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ABSTRACT

SPLINE ESTIMATION OF PRINCIPAL CURVES

by

Marcel Walther

The University of Wisconsin-Milwaukee, 2016
Under the Supervision of Professor Daniel Gervini

Finding low-dimensional approximations to high-dimensional data is one of

the most important topics in statistics, which has also multiple applications

in economics, engineering and science. One suggestion in the literature ,based

on kernel smoothing, is a non-linear generalization of principal components.

This kernel-based approach comes with several complications. Therefore the

purpose of this thesis is to provide an alternative based on spline smoothing

which produces more reliable results.
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1 Introduction

Estimating functions from given data sets is one of the most important topics

in statistics, which has also multiple applications in economics, engineering

and science. Many problems are linear, that is the reason why estimating

linear function out of data points is well studied. Mostly, for this problem

the method of least squares is used.

But in some cases it is apparent that the relation between two variables is

not linear. That leads to the question of how to estimate non-linear func-

tions. One suggestion in the literature is from Hastie and Stuetzle [1], who

developed the algorithm based on principal curves. In general, this model

�ts non-linear data well, but it comes with several complications. One of the

problems is that the procedure does not always converge. Furthermore, it

also seems to be possible to improve the quality of the estimation, by reduc-

ing the estimation error.

Therefore the purpose of this thesis is to provide an algorithm which pro-

duces more reliable results. It develops a procedure based on splines which

aims at improving the method approach of Hastie and Stuetzle [1]. First

we present the necessary theory, which includes B-splines and the evaluation

of derivatives. Then we present the algorithm and compare the methods
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of kernel-based principal curves and the new spline based method. Finally,

we focus on the parameters of the spline method and their in�uence on the

quality of the algorithm.
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2 Principal Curves

First, we review the concept of Principal Curves, introduced in the paper of

Hastie and Stuetzle [1]. We will focus on the main de�nitions and proposi-

tions which are needed for the algorithm of Hastie and Stuetzle.

De�nition 1

We de�ne the projection index λf : Rp → R1 as:

λf (x) = sup
λ
{λ : ‖x− f(λ)‖ = inf

µ
‖x− f(µ)‖}

De�nition 2

The curve f is called self-consistent if

E (X|λf = λ) = f(λ) for a.e. λ.
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Proposition 1

If a straight line l(λ) = u0 + λv0 is self-consistent, then it is a principal

component.

De�nition 3

The curve f is called a critical point of the distance function for variations in

the class G if

δD2(h, ft)

δt

∣∣∣∣∣
t

= 0 ∀g ∈ G,

where f : d(x, f) = ‖x− f(λf (x))‖ and D2(h, f) = Ehd
2(X, f).

Proposition 2

Let Gt denote the class of straight lines g(λ) = a + λb. A straight line

l0(λ) = a0 + λb0 is a critical point of the distance function for variations in

Gt if b0 is an eigenvector of cov(X) and a0 = 0

Proposition 3

Let GB denote the class of smooth (C∞) curves parameterized over Λ, with

‖g‖ ≤ 1 and ‖g′‖ ≤ 1. Then f is a principal curve of h if f is a critical point

of the distance function for perturbations in GB
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With these de�nitions and propositions the following algorithm was proposed

by [1]:

Initialization: Set f (0)(λ) = x̄ + aλ, where a is the �rst linear principal

component of h. Set λ(0)(x) = λf (0)(x).

Repeat: iteration counter j

1. Set f (j)(·) = E(X|λf (j−1)(X) = ·), which is approximated by kernel

smoothing.

2. De�ne λ(j)(x) = λf (j)(x) ∀x ∈ h; transform λ(j) so that f (j) is unit

speed.

3. Evaluate D2(h, f (j)) = Eλ(j)E[‖X − f(λ(j)(X))‖2|λ(j)(X)]

Until: the change in D2(h, f (j)) is below some threshold.

