
University of Wisconsin Milwaukee
UWM Digital Commons

Theses and Dissertations

May 2014

Incorporating Krylov Subspace Methods in the
ETDRK4 Scheme
Jeffrey H. Allen
University of Wisconsin-Milwaukee

Follow this and additional works at: https://dc.uwm.edu/etd
Part of the Mathematics Commons

This Thesis is brought to you for free and open access by UWM Digital Commons. It has been accepted for inclusion in Theses and Dissertations by an
authorized administrator of UWM Digital Commons. For more information, please contact open-access@uwm.edu.

Recommended Citation
Allen, Jeffrey H., "Incorporating Krylov Subspace Methods in the ETDRK4 Scheme" (2014). Theses and Dissertations. 392.
https://dc.uwm.edu/etd/392

https://dc.uwm.edu/?utm_source=dc.uwm.edu%2Fetd%2F392&utm_medium=PDF&utm_campaign=PDFCoverPages
https://dc.uwm.edu/etd?utm_source=dc.uwm.edu%2Fetd%2F392&utm_medium=PDF&utm_campaign=PDFCoverPages
https://dc.uwm.edu/etd?utm_source=dc.uwm.edu%2Fetd%2F392&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/174?utm_source=dc.uwm.edu%2Fetd%2F392&utm_medium=PDF&utm_campaign=PDFCoverPages
https://dc.uwm.edu/etd/392?utm_source=dc.uwm.edu%2Fetd%2F392&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:open-access@uwm.edu

INCORPORATING KRYLOV SUBSPACE

METHODS IN THE ETDRK4 SCHEME

by

Jeffrey H. Allen

A Thesis Submitted in

Partial Fulfillment of the

Requirements for the Degree of

Master of Science

in

Mathematics

at

The University of Wisconsin–Milwaukee

May 2014

Abstract

INCORPORATING KRYLOV SUBSPACE METHODS IN
THE ETDRK4 SCHEME

by

Jeffrey H. Allen

The University of Wisconsin–Milwaukee, 2014
Under the Supervision of Professor Bruce Wade

A modification of the (2, 2)-Padé algorithm developed by Wade et al. for imple-

menting the exponential time differencing fourth order Runge-Kutta (ETDRK4)

method is introduced. The main computational difficulty in implementing the ET-

DRK4 method is the required approximation to the matrix exponential. Wade et al.

use the fourth order (2, 2)-Padé approximant in their algorithm and in this thesis

we incorporate Krylov subspace methods in an attempt to improve efficiency. A

background of Krylov subspace methods is provided and we describe how they are

used in approximating the matrix exponential and how to implement them into the

ETDRK4 method. The (2, 2)-Padé and Krylov subspace algorithms are compared

in solving the one and two dimensional Allen-Cahn equation with the ETDRK4

scheme. We find that in two dimensions, the Krylov subspace algorithm is faster,

provided we have a spatial discretization that produces a symmetric matrix.

ii

c© Copyright by Jeffrey H. Allen, 2014
All Rights Reserved

iii

To my family

iv

Table of Contents

1 Introduction 1

2 Background and ETD Schemes 3
2.1 The Reaction Diffusion System . 3
2.2 ETDRK4 . 5

3 Krylov Subspace Methods 12
3.1 Background . 12
3.2 The Lanczos Approximation . 18

4 Numerical Experiments 26
4.1 Quality of the Lanczos Approximation 26
4.2 One dimensional Allen-Cahn Equation 30
4.3 Two dimensional Allen-Cahn Equation 34

5 Conclusions 40

Bibliography 42

Appendix 44

v

List of Figures

4.1 Theoretical and Actual Error versus Krylov Subspace Dimension for
Tridiagonal A . 28

4.2 Theoretical and Actual Error versus Krylov Subspace Dimension for
Pentadiagonal A . 29

4.3 Theoretical and Actual Error versus Krylov Subspace Dimension for
A with bandwidth 41 . 30

4.4 CPU time of expml function for Different matrices versus Krylov
Subspace Dimension m . 31

4.5 Solution of 1-D Allen-Cahn Equation with k = 1, t = 70, M = 50 . . 33
4.6 1D Allen-Cahn relative errors versus time step with M = 50 34
4.7 1D Allen-Cahn relative errors versus CPU time with M = 50 35
4.8 2D Allen-Cahn relative errors versus time step with M = 50 37
4.9 2D Allen-Cahn relative errors versus CPU time with M = 50 38
4.10 Solution to 2D Allen-Cahn equation with M = 50 39
4.11 Solution to 2D Allen-Cahn equation with M = 50 39

vi

Acknowledgements

First I would like to thank Prof. Bruce Wade for his constant words of en-

couragement and help throughout the past months during the research and writing

process. I have learned a lot under his guidance and I am very grateful that I had

the opportunity to acquaint myself with such fascinating problems.

I also want to thank my mother and father for their continuous support and for

always believing in me. Talking to them often fostered my dedication and motivation

towards this thesis.

Milwaukee, Wisconsin Jeffrey Allen

May, 2014

vii

1

Chapter 1

Introduction

We are concerned with solving systems of stiff nonlinear reaction diffusion equa-

tions using a special class of time-stepping methods known as Exponential Time

Differencing (ETD) schemes. ETD schemes have been around since the 1960’s, but

only in the past ten years has there been a resurgence in interest due to some mi-

nor breakthroughs in methods of implementation [6],[7]. The Runge-Kutta versions

(ETDRK) of these schemes compete with other stiff solvers such as integrating fac-

tor and linearly implicit schemes [6]. These ETDRK methods were developed, in

part, by Cox and Matthews [1] and have drawn considerable research interest due

to their ability to solve stiff systems of ODE’s without requiring prohibitively small

time steps. The method we focus on here is the ETDRK4 scheme, a fourth order

Runge-Kutta method developed by Cox and Matthews in [1].

As we will see, though, computing solutions from the ETDRK4 formulae directly

can be numerically unstable. Cox and Matthews were aware of the difficulties in

solving linear systems coming from the formulae, and Kassam and Trefethen found

a way around this numerical instability using contour integration in [7]. However,

even medium sized problems can render this method unrealistic computationally

because of excessively large contours of integration.

In [14], direct computation of expressions containing the matrix exponential,

which are the root of computational difficulties, is avoided by the use a fourth order

diagonal Padé approximation to the matrix exponential. The Padé approximant can

be expanded in a partial fraction decomposition and obtaining the desired quantities

for the solution now only requires solving a few linear systems for each time step.

2

An additional focus of that paper is dealing with non smooth initial data by using

a slightly different Padé approximant to the matrix exponential that smooths out

spurious oscillations. We will not continue with that direction here, but the diagonal

Padé approximation will be explored further as it is the foundation of the proposed

scheme, which relies on Krylov subspace methods.

Krylov subspace methods have become a popular tool in the implementation

of exponential integrators [5],[6]. This popularity is due to the ubiquity of the

matrix exponential, and Krylov subspace methods attempt to improve the efficiency

in its computation by exploiting the sparsity commonly found in matrices arising

from spatial discretizations [2]. We are unaware of any research that implements

Krylov subspace methods into the ETDRK4 scheme. Implementing Krylov subspace

methods into ETDRK4 and experimentally comparing efficiency with the diagonal

Padé scheme is the focus of this paper.

Chapter 2 consists of background information where we will introduce the class

of PDE we will be solving and where we derive the ETD schemes. The ETDRK4

scheme will be discussed in further detail and we will also describe some methods

of computation. In Chapter 3 we will introduce the theory of Krylov subspace

methods and the relevant algorithms. Then in Chapter 4 we will present numerical

experiments that reveal the computational differences between the Krylov subspace

and Padé approximation methods of implementing ETDRK4.

3

Chapter 2

Background and ETD Schemes

We restrict our attention to solving reaction diffusion systems, which, in the current

setting, are manifested in nonlinear parabolic partial differential equations. Deriving

the ETD schemes requires first discretizing the spatial variable of this PDE. Finite

differences, finite elements, and spectral methods are among the various types of

discretizations that are possible here. We will arrive at a time stepping scheme from

which several different ETD schemes of various orders have been developed. The

ETDRK4 is one of these schemes and it will be introduced and discussed in detail.

Its computation will be the focus of the rest of this chapter.

2.1 The Reaction Diffusion System

The reaction diffusion system gives the following nonlinear initial-boundary value

problem:

ut + Au = F (u, t) in Ω, t ∈
(
0, t

]
= J, (2.1)

u = v on ∂Ω, t ∈ J, u(·, 0) = u0 in Ω,

Here, Ω ⊂ Rd is bounded with Lipschitz continuous boundary, A is an uniformly

elliptic operator, and F ∈ C1(Rd+1,Rd) is typically nonlinear.

