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ABSTRACT

The Root-Finite Condition on Groups

and Its Application to Group Rings

by

James Lawrence Gollin

The University of Wisconsin-Milwaukee, 2016
Under the Supervision of Allen D. Bell

A group G is said to satisfy the root-finite condition if for every g ∈ G, there are only

finitely many x ∈ G such that there exists a positive integer n such that xn = g. It is shown

that groups satisfy the root-finite condition iff they satisfy three subconditions, which are

shown to be independent. Free groups are root-finite. Ordered groups are shown to satisfy

one of the subconditions for the root-finite condition. Finitely generated abelian groups

satisfy the root-finite condition. If, in a torsion-free abelian group G, there exists a positive

integer r such that the subgroup Ar of elements ofG taken to the rth power has index less than

r in G, then G does not satisfy the root-finite condition. Finitely generated finite conjugate

groups satisfy the root-finite condition. Infinite groups with finitely many conjugacy classes

fail to satisfy the root-finite condition. Torsion-free polycyclic-by-finite groups satisfy two of

the subconditions for the root-finite condition. Finitely generated nilpotent groups satisfy

the root-finite condition. If KG is a group ring, for every nonidentity element x of G, the

following left module is definedMx = KG/KG(x− 1). This module is shown to be faithful

if G satisfies the root-finite condition and x has an infinite conjugacy class. If KG is a prime

group ring, thenMx is not faithful if the conjugacy class of x is finite. An analogous problem

concerning skew polynomial and skew-Laurent polynomial rings is discussed.

ii



Table of Contents

1 Overview 1

2 Preliminaries 3

2.1 Group Rings: Definition and Background . . . . . . . . . . . . . . . . . . . . 3

2.2 Some Ring Theoretic Concepts . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.3 Prime Group Rings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3 The Root-Finite Condition on Groups 7

3.1 Finiteness Conditions on Groups . . . . . . . . . . . . . . . . . . . . . . . . 7

3.2 Definition and Preliminary Discussion of the Root-Finite Condition . . . . . 8

3.3 The Three-Condition Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3.3.1 The Root Chain Condition . . . . . . . . . . . . . . . . . . . . . . . . 9

3.3.2 The Prime Root Condition . . . . . . . . . . . . . . . . . . . . . . . . 10

3.3.3 The rth-Root Condition . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.3.4 Proof of the Three-Condition Theorem . . . . . . . . . . . . . . . . . 13