This algorithm is implemented in the program which can be found in Ap-

pendix A. For visualization we simulated a principal curve for 500 data points.
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Figure 1: Principal curve of circle data and bandwidth=0.01

The given data is plotted in blue and the estimated data, simulated with

the principal curve method, is illustrated in red. We can observe that the

algorithm works well, but the estimated points seems to be not very smooth.

Also the distance between the estimated data and the real data points can

be improved.
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3 Spline Estimation

The previous chapter introduced the theory of principal curves and provided

a kernel-based algorithm for estimating the principal curves. But it can be

observed that the algorithm of [1] has the following problems:

� It does not always converge

� It is hard to �nd the optimal bandwidth

For these reasons, we propose an alternative method based on splines that

will ameliorate these problems.
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3.1 Basic Idea

Because of the problems discussed in the previous subsection, we want to

develop an alternative approach. Our idea is to use splines for estimating

the curves.

Therefore we consider a set of points x1, ..., xn in R
p and we want to estimate

a function f : [0, 1]→ Rp which ful�lls

xi = f(ti) + ei, ti ∈ [0, 1],

where ei represents the random error. This equation can also be written with

matrices

x11 . . . x1n
...

...

xp1 . . . xpn

 =

f1(t1) . . . f1(tn)
...

...

fp(t1) . . . fp(tn)

+

ε11 . . . ε1n
...

...

εp1 . . . εpn



The most common procedure for estimation is the least squares method which

minimizes the distance between the points xi and the function f(ti). In

mathematical terms it can be expressed as:

(f̂ , t̂1, ..., t̂n) = argmin
n∑
i=1

‖xi − f(ti)‖2 = argmin
n∑
i=1

p∑
j=1

(xji − fj(ti))2.
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This problem is very well studied for linear functions. But the interesting

ones are the non-linear cases. Here we use splines for estimating the function

f. Let β1(t), ..., βq(t) be a spline basis on [0, 1] and f = (f1, ..., fp) where

each fj is a univariate function. Then we estimate for each j = 1, ..., p the

function fj with

fj(t) =

q∑
k=1

ajkβk(t).

The splines (βi) can be chosen, but the coe�cients {ajk} have to be estimated

from the data.

We know from [2] that if the number of knots is very high then f becomes

too irregular. A solution for this complication is also provided in [2]. The

paper suggests to add a roughness penalty of the form λ
∑p

j=1

∫ 1

0
(f ′′j )2, where

λ can be chosen. Because we use splines for estimating the functions fj the

penalty function can be expressed as

λ

p∑
j=1

∫ 1

0

(f ′′j )2 = λ

q∑
k=1

q∑
k′=1

ajkajk′

∫ 1

0

β′′k(t)β′′k′(t)dt.

9



Now, we have the setting for combining the tools we have introduced. The

function we want to minimize is

F (a1, . . . , ap, t1, . . . , tn) =
n∑
i=1

p∑
j=1

(xji − fj(ti))2 + λ

p∑
j=1

∫ 1

0

(f ′′j )2 = (1)

n∑
i=1

p∑
j=1

(xji −
q∑

k=1

ajkβk(ti))
2 + λ

p∑
j=1

q∑
k=1

q∑
k′=1

ajkajk′

∫ 1

0

β′′k(t)β′′k′(t)dt. (2)

The function F (a1, . . . , ap, t1, . . . , tn) depends on a1, ..., ap and t1, ..., tn. So

we have to �nd the derivatives with respect to these variables and set each

equation equal to zero. In the following we focus on the two dimensional case

(p=2).

10



3.2 B-Splines

For the algorithm developed in the next subsection we use a special form

of splines which is called B-splines. The theory which is represented can be

found in [3]. Let t0 ≤ t2 ≤ ... ≤ tm be knots and n the degree of the splines.

