), (t, y)) dt m(dy)

+ ∫
R+
Ḡr((s, x), (T, y))g(y) m(dy)

= c∫
T

s
e−r(t−s)P̂s,x(Xt ∈ St) dt + Ês,x(e−r(T−s)g(XT )).

Now we look at three different applications of the Theorem 4.1.2.

4.2 The American put option

The first example is the American put option whose payoff is g(Xt) = (K −Xt)+ at

time t ∈ [0, T ] where T is the maturity, K the strike price andXt the underlying stock

which we modeled with an 1-dimensional geometric Brownian motion. Theorem 4.1

in the paper of Christensen and Salminen [1] states that there is an increasing, convex

and differentiable function b where b(T ) =K, b(0) <K and S ∶= {(s, x) ∶ x < b(s)} is

the optimal stopping set. So the optimal stopping time is τ∗ ∶= inf{t ∶Xt < b(t)}. In

addition Theorem 4.1.2 shows that b can be characterized by the following integral

equation:

K − b(s) = rK ∫
T

s
e−r(t−s)P̂(s,b(s))(Xt < b(t)) dt + Ê(s,b(s)) [e−r(T−s)(K −XT )+] ,

(4.1)
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In [1], the authors do not provide a way to solve for the unknown curve b. We will

now set up a numerical scheme to approximate the unknown function b.

The starting point for the numerical scheme is the characterizing integral equation

(4.1). Notice that the second term in (4.1) is exactly the price of a European

put option with time to maturity T − s, underlying geometric Brownian motion X

starting in b(s) and strike K, for which the explicit value is well-known (see [3, p.

291]):

Ê(s,b(s)) [e−r(T−s)(K −XT )+] =Ke−r(T−s)Φ(−d2(T, s)) − b(s)Φ(−d1(T, s)) (4.2)

where Φ is the cumulative probability distribution function of the standard normal

distribution,

d1(T, s) =
1

σ
√
T − s

[log
b(s)
K

+ (r + σ
2

2
) (T − s)] and

d2(T, s) =
1

σ
√
T − s

[log
b(s)
K

+ (r − σ
2

2
) (T − s)] = d1(T, s) − σ

√
T − s.

For the first term in (4.1) it is not possible to find an explicit formula for the integral

since its integrand is dependent on the unknown function b. But nevertheless we

can find an explicit term for the probability in the integrand:

P̂(s,b(s))(Xt < b(t)) = P̂(b(s) exp{(r − σ
2

2
) (t − s) + σWt−s} < b(t))

= P̂((r − σ
2

2
) (t − s) + σWt−s < log( b(t)

b(s)))

= P̂( 1√
t − s

Wt−s <
1

σ
√
t − s

[log( b(t)
b(s)) − (r − σ

2

2
) (t − s)])

= Φ(d3(t, s))

where

d3(t, s) ∶=
1

σ
√
t − s

[log( b(t)
b(s)) − (r − σ

2

2
) (t − s)]
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So, (4.1) can be rewritten as

K − b(s) =rK ∫
T

s
e−r(t−s)Φ(d3(t, s)) dt

+Ke−r(T−s)Φ(−d2(T, s)) − b(s)Φ(−d1(T, s)), 0 ≤ s ≤ T. (4.3)

Notice, that for s = T (4.3) reduces toK = b(T ) since lims→T d1(T, s) = lims→T d2(T, s) =
0.

We are now ready to set up a numerical scheme for approximating b. The only prob-

lem in (4.3) is the integral since it depends on the unknown curve b. So, the basic

idea now is to approximate the integral by the trapezoidal rule. For that reason let

n ∈ N , h ∶= T /n and ti ∶= (i − 1)h for i = 1, . . . , n + 1. We use (4.3) with s = tn:

K − b(tn)

=rK ∫
tn+1

tn
e−r(t−tn)Φ(d3(t, tn)) dt +Ke−r(tn+1−tn)Φ(−d2(T, tn)) − b(tn)Φ(−d1(T, tn))

≈rK 1

2
h [e−r(tn+1−tn)Φ(d3(tn+1, tn)) + e−r(tn−tn)Φ(d3(tn, tn))]

+Ke−r(tn+1−tn)Φ(−d2(T, tn)) − b(tn)Φ(−d1(T, tn))

=rKh

2
[e−rhΦ(d3(tn+1, tn)) +

1

2
] +Ke−rhΦ(−d2(T, tn)) − b(tn)Φ(−d1(T, tn)). (4.4)

We interpret the approximation (4.4) as an equation. The only unknown is b(tn),
so we solve this equation for it. An explicit solution is again unrealistic, but we

can use a numerical root-finding algorithm for determining b(tn). Since we face a

1-dimensional problem we can use for example the bisection method.