3.4 Closure Operations on Root-Finite Groups . . . . . . . . . . . . . . . . . . . 15

3.5 The Root-Finite Condition and Relations on Two Generators . . . . . . . . . 18

3.6 Subgroups Consisting of Root-Finite Elements . . . . . . . . . . . . . . . . . 19

4 Free Groups 23

4.1 Definition and Preliminary Remarks . . . . . . . . . . . . . . . . . . . . . . . 23

4.2 Free Groups and the Root-Finite Condition . . . . . . . . . . . . . . . . . . 23

5 Ordered Groups 26

5.1 Definition and Preliminary Remarks . . . . . . . . . . . . . . . . . . . . . . . 26

5.2 Ordered Groups and the Root-Finite Condition . . . . . . . . . . . . . . . . 26

5.3 Group Rings of Ordered Groups . . . . . . . . . . . . . . . . . . . . . . . . . 27

iii



6 Abelian Groups 28

6.1 Finitely Generated Abelian Groups and the Root-Finite Condition . . . . . . 28

6.2 Non-Finitely Generated Abelian Groups and the Root-Finite Condition . . . 29

6.3 Group Rings of Abelian and Abelian-by-Finite Groups . . . . . . . . . . . . 31

7 Finite Conjugate Groups 33

7.1 Definitions and Preliminary Remarks . . . . . . . . . . . . . . . . . . . . . . 33

7.2 Finite Conjugate Groups and the Root-Finite Condition . . . . . . . . . . . 34

7.3 Group Rings of Finite Conjugate Groups . . . . . . . . . . . . . . . . . . . . 41

8 Groups With Finitely Many Conjugacy Classes 42

8.1 Preliminary Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

8.2 Groups With Finitely Many Conjugacy Classes and the Root-Finite Condition 42

9 Polycyclic Groups and Polycyclic-by-Finite Groups 45

9.1 Definitions and Preliminary Remarks . . . . . . . . . . . . . . . . . . . . . . 45

9.2 Polycyclic, Polycyclic-by-Finite Groups and the Root-Finite Condition . . . 46

9.3 Groups Rings of Polycyclic and Polycyclic-by-Finite Groups . . . . . . . . . 51

10 Nilpotent Groups 52

10.1 Definition and Preliminary Remarks . . . . . . . . . . . . . . . . . . . . . . . 52

10.2 Nilpotent Groups and the Root-Finite Condition . . . . . . . . . . . . . . . . 54

10.3 Group Rings of Nilpotent Groups . . . . . . . . . . . . . . . . . . . . . . . . 55

11 The Module Problem for Group Rings 57

11.1 Preliminary Lemmas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

11.2 Main Theorems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

12 A Case Study: The Infinite Dihedral Group 62

13 Skew Polynomial Rings and Skew-Laurent Polynomial Rings 64

13.1 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

13.2 The Module Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

14 Questions for Further Research 68

Bibliography 69

iv



Curriculum Vitae 72

v



ACKNOWLEDGMENTS

I would like to express my appreciation for my adviser, Allen Bell, for guiding me through

this process. I am grateful to him for his patience, for letting me follow my inquiries wherever

they happened to lead me, and for setting me straight when I drifted off course. It has been

a pleasure working with him the last two years. I benefited as well from working with Ian

Musson in an earlier phase of my research, as it was he who first directed my attention to

the field of group rings. I would also like to express appreciation for the Department of

Mathematics at UWM in general. I have learned a great deal from the courses that I have

taken here, and have benefited from the many excellent teachers whom I have been fortunate

enough to study with. I am grateful, as well, to the other graduate students with whom I

have studied and exchanged ideas over the past few years. Finally, I would like to thank my

family and friends for their support and encouragement.

vi



Chapter 1

Overview

There are two principal topics with which this work will be concerned: groups rings and

finiteness conditions on groups. This research stems from a problem dealing with certain

modules over group rings and determining under what conditions such modules are faithful.

In investigating this problem, it was discovered that a key factor in determining whether the

module was faithful hinged on the question of whether the underlying group of the group ring

possessed a certain finiteness condition, which in this work is called the root-finite condition.

It appears that this finiteness condition has not been previously studied.

The structure of the dissertation is as follows:

Chapter 2 introduces definitions and background concerning group rings. Some ring-

theoretic concepts are also introduced in this chapter that will recur in various places through-

out this work.

Chapter 3 introduces the root-finite condition. The root-finite condition is defined, and

a group is shown to satisfy the root-finite condition if it simultaneously satisfies three sub-

conditions. This chapter also looks at closure operations on the class of root-finite groups.

The next several chapters look at certain important classes of groups with respect to the

two general topics that are the focus of this work: We attempt to delineate criteria for when

groups from these classes satisfy the root-finite condition, and we look at some of the major

theorems regarding group rings constructed from groups in these classes.

Chapter 4 focuses on free groups, which are shown to satisfy the root-finite condition.

Chapter 5 is concerned with ordered groups, which are shown to satisfy one of the sub-

conditions for the root-finite condition.

Chapter 6 is concerned with abelian groups. Finitely generated abelian groups are shown

to satisfy the root-finite condition. The question of whether abelian groups that are not

finitely generated satisfy the root-finite condition is shown to be connected to the density of

1



roots in the group.

Chapter 7 presents findings regarding finite conjugate groups, a class of groups which

plays a prominent role in the theory of group rings. It is shown that finitely generated

finite conjugate groups satisfy the root-finite condition. Groups that are not finite conjugate

groups, but whose delta subgroup has finite index are shown to fail to satisfy the root-finite

condition.

Chapter 8 looks at groups that consist of finitely many conjugacy classes. These groups

are shown to violate one or more of the subconditions for the root-finite condition.

Chapter 9 looks at polycyclic and polycyclic-by-finite groups. The question of whether

these groups satisfy the root-finite condition is complicated. In the case of torsion-free

polycyclic-by-finite groups, it is shown that two of the subconditions for the root-finite

condition are satisfied.

Chapter 10 is concerned with nilpotent groups. It is shown that finitely generated nilpo-

tent groups satisfy the root-finite condition.

Chapter 11 discusses the question of the faithfulness of certain modules over group rings,

with special emphasis on prime group rings and on the role played by the root-finite condition

on the underlying group. This was chronologically the first question to be addressed in this

research, and it provided the motivation for studying the theory of root-finite groups in

greater depth. For a group ring KG, and for any nonidentity element x of G, we consider

the left moduleMx = KG/KG(x− 1). The problem is to determine under what conditions

this module is faithful. The main results of the chapter are as follows: If G satisfies the

root-finite condition and x ∈ G has an infinite conjugacy class, then Mx is faithful. If [x]

represents the conjugacy class of x, then the annihilator ofMx is equal to
⋂
y∈[x] KG(y−1).

Finally, if KG is a prime group ring and x has a finite conjugacy class, then Mx is not

faithful.