Then the spline basis functions satisfy:

βi,0(x) =


1 if ti < x < ti+1

0 else

βi,k(x) =
x− ti

ti+k−1 − ti
βi,k−1(x) +

ti+k − x
ti+k − ti+1

βi+1,k−1(x).

The number of B-splines is q = n+m−2. Each basis function is a polynomial

of degree n. Mostly, we use equidistant knots, but the algorithm also works

in the general case. The algorithm that computes B-splines in Matlab is

given in Appendix B.
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3.3 Determining a Spline Estimator for Two Dimen-

sional Data

Our main task is to develope an algorithm which estimates principal curves

in two dimension. For this purpose, we have to minimize the function stated

in (1) for the case p=2:

min
a,t

F (a1, a2, t1, ..., tn) =

min
a,t

n∑
i=1

((x1i − f1(ti))2 + (x2i − f2(ti))2) + λ

p∑
j=1

∫ 1

0

(f ′′j (t))2dt =

min
a,t

n∑
i=1

((x1i −
q∑

k=1

a1kβk(ti))
2 + (x2i −

q∑
k=1

a2kβk(ti))
2)

+ λ

(
q∑

k=1

q∑
k′=1

a1ka1k′

∫ 1

0

β′′k(t)β′′k′(t)dt+

q∑
k=1

q∑
k′=1

a2ka2k′

∫ 1

0

β′′k(t)β′′k′(t)dt

)
,

where a1 and a2 are vectors a1 = (a11, ..., a1q) and

a2 = (a21, ..., a2q). The next step is to �nd the minimum of the function F.

Therefore we have to �nd the derivative of the function F with respect to a1,

a2 and t, and set the resulting equations equal to zero. First we want to �nd
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the derivative of F with respect to the variables a1l (l = 1, ...q).

1

2

∂F (a1, a2, t1, . . . , tn)

∂a1l
=

n∑
i=1

βl(ti)(x1i −
q∑

k=1

a1kβk(ti)) + λ

q∑
k=1

a1k

∫ 1

0

β′′k(t)β′′l (t)dt =β1(t1) . . . β1(tn)
... · · · ...

βq(t1) . . . βq(tn)


x11...
x1n

−
β1(t1) . . . β1(tn)

... · · · ...

βq(t1) . . . βq(tn)


β1(t1) . . . βq(t1)

... · · · ...

β1(tn) . . . βq(tn)


a11...
a1q

+

λ


∫ 1

0
β′′1 (t)β′′1 (t)dt . . .

∫ 1

0
β′′1 (t)β′′q (t)dt

... · · · ...∫ 1

0
β′′q (t)β′′1 (t)dt . . .

∫ 1

0
β′′q (t)β′′q (t)dt


a11...
a1q

 .

We can �nd the derivative of F with respect to a2l with the same procedure

(l = 1, ...q):

1

2

∂F (a1, a2, t1, . . . , tn)

∂a2l
=

n∑
i=1

βl(ti)(x2i −
q∑

k=1

a2kβk(ti)) + λ

q∑
k=1

a2k

∫ 1

0

β′′k(t)β′′l (t)dt =β1(t1) . . . β1(tn)
... · · · ...

βq(t1) . . . βq(tn)


x21...
x2n

−
β1(t1) . . . β1(tn)

... · · · ...

βq(t1) . . . βq(tn)


β1(t1) . . . βq(t1)

... · · · ...

β1(tn) . . . βq(tn)


a21...
a2q

+

λ


∫ 1

0
β′′1 (t)β′′1 (t)dt . . .

∫ 1

0
β′′1 (t)β′′q (t)dt

... · · · ...∫ 1

0
β′′q (t)β′′1 (t)dt . . .

∫ 1

0
β′′q (t)β′′q (t)dt


a21...
a2q

 .

For �nding the minimum, we have to set these derivatives equal to zero.

With the matrix notation we can combine these equations and we get.
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β1(t1) . . . β1(tn)
... · · · ...