We will derive the foundation of the ETD schemes in an abstract framework.

4

Assume that A is a partial differential operator that takes the form

A := −
d∑

j,k=1

∂

∂xj

(
aj,k(x)

∂

∂xk

)
+

d∑
j=1

bj(x)
∂

∂xj
+ b0(x),

where aj,k, bj ∈ C∞(Ω) and aj,k = ak,j, b0 ≥ 0. The uniform ellipticity of A means

that for some c0 > 0 we have

d∑
j,k=1

aj,k(·)ξjξk ≥ c0|ξ|2, on Ω, for all ξ ∈ Rd.

In order to simplify the analysis, we will work in a general Hilbert space X rather

than Rd. Now we can consider the operator A to be a linear, self-adjoint, positive

definite and closed operator with a compact inverse T , defined on a dense domain

D(A) ⊂ X. The operator A will usually represent some spatial discretization of Ω.

We assume the resolvent set ρ(A) of A satisfies, for some α ∈ (0, π
2
),

ρ(A) ⊃ Σα, Σα := {z ∈ C : α < |arg(z)| ≤ π, z 6= 0}.

This is the assumption that the eigenvalues of A have negative real part. Also,

assume there exists M ≥ 1 such that

‖(zI − A)−1‖ ≤M |z|−1, z ∈ Σα.

The norm ‖ · ‖ will denote the matrix and vector 2-norm throughout this thesis.

Therefore we get that −A is the infinitesimal generator of an analytic semigroup

{e−tA}t≥0 which is the solution operator for (2.2) below, [14]. The standard repre-

sentation is

E(t) := e−tA =
1

2πi

∫
Λ

e−tz(zI − A)−1dz,

where Λ := {z ∈ C : | arg(z)| = θ} is oriented so that Im(z) decreases, for any

5

θ ∈ (α, π
2
).

Using the Duhamel principle, we can write the exact solution of (2.1) as

u(t) = E(t)v +

∫ t

0

E(t− s)F (u(s), s)ds. (2.2)

Let 0 < k ≤ k0, for some k0, and tn = nk, 0 ≤ n ≤ N . Replacing t by t + k, using

basic properties of E and by the change of variable s− t = kτ , we can arrive at

u(t+ k) = E(k)u(t) + k

∫ 1

0

E(k − kτ)F (u(t+ kτ), t+ kτ)dτ,

which satisfies the recurrence formula

u(tn+1) = e−kAu(tn) + k

∫ 1

0

e−kA(1−τ)F (u(tn + τk), tn + τk) dτ. (2.3)

2.2 ETDRK4

Equation (2.3) is exact and the various ETD schemes come from how one approxi-

mates the integral and the matrix exponential. From now on, when we write e−kA,

A is a matrix defined on n-dimensional Euclidean space; we will not be concerned

with operators defined on infinite dimensional function spaces. Cox and Matthews

developed the fourth order scheme ETDRK4 by approximating the integral with

the classical fourth order Runge-Kutta approximation, but A is restricted to a very

limited class of matrices. The (n+ 1)st approximation to the solution is given by

un+1 = e−kAun + f1(kA)F (un, tn)

+ 2f2(kA)
(
F (an, tn + k/2) + F (bn, tn + k/2)

)
+ f3(kA)F (cn, tn + k) (2.4)

6

where

an = e−kA/2un − A−1(e−kA/2 − I)F (un, tn)

bn = e−kA/2un − A−1(e−kA/2 − I)F (an, tn + k/2)

cn = e−kA/2an − A−1(e−kA/2 − I)
(
2F (bn, tn + k/2)− F (un, tn)

)
(2.5)

and

f1(kA) = k−2(−A)−3
[
− 4 + kA+ e−kA(4 + 3kA+ k2A2)

]
f2(kA) = k−2(−A)−3

[
2− kA+ e−kA(−2− kA)

]
f3(kA) = k−2(−A)−3

[
− 4 + 3kA− k2A2 + e−kA(4 + kA)

]
. (2.6)

Deriving these formulas is nontrivial and is aided by Maple [7]. The formulas are

problematic, however, because of cancellation errors coming from expressions of the

form

ϕ(z) =
e−z − 1

z
(2.7)

when z is close to zero. The matrix analogue for this expression is A−1(e−A−I) and

this term suffers from cancellation error when the eigenvalues of A are close to zero

[1]. The formulas for f1, f2, and f3 contain higher order versions of these terms and

these suffer from even further instability if the eigenvalues of A are close to zero.

Cox and Matthews were aware of this and in [1] they restrict their attention to

matrices whose eigenvalues are at least some distance away from zero. The matrices

used in this thesis will come from spatial discretizations and will invariably have

eigenvalues that are close to zero.

Trefethen and Kassam find a way around this using Cauchy’s integral formula

from complex analysis. Given an open set U ⊂ C, a holomorphic function f : U →

7

C, and z ∈ C on the interior of a contour Γ, we have

f(z) =
1

2πi

∫
Γ

f(ζ)

ζ − z
dζ

and the matrix analogue for this formula is

f(A) =
1

2πi

∫
Γ

f(ζ)(ζI − A)−1 dζ

where Γ is now a contour enclosing the eigenvalues of A.

This method of computing quantities in (2.4) and (2.5) is accurate, but for

problems with large spectral radii this method is unrealistic since the contour of

integration must encircle the spectrum [14]. Since the matrix A will come from

some spatial discretization, such as finite differences, the eigenvalues of A will tend

towards infinity as the size of the problem increases. That is, for increasingly finer

discretizations, we need to integrate over ever larger contours and this can become

an intractable computation for large problems in multiple dimensions.

When the matrix A is large, a more conspicuous problem in (2.4-6) is computing

the matrix exponential e−kA. Kassam and Trefethen do not acknowledge this in their

paper and in their provided code they simply use Matlab’s expm function. This will

be problematic because this function has O(n3) complexity, which will be too slow

for large problems. In [7] they do, however, acknowledge that large problems in

multiple dimensions could render their method computationally unrealistic.

In [14], directly computing the matrix exponential is avoided by using a rational

approximation to e−kA. Specifically, they use the (2,2)-Padé approximant to e−kA

denoted here by R2,2(kA) and given by

R2,2(kA) = (12I − 6kA+ k2A2)(12I + 6kA+ k2A2)−1.

8

This approximant is fourth order in the sense that ‖e−kA−R2,2(kA)‖ ≤ Ck4, where

C can depend on A. Utilizing this approximant in (2.4-6), we get

un+1 = R2,2(kA)un + P1(kA)F (un, tn) (2.8)

+ P2(kA)
(
F (an, tn + k/2) + F (bn, tn + k/2)

)
+ P3(kA)F (cn, tn + k),

where

P1(kA) = k(2I − kA)(12I + 6kA+ k2A2)−1,

P2(kA) = 4k(12I + 6kA+ k2A2)−1,

P3(kA) = k(2I + kA)(12I + 6kA+ k2A2)−1.

We use the (2, 2)-Padé approximant to e−kA/2 denoted by R̃2,2(kA), as follows:

an = R̃2,2(kA)un + P̃ (kA)F (un, tn),

bn = R̃2,2(kA)un + P̃ (kA)F (an, tn + k/2),

cn = R̃2,2(kA)an + P̃ (kA)
(

2F (bn, tn + k/2)− F (un, tn)
)
,

with

R̃2,2(kA) = (48I − 12kA+ k2A2)(48I + 12kA+ k2A2)−1,

P̃ (kA) = 24k(48I + 12kA+ k2A2)−1.

In order to compute an, bn, and cn as displayed above, we won’t actually compute

the matrix R̃2,2(kA), but instead use the partial fraction decomposition. This way

inverting cubic and quadratic matrix polynomials is avoided, which would be nu-

merically unstable and computationally burdensome. Instead, we are left with a few

linear systems involving the matrix A. Here are the partial fraction decompositions

9

of the required Padé approximations. To compute un+1, we will utilize

R2,2 (z) = 1 + 2<
(

w1

z − c1

)

and the corresponding {Pi(z)}3
i=1 takes the form

Pi (z) = 2k<
(

wi1
z − c1

)
, i = 1, 2, 3

where R2,2 and Pi have the complex poles c1 and c1, with w1,wi1 the corresponding

weights for i = 1, 2, 3.