Chapter 12 discusses the implications of the preceding chapter with respect to group

rings over the infinite dihedral group.

Chapter 13 extends the methods on group rings to similar questions concerning skew

polynomials and skew-Laurent polynomials.

Chapter 14 proposes some topics for further research.

2



Chapter 2

Preliminaries

The purpose of this chapter is to present the necessary background for the later investigation

of modules over group rings and their annihilators. We define group rings and several key

concepts that are of central importance in discussing group rings. We also define some basic

concepts of ring theory that will be useful in our discussion, and present some theorems from

the literature.

2.1 Group Rings: Definition and Background

Given a field K and a group G, the group ring KG is defined as consisting of all formal finite

sums of the form

α =
∑
x∈G

ax · x

with ax ∈ K. (This definition, and those that immediately follow, are from [19].) For

β =
∑
bx · x, the operations of addition and multiplication in KG are defined naturally as

follows:

α + β =
∑
x∈G

(ax + bx) · x

and

αβ =
∑
z∈G

cz · z

where

cz =
∑
xy=z

axby

Given an element of a group ring KG, we are interested in the set of group elements that

actually occur in the finite sum that constitutes the element of the group ring. So, for any
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α =
∑
x∈G

axx ∈ KG

we define the support of α, denoted Suppα, to be

Suppα = {x ∈ G|ax 6= 0}

The trivial units of the group ring KG are those elements of the form λg, where λ is a

nonzero element of the field K and g ∈ G. With slight abuse of notation, when λ = 1 or

when g = e, we generally drop the identity elements when writing out these trivial units of

the group ring, so long as there is no confusion about whether we are referring to an element

of KG or to an element of the constituent field or group.

An important ideal of KG is the augmentation ideal, denoted ω(KG), defined as

ω(KG) = {
∑

axx|
∑

ax = 0}

2.2 Some Ring Theoretic Concepts

We now review the definitions of several concepts from ring theory that will be referred to

in this dissertation.

Following [5], a polynomial identity (PI) on a ringR is defined as a polynomial p(x1, · · · , xn)

in noncommuting variables x1, · · · , xn with coefficients from Z such that p(r1, · · · , rn) = 0

for all r1, · · · , rn ∈ R. A polynomial identity ring (PI ring), is a ring R that satisfies some

monic polynomial identity p(x1, · · · , xn) (that is, among the monomials of highest total

degree which appear in p, at least one has coefficient 1).

A (left or right) module M of a ring is said to be Noetherian if it satisfies the following

three equivalent properties:

• Every submodule of M is finitely generated.

• Every ascending chain of submodules M1 ⊆ M2 ⊆ · · · ⊆ Mi ⊆ · · · has only finitely

many distinct submodules.

• Every nonempty set S of submodules of M has a maximal member.

A ring R is said to be left Noetherian if it is a Noetherian left R-module, and right

Noetherian if it is a Noetherian right R-module. If a ring is both left and right Noetherian,

it is said to be Noetherian.
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An essential left ideal is a left ideal that has a nonzero intersection with all other nonzero

left ideals.

A prime ideal in a ring R is any proper ideal P of R such that, whenever I and J are

ideals of R with IJ ⊆ P , either I ⊆ P or J ⊆ P . A prime ring is a ring in which 0 is a

prime ideal.

When studying a group ring KG, we are often interested in whether the group ring

satisfies a polynomial identity over the field K, and not merely over Z. An algebra E

over a field K is said to be a PI algebra or to satisfy a polynomial identity if there exists

f(x1, · · · , xn) ∈ K〈x1, · · · , xn〉 6= 0 with f(α1, · · · , αn) = 0 for all α1, · · · , αn ∈ E.

The following lemma will prove useful:

Lemma 2.2.1. If R is a prime Noetherian ring, then for c ∈ R,Rc is essential iff c is a

regular element of R.

Proof. This lemma was proven in [4], where it is Lemma 3.8.

A ring R is said to be bounded if every essential one-sided ideal of R contains an essential

(two-sided) ideal. R is said to be fully bounded Noetherian (FBN) if R is Noetherian and if

every prime image of R is bounded. This has implications for the question of whether KG

satisifes a polynomial identity.

We introduce some additional definitions from [14]. Q is said to be a central simple algebra

over a field Z if Z is the center of Q and Q is a simple Artinian ring, finite dimensional over

Z. A ring Q is said to be a quotient ring if every regular element of Q is a unit. Given a

quotient ring Q, a subring R, not necessarily containing 1, is said to be a right order in Q if

each q ∈ Q has the form rs−1 for some r, s ∈ R. A left order is defined analogously. A left

and right order is said to be an order.