βq(t1) . . . βq(tn)


x11 x21

...
...

x1n x2n

−
β1(t1) . . . β1(tn)

... · · · ...

βq(t1) . . . βq(tn)


β1(t1) . . . βq(t1)

... · · · ...

β1(tn) . . . βq(tn)


a11 a21

...
...

a1q a2q



+ λ


∫ 1

0
β′′1 (t)β′′1 (t)dt . . .

∫ 1

0
β′′1 (t)β′′q (t)dt

... · · · ...∫ 1

0
β′′q (t)β′′1 (t)dt . . .

∫ 1

0
β′′q (t)β′′q (t)dt


a11 a21

...
...

a1q a2q

 =

0 0
...

...

0 0



This leads to the following solution for a1 and a2

a11 a21
...

...

a1q a2q

 =


β1(t1) . . . β1(tn)

... · · · ...

βq(t1) . . . βq(tn)


β1(t1) . . . βq(t1)

... · · · ...

β1(tn) . . . βq(tn)

+ λ


∫ 1

0
β′′1 (t)β′′1 (t)dt . . .

∫ 1

0
β′′1 (t)β′′q (t)dt

... · · · ...∫ 1

0
β′′q (t)β′′1 (t)dt . . .

∫ 1

0
β′′q (t)β′′q (t)dt



−1

β1(t1) . . . β1(tn)
... · · · ...

βq(t1) . . . βq(tn)


x11 x21

...
...

x1n x2n

 (3)

So we get an explicit solution for a1 and a2.

14



Now we want to �nd a solution for ti (i = 1, ...n). Therefore we derive F

with respect to ti (i = 1, ..., n) and set the equations equal to zero.

1

2

∂F (a1, a2, t1, . . . , tn)

∂ti
= f ′1(ti)(x1i − f1(ti)) + f ′2(ti)(x2i − f2(ti)) =(

q∑
k=1

a1kβ
′
k(ti)

)(
x1i −

q∑
k=1

a1kβk(ti)

)
+

(
q∑

k=1

a2kβ
′
k(ti)

)(
x2i −

q∑
k=1

a2kβk(ti)

)
!

= 0

We recognize that there is no explicit solution for this equation. That is

the reason why we have to use a numerical procedure. We are going to use

Newton-Raphson [4]. Therefore, we de�ne for i = 1, ..., n

g(ti) = f ′1(ti)(x1i − f1(ti)) + f ′2(ti)(x2i − f2(ti)).

For the algorithm, we need the derivative of g with respect to ti (i = 1, ..., n),

which is

g′(ti) = f ′′1 (ti)(x1i − f1(ti))− (f ′1(ti))
2 + f ′′2 (ti)(x2i − f2(ti))− (f ′2(ti))

2.

15



Now, we can state the Newton-Raphson algorithm and we get a numerical

solution for ti: The k-th-step update of ti is

t
(k+1)
i = t

(k)
i +

g(t
(k)
i )

g′(t
(k)
i )

. (4)

We have created the tools for the algorithm, which is the main purpose of

this thesis. The only question which has to be answered is the initial vector

t. We use the equidistant points in [0,1]. To summarize, we get the following

algorithm:

1. Initialize t with ti = i
n+1

, a = (a1, a2) with the equation (3) and aold = 0

2. Repeat while ‖aold − a‖ is greater than a threshold:

(a) aold = a

(b) ti = ti+
g(ti)
g′(ti)

, with the functions g and g′ computed in this chapter

(c) compute a with (3) and the new a.

3. Compute t with (4) until t converges.

16



The algorithm implemented in Matlab can be found in Appendix C. To get

a �rst impression of the algorithm, we show an example in Figure 2.

Figure 2: Spline estimation for 500 circle data

We used the same data set as in Figure 1. It can be observed that the

estimated curve looks smoother than the one in Figure 1. It also seems that

the average distance is smaller. In the next chapter we verify this in a more

systematic way by simulation.
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4 Validation of the Spline Estimation Proce-

dure

In the last section we developed a spline-based algorithm, for principal curve

estimation.