To compute an, bn, and cn, we use that

R̃2,2 (z) = 1 + 2<
(

w̃1

z − c̃1

)

and the corresponding P̃ (z) as

P̃ (z) = 2k<

(
Ω̃1

z − c̃1

)
,

where R̃2,2 and P̃ have the complex poles c̃1 and c̃1. The corresponding weights for

R̃2,2 and P̃ are w̃1 and Ω̃1, respectively. The parallel (2, 2)-Padé algorithm can now

be stated [14]:

The (2, 2)-Padé ETDRK4 Algorithm

1. To compute an, solve

(kA− c̃1I)Na1 = w̃1un + k Ω̃1F (un, tn),

for Na1 and then

an = un + 2< (Na1)

10

2. To compute bn, solve

(kA− c̃1I)Nb1 = w̃1un + k Ω̃1F (an, tn + k/2),

for Nb1 and then

bn = un + 2< (Nb1)

3. Similarly, to compute cn, solve

(kA− c̃1I)Nc1 = w̃1an + k Ω̃1

(
2F (bn, tn + k/2)− F (un, tn)

)
,

for Nc1 and then

cn = an + 2< (Nc1)

4. Finally, to compute un+1, first solve

(kA− c1I)Nu1 = w1un + kw11F (un, tn)

+ kw21

(
F (an, tn + k/2) + F (bn, tn + k/2)

)
+ kw31F (cn, tn + k),

for Nu1 and then compute

un+1 = un + 2< (Nu1) .

11

The poles and weights are fixed once and for all [14]:

c1 = −3.0 + i 1.73205080756887729352,

w1 = −6.0− i 10.3923048454132637611,

w11 = −0.5− i 1.44337567297406441127,

w21 = −i 1.15470053837925152901,

w31 = 0.5 + i 0.28867513459481288225,

c̃1 = −6.0 + i 3.4641016151377545870548,

w̃1 = −12.0− i 20.78460969082652752232935,

Ω̃1 = −i 3.46410161513775458705.

12

Chapter 3

Krylov Subspace Methods

3.1 Background

Computing the Matrix Exponential

The most computationally difficult component of the ETDRK4 is the matrix

exponential e−kA: computing it efficiently and accurately has been a challenge for

decades. The 2003 update-republication of Moler’s and Van Loan’s article Nineteen

Dubious Ways to Compute the Exponential of a Matrix, Twenty-Five Years Later

supports this [8]. In the original article from 1978 there was no mention of Krylov

subspace methods, but the 2003 update supplied a few more methods and the Krylov

subspace methods were among these.

Lying at the base of many methods is the (p, q)-Padé approximation to e−kA

denoted here by Rp,q(kA). Khaliq et. al. use the (2,2)-Padé approximant because it

is all that is required to maintain a method that is fourth order in space. However,

for general computations, p and q are required to be larger for the sake of accuracy.

The most popular method of computing the matrix exponential today is the

scaling and squaring method [8]. Indeed, this is the algorithm that Matlab’s expm

function uses to approximate the matrix exponential. At its core, scaling and squar-

ing relies on the Padé approximation, but it first uses a fundamental identity of the

exponential function in order to circumvent roundoff error otherwise accumulated

in the Padé approximation. The method relies on the elementary property

eA = (eA/m)m.

13

This property becomes useful when one realizes that computing the matrix expo-

nential with Padé approximants is prone to roundoff error when ‖A‖ is large. The

scaling and squaring method chooses m to be the smallest power of 2 such that

‖A/m‖ ≤ c, where c depends on the problem and should be small in general. Now

eA/m can be computed in the absence of detrimental roundoff error with Padé ap-

proximants, and this matrix is then repeatedly squared to give eA = (eA/m)m [8].

The authors of [7] use this method to compute eA and eA/2. The scaling and squaring

method requires O(n3) operations and for very large matrices this is prohibitively

time consuming.

In (2.4-6) we notice that every appearance of the matrix exponential is accom-

panied only by its action on a vector. Ideally, we would never have to compute the

full matrix exponential, only its action on the vector. This is precisely what is ac-

complished by using Krylov subspace methods. We will now provide a background

of these methods.

Krylov Subspaces

The development of Krylov subspace methods in the 1950’s was motivated by the

need for faster algorithms that approximated eigenvalues of a matrix [13]. There are

two basic iterative algorithms that comprise Krylov subspace methods: the Arnoldi

iteration for general matrices and the Lanczos iteration for symmetric matrices.

Both iterations are able to approximate the extremal eigenvalues in O(n2) opera-

tions, and they were later adapted as iterative methods for solving linear systems.

The Lanczos iteration was applied to approximating the solution to the symmetric,

positive definite system Ax = b, a procedure now known as the Conjugate Gradient

Method. The Arnoldi method was similarly applied to obtain the GMRES method

for solving general linear systems Ax = b. Since all of the matrices considered in

this thesis will be symmetric, we will restrict most of our attention to the Lanczos

iteration.

14

Recall that for a matrix A ∈ Rn×n, we have the Hessenberg decomposition

QTAQ = H where Q ∈ Rn×n is orthogonal and H ∈ Rn×n is upper Hessenberg,

meaning it is upper triangular with possible nonzero entries on its first subdiago-

nal. The algorithm that computes this decomposition uses Householder matrices

and involves O(n3) operations. For a symmetric matrix A ∈ Rn×n, we have the

tridiagonal decomposition QTAQ = T where Q ∈ Rn×n is orthogonal and T ∈ Rn×n

is tridiagonal. Similarly, the algorithm that computes this decomposition also uses

Householder matrices and requires about half as many operations as the Hessenberg

reduction if symmetry is exploited [13].

There is a connection between Krylov subspace methods with these decompo-

sitions that will become apparent after we define the Krylov subspaces. Given a

matrix A ∈ Rn×n and a vector v ∈ Rn, define the mth Krylov subspace Km(A, v) as

Km(A, v) = span{v,Av,A2v, . . . , Am−1v} ⊆ Rn

Thus, Km(A, v) is the range of the mth Krylov matrix Km(A, v) ∈ Rn×m

Km(A, v) =

 v Av · · · Am−1v


The connection between Krylov subspaces and the tridiagonal decomposition of

a symmetric matrix involves the QR factorization of the Krylov matrix Kn(A, v)

[13]. More precisely, we have the following fact: if QTAQ = T is the tridiagonal

decomposition of the symmetric matrix A ∈ Rn×n, then QTKn(A, q1) = R is upper

triangular, where q1 is the first column of Q [4]. The matrix R is the Krylov matrix

Kn(T, e1) where e1 is the first element of the canonical basis of Rn.

15

The Lanczos Iteration

Let us now see how we can compute the matrix T . Suppose that Q has columns

q1, . . . , qn and that

T =



α1 β1 · · · 0

β1 α2
. . .

...

.

...
. βn−1

0 · · · βn−1 αn


Equating the columns of the equation AQ = QT , we have the relation

Aqk = βk−1qk−1 + αkqk + βkqk+1 for k = 1, . . . , n− 1 (3.1)

where we take β0q0 = 0. Since the columns of Q are orthonormal, premultiplying

both sides of (3.1) by qTk yields αk = qTkAqk. If rk = βkqk+1 = Aqk−αkqk−βk−1qk−1,

then qk+1 = rk/βk and βk = ±‖rk‖ [4]. The matrices Q and T are created using

this recurrence relation, and it is called the Lanczos iteration after its inventor. If

one only needs the matrix T , then qk are overwritten and the matrix Q is never

explicitly formed because it would require significant storage if A is large. This

recurrence can be carried out for k = 1, . . . ,m with m < n− 1 to obtain the partial

tridiagonalization

AVm = VmTm + βmvm+1e
T
m (3.2)

where Vm ∈ Rn×m has orthonormal columns v1, . . . , vm, Tm ∈ Rm×m is tridiagonal

and symmetric, and em is the last element of the canonical basis for Rm [13]. The

columns of Vm are called the Lanczos vectors. The n× n matrix Q from above has

been replaced by the n×m matrix Vm and the n×n tridiagonal matrix T has been

replaced by Tm which is also tridiagonal but is now m×m. The Lanczos iteration’s

utility is only realized when m � n. We have an equivalent and more compact

16

version of (3.2) given by

AVm = Vm+1T̃m (3.3)

where

Vm+1 =

 v1 v2 · · · vm+1


and

T̃m =



α1 β1 · · · 0

β1 α2
. . .

...

.

...
. βm−1

0 · · · βm−1 αm

0 · · · 0 βm


We can now supply the algorithm for the Lanczos Iteration as it is implemented in

this thesis. This form of the iteration is taken from [13]:

The Lanczos Iteration

Given a symmetric matrix A ∈ Rn×n and a vector b ∈ Rn chosen by the user, the

Lanczos iteration computes the matrices Tm and Vm from (3.2):

β0 = 0, v0 = 0, v1 = b/‖b‖

for i = 1, . . . ,m

w = Avi

αi = vTi w

w = w − βi−1vi−1 − αivi

βi = ‖w‖

vi+1 = w/βi

end for loop

The majority of the work in the Lanczos iteration is in the multiplication Avi

17

which involves O(n2) operations if A is dense, but for sparse matrices this will require

significantly less work. More precisely, if A has about p nonzero entries per row on

average, then it takes (2p+ 8)mn flops to compute Vm and Tm, resulting in O(n2m)

operations in the worst case [4],[13].