Theorem 2.2.2. (Posner’s theorem). Let R be a prime PI ring with center C. Let S =

C\{0}, Q = RS, and Z = CS, the quotient field of C. Then Q is a central simple algebra

with center Z, R is an order in Q and Q = RZ.

Proof. For a proof, see [14].

Posner’s theorem enables us to prove the following theorem, which establishes the rela-

tionship between PI rings and FBN rings.

Theorem 2.2.3. If R is a Noetherian ring with a polynomial identity, then R is FBN.

5



Proof. With no loss of generality, we can take R to be a prime ring. Let I be an essential left

ideal. By Lemma 1.4, I contains a regular element c and c−1 ∈ Q = RS. Then c−1 = rz−1

by Posner’s Theorem. Therefore c−1z = r, and, since z is central, zc−1 = r, so z = rc ∈ I.

Thus I contains the two-sided ideal zR = Rz.

2.3 Prime Group Rings

In this section, we cite a key theorem relating to prime group rings, which plays an important

role in several of the results of this dissertation.

A theorem of [2] sets forth equivalent conditions for a group ring to be a prime ring.

Theorem 2.3.1. Let KG be a group ring. Then the following are equivalent:

1. KG is prime.

2. The center of KG is prime.

3. G has no nonidentity finite normal subgroup.

4. ∆(G) is torsion-free abelian, where ∆(G) is the subgroup of G consisting of elements

of G with a finite conjugacy class.

Proof. See [19], Theorem 4.2.10.

For a further discussion of ∆(G), including an explanation of why this subset is a sub-

group, see Section 7.1.
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Chapter 3

The Root-Finite Condition on Groups

The purpose of this chapter is to introduce the root-finite condition on groups. This chapter

begins with a brief discussion of the general topic of finiteness conditions on groups. Then

the root-finite condition is defined, and it will be shown that the root-finite condition is

satisfied if and only if three subconditions are satisfied. These subconditions are shown to

be independent. The topic of closure operations on the class of root-finite groups is explored.

The chapter concludes with an investigation of two topics relating to the root-finite condition.

The first of these topics is to look at some groups defined by relations on two generators and

to see what sorts of relations can give rise to groups that fail to satisfy the three subconditions

of the root-finite condition. Finally, we present some theorems relating to subgroups that

satisfy the root-finite condition even though the larger group may not.

3.1 Finiteness Conditions on Groups

A finiteness condition on groups is any property of a group that holds for all finite groups

and for some, but not all, infinite groups. Associated with each finiteness condition is a class

of groups, consisting of those groups that satisfy the particular finiteness condition, and the

finiteness condition itself is sometimes identified with this class of groups.

Several finite conditions on groups play a role in this work. Among them are the following:

• The finiteness condition which is generally first encountered in studying groups is the

condition that a group be finitely generated, that is, for a group G there exists a

finite set A of elements of G, the generating set, such that every element of G can be

expressed as a product of positive and negative powers of elements of A. All finite

groups can be viewed as finitely generated by identifying the generating set A with the

group G.

7



• Finiteness conditions can arise from considering some sort of ascending chain within

the group G and requiring that the chain stabilize in a finite number of steps. Thus,

we have the max condition on subgroups of a group G, which is the condition that any

ascending chain of subgroups of G

A1 ⊆ A2 ⊆ · · · ⊆ Ai ⊆

can have only finitely many distinct subgroups. This can be shown to be equivalent

to the finiteness condition that all subgroups of a group G are finitely generated (the

Axiom of Choice being welcome in this work). There are other finiteness conditions

that are defined in terms of finiteness of ascending chains, such as the max-n condition,

under which an ascending chain of normal subgroups can consist of only finitely many

distinct subgroups.

• A finiteness conditions that plays a significant role in this work is the finite-conjugate

condition. A group G satisfies the finite conjugate condition if all of its elements have

finite conjugacy classes.

• Another finiteness condition involving conjugacy classes which is considered in this

work is the condition that a group G have only finitely many conjugacy classes. Only

finite groups can satisfy both this condition and the finite conjugate condition.

• If X is any class of groups which contains all trivial groups (groups consisting of only an

identity element), then a group G satisfies the X-by-finite finiteness condition if G has

a normal subgroup of finite index belonging to X. (All finite groups are X-by-finite,

since the trivial group is a normal subgroup of finite index.) Examples of this sort

of finiteness condition that are discussed in this work include abelian-by-finite groups,

polycyclic-by-finite groups, and finite-conjugate-by-finite groups.

• Two finiteness conditions, the condition of being locally finite and the condition of

being residually finite, are noted here and are defined in the discussion of closure

operations on classes of groups (Section 3.4).