After finding b(tn), we can set up a backwards-recursion for approximating all b(ti):
For i = n − 1, n − 2, . . . ,1

K − b(ti)

=rK ∫
tn+1

ti
e−r(t−ti)Φ(d3(t, ti)) dt +Ke−r(T−ti)Φ(−d2(T, ti)) − b(ti)Φ(−d1(T, ti))
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Figure 4.1: Boundary for the American put option for parameters K = 2, r = 0.03, σ =
0.09 and T = 10

≈rKh

2

⎡⎢⎢⎢⎢⎢⎣
e−r⋅0Φ(d3(ti, ti))
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

=0.5

+2
n

∑
j=i+1

e−rh(j−i)Φ(d3(tj, ti)) + e−rh(n+1−i)Φ(d3(tn+1, ti))
⎤⎥⎥⎥⎥⎥⎦

+Ke−rh(n+1−i)Φ(−d2(T, ti)) − b(ti)Φ(−d1(T, ti)). (4.5)

So, in each step we have a one dimensional root finding problem, with the only

unknown being b(ti), which we can solve again with the bisection method. You can

find the implementation of this algorithm in Matlab in the appendix.

Figure 4.1 shows the solution for the optimal stopping curve b for K = 2, r = 0.03, σ =
0.09 and T = 10.

4.3 American Cash-or-Nothing put

The American Cash-or-Nothing put option has a payoff of 1{Xt < K}. Since we

assume that the market interest rate r is equal to the drift of the geometric Brownian

motion µ there is no gain in not exercising the option if it is in the money, i.e. Xt <K.
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So the optimal stopping set is S = {(t, x) ∶ 0 < x <K, t ∈ [0, T ]}. So in contrast to the

American put option example we know the optimal stopping boundary. The reason

we look at this example is to verify the theory and the numerical approximation

introduced in the previous section. In order to do so, we want to use Theorem 4.1.2

to find a characterizing integral equation for the stopping boundary.

We first have to check the assumptions made in Theorem 4.1.2. Since the optimal

stopping boundary is equals K− at every time, the American Cash-or-Nothing Put

is the same as a Cash-or-Nothing Barrier option whose value function satisfies the

necessary regularity conditions. The last assumption we have to check is that (r −
Ĝ)g(y) is constant for y <K. Therefore notice that for y <K

(r − Ĝ)1{y <K} = (r − Ĝ) ⋅ 1 = r.

That leads to the result

V (s, x) = r∫
T

s
e−r(t−s)P̂(s,x)(Xt < b(t)) dt + Ê(s,x)(e−r(T−s)1{XT <K}).

Therefore we get as characterizing equation for the boundary: for any s > 0

1 = r∫
T

s
e−r(t−s)P̂(s,b(s))(Xt < b(t)) dt + Ê(s,b(s))(e−r(T−s)1{XT <K}). (4.6)

Having a closer look at equation (4.6), we notice that the second term is the price of

a Cash-or-Nothing put in the Black-Scholes market which is e−r(T−s)Φ(−d2(T, s)).
The first term is just differing by 1/K from the first term of the American put

option. Therefore we get

1 = r∫
T

s
e−r(t−s)Φ(d3(t, s)) dt + e−r(T−s)Φ(−d2(T, s)).

Now, we have two possibilities to check this formula: A numerical approach and

checking whether b(t) =K satisfies (4.6). We are going to have a look at both ways.

Approaching the problem numerically in the same style as for the American put

option gives as the following approximation: for i = n, . . . ,1

1 ≈rh
2
[0.5 + 2

n

∑
j=i+1

e−rh(j−i)Φ(d3(tj, ti)) + e−rh(n+1−i)Φ(d3(tn+1, ti))]
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Figure 4.2: Boundary for the American Cash-or-Nothing option for parameters
K = 2, r = 0.03, σ = 0.09 and T = 10

+ e−rh(n+1−i)Φ(−d2(T, ti)).

Sadly, the result is not a constant curve with b(t) = K as we expected. The im-

plementation in Matlab can be found in the appendix and an illustrative plot is

shown in Figure 4.2.