All of the matrices considered here come from finite difference discretizations, and

so they are usually positive definite and sparse. Requiring higher order discretiza-

tions or Neumann boundary conditions could destroy positive definiteness. Matrices

arising from spectral discretizations are also incompatible with this method. For ex-

ample, if we were to use a Chebyshev differentiation matrix which is dense and not

symmetric, our algorithm would be useless.

Another version of the iteration does not fix the loop duration as we have done

here. Usually, the iteration runs until βk becomes smaller than some user defined

tolerance [4]. However, this could result in m being large and for our purposes the

utility of the Lanczos iteration is greatest when m� n.

In general, there are two drawbacks to the Lanczos iteration that are worth

mentioning. The first is that if larger values of m need to be taken, then the matrix

Vm requires significant storage overhead if it is to be formed explicitly for future use.

To remedy this, algorithms were designed to make more efficient use of the already

computed Lanczos vectors. More precisely, after running the Lanczos iteration for

m steps, we would choose a vector ṽ ∈ span{v1, . . . , vm} and restart the Lanczos

iteration with ṽ as the initial vector [4]. Since m never exceeds 30 in the present

setting, we won’t have the need for such restarted algorithms.

The other drawback is the loss of orthogonality among the Lanczos vectors. This

problem can be rectified with algorithms employing so-called complete or selective

orthogonalization techniques. Briefly, these algorithms orthogonalize the next Lanc-

zos vector with respect to all or a subset of the previous Lanczos vectors, rather than

orthogonalizing against only the previous two [4],[13]. But again, for the values of

18

m considered here, loss of orthogonality will not be an issue.

We don’t provide the Arnoldi algorithm here because it is not used in this thesis,

but it is worth mentioning the differences between it and the Lanczos iteration.

The Arnoldi computes the partial Hessenberg reduction of a general matrix, and

consequently a simple three term recurrence relation like (3.1) doesn’t exist. Instead,

the third line of the Lanczos iteration is replaced by an i-term recurrence relation

which takes the form of another for loop. That Arnoldi is slower is apparent, and it

too can suffer from large storage requirements. Restarted Arnoldi methods that use

existing Arnoldi vectors were invariably devised. Loss of orthogonality can also be

problematic with Arnoldi, and orthogonalization techniques have been implemented

in versions of the iteration [4].

3.2 The Lanczos Approximation

Recall that every appearance of the matrix exponential e−kA is accompanied only

by its action on a vector b ∈ Rn. This will allow us to avoid explicit computation of

the matrix exponential if we utilize the Lanczos iteration. For a symmetric matrix

A, the following observations will facilitate employing the Lanczos iteration in the

computation of e−kAb. Since the columns of Vm are orthogonal, V T
mVm = Im and

V T
m vm+1 = 0, and this yields

V T
mAVm = Tm. (3.4)

In other words, Tm is the projection of A onto the mth Krylov subspace with respect

to the basis {v1, . . . , vm}, which is just the orthonormalized basis for Km(A, b) [11].

The eigenvalues of Tm are known as the Ritz values of A.

The idea now is to seek an approximation of e−kAb that belongs to Km. Given

a symmetric matrix A ∈ Rn×n and a vector b ∈ Rn, suppose Tm and Vm are the

results of the Lanczos iteration. Then VmV
T
m b is the orthogonal projection of b onto

19

Km(A, b). With this in mind, Saad proposed the following approximation in [3],[11]:

e−Ab ≈ βVme
−Tme1 (3.5)

To justify this approximation, we need the following results also presented in [3].

Theorem 2.1 Let A be an n × n symmetric matrix, let Vm and Tm be the results

of m steps of the Lanczos iteration, and let b ∈ Rn have unit norm. Then for any

polynomial pj of degree j ≤ m− 1 we have

pj(A)b = Vmpj(Tm)e1 (3.6)

We will also need what appears as a lemma in [3]:

Lemma 2.2 Let A be any matrix whose minimal polynomial is of degree ν and

f a function in the complex place which is analytic in an open set containing the

spectrum of A. Moreover, let pν−1 be the interpolating polynomial of the function f ,

in the Hermite sense, at the roots of the minimal polynomial of A, repeated according

to their multiplicities. Then

f(A) = pν−1(A) (3.7)

If the off-diagonal entries of Tm are nonzero, then the geometric multiplicity

of each eigenvalue is 1, meaning the characteristic polynomial and the minimal

polynomial are one and the same. The previous lemma then implies that

eTm = pm−1(Tm) (3.8)

where pm−1 interpolates the exponential function at the Ritz values in the Hermite

sense, meaning that at a given point, pm−1 and the exponential function, along with

their first m− 1 derivatives, agree at that point [3].

20

Theorem 2.3 The approximation (3.5) is equivalent to approximating eAv by pm−1(A)v

where pm−1 is the unique polynomial of degree m − 1 which interpolates the expo-

nential function in the Hermite sense on the set of Ritz values repeated according to

their multiplicities.

Since Krylov subspaces are invariant under scaling, meaningKm(A, b) = Km(kA, b),

we have

e−kAb ≈ βVme
−kTme1 (3.9)

and this will be the foundation of our approach for improving efficiency in the

calculation of (2.4-6). For this reason, we will call the right hand side of (3.9) the

Lanczos Approximation to e−kAb.

Implementation of the Lanczos Approximation

Once Vm and Tm have been computed, we still need to compute the matrix

exponential e−kTm , but this is a relatively cheap computation since m is usually no

larger than 30. At this point, Gallopoulos and Saad choose to compute the matrix

exponential e−kTm using a rational Chebyshev approximation, instead of a Padé

approximation. However, we will continue to use Padé approximation to compute

e−kTm , specifically the diagonal (6, 6)-Padé approximant, since this is usually within

machine precision to what one obtains using expm. The algorithm that computes

this (6, 6)-Padé approximant is taken from [12] and has the same O(m3) complexity

as Matlab’s expm function, but it is slightly quicker.

To compute the right hand side of (3.9), we first need to compute Tm and Vm,

then compute e−kTm and finally we need to make the necessary multiplications. This

amounts to O(n2m) + O(m3) + O(nm) ≈ O(n2m) operations when m � n. If we

were to compute the matrix exponential on left hand side of (3.9) using the scaling

and squaring method, it would take O(n3) operations and the computational savings

is significant when n is very large.

21

The quality of the Lanczos approximation needs to be addressed. The following

estimates were given in [11]. If the eigenvalues of the symmetric part of the matrix

A are non-negative, then

‖e−kAb− βVme−kTme1‖ ≤ 2β
(kρ)m

m!
(3.10)

where ρ is the spectral radius of A,

ρ(A) = max{|λ| : λ is an eigenvalue of A}

and β = ‖b‖. If in addition A is symmetric and positive definite, then

‖e−kAb− βVme−kTme1‖ ≤ β
(kρ)m

2m−1m!
(3.11)

If A is positive definite and its eigenvalues are in the interval [0, 4γ], Hochbruck and

Lubich provide the sharper estimate in [5], which proves superlinear convergence for

m ≥ 2γk:

‖e−kAb− βVme−kTme1‖ ≤ 10βe−m
2/(5γk),

√
4γk ≤ m ≤ 2γk

‖e−kAb− βVme−kTme1‖ ≤ 10β(γk)−1e−γk
(
eγk

m

)m
, m ≥ 2γk

For a fixed matrix A, it is apparent from these bounds that we can control the

precision of the Lanczos approximation by choosing m large enough for a fixed time

step k, or if we want m to remain small we can choose the time step k small enough.