3.2 Definition and Preliminary Discussion of the Root-

Finite Condition

An element x of a group G is said to be a root of g ∈ G if for some positive integer r, xr = g.

Any such x is called an rth root of g. A group G is said to be root finite or is said to satisfy
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the root-finite condition if all elements g of G have only finitely many roots. If an element g

of G has no rth roots for any integer r ≥ 2, then g is said to be rootless. If an element g of

G has only finitely many roots, that element is said to be a root-finite element, irrespective

of whether the group G satisfies the root-finite property. The root-finite condition on G

is equivalent to the condition that no cyclic subgroup of G is contained in infinitely many

cyclic subgroups.

It should be noted that in any group, the relation “g is a root of h” is a preorder. The

relation is reflexive, since any element g of G satisfies the equation g1 = g. The relation is

transitive, since if g is an rth root of h and h is an sth root of k, then g is an rsth root of k,

since gr = h and hs = k gives us (gr)s = grs = k. The relation is not necessarily a partial

order, since antisymmetry will not always hold. For example, if an element g of a group G

has order 5, and if g2 = h, then h3 = (g2)3 = g6 = g5g = eg = g, so g is a root of h, and h is

also a root of g, but g 6= h. We can denote this preorder “g is a root of h” by g ≤r h (the

r subscript denoting “root”). If G is a torsion-free group, ≤r will be a partial order, since

antisymmetry fails only when there is an element of finite order in G.

As a familiar example, one in which the order relation ≤r is well known, albeit by a

different name, consider the integers as a group with the operation of addition. Then integers

g and h satisfy the relation gr = h (which, to avoid confusing notation, should better be

written in additive notation as rg = h) for some positive integer r precisely when h is a

multiple of g. The group (Z,+) is ordered by the relation ≤r (since Z is torsion-free), which

is to say that the integers are partially ordered by the factor relation a|b.

3.3 The Three-Condition Theorem

3.3.1 The Root Chain Condition

There is a chain condition that comes into play when discussing the root-finite condition. If

there is some chain of group elements gi satisfying the relations

g1 ≥r g2 ≥r · · · ≥r gi ≥r · · ·

that is, if gi+1 is a root of gi for all i, this is said to be a root chain or a chain of roots

originating at g1. If a group G is root finite, then for any element g of G, any root chain

originating at g can consist of only finitely many distinct elements. If gi+1 is a root of gi,

then there is a positive integer r such that gri+1 = gi and so gi is an element of 〈gi+1〉, the

9



cyclic subgroup of G generated by gi+1. Therefore 〈gi〉 ⊆ 〈gi+1〉, so that the root chain

g1 ≥r g2 ≥r · · · ≥r gi ≥r · · ·

is seen to be equivalent to

〈g1〉 ⊆ 〈g2〉 ⊆ · · · ⊆ 〈gi〉 ⊆ · · ·

so that groups satisfying the root-finiteness condition are also seen to satisfy the ascending

chain condition on cyclic subgroups. We thus can see that the root chain condition is

equivalent to the property that there does not exist an infinite strict ascending chain of

cyclic subgroups, that is, that the group satisfies the max condition on cyclic subgroups.

If C1 and C2 denote two root chains originating at the same element g in a group G, we

say that C2 is an extension of C1 if all of the roots in the root chain C1 also appear in C2

and there is at least one root in the root chain C2 that does not appear in C1. Note that

this definition does not require that the additional root or roots in C2 follow the roots that

appear in both C1 and C2.

3.3.2 The Prime Root Condition

We introduce another term which will be used to identify another condition which is satisfied

whenever a group satisfies the root-finite condition. We say that some element g of a group

G is a prime root of h if there is some prime p such that gp = h. The following lemma

presents an observation concerning root chains and prime roots.

Lemma 3.3.1. Given any group G:

(a) a root chain originating at some element g of G contains at most one distinct prime

root of g if g has infinite order.

(b) any nonconstant root chain originating at some element g of G (not necessarily an

element g having infinite order) can be extended to include a prime root of g.

Proof. (a) Let

g = x0 ≥r x1 ≥r · · · ≥r xi ≥r · · ·

be a root chain in G originating at g. If the root chain is constant, there is nothing

to prove. If the root chain is not constant let i be minimal such that xi 6= x0. Then

we have g = xri for some positive integer r ≥ 2. If xj = xi for all j > i, then there

is only one distinct root of g in the chain, and therefore at most one distinct prime
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root. If otherwise, there is some j minimal such that xj 6= xi. Since, in a root chain, if

m < n then gn is a root of gm, we have, in particular that for k ≥ j, xk is a root of xi.