The second approach is to assume that b(t) = K, ∀t ∈ [0, T ] and calculate the

right side of (4.6) analytically. Notice that log(b(t)/K) = log(b(t)/b(s)) = 0. So

−d3(T, s) = d2(T, s) =
1

σ
(r − σ

2

2
)
√
T − s =∶ −c

√
T − s.

and thus we can simplify (4.6) to

1 = r∫
T

s
e−r(t−s)Φ(c

√
t − s) dt + e−r(T−s)Φ(c

√
T − s)

= [−e−r(t−s)Φ(c
√
t − s)]T

s
+ ∫

T

s
e−r(t−s)φ(c

√
t − s) c

2
√
t − s

dt + e−r(T−s)Φ(c
√
T − s)



25

= 1

2
+ ∫

T

s
e−r(t−s)

1√
2π

exp(−c
2(t − s)

2
) 1

2
c(t − s)−0.5 dt

= 1

2
+ c√

2π
∫

T

s

1

2
√
t − s

exp(−(c2 + 2r)(t − s)
2

) dt

= 1

2
+ c√

2π
∫

√
T−s

0
exp(−(c2 + 2r)u2

2
) du

= 1

2
+ c√

2π

2√
π

√
2

c2 + 2r
erf

⎛
⎝

√
c2 + 2r

2

√
T − s

⎞
⎠

= 1

2
− 4

π

σ2 − 2r

σ2 + 2r
erf

⎛
⎝

√
c2 + 2r

2

√
T − s

⎞
⎠
,

where φ is the pdf of the standard normal distribution and erf is the error function.

Since the error function is monotone increasing, this expression is not constant.

Consequently this also contradicts our argument. Although we know that something

must be wrong in the argument we were unable to identify the error.

4.4 American Asset-or-Nothing put

The American Asset-or-Nothing put option has a payoff of Xt1{Xt <K}. With the

same reasoning as for the American Cash-or-Nothing put option we know that we

exercise the option as soon as the underlying hits the strike. So the stopping set is

S = {(s, x) ∶ x <K}.

As in the previous section, the value function of the Asset-or-Nothing put is equal

to the one of an Asset-or-Nothing Barrier option (Down-and-In) for which we know

that the regularity conditions of Theorem 4.1.2 are satisfied. Moreover, (r−Ḡ)y1{y <
K} = (r − Ḡ)y = (r − r)y = 0 for y ∈ int(S). Thus Theorem 4.1.2 yields

V (s, x) = Ê(s,x)(e−r(T−s)XT1{XT <K}).

So, the boundary is characterized by the following equation: For all s > 0

b(s) = Ê(s,b(s))(e−r(T−s)XT1{XT <K}). (4.7)
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A closer look at this equation shows that the right hand side is the price of a

European Asset-or-Nothing put option with time to maturity T − s, strike price

K and underlying stock started in b(s), which price is b(s)Φ(−d1(T, s)) (see [3, p.

553]). So the characterization reduces to

b(s) = b(s)Φ(−d1(T, s))

⇔ 1 = Φ(−d1(T, s))

⇔ d1(T, s) = −∞

⇔ log(b(s)/K) = −∞

⇔ b(s) = 0,

which tells as to stop as soon us the underlying hits 0, which it does with probability

0. So this stopping boundary does not make sense as well and we must have an error

in the argument.

4.5 Discussion on Sections 4.3 and 4.4

In this section we want to briefly discuss why the examples with the Cash-or-Nothing

put option and the Asset-or-Nothing put option might not work. Both of the stop-

ping sets are {(t, x) ∶ x <K,0 ≤ t ≤ T} which is not a closed set and furthermore not

containing the stopping boundary. So the characterizing equations for the boundary

(4.6) and (4.7) might not be correct.

Another thought was to use 1{Xt ≤K} as reward function for the Cash-or-Nothing

put options and respectively Xt1{Xt ≤ K} for the Asset-or-Nothing put option.