Now that we have some justification of (3.9) and a priori error estimates, we can

try to implement this approximation in the computation of (2.4-6). First we need

to compute an, bn and cn. Note that there are two occurrences of e−kA/2 in each of

these, so we will try to consolidate the vectors on which this matrix exponential is

22

acting. This gives

an = e−kA/2
[
un − A−1F (un, tn)

]
+ A−1F (un, tn)

bn = e−kA/2
[
un − A−1F (an, tn + k/2)

]
+ A−1F (an, tn + k/2)

cn = e−kA/2
[
an − A−1 (2F (bn, tn + k/2)− F (un, tn))

]
+ A−1 (2F (bn, tn + k/2)− F (un, tn)) (3.12)

Since we won’t compute the inverse A−1 explicitly we first write these as

Aan = e−kA/2 [Aun − F (un, tn)] + F (un, tn)

Abn = e−kA/2 [Aun − F (an, tn + k/2)] + F (an, tn + k/2)

Acn = e−kA/2 [Aan − (2F (bn, tn + k/2)− F (un, tn))]

+ 2F (bn, tn + k/2)− F (un, tn) (3.13)

Before the time loop begins, we compute the Cholesky decomposition A = LLT

in the case where A is positive definite, otherwise an LU decomposition can be

used. Since all the matrices dealt with here are symmetric and positive definite the

Cholesky is always used. To compute an, we use the approximation

e−kA/2 [Aun − F (un, tn)] ≈ ‖Aun − F (un, tn)‖Vme−kTm/2e1 (3.14)

and compute the right side of (3.14), which is done with the author’s function expml

(see Appendix). Considering the approximation in (3.9), the function expml accepts

inputs A, b, m, and k; the output is βVme
−kTme1. The nonlinear term F (un, tn) is

then added to (3.14) in an overwrite. Finally, an is obtained through two Matlab

backslash solves with L and its transpose. The same process is carried out to obtain

bn and cn. Finally, un+1 is obtained in the same way as it is in [14], so the only

difference in the way we compute ETDRK4 is in how an, bn and cn are obtained.

23

Here is the algorithm we call the Lanczos method of computing an, bn, cn, and un+1

in the ETDRK4 formulae:

The Lanczos ETDRK4 Algorithm

First compute the Cholesky factorization of A so that A = LLT , and choose the

desired Krylov subspace dimension m.

1. To compute an, compute the product

z = e−kA/2 [Aun − F (un, tn)] ,

overwrite z:

z = z + F (un, tn)

and solve the systems

Ly = z and LTan = y

2. To compute bn, compute the product

z = e−kA/2 [Aun − F (an, tn + k/2)] ,

overwrite z:

z = z + F (an, tn + k/2)

and solve the systems

Ly = z and LT bn = y

24

3. Similarly, to compute cn, compute the product

z = e−kA/2 [Aan − (2F (bn, tn + k/2)− F (un, tn))] ,

overwrite z:

z = z + 2F (bn, tn + k/2)− F (un, tn)

and solve the systems

Ly = z and LT cn = y

4. Finally, to compute un+1, first solve

(kA− c1I)Nu1 = w1un + kw11F (un, tn)

+ kw21

(
F (an, tn + k/2) + F (bn, tn + k/2)

)
+ kw31F (cn, tn + k),

for Nu1 and then compute

un+1 = un + 2< (Nu1) .

It is apparent now that un+1 is obtained in the same way as in the (2, 2)-Padé

algorithm, and that the only difference is in how an, bn, and cn are computed. For

a more thorough comparison, suppose A is a symmetric n×n matrix from a spatial

discretization and that m� n is the chosen Krylov subspace dimension. Then the

computation of the (2, 2)-Padé method requires solving four n × n linear systems

where the coefficient matrices (kA − c1I), (kA − c̃1I) and the known vectors are

all complex valued. Compare this to the Lanczos ETDRK4 algorithm which must

25

compute m real valued n× n matrix-vector multiplications, and then solve two real

n× n triangular systems.

In the case where A is the tridiagonal matrix coming from the one dimensional

central difference discretization, we will find that the (2, 2)-Padé algorithm is faster.

But when A has a more complex structure, as in the case of a two dimensional

central difference discretization, the Lanczos method will be faster. In any case,

A must be symmetric, positive definite, and sparse. If it is not symmetric, then

the Arnoldi iteration can be used in place of the Lanczos iteration. If it is not

positive definite, then the Cholesky factorization must be substituted with a sparse

LU decomposition, for example. However, sparsity cannot be sacrificed as both

iterations are ineffective on dense matrices.

26

Chapter 4

Numerical Experiments

In this chapter numerical experiments are conducted to support the use of Krylov

subspaces in computing ETDRK4. Before we see how the Lanczos approximation

affects the computation of some PDE, it will be beneficial to see how it performs at a

lower level – this is the topic of the first section. In the next section we consider the

one dimensional Allen-Cahn equation and some methods of solving it numerically.

In the final section the two dimensional Allen-Cahn equation will be the subject of

our numerical investigation.

4.1 Quality of the Lanczos Approximation

We will first demonstrate the quality of the Lanczos approximation for a few dif-

ferent matrices. All of the matrices we will encounter in this thesis are symmetric

and positive definite. To see how the Krylov subspace dimension affects the Lanczos

approximation, we will investigate the behavior of ‖e−kAb − βVme−kTme1‖ with re-

spect to m. Recall that for symmetric matrices, we have ‖A‖ = ρ(A), so the bounds

provided in [11] and [5] depend on the norm of A, m, and k.

For all of the following examples, we compute the “true” solution with Matlab’s

expm function and we compute the Lanczos approximation with the author’s function

expml, which uses the Lanczos iteration to compute Vm and Tm, and uses the scaling

and squaring based (6, 6)-Padé approximant from [12] to compute e−kTm .

The first matrix to consider is the second order central difference matrix assuming

27

homogeneous Dirichlet boundary conditions

A =
1

h2



2 −1 0 · · · 0

−1 2 −1
...

0 −1 2
. . .

...
. −1

0 · · · −1 2


This matrix is positive definite, symmetric, and tridiagonal. Let A be 1024× 1024,

let v be the normalized vector of all ones (so β = 1), let k = 0.1, and let h = 1. It

turns out that ρ(A) = ‖A‖ = 4. In Figure 4.1 we plot the logarithm of the actual

error ‖e−kAv−Vme−kTme1‖ and the theoretical bounds from [5] and [11] against the

Krylov subspace dimension m. It is apparent that the error committed follows the

theoretical bounds until the actual error reaches approximately machine precision at

about 10 iterations of the Lanczos iteration. Decreasing the time step k causes the

actual error to reach machine precision at progressively fewer steps of the Lanczos

iteration, and increasing it has the opposite effect. For example, setting k = 0.01

results in the actual error reaching machine precision in 5 iterations.

The second matrix we investigate is the fourth order central difference matrix

assuming homogeneous Dirichlet boundary conditions. This matrix is again positive

definite, but now it is pentadiagonal:

A =
1

12h2



30 −16 1 0 · · · 0

−16 30 −16 1
...

1 −16 30 −16
. . .

0 1 −16 30
. . . 1

...
. −16

0 · · · 1 −16 30



28

2 4 6 8 10 12 14 16 18 20

−16

−14

−12

−10

−8

−6

−4

−2

0

Krylov Subspace Dimension

L
o
g
 o

f
E

rr
o
r

Error versus Krylov Subspace Dimension

Actual Error

Saad Error Bound

Hochbruck & Lubich Bound

Figure 4.1: Theoretical and Actual Error versus Krylov Subspace Dimension for
Tridiagonal A

Assume again that A is 1024 × 1024, let v be as before and let k = 0.1, h = 1. In

this case A has a larger norm: ρ(A) = ‖A‖ = 64, and we expect the convergence to

be slower. This is indeed the case, by Figure 4.2, since the actual error doesn’t reach

its minimum (which isn’t quite at machine precision) until 20 Lanczos iterations.

That the bound provided in [5] is sharper is also apparent here. Setting k = 0.01 has

the same effect as before, and in this case the actual error almost reaches machine

precision in 10 iterations.

Next we consider a 1024×1024 banded positive definite matrix A with bandwidth

41 and band density equal to 1, i.e. all entries in the band are nonzero. This matrix

has norm ‖A‖ ≈ 34 and v and k are as before, so we expect the speed of convergence

to be between the previous two. As Figure 4.3 shows, the actual error has decreased

to approximately machine precision by 16 Lanczos iterations. Once again, taking

k = 0.01 results in the error converging to approximately machine precision in 9

iterations. These experiments verify that the Lanczos approximation adheres to the

29

0 5 10 15 20 25 30 35 40

−15

−10

−5

0

Krylov Subspace Dimension

L
o
g
 o

f
E

rr
o
r

Error versus Krylov Subspace Dimension

Actual Error

Saad Error Bound

Hochbruck & Lubich Bound

Figure 4.2: Theoretical and Actual Error versus Krylov Subspace Dimension for
Pentadiagonal A

bounds in [5] and [11], which for a fixed time step k, is determined by the norm of

the matrix.