Therefore, for some integer s ≥ 2, xi = xsk, and therefore g = (xsk)
r = xrsk . Since r and

s are greater than or equal to 2, the integer rs is obviously not prime. If it were the

case that xpk were also equal to g for some prime p, then xpk = xrsk , so xp−rsk = e, and

thus xk has finite order in G. However, since xk ≤r g, the cyclic subgroup generated

by g is contained in the cyclic subgroup generated by xk. Since 〈g〉 is assumed to

be infinite and 〈xk〉 is finite under the assumption that xk is a prime root of g, the

inclusion 〈g〉 ⊆ 〈xk〉 is impossible. Thus, for k ≥ j, xk cannot be a prime root of g,

and thus the root chain can have at most one prime root.

(b) Now suppose that there is a root chain originating at g

g = x0 ≥r x1 ≥r · · · ≥r xi ≥r · · ·

that does not contain any prime roots of g. We take the first element of the root chain

that is not equal to g. Let us suppose, for ease of notation, that it is x1. Then g = xr1

for some positive composite integer r. We then let p be one of the prime factors of r,

so that r = pk for some positive integer k. Now we create a new root chain

g = y0 ≥r y1 ≥r · · · ≥r yi ≥r · · ·

where y1 = xk1 and yi = xi−1 for i ≥ 2. To show that this is a root chain, we need

to have that the two additional relations g ≥r y1 and y1 ≥r y2 hold, as all the other

relations hold given the prior root chain. We see that y1 ≥r y2 since y2 = x1 and

y1 = xk1, so that y1 = yk2 , so y2 is a root of y1. Also, yp1 = (xk1)p = xkp1 = xr1 = g, so that

y1 is a root of g, and, in fact, it is a prime root, as required.

In some contexts, it may only be necessary to concern ourselves with prime roots. When-

ever g ≤r h, if g is not a prime root of h, we can use the method of the proof of the second

part Lemma 3.3.1 to insert additional roots between g and h and arrive at a chain where

every element is a prime root of the next element.

Intuitively, the prime root condition would be stated something like this: In a group

satisfying the root-finite condition, for every element g there are at most finitely many

primes pi such that g has a pth
i root. Unfortunately, we are not going to be able to get away

with a formulation that simple. One problem that we encounter is that the identity element
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of the group is its own rth root for all positive integers r. Also, if a group G has finite cyclic

subgroups, the above formulation fails. Suppose an element g of G has order t. Then if we

consider a positive integer s less than t, gs = gs+kt for all positive integers k. So, provided

that there are infinitely many primes equal to s modulo t (which, according to a well-known

theorem of Dirichlet, will hold if and only if s and t are coprime), the element gs of G has

prime roots for infinitely many primes pi, and all of those prime roots are the same element

g.

In order to avoid these complications, we use the following formulation of the condition

that we continue to refer to as the “prime root condition”, even though in this formulation,

prime roots are not explicitly mentioned. If a group G satisfies the root-finite condition, it

necessarily satisfies the finiteness condition that for all g in G there are only finitely many

primes pi for which there exists an element xi of G such that g ∈ 〈xi〉 and [〈xi〉 : 〈g〉] = pi.

This avoids the problem of finding prime roots of g in the cyclic subgroup generated by g

whenever g has finite order, since in those circumstances the subgroups 〈xi〉 and 〈g〉 coincide,

so the index [〈xi〉 : 〈g〉] will always be 1.

3.3.3 The rth-Root Condition

We now introduce a third finiteness condition which is satisfied by all groups G that satisfy

the root-finite condition: For every positive integer r, every element g of G has at most

finitely many rth roots. We will have occasion to look at groups in which, for every positive

integer r and every element g of G, rth roots are unique, that is, xr = yr implies that

x = y. Groups with this property are called R-groups. We might have referred to the

rth-root condition as the “weak R-group condition”, but since R-groups will play only a

peripheral role in this discussion, and especially since the property of being an R-group is

not a finiteness condition (finite groups other than trivial groups are not R-groups since if a

group has order r every element of the group is an rth root of the identity), that terminology

will not be used.

It should also be noted that since the existence of an rth root of a group element g

implies the existence of a pth root of g for all prime factors p of r, we could limit the rth

root condition to prime roots with no loss of generality. We can thus alternatively define the

rth-root condition in the following manner: If G is a group, C any cyclic subgroup of G, and

p any prime, then there are only finitely many cyclic subgroups D of G with D ⊇ C and

[D : C] = p.