In this section, we want to verify that spline estimation produces better

results than the approach of Hastie and Stuetzle [1]. For this reason, we

have to create a homogeneous setting to compare the algorithms reasonably.

The �rst step is to de�ne an interesting data set which shows the behavior

of the approaches. Our task is to create a procedure which estimates non-

linear data well. Therefore we check the algorithm with the following two

dimensional data sets, which represent a circle:

(
x1

x2

)
=

(
sin(t)

cos(t)

)
+

(
e1

e2

)
,

where t is uniformly distributed in [0, 2π) and e1 and e2 are independent

N(0, σ). If σ is high, also the �uctuation of the points increases. This gives

us the opportunity to test our algorithms in di�erent settings. The bigger σ

is, the more challenging it is to estimate the functions properly.

18



Figure 3: Circle data with σ = 0.3 and n = 300

Furthermore, we have to de�ne an empirical indicator for comparing the

results of the di�erent methods. Intuitively, we want to compare the distance

between the original data and the estimated curves.
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This leads to the following error measure for di�erent simulations (j):

errj =

√∫
(f̂1 − f01(t))2dt+

∫
(f̂2(t)− f02(t))2dt,

where f̂ = (f̂1, f̂2) is the estimated curve and f0 = (f01, f02) is the true curve.

Because the algorithms estimate only �nite values, the integral becomes a

sum:

errj =

√√√√ n∑
i=1

(f̂1(ti)− f01(ti))2 +
n∑
i=1

(f̂2(ti)− f02(ti))2.

Because we simulate random data, it happens that we get di�erent errors

for the same σ. So we simulate the procedure several times and average the

errors. Therefore we end up with the mean error (ME)

ME =
1

m

m∑
j=1

errj,

where m is the number of simulations. In the following, we set them equal

to 500.
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4.1 Comparing the Kernel-Based and Spline-Based Meth-

ods of Principal Curves

In both algorithms there are variables which also have to be estimated. In the

spline estimation procedure, we have to choose λ and for the principal curve

method we have to �nd the best bandwidth. In general, these questions need

further theoretical work. Therefore we choose the parameters in a heuristic

way. For these data, the bandwidth is in the interval of [10−1, 10−6] and the

parameter λ can usually be found in the range of [10−1, 0], where λ = 0 means

that no penalty is necessary for the spline estimation. These considerations

lead to the idea of picking the best parameters out of the intervals for each

algorithm.

In conclusion, we simulate both algorithms with the following variations of

the data set:

� Di�erent standard derivation σ of the random errors

� Di�erent sample sizes n

The respective ME's are shown in Table 1 and Table 2.
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n=50 n=100 n=300

σ = 0.1 0.6034 0.9388 1.6994

σ = 0.5 2.9754 4.5132 8.4360

σ = 1 5.7585 8.7661 16.7219

Table 1: Error of spline algorithm with di�erent σ and n

n=50 n=100 n=300

σ = 0.1 44.8342 63.5606 109.7636

σ = 0.5 42.664 59.5541 111.3093

σ = 1 46.4490 58.8301 113.4822

Table 2: Error of kernel-based algorithm with di�erent σ and n

It can be observed that all errors of the kernel-based estimator are bigger

than the ones of the spline estimator. This table con�rms the graphical

observation we made in the previous section. For better illustration, we can

also look at the boxplot of the single errors (err). As a representative we

take the boxplot of the data set with σ = 0.5 and n = 300.
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Figure 4: Boxplot of errors of principal curve estimation and spline estimation

(n = 300, σ = 0.1)

The boxplot shows that all individual errors of the spline estimation are

smaller than the ones from the kernel-based estimation. Now, the remaining

question is what the plots look like. This can be observed in the next �gure.