This leads in both cases to a closed stopping set which therefore includes the stop-

ping boundary. However, we face the problem that the reward functions are not

lower semicontinuous and therefore Shiryaev’s theorem for the r-excessive property

of the value function might not apply.
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Chapter 5

Summary

Based on the research of Christensen and Salminen, we reviewed theoretical results

about the Riesz representation theorem. We specified on the multi-dimensional ge-

ometric Brownian motion and the one-dimensional Space-Time geometric Brownian

motion with limited time. We found a more general formula for the optimal stop-

ping boundary for the optimal investment problem and verified the formula for the

special case µ = r. Christensen and Salminen mentioned in their work that they did

not find a numerical algorithm for the approximation of the stopping boundary for

the two-dimensional optimal investment problem. We suggested an algorithm and

found out that an ellipsoid is not a good approximation for the optimal stopping

boundary. Although we did not get a convergence for the algorithm, we got a better

understanding of the shape of the stopping set. For the Space-Time process we re-

viewed the theoretical results and furthermore considered three different examples

of reward functions with limited payoff. Moreover, we provided an algorithm for the

approximation of the stopping boundary of an American put option.

An interesting starting point for further research might be to analyze why the error

of the objective function in Algorithm 1 is that big on the left boundary and whether

we manged to eliminate that phenomena with Algorithm 2. Furthermore it would

be interesting to prove convergence theorems for the algorithms. Considering why

the approach did not work in the cases of the American Cash-or-Nothing put option
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and American Asset-or-Nothing put option might be of interest as well.
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APPENDIX

Matlab code

Listing 1: Test script for the 2-dim optimal investment problem

1 clear a l l
2 close a l l
3 n = 512
4 a1 = 0 . 2 ; a2 = 0 . 3 ;
5 mu1 = 0 . 0 5 ; mu2 = 0 . 0 4 ;
6 r = 0 . 0 6 ;
7 m1 = (mu1−0.5* a1 ˆ2) /a1 ;
8 m2 = (mu2−0.5* a2 ˆ2) /a2 ;
9 rho = 0 . 2 ;

10 K = 1 ;
11

12 [ weights , nodes ] = gauss (n) ;
13 nodes = ( nodes + 1) /2 ;
14

15 x1 s t a r = s t a r (K, r ,mu1 , a1 ) ;
16 x2 s t a r = s t a r (K, r ,mu2 , a2 ) ;
17

18 numC = double ( f e a tu r e ( ’ numCores ’ ) ) ;
19 fpr intf ( ’Number o f c o r e s a v a i l a b l e : %d\n ’ ,numC)
20 matlabpool close f o r c e l o c a l
21 matlabpool 8
22

23 poo lS i z e=matlabpool ( ’ s i z e ’ )
24 i f poo lS i z e == 0
25 fpr intf ( ’ h e l l o world1\n ’ ) ;
26 error ( ’ p a r a l l e l : demo : poolClosed ’ , . . .
27 ’ This demo needs an open MATLAB pool to run . ’ ) ;
28 end
29

30 F a = @(y ) Func a par (y , a1 , a2 ,mu1 ,mu2 , rho ,m1,m2, r ,K, weights ,⤦
Ç nodes , x 1 s t a r ) ;

31

32 y c i r c = x2 s t a r * sqrt (1−( nodes ) . ˆ 2 ) ;
33 y c i r c a = y c i r c ;
34 for i=n : −1 :2
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35 y c i r c a ( i ) = y c i r c a ( i ) / y c i r c a ( i −1) ;
36 end
37 t ic
38 fpr intf ( ’ S ta r t e r r o r i s %d\n ’ ,norm( F a ( y c i r c a ) ) ) ;
39 toc
40

41 opt ions=opt imset ( ’ Display ’ , ’ i t e r ’ , ’MaxFunEvals ’ , 3700) ; % ⤦
Ç Option to d i s p l a y output

42 lb = zeros (n , 1 ) ;
43 ub = [ x2 s t a r ; ones (n−1 ,1) ] ;
44 y a = l s qnon l i n ( F a , y c i r c a , lb , ub , opt ions ) ;
45

46 matlabpool close
47

48 y = y a ;
49 for i =2:n
50 y ( i ) = y ( i −1)*y ( i ) ;
51 end
52

53 f i d = fopen ( [ ’ y ’ ,num2str(n) , ’ a . txt ’ ] , ’w ’ ) ;
54 fpr intf ( f i d , ’%.9 f \n ’ , y ) ;
55 fc lose ( f i d ) ;
56

57 f i g = f igure ;
58 plot ( nodes* x1 star , y ) ;
59 hold on ;
60 plot ( nodes* x1 star , y c i r c , ’ k ’ )
61 xlabel ( ’ x1 ’ ) ; ylabel ( ’ x2 ’ ) ;
62 print ( f i g , [ ’ y ’ ,num2str(n) , ’ a ’ ] , ’−dpng ’ )
63 print ( f i g , [ ’ y ’ ,num2str(n) , ’ a ’ ] , ’−depsc ’ , ’− t i f f ’ )
64 e x i t ;