If we scaled the previous matrices so that they had equal norms, then the previous

three figures would be almost indistinguishable because the speed of convergence

depends solely on the norm of the matrix, for fixed k. In other words, the structure

of the matrix (provided it is symmetric) has no effect on the accuracy of the Lanczos

approximation. However, the structure of the matrix does affect the time it takes

to compute this approximation. We stated before that the function expml that

computes this approximation has complexity O(n2m) +O(m3) +O(nm) ≈ O(n2m)

if m� n. Figure 4.4 displays how the CPU time of expml is affected by increasing

m for different matrices. To isolate the effect the structure of the matrix has on

CPU time, we scaled all matrices to have a norm of 4 and set k = 0.1 and n = 1024.

Observe that in the tridiagonal and pentadiagonal cases the CPU time grows linearly

with m. However, we notice higher order growth with increasing m in the case where

30

0 5 10 15 20 25 30 35
−16

−14

−12

−10

−8

−6

−4

−2

0

Krylov Subspace Dimension

L
o
g
 o

f
E

rr
o
r

Error versus Krylov Subspace Dimension

Actual Error

Saad Error Bound

Hochbruck & Lubich Bound

Figure 4.3: Theoretical and Actual Error versus Krylov Subspace Dimension for A
with bandwidth 41

A has larger bandwidth. The linear growth in m when A has bandwidth 3 or 5 leads

us to conclude that the algorithm for computing the (6, 6)-Padé approximant has

complexity closer to O(m) for input matrices of small bandwidth. Moreover, the

cubic growth in m doesn’t take noticeable effect until the matrix is reasonably dense,

as in the case of the matrix with bandwidth 41.

4.2 One dimensional Allen-Cahn Equation

In this chapter we will apply the new method of computing ETDRK4 that incorpo-

rates the Lanczos iteration to a PDE that gives rise to a stiff system of ODE’s upon

discretization. The PDE subject to the experiment is the one dimensional Allen-

Cahn equation. It is a nonlinear reaction diffusion equation with stable equilibria at

±1 and an unstable equilibrium at 0. Many different physical processes are modeled

by the Allen-Cahn, most notably it is able to describe how the boundaries between

phases of iron alloys change over time [7]. Let u = u(x, t) be the concentration of

31

0 10 20 30 40 50 60 70 80 90 100
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

Krylov Subspace Dimension

C
P

U
 t
im

e
 f
o
r

e
x
p
m

l

CPU of expml for Different Matrices

Tridiagonal

Pentadiagonal

Bandwidth of 41

Figure 4.4: CPU time of expml function for Different matrices versus Krylov Sub-
space Dimension m

an alloy at the point x at time t. If u = 1, then only one alloy is present; if u = −1,

then only the other alloy is present. Given some boundary conditions on a domain

Ω (here Ω = [−1, 1]) and an initial concentration u0(x) = u(x, 0), the Allen-Cahn

equation is given by

ut = εuxx + F (u) (4.1)

with x ∈ [−1, 1], t ≥ 0, and F (u) = u−u3. The boundary conditions are u(−1, t) =

−1 and u(1, t) = 1 for all t > 0, and we take the initial data

u0(x) = 0.53x+ 0.47 sin(−1.5πx)

as in [7]. The number ε is a parameter which we fix at ε = 0.01.

Choose a uniform discretization of [−1, 1] consisting of theM points x1, x2, . . . , xM

and let uj denote the approximation of u(xj) at xj for j = 1, . . . ,M . Approximate

32

uxx by the three point stencil

uj−1 − 2uj + uj+1

h2
(4.2)

By the boundary conditions, we only need to solve for u2, u3, . . . , uM−1 at each time

step. The stiff linear part of (4.1), uxx, is treated implicitly, while the nonlinear

term F (u) is treated explicitly. The matrix A is the negative definite version from

the first example in Section 4.1:

A =



−2 1 0 · · · 0

1 −2 1
...

0 1 −2
. . .

...
. 1

0 · · · 1 −2


This is a second order in space discretization and we use this, as opposed to a fourth

order discretization, because the resulting matrix is symmetric. If a fourth order

discretization was used, one sided finite differences at the boundary points would

be necessary to maintain the order and this destroys the symmetry of the matrix.

Orthogonalized Krylov subspaces for non symmetric matrices are produced with the

Arnoldi method, which is slower than the Lanczos iteration. Designing an algorithm

to compute the approximation in (3.9) for non symmetric matrices would not be

difficult – it just requires using the Arnoldi method instead of Lanczos. The solution

of (4.1) is plotted in Figure 4.5 for k = 1, t = 70, and M = 50 domain points – the

(2, 2)-Padé ETDRK4 scheme was used to compute this.

In one dimension, the (2, 2)-Padé scheme is 10-15 times faster than than the

Lanczos method, assuming a Krylov subspace dimension of 15. This discrepancy

is a result of how the vectors an, bn, and cn are computed. With the (2, 2)-Padé

scheme, finding an, for example, requires one solve of an M − 2×M − 2 tridiagonal

33

−1

−0.5

0

0.5

1

0

10

20

30

40

50

60

70

−1

−0.5

0

0.5

1

x
t

u

Figure 4.5: Solution of 1-D Allen-Cahn Equation with k = 1, t = 70, M = 50

linear system where the coefficient matrix kA − c̃1I and the known vector contain

complex numbers, coming from poles of the Padé approximant. This is done with

Matlab’s backslash solver, which employs LAPACK’s banded solver.

When an is computed with the Lanczos method, there are m real valued matrix-

vector multiplications (the Lanczos iteration), the computation of the (6, 6)-Padé ap-

proximation of e−kTm/2, the multiplication of Vm with the first column of R̃6,6(kTm),

and finally two triangular solves involving the Cholesky factor of A. Both triangular

solves are done in half the time it takes to solve the system (kA − c̃1I)x = b from

above. It is clear then that the primary hindrance to speed in the Lanczos method

is the Lanczos iteration itself.

Figure 4.6 shows that the relative errors computed at t = 3 seem to coincide,

but upon closer inspection one can see the errors are in fact unequal. These figures

support the fact that the Lanczos method is merely another way to compute an, bn

34

and cn, possibly even un+1. The errors are the same, but they differ in time. In

this one dimensional example the Padé method is faster, but in two dimensions the

Lanczos method will be faster.

10
−3

10
−2

10
−1

10
0

10
−11

10
−10

10
−9

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

Timestep k

E
rr

o
r

a
t
t=

3

Krylov

Pade

Figure 4.6: 1D Allen-Cahn relative errors versus time step with M = 50

It should be noted that when the time step k is small enough, we can set m to be

accordingly small so that less matrix-vector multiplications have to be computed.

The reason for this is apparent from the theoretical error bound in [5] and [11]. This

motivates the idea of adapting m and k for each time step. Efficiency can be greatly

improved if k and m are chosen adaptively [9].

4.3 Two dimensional Allen-Cahn Equation

In two dimensions the domain becomes Ω = [−1, 1]× [−1, 1] and (4.1) becomes

ut = ε∆u+ F (u) (4.3)

35

10
−3

10
−2

10
−1

10
0

10
1

10
−11

10
−10

10
−9

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

CPU time

E
rr

o
r

a
t
t=

3

Krylov

Pade

Figure 4.7: 1D Allen-Cahn relative errors versus CPU time with M = 50

where ∆u = uxx + uyy and F (u) is as before. A common choice for an initial

concentration is a function exhibiting some randomness, simulating a heterogeneous

initial mixture of two alloys, so u ≈ 0 would be an appropriate choice. The boundary

conditions accompanying this initial data are usually homogenous Neumann on all

of ∂Ω. Discretize Ω with the M2 uniformly spaced points (xi, yj), i, j = 1, . . . ,M ,

and let uij denote the approximation of u(xi, yj) at the point (xi, yj). Approximate

the Laplacian by the 5 point stencil

ui−1,j + ui+1,j + ui,j−1 + ui,j+1 − 4ui,j
h2

(4.4)

where h = |xi − xi+1| = |yi − yi+1|. If we take the standard row ordering of the

solutions and assume homogeneous Neumann boundary conditions, the coefficient

matrix obtained will be singular. This is not a problem for the (2, 2)-Padé scheme

because there are no linear systems solved whose coefficient matrix is A. The Lanc-

zos method of computing the solution does, however, encounter a problem when

36

solving the linear systems in equation (3.13) because here the coefficient matrix is

A. For this reason, inhomogeneous Dirichlet boundary conditions will be imposed

with u = 1 on ∂Ω. This is a legitimate assumption considering the corresponding

physical interpretation: there is only one alloy present at the boundary.

The resulting coefficient matrix A is the (M−2)2×(M−2)2 symmetric, negative

definite, block tridiagonal matrix:

A =



B I O · · · O

I B I
...

O I B
. . .

...
. I

O · · · I B


where

B =



−4 1 0 · · · 0

1 −4 1
...