12



3.3.4 Proof of the Three-Condition Theorem

In each of the previous three subsections, we encountered a finiteness condition that is

satisfied by all groups that satisfy the root-finite condition. In this subsection, we will prove

that if a group satisfies all three of these finiteness conditions, it satisfies the root-finite

condition. We also show that the three conditions are independent, by exhibiting for each

condition an example of a group that fails to satisfy that condition while satisfying the

remaining two conditions.

Theorem 3.3.2. A group G satisfies the root-finite condition if and only if it satisfies all of

the following conditions:

(a) For all g ∈ G, all root chains originating at g have only finitely many distinct elements

(b) For all g ∈ G there are only finitely many primes pi for which there exists an element

xi of G such that g ∈ 〈xi〉 and [〈xi〉 : 〈g〉] = pi.

(c) For all g ∈ G and for all positive integers r, there are only finitely many (possibly zero)

elements x of G such that xr = g.

Proof. It is clear that if a group G satisfies the root-finite condition, then all three of these

conditions hold.

We now show that if a group G is does not satisfy the root-finite condition, then one of

the conditions fails to hold. Suppose that a group G does not satisfy the root-finite condition.

The proof will proceed on the following line of reasoning. Having assumed that G does not

satisfy the root-finite condition, we are trying to show that it fails to satisfy at least one of

the three conditions of the theorem. So our goal is to prove

¬(a) ∨ ¬(b) ∨ ¬(c)

This is logically equivalent to

¬[(a) ∧ (b)] ∨ ¬(c)

which is, in turn, logically equivalent to

[(a) ∧ (b)]⇒ ¬(c)

Thus it suffices to show that if G satisfies conditions (a) and (b), then G does not satisfy

condition (c).
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Let us then proceed by assuming that G is a group that does not satisfy the root-finite

condition and that G satisfies conditions (a) and (b) of the theorem. Since G does not

satisfy the root-finite condition, we can fix some element g of G that has infinitely many

roots. Every root of g is part of a root chain originating at g, even if that chain consists of

only two elements. Let C be a collection of root chains such that every root of g is contained

in at least one chain C in C . By Lemma 3.3.1, we can extend all of the chains C in C

to contain a prime root of g, and that prime root will be the unique prime root of g in C.

Since G satisfies condition (a) of the theorem, all of the chains C contain only finitely many

distinct elements. If there were only finitely many chains C in C , then only finitely many of

the roots of g would be covered by the chains of C , but since C was constructed to contain

chains covering all the roots of g, there must be infinitely many root chains in C , each with

its unique prime root.

Since G satisfies condition (b) of the theorem, g has prime roots for only finitely many

primes pi. This means that that there is some prime p that has the property that infinitely

many of the root chains in C contain a pth root of g. If infinitely many of these pth roots

are distinct, then g has infinitely many pth roots, and we have succeeded in showing that

condition (c) of the theorem does not hold.

If there are only finitely many distinct pth roots among the infinitely many root chains

with pth roots, then there must be a pth root that occurs in infinitely many root chains.

Fix one such pth root and call it g1. Since g1 occurs in infinitely many root chains, it has

infinitely many roots, and we repeat the process, using g1 in place of g. If we continue this

process, obtaining elements g2, g3, · · · , we note that the gi form a root chain of prime roots

originating at g, which, since condition (a) of the theorem holds, cannot be infinite. So at

some point we will arrive at an element gi that has infinitely many pth roots for some prime

p, so condition (c) does not hold.

Example 3.3.3. The following examples illustrate the independence of the three conditions

of Theorem 3.3.2. These are examples of groups that satisfy all but one of the conditions of

Theorem 3.3.2 for each of the three conditions, so that no two conditions imply the third.

• We first look at a case where only the first condition, the root chain condition, fails. We

consider, first, the rational numbers as a group with the operation of addition. This

group does not satisfy the root chain condition because, starting with any rational

number, we can take an infinite chain of square roots by successively multiplying by

1/2. However, this does not provide us with the example that we need, as every nonzero

rational number has a unique pth root for all primes p, which is obtained by multiplying
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by 1/p, so the prime root condition is not satisfied. However, the rth root condition is

satisfied, as all rth roots are unique and are equal to 1/r times a given rational number.

(In other words, Q is an R-group.)

We can, however, find a subgroup of the rational numbers that satisfies the prime root

condition. Consider the group consisting of all rational numbers of the form m/2n,

with m an integer and n a positive integer, with the operation of addition. This group

does not satisfy the root chain condition, as we can form an infinite chain of square

roots originating at any nonzero group element by multiplying successively by 1/2. In

this subgroup of Q, however, the prime root condition is satisfied, since if p is a prime

other than 2, the subgroup element m/2n has a pth root in the subgroup only if p is

a factor of m, which necessarily occurs for only finitely many primes. Of course, the

subgroup maintains the property of being an R-group, so the rth root condition is still

satisfied.