Listing 2: Objective function for the 2-dim optimal investment problem

1 function F = Func a par (y , a1 , a2 ,mu1 ,mu2 , rho ,m1,m2, r ,K, weights ,⤦
Ç nodes , x 1 s t a r )

2 %y = [ y1 , al2 , . . . , a ln ]
3 n = length ( weights ) ;
4 for i =2:n
5 y ( i ) = y ( i −1)*y ( i ) ;
6 end
7 % y = [ y1 , y2 , . . . , yn ]
8 F = zeros (n , 1 ) ;
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9 Bp = @(u , v ) u .ˆ2 −2* rho*u .* v + v . ˆ 2 ;
10 Ap = @(u , v , m1 , m2 ) 2* rho *(m2 *u+m1 *v ) −2*(m1 *u+m2 *v ) ;
11 r ha t = r+Bp(m1,m2) /2/(1− rho ˆ2) ;
12

13 Gr = @(x1 , x2 , u , v ) 1 . / ( pi*sqrt (1− rho ˆ2) *a1*a2 *(u .* v ) ) . * . . .
14 exp(−1/(2*(1− rho ˆ2) ) *Ap(1/ a1* log (abs (u/x1 ) ) ,1/ a2* log (abs ( v⤦

Ç /x2 ) ) ,m1,m2) ) . * . . .
15 besselk (0 , sqrt ( r ha t ) *sqrt (2*Bp(1/ a1* log (abs (u/x1 ) ) ,1/ a2*⤦

Ç log (abs ( v/x2 ) ) ) /(1− rho ˆ2) ) ) ;
16

17 sigma = @( t1 , t2 ) r *K + (mu1−r ) * t1 + (mu2−r ) * t2 ;
18

19 i 1nodes = ( nodes* x1 s t a r ) * ones (1 , n ) ;
20 i 2nodes = y*nodes ’ ;
21

22 a l l i n 1 = diag (1/4* x1 s t a r *y ) *( weights * weights ’ ) .* sigma (⤦
Ç i1nodes , i2nodes ) ;

23

24 par f o r j =1:n
25 F( j ) = −(K − i 1nodes ( j , 1 )−y ( j ) ) + sum(sum( a l l i n 1 .* Gr(⤦

Ç i 1nodes ( j , 1 ) , y ( j ) , i1nodes , i2nodes ) ) ) ;
26 end

Listing 3: Optimal stopping boundary for the 1-dim optimal investment problem

1 function x s t a r = s t a r (K, r ,mu, a )
2 %Computes the opt imal s t opp ing boundary f o r the opt imal ⤦

Ç inves tment problem in 1d
3 i f mu==r
4 gamma = 2* r /a ˆ2 ;
5 x s t a r = gamma*K/(1+gamma) ;
6 else
7 m = (mu−0.5* a ˆ2) /a ;
8 r ha t = r + mˆ2/2 ;
9 nom = K − (2* r ha t ) ˆ( −0.5) * r *K/(m+sqrt (2* r ha t ) ) ;

10 denom = (2* r ha t ) ˆ( −0.5) *(mu−r ) /(m+sqrt (2* r ha t )+a )+1;
11 x s t a r = nom/denom ;
12 end

Listing 4: Sourcecode for the American put option

1 clear a l l ; close a l l
2 n = 1000 ;



34

3 T = 10 ;
4 r = 0 . 0 3 ;
5 K = 2 ;
6 sigma = 0 . 0 9 ;
7

8 b = am opt (n ,T, r ,K, sigma ) ;
9 plot ( linspace (0 ,T, n+1) ,b)

10 xlabel ( ’Time ’ )
11 ylabel ( ’ Space ’ )

Listing 5: Function for the American put options

1 function b = am opt (n ,T, r ,K, sigma )
2

3 b = zeros (n+1 ,1) ;
4 b(n+1) = K;
5 x s t a r = s t a r (K, r , r , sigma ) ;
6 for i=n : −1 :1
7 b i f un = @( bi ) eqn ( [ zeros ( i −1 ,1) ; b i ; b ( i +1:end) ] , i , n ,T, r ,K,⤦