0 1 −4
. . .

...
. 1

0 · · · 1 −4


is M−2×M−2, I is the M−2×M−2 identity matrix, and O is the M−2×M−2

matrix of zeros.

To compare the (2, 2)-Padé algorithm and the Lanczos method we take the fol-

lowing setup of the 2D Allen-Cahn equation. Assume homogeneous Dirichlet bound-

ary conditions with u = 1 on ∂Ω, let M = 50, and assume an initial concentration

given by a sum of three slightly different Gaussians at some distance apart, see Fig-

ure 4.10. We will integrate up to Tmax = 5 and compare errors there. The matrix

A has norm ‖A‖ ≈ 50, so for the Lanczos method we take m = 25 for time steps of

k = 0.001, 0.01, 0.1. For k = 0.001 and k = 0.01 this is may be an overly cautious

37

choice for m, since the error committed by the Lanczos approximation is at machine

precision by m = 10 for these values of k. For k = 0.1, though, this choice for m

seems reasonable.

Figure 4.8 demonstrates that the Lanczos Method is merely another way of

computing ETDRK4 using the (2, 2)-Padé algorithm since the errors coincide for

the time steps used. Figure 4.9 shows that the Lanczos method is faster than the

(2, 2)-Padé method. More precisely, the Lanczos method is 1.9 times faster and if

we had chosen m more judiciously this factor would be greater.

10
−3

10
−2

10
−1

10
−12

10
−11

10
−10

10
−9

10
−8

10
−7

10
−6

10
−5

Timestep k

E
rr

o
r

a
t
t=

5

Pade

Krylov

Figure 4.8: 2D Allen-Cahn relative errors versus time step with M = 50

To see why the Lanczos method is faster, first recall that the (2, 2)-Padé algo-

rithm consists of four (M − 2)2× (M − 2)2 complex block tridiagonal linear systems

that need to be solved for each time step. Compare this to the Lanczos method

where the computationally intensive operations include m real matrix-vector mul-

tiplications and two real, sparse triangular solves. The values of m experimented

with here are all less than 30. The m matrix-vector multiplications eclipse the two

triangular solves in terms of CPU time so we will focus on the multiplications. With

38

respect to CPU time, the disparity between solving one complex block tridiagonal

linear system and performing m real block tridiagonal matrix-vector multiplications

is explained by the structure of the matrix. It simply takes longer to solve a block

tridiagonal system than it does to perform m matrix-vector multiplications. This

disparity was absent in the one dimensional case because the difference in CPU time

to solve a tridiagonal system and to make a matrix-vector multiplication is relatively

small. Therefore, performing m matrix-vector multiplications will be slower than

one solve if the matrix is tridiagonal. We can infer that if we have a discretiza-

tion producing a symmetric, positive definite matrix with a more complex sparsity

pattern, then the difference in CPU time will be greater.

10
0

10
1

10
2

10
3

10
−12

10
−11

10
−10

10
−9

10
−8

10
−7

10
−6

10
−5

CPU time

E
rr

o
r

a
t
t=

5

Pade

Krylov

Figure 4.9: 2D Allen-Cahn relative errors versus CPU time with M = 50

Figures 4.10 and 4.11 illustrate the time evolution of the 2D Allen-Cahn equation.

The blue represents a concentration of u = 1, so the initial condition here is that

there are three somewhat isolated concentrations of only the other alloy, i.e. we

have u = −1 at the center of each of these Gaussian concentrations. The behavior

of the solution through time is that the isolated areas of concentration with u = −1

39

t=0

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

(a) t = 0

t=0.9

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

(b) t = 0.9

Figure 4.10: Solution to 2D Allen-Cahn equation with M = 50

tend toward the stable equilibrium u = 1, and at t ≈ 6 only one concentration

remains. When an even initial mixture of the alloys is assumed (u0(x, y) ≈ 0) and

homogeneous Neumann boundary conditions are imposed, the behavior is not so

predictable.

t=2.3

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

(a) t = 2.3

t=4.1

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

(b) t = 4.1

Figure 4.11: Solution to 2D Allen-Cahn equation with M = 50

40

Chapter 5

Conclusions

An algorithm that implements the ETDRK4 scheme, while incorporating Krylov

subspace methods, has been developed. Here, we focused on employing the Lanczos

iteration in the computation of the formulae appearing in ETDRK4 since all the

matrices considered here were symmetric. Using Saad’s approximation we were

able to approximate the action of the matrix exponential on a vector and apply

this result to calculation of the terms in ETDRK4. In one dimension, we found

that the Padé algorithm is faster at approximating solutions to the Allen-Cahn

equation because the algorithm that solves a tridiagonal system hasO(n) complexity.

In two dimensions we found that the Lanczos algorithm is about twice as fast as

the Padé algorithm at computing these solutions due to a more complex sparsity

pattern in the matrix. In summary, incorporating the Lanczos iteration into the

Padé scheme improved efficiency in calculating solutions to the two dimensional

Allen-Cahn equation assuming a spatial discretization that produces a symmetric

matrix is used.

The choices of m and k here were not chosen as wisely as possible. Ideally, we

would have an algorithm that steps through time and adapts m and k efficiently,

so that no extra Krylov subspace are used. The authors of [9] devise an adaptive

algorithm like this, and this should be referenced for future development as this

system could significantly improve efficiency.

We would also like to use fourth order spatial discretizations, as this would in-

crease accuracy. When this is implemented, it might very well be the case that

symmetry is lost in the matrix. The Arnoldi method would now be required to

41

orthonormalize the Krylov subspaces. There may also be room for further improve-

ment if we utilize the so – called ϕ-functions in applying the Lanczos or Arnoldi

approximation. This route is further discussed in [6],[9], and [10]. Preconditioning

the matrix exponential in order to achieve faster convergence is another promising

direction [2].

Other discretizations producing sparse matrices should be experimented with.

For example, finite element methods can produce sparse, symmetric, positive definite

matrices that have a more complex structure than that of banded or block-banded

matrices. In this case, Krylov subspace methods are very promising in terms of CPU

time. More efficient direct solvers should also be considered when the matrix at hand

comes from the two dimensional discretized Laplacian. Cyclic reduction and multi-

grid methods are two possible options. Investigating how Krylov subspace methods

and their implementation in ETDRK4 (and possibly other exponential integrators)

performs on other reaction diffusion equations is another future prospect.

42

Bibliography

[1] S.M. Cox and P.C. Matthews, Exponential Time Differencing for Stiff

Systems, J. Comp. Phys.176 (2002) 430-455.

[2] J. van den Eshof and M. Hochbruck, Preconditioning Lanczos Approxi-

mations to the Matrix Exponential, SIAM J. Sci. Comput. 27(4) (2006) 1438-

1457.

[3] E. Gallopoulos and Y. Saad, Efficient Solution of Parabolic Equations by

Krylov Approximation Methods, SIAM J. on Sci. and Stat. Comput. 13(5)

(1992) 1236-1264.

[4] G. Golub and C. Van Loan, Matrix Computations, 3rd ed. (The Johns

Hopkins University Press, Baltimore, 1996).

[5] M. Hochbruck and C. Lubich, On Krylov Subspace Approximations to the

Matrix Exponential Operator, SIAM J. Num. Anal. 34(5) (1997) 1911-1925.

[6] M. Hochbruck and A. Ostermann, Exponential Integrators, Acta Nu-

merica 19 (2010) 209-286.

[7] A.K. Kassam and L.N. Trefethen, Fourth-order Time Stepping for Stiff

PDEs, SIAM J. Sci. Comput. 26(4) (2005) 1214-1233.

[8] C. Moler and C. Van Loan, Nineteen Dubious Ways to Compute the Expo-

nential of a Matrix, Twenty-Five Years Later, SIAM Review 45 (2003) 3-49.

[9] J. Niesen, W. M. Wright, A Krylov Subspace Algorithm for Evaluating the

φ-functions Appearing in Exponential Integrators, ACM Trans. Math. Software

38(3) (2012) Article 22.

43

[10] M. Popolizio and V. Simoncini, Acceleration Techniques for Approximating

the Matrix Exponential Operator, SIAM J. Matrix Anal. and Appl. 30(2)

(2008) 657-683.

[11] Y. Saad, Analysis of Some Krylov Subspace Approximations to the Matrix

Exponential Operator, SIAM J. Num. Anal. 29 (1992) 209-228.

[12] R.B. Sidje, Expokit: A Software Package for Computing the Matrix Exponen-

tials, ACM Trans. Math. Software 24(1) (1998) 130-156.

[13] L.N. Trefethen and D. Bau, III, Numerical Linear Algebra, (SIAM,

Philadelphia, 1997).