In this picture the given data is plotted in blue, the estimation of the kernel-

based curve is green and the spline estimation is colored in red.
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Figure 5: plot of estimated points of principal curve estimation and spline estima-

tion (n = 300, σ = 0.1)

Also this graphic con�rms the fact that the spline estimation produces better

estimators than the approach of [1]. But it is very surprising that the kernel-

based curve is that worse. This seems to be a contradiction to Figure 1,

where the estimations seem to be closer on the real data and in fact with

a di�erent bandwidth we get better plots. But if we look closer on the

estimated data we realize that in some points ( ˆf1(ti), ˆf2(ti)) the algorithm of
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Hastie and Stuetzle [1] does not produce a solution. For example we can get

the following plot for a di�erent bandwidth (=0.0001).

Figure 6: Principal curve of 300 data points and bandwidth=0.0001

We realize that the estimated data seems to �t better than the points in

Figure 4. But the algorithm does not converge in three points for the band-

width of 0.0001. Therefore we cannot compare it with the spline estimation

properly. Nevertheless, also the result of the principal curve with band-
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width=0.0001 seems to be worse than the estimated data of the spline esti-

mation.

So, we can conclude that the spline estimation leads to better results than

the kernel-based approach. Either the mean error of the spline estimation is

smaller, or the error for the kernel-based curve estimation cannot be deter-

mined because the algorithm does not converge at every point.
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4.2 Relationship between the Number of Knots and λ

In the previous subsection, we �gured out that the spline method estimates

the initial data better than the procedure based on kernels. Another interest-

ing question is the relationship between the number of knots and the optimal

λ and if a higher number of knots leads to better results. For this reason we

compare the mean error, de�ned in the last subsection, for di�erent numbers

of knots.

k = 5 k = 10 k = 20

σ = 0.1 1.6988 (λ = 0) 1.6784 (λ = 0) 1.6992 (λ = 0)

σ = 0.5 8.4360 (λ = 10−4) 8.2443 (λ = 10−6) 16.7764 (λ = 10−4)

σ = 1 16.7764 (λ = 10−4) 18.984 (λ = 10−3) 18.893 (λ = 10−4)

Table 3: Connection between number of knots and the ME

The table shows that the number of knots does not have a huge e�ect on

the mean error. The errors are approximately in the same range and can be

explained with a randomness of the simulated data. The other interesting

question is how the penalty parameter (λ) and the amount of knots (k) is

connected. Also in this case a connection cannot be observed.

But we see a relationship between λ and σ. If σ gets larger, also λ in-

creases. This means that if data gets more variable the algorithm needs a
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higher penalty parameter. Now, we want to have a look on the plots of the

simulations.

Figure 7: Two plots with di�erent amount of knots (left k=10, right k=20)

The �gures show that the plot with 10 knots seems to be smoother than the

plot with 20 knots.
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5 Conclusion

In this thesis we presented a new method for principal curve estimation

based on B-splines. This method was based on Hastie and Stuetzle [1] whose

principal curve algorithm produces results which can be improved in several

aspects.

One problem of the kernel-based principal curve is the quality of the esti-

mators. The distance between the estimated points and the data is very

large. We solved this issue by developing a spline-based estimation method.

We showed in Section 4 that the new approach is sometimes better than the

algorithm of [1].

Another problem which was the fact that in the procedure of Hastie and

Stuetzle [1] the algorithm does not converge in every point, could be solved.

This issue does not occur with the new algorithm presented in this thesis.