Ç sigma ) ;
8 b( i ) = b i s e c t i o n ( x s ta r ,K, b i f un ) ;
9 end

10

11 end
12

13 function r e s = eqn (b , i , n ,T, r ,K, sigma )
14 h = T/n ;
15 d1i = d1 (b , i , n ,T, r ,K, sigma ) ;
16 d2i = d1i − sigma*sqrt (h*(n+1− i ) ) ;
17 d 3 i j s = d3 (b , i , n ,T, r , sigma ) ;
18

19 r e s = r *K*h/2* (0 . 5 + exp(− r *h*(n+1− i ) ) *normcdf ( d 3 i j s (end) ) ) +⤦
Ç K*exp(− r *h*(n+1− i ) ) *normcdf (− d2i )−b( i ) *normcdf (− d1i ) −⤦
Ç (K−b( i ) ) ;

20 r e s = r e s + r *K*h*sum(exp(− r *h * ( 1 : n− i ) ) ’ .* normcdf ( d 3 i j s ( 2 :end⤦
Ç −1) ) ) ;

21

22 end
23

24 function va l = d1 (b , i , n ,T, r ,K, sigma )
25 h = T/n ;
26 va l = 1/ sigma/sqrt (T−h*( i −1) ) *( log (b( i ) /K)+(r+sigma ˆ2/2) *(T−h⤦

Ç *( i −1) ) ) ;
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27 end
28

29 function va l = d3 (b , i , n ,T, r , sigma )
30 va l = zeros (n− i +2 ,1) ;
31 h = T/n ;
32 va l ( 2 :end) = 1/ sigma . / sqrt (h * ( 1 : n− i +1) ’ ) . * ( log (b( i +1:n+1)/b( i⤦

Ç ) ) −( r−sigma ˆ2/2) *(h * ( 1 : n− i +1) ’ ) ) ;
33 end

Listing 6: Sourcecode for the Cash-or-Nothing put option

1 clear a l l ; close a l l
2 n = 1000 ;
3 T = 10 ;
4 r = 0 . 0 3 ;
5 K = 2 ;
6 sigma = 0 . 0 9 ;
7

8 b = CoN opt (n ,T, r ,K, sigma ) ;
9 plot ( linspace (0 ,T, n+1) ,b)

10 xlabel ( ’Time ’ )
11 ylabel ( ’ Space ’ )

Listing 7: Function for the Cash-or-Nothing put options

1 function b = CoN opt (n ,T, r ,K, sigma )
2

3 b = zeros (n+1 ,1) ;
4 b(n+1) = K;
5 for i=n : −1 :1
6 b i f un = @( bi ) eqn ( [ zeros ( i −1 ,1) ; b i ; b ( i +1:end) ] , i , n ,T, r ,K,⤦

Ç sigma ) ;
7 b( i ) = f s o l v e ( b i fun ,K) ;
8 end
9

10 end
11

12 function r e s = eqn (b , i , n ,T, r ,K, sigma )
13 h = T/n ;
14 d1i = d1 (b , i , n ,T, r ,K, sigma ) ;
15 d2i = d1i − sigma*sqrt (h*(n+1− i ) ) ;
16 d 3 i j s = d3 (b , i , n ,T, r , sigma ) ;
17
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18 r e s = K*h/2* (0 . 5 + exp(− r *h*(n+1− i ) ) *normcdf ( d 3 i j s (end) ) ) + ⤦
Ç exp(− r *h*(n+1− i ) ) *normcdf (− d2i ) − 1 ;

19 r e s = r e s + r *K*h*sum(exp(− r *h * ( 1 : n− i ) ) ’ .* normcdf ( d 3 i j s ( 2 :end⤦
Ç −1) ) ) ;

20

21 end
22

23 function va l = d1 (b , i , n ,T, r ,K, sigma )
24 h = T/n ;
25 va l = 1/ sigma/sqrt (T−h*( i −1) ) *( log (b( i ) /K)+(r+sigma ˆ2/2) *(T−h⤦

Ç *( i −1) ) ) ;
26 end
27

28 function va l = d3 (b , i , n ,T, r , sigma )
29 va l = zeros (n− i +2 ,1) ;
30 h = T/n ;
31 va l ( 2 :end) = 1/ sigma . / sqrt (h * ( 1 : n− i +1) ’ ) . * ( log (b( i +1:n+1)/b( i⤦

Ç ) ) −( r−sigma ˆ2/2) *(h * ( 1 : n− i +1) ’ ) ) ;
32 end
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