[14] B.A. Wade, A.Q.M. Khaliq, J. Martin-Vaquero, M. Yousef, Smooth-

ing Schemes for Reaction-Diffusion Systems with Nonsmooth Data, J. of Com-

put. and Appl. Math. 223(1) (2009) 374-386.

44

Appendix

The Lanczos Approximation Algorithm

function w = expml(A,b,m,k)

%

% Author: Jeffrey Allen

%

% The function expml computes an approximation to the product

% e(kA)*b using the partial tridiagonalization of A which uses the

% Lanczos iteration. The inputs are the SYMMETRIC matrix A,

% the vector b being acted on, the Krylov subspace dimension m,

% and the timestep k. The output is the approximation to e(kA)*b,

% due to Saad. The function padm() is from [12]

% make A sparse

A = sparse(A);

n = length(b);

% preallocate T,Q

T = zeros(m);

Q = zeros(n,m);

% normalize b

v1 = b/norm(b);

% Lanczos iteration j = 1

v = A*v1;

alpha = v1’*v;

v = v - v1*alpha;

Q(:,1) = v1;

T(1,1) = alpha;

% Lanczos iteration j = 2,...,m

for j = 2:m,

beta = norm(v);

v0 = v1;

v1 = v/beta;

v = A*v1 - v0*beta;

45

alpha = v1’*v;

v = v - v1*alpha;

T(j,j-1) = beta;

T(j-1,j) = beta;

T(j,j) = alpha;

Q(:,j) = v1;

end

T = sparse(T);

% computes (6,6)-Pade approximant to matrix exponential exp(kT)

E = padm(k*T);

% Lanczos approximation to the product exp(kA)*b

w = norm(b)*Q*E(:,1);

end

The (2,2)-Padé ETDRK4 Algorithm

%

% Author: Jeffrey Allen

%

% solves the 2D Allen Cahn equation via ETDRK4 time stepping and

% second order centered differences space discretization

%

% u_t = epsilon*(u_xx + u_yy) + F(u) on [-1,1]x[-1,1],

%

% where F(u) = u-u^3, and Dirichlet BC’s with u=1

%

% ETDRK4 coefficients are computed using (2,2)-Pade scheme

%

% Script requires the functions: laplacian(), expml(), lanczos2(),

% and padm()

% poles, weights for r=s=2

c1 = -3.0 + 1.73205080756887729352*1i;

w1 = -6.0 - 10.3923048454132637611*1i;

w11 = -0.5 - 1.44337567297406441127*1i;

w21 = -1.15470053837925152901*1i;

w31 = 0.5 + 0.28867513459481288225*1i;

tdc1 = -6.0 + 3.4641016151377545870548*1i;

46

tdw1 = -12.0 - 20.78460969082652752232935*1i;

omega1 = -3.46410161513775458705*1i;

% parameter

epsilon = 0.01;

% number of grid points per dimension

M = 50;

% 1D meshes

x = linspace(-1,1,M)’;

y = x;

% 2D mesh

[X,Y] = meshgrid(x,y);

% spatial step

dx = 2/(M-1);

% initial data

U = 1 - 2*exp(-10*((X+.35).^2 + (Y+.35).^2)) - ...

2*exp(-18*((X-.40).^2 + (Y-.40).^2)) - ...

2*exp(-15*((X-.25).^2 + (Y+.25).^2));

% constructs discretized 2D Laplacian matrix

B = {’DD’,’DD’};

[~,~,A] = laplacian([M-2 M-2],B);

A = (epsilon/(dx^2))*A;

I = speye(size(A));

% time step

k = 0.1;

% maximum iterations

Tmax = 5; Nmax = round(Tmax/k);

% homogenize

V = U - 1;

% (M-2)^2 unknowns

V0 = V(2:M-1,2:M-1);

% solution matrix

W = zeros(M,M,Nmax);

47

% impose IC and BC

W(:,:,1) = padarray(V0 + 1,[1 1],1);

% column ordering

V0_vec = V0(:);

% LHS matrices for (2,2)-Pade

M1 = k*A - c1*I;

M2 = k*A - tdc1*I;

% time stepping

for i = 1:Nmax

Fv = (V0_vec+1) - (V0_vec+1).^3;

Na = M2\(tdw1*V0_vec + k*omega1*Fv);

a = V0_vec + 2*real(Na);

Fa = (a+1) - (a+1).^3;

Nb = M2\(tdw1*V0_vec + k*omega1*Fa);

b = V0_vec + 2*real(Nb);

Fb = (b+1) - (b+1).^3;

Nc = M2\(tdw1*a + k*omega1*(2*Fb - Fv));

c = a + 2*real(Nc);

Fc = (c+1) - (c+1).^3;

Nu = M1\(w1*V0_vec + k*w11*Fv + k*w21*(Fa + Fb) + k*w31*Fc);

V0_vec = V0_vec + 2*real(Nu);

% impose BC and reshape into matrix

W(:,:,i+1) = padarray(reshape(V0_vec + 1,M-2,M-2),[1 1],1);

end

48

The Lanczos ETDRK4 Algorithm

%

% Author: Jeffrey Allen

%

% solves the 2D Allen Cahn equation via ETDRK4 time stepping and

% second order centered differences space discretization

%

% u_t = epsilon*(u_xx + u_yy) + F(u) on [-1,1]x[-1,1],

%

% where F(u) = u-u^3, and Dirichlet BC’s with u=1

%

% ETDRK4 coefficients are computed using the Lanczos approximation

%

% Script requires the functions: laplacian(), expml(), lanczos2(),

% and padm()

% poles, weights for r=s=2

c1 = -3.0 + 1.73205080756887729352*1i;

w1 = -6.0 - 10.3923048454132637611*1i;

w11 = -0.5 - 1.44337567297406441127*1i;

w21 = -1.15470053837925152901*1i;

w31 = 0.5 + 0.28867513459481288225*1i;

tdc1 = -6.0 + 3.4641016151377545870548*1i;

tdw1 = -12.0 - 20.78460969082652752232935*1i;

omega1 = -3.46410161513775458705*1i;

% parameter

epsilon = 0.01;

% number of grid points per dimension

M = 50;

% 1D meshes

x = linspace(-1,1,M)’;

y = x;

% 2D mesh

[X,Y] = meshgrid(x,y);

% spatial step

dx = 2/(M-1);

% initial data

U = 1 - 2*exp(-10*((X+.35).^2 + (Y+.35).^2)) - ...

49

2*exp(-18*((X-.40).^2 + (Y-.40).^2)) - ...

2*exp(-15*((X-.25).^2 + (Y+.25).^2));

% constructs discretized 2D Laplacian matrix

B = {’DD’,’DD’};

[~,~,A] = laplacian([M-2 M-2],B);

A = (epsilon/(dx^2))*A;

I = speye(size(A));

% time step

k = .01;

% maximum iterations

Tmax = 5; Nmax = round(Tmax/k);

% homogenize

V = U - 1;

% (M-2)^2 unknowns

V0 = V(2:M-1,2:M-1);

% solution matrix

W = zeros(M,M,Nmax);

% impose IC and BC

W(:,:,1) = padarray(V0 + 1,[1 1],1);

% column ordering

V0_vec = V0(:);

% krylov subspace dimension

m = 25;

% LHS matrix for (2,2)-Pade

M1 = k*A - c1*I;

% Cholesky decomp

L = chol(A,’lower’);

% time stepping

for i = 1:Nmax

Fv = (V0_vec+1) - (V0_vec+1).^3;

z = expml(A,A*V0_vec - Fv,m,-k/2);

z = z + Fv;

50

y = L\z;

a = L’\y;

Fa = (a+1) - (a+1).^3;

z = expml(A,A*V0_vec - Fa,m,-k/2);

z = z + Fa;

y = L\z;

b = L’\y;

Fb = (b+1) - (b+1).^3;

z = expml(A,A*a - 2*Fb + Fv,m,-k/2);

z = z + 2*Fb - Fv;

y = L\z;

c = L’\y;

Fc = (c+1) - (c+1).^3;

Nu = M1\(w1*V0_vec + k*w11*Fv + k*w21*(Fa + Fb) + k*w31*Fc);

V0_vec = V0_vec + 2*real(Nu);

% impose BC and reshape into matrix

W(:,:,i+1) = padarray(reshape(V0_vec + 1,M-2,M-2),[1 1],1);

end

	University of Wisconsin Milwaukee
	UWM Digital Commons
	May 2014

	Incorporating Krylov Subspace Methods in the ETDRK4 Scheme
	Jeffrey H. Allen
	Recommended Citation

	tmp.1403902443.pdf.LBZdF