Therefore, we can conclude that the spline estimation algorithm solves the

main problems which can be observed in the kernel-based principal curve

algorithm.
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Appendices

A Kernel-Based Principal Curve

function [t,f,sc,fsc] = princurve(x,h)

% [t,f,sc,fsc] = princurve(x,h)

% Principal curve

% Input: x (n x p) data matrix, h (scalar>0) bandwidth

% Output: t (m x 1) grid, f (m x p) values of f on the grid,

% sc (n x 1) individual scores, fsc (n x p) values of f on the scores

[n,p] = size(x);

m = 300;

t = linspace(0,1,m)';

fdot = zeros(m,p);

% Initial estimator (first PC)

[U,S] = svd(cov(x));

z = (x-repmat(mean(x),[n 1]))*U(:,1);

fsc = repmat(mean(x),[n 1]) + z*U(:,1)';

DX = sqrt(sum((x-fsc).^2,2));

a = min(z);

b = max(z);

sc = (z-a)/(b-a);

f = repmat(mean(x),[m 1]) + (a+(b-a)*t)*U(:,1)';

if p==2

plot(x(:,1),x(:,2),'.',fsc(:,1),fsc(:,2),'o',f(:,1),f(:,2))

pause(.3)

end

% Iterations

err = 1;

iter = 0;

while err>1e-3 && iter<50

iter = iter + 1;

DX0 = DX;
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% Update function and derivatives

for j = 1:m

w = normpdf((sc-t(j))/h)/h;

f(j,:) = (w'*x)/sum(w);

w1 = ((sc-t(j))/h).*normpdf((sc-t(j))/h)/h^2;

fdot(j,:) = (w1'*x)/sum(w) - (w'*x)*sum(w1)/sum(w)^2;

end

% Update scores

for i = 1:n

InnProd = sum((repmat(x(i,:),[m 1])-f).*fdot,2);

D = sum((repmat(x(i,:),[m 1])-f).^2,2);

[minD,jmin] = min(D);

sc(i) = t(jmin);

fsc(i,:) = f(jmin,:);

DX(i) = norm(x(i,:)-fsc(i,:));

end

err = abs(mean(DX)-mean(DX0))/mean(DX0);

disp(['Iteration ' num2str(iter) ', Mean DX = ' num2str(mean(DX)) ', Error ' num2str(err)])

if p==2

plot(x(:,1),x(:,2),'.',fsc(:,1),fsc(:,2),'.r')

pause(.3)

end

end

\end{appendices}
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B B-Splines

function y = bspl(x,k,t,r)

%function y = bspl(x,k,t,r)

%

%B-spline basis functions and their derivatives

%

%INPUT:

% x (m x 1 or 1 x m) Input grid.

% k (scalar) Spline order.

% t (n x 1 or 1 x n) Knots, must be a strictly increasing sequence

% and must INCLUDE interval endpoints.

% r (scalar) Order of derivative.

%

%OUTPUT:

% y (m x n+k-2) Basis function (or derivative) values at X

%

% Version: May 2010

if nargin<4

error('Not enough input arguments')

end

if size(t,1)>1

t = t';

end

m = length(x);

n = length(t);

y = zeros(m,n+k-2);

if r==0

tt = [t(1)*ones(1,k-1), t, t(n)*ones(1,k-1)];

n = length(tt);

b = zeros(1,k);

dr = zeros(1,k-1);

dl = zeros(1,k-1);

for l = 1:m
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b(1) = 1;

i = find(tt<=x(l),1,'last');

if i==n, i = n-k; end

for j = 1:k-1

%x

%tt

dr(j) = tt(i+j)-x(l);

dl(j) = x(l)-tt(i+1-j);

saved = 0;

for o = 1:j

term = b(o)/(dr(o)+dl(j+1-o));

b(o) = saved + dr(o)*term;

saved = dl(j+1-o)*term;

end

b(j+1) = saved;

end

y(l,i-k+1:i) = b;

end

else

tt = [repmat(t(1),1,k-2), t, repmat(t(n),1,k-2)];

B = bspl(x,k-1,t,r-1);

msp = ((k-1)./(ones(m,1)*(tt(k:n+2*(k-2))-tt(1:n+k-3)))).*B;

y(:,1) = - msp(:,1);

y(:,2:n+k-3) = msp(:,1:n+k-4) - msp(:,2:n+k-3);

y(:,n+k-2) = msp(:,n+k-3);

end
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C Spline Estimation

function [f] = Main(x,kn,d,lambda)

s=size(x);

k=linspace(0,1,kn+2);

t=(1:s(1))'/(s(1)+1);

smooth= zeros(d+kn,d+kn);

beta=bspl(t,d,k,0); %% spline vektor \beta

t0 = linspace(0,1,500);

dbeta=bspl(t0,d,k,2);

for i=1:d+kn-2

for j=1:d+kn-2

smooth(i,j)= sum(dbeta(:,i).*dbeta(:,j)*(t0(2)-t0(1)));

end

end

a=sola(x,t,k,d,lambda,smooth);

iter = 0;

relerr = 1;

while relerr>0.001 && iter<100

iter = iter + 1;

aold=a;

t=solt(x,k,d,t,aold,0);

a=sola(x,t,k,d,lambda,smooth);

relerr = norm(a-aold)/norm(aold);

%f=bspl(t,d,k,0)*a+a(:,1)'*smooth*a(:,1)+a(:,2)'*smooth*a(:,2)

disp(['Iter: ' num2str(iter) ', RelErr: ' num2str(relerr)])

end

told=t;

t=solt(x,k,d,t,a,1);

f=bspl(t,d,k,0)*a;

end
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function a= sola(x,t,k,d,lambda,smooth)

%% input x which is the data vector (n,p)

%% beta are the basisfunctions

%% kn is the number of knots for the splines

%% t are the points which gives us the other algorithm %%

s=size(x);

beta=bspl(t,d,k,0); %% spline vektor \beta

%%% finding optimal as (without \lambda)

a= (beta'*beta+lambda*smooth)\(beta'*x);

end
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function t = solt(x,k,d,t,a,p)

Iterr=0;

n=1;

s= size(x);

f=bspl(t,d,k,0)*a;

df=bspl(t,d,k,1)*a;

d2f=bspl(t,d,k,2)*a;

%%% defining the function g which we have to set equal to zero %%%

g=df(:,1).*(x(:,1)-f(:,1))+df(:,2).*(x(:,2)-f(:,2));

dg= d2f(:,1).*(x(:,1)-f(:,1))-df(:,1).^2+ d2f(:,2).*(x(:,2)-f(:,2))-df(:,2).^2;

%first loop

if p==0

for i=1:s(1)

tnew=t(i)-g(i)/dg(i);

if tnew>=0 && tnew<=1

t(i) = tnew;

end

f(i,:)=bspl(t(i),d,k,0)*a;

df(i,:)=bspl(t(i),d,k,1)*a;

d2f(i,:)=bspl(t(i),d,k,2)*a;

g=df(:,1).*(x(:,1)-f(:,1))+df(:,2).*(x(:,2)-f(:,2));

dg= d2f(:,1).*(x(:,1)-f(:,1))-df(:,1).^2+ d2f(:,2).*(x(:,2)-f(:,2))-df(:,2).^2;

end

%% final loop %%

else

Iterr=0;

tnew=-1;

for i=1:s(1)

while abs(g(i))>0.0001 && Iterr < 100

while n<4 && tnew ~= t(i)

tnew=t(i)-g(i)/(dg(i)*2^n);

if tnew>=0 && tnew<=1

t(i) = tnew;

end

n=n+1;
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end

n=1;

Iterr=Iterr+1;

end

Iterr=0;

f(i,:)=bspl(t(i),d,k,0)*a;

df(i,:)=bspl(t(i),d,k,1)*a;

d2f(i,:)=bspl(t(i),d,k,2)*a;

g=df(:,1).*(x(:,1)-f(:,1))+df(:,2).*(x(:,2)-f(:,2));

dg= d2f(:,1).*(x(:,1)-f(:,1))-df(:,1).^2+ d2f(:,2).*(x(:,2)-f(:,2))-df(:,2).^2;

end

end

end
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