• As an example of a group that fails to satisfy only the prime root condition, consider

the abelian group with a generator x of infinite order and countably infinitely many

generators x1, x2, · · · and relations xpii = x, where pi denotes the ith prime. In this

group, the element x would have a pth root for every prime p, but it does not appear

that the relations would give rise to an infinite root chain or to any element of the

group having infinitely many rth roots for some positive integer r.

• As an example of a group that fails to satisfy only the rth root condition, consider the

group formed by taking the direct product of infinitely many copies of Z/2Z. In this

group, every element squared equals the identity, so the identity has infinitely many

square roots, but no other element has any root other than itself.

3.4 Closure Operations on Root-Finite Groups

In discussions of finiteness conditions on groups, a topic that is often explored involves closure

operations on classes of groups. In providing some background discussion of this topic, it

will be useful to summarize the following relevant material that can be found in [20]. An

operation A on classes of groups is a function mapping any class of groups X to a class of

groups AX, fulfilling the following conditions:

• All trivial groups are members of the class X;
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• If X and Y are classes of groups such that X ⊆ Y , then AX ⊆ AY ;

• For all classes of groups X, X ⊆ AX;

• A maps the class of trivial groups to itself.

A class of groups X is said to be A-closed if it turns out that AX = X. When studying

a particular finiteness condition, the class of groups of interest is the class consisting of all

groups that possess that finiteness condition. The question that often arises is whether the

class of groups possessing the finiteness condition is closed under various operations.

Operations can be multiplied in the natural way. For two operations A and B and a

class of groups X, (AB)X = A(BX). This makes sense since BX is a class of groups and

the operation A acts on classes of groups. An operation is said to be a closure operation if

A2 = A. Some of the well-known closure operations are as follows:

• The subgroup operation, denoted by S, which maps a class of groups X to the class

SX of all subgroups of members of X.

• The direct product operation, denoted by D, which maps a class of groups X to the

class DX of all direct products of members of X. (There is also a closure operation D0,

which maps a class of groups X to the class D0X of direct products of two members

of X.)

• The operation H which maps a class of groups X to the class HX of all homomorphic

images of members of X.

• The local operation L which maps a class of groups X to the class LX of all groups

G with the following property: For every finite subset F of G there is a subgroup H

of G containing F that belongs to X. For example, a group G is locally finite if every

finite subset of G is contained in a finite subgroup.

• The residual operation R which maps a class of groups X to the RX of all groups

G with the following property: For every element g of G there is a homomorphism

from G to some group H in X such that g is not an element of the kernel of the

homomorphism.

We can now proceed to analyze the class of all root-finite groups with respect to these

closure operations. In deciding how to denote this class, the seemingly natural choice, RF ,

16



is to be avoided since it is too likely to be mistaken for the class of residually finite groups.

Instead, in this discussion, the class of root finite groups will be denoted by T (the only

letter to appear in both “root” and “finite”).

We now consider which of the common closure operations defined above are T -closed:

• ST = T , that is, T is S-closed. If a group G is root-finite and H is a subgroup of G,

then for any element h of H, all the roots of h in H are also going to be roots of h in

G, so there cannot be infinitely many such roots.

• D0T = T , that is, T is D0-closed. If we let G and H be root-finite groups and consider

an element (g, h) of G ×H, then an element (g′, h′) of G ×H is an nth root of (g, h)

if and only if g′ is an nth root of g in G and h′ is an nth root of h in H. The elements

g and h have finitely many roots in their respective groups, say g has ng roots and h

has nh roots. Then the number of roots that (g, h) has in G×H is bounded by ngnh,

and thus G×H is root finite.

• DT 6= T , that is T is not D-closed. Consider the direct product of infinitely many

copies of Z/2Z. The constituent groups Z/2Z are finite, and hence root-finite, groups,

and yet their direct product is not root finite, as every element is a square root of the

identity.

• HT 6= T , that is T is not H-closed. As will be shown in this work, the free groups

are root finite. Since every group is the homomorphic image of a free group, HT

thus includes all groups, so the root-finite condition is not closed under taking of

homomorphic images. T actually fails this closure condition in a spectacular fashion;

it will be seen that there is an injective homomorphism from every torsion-free root-

finite group to a group that is not root finite.

• LT 6= T , that is, T is not L-closed. Locally root-finite groups need not be root finite.

Take the example of Q as an additive group. Since any finite subset of rational numbers

has a common denominator, every subset of Q is contained in an infinite cyclic subgroup

of Q. Since this subgroup is isomorphic to Z, it must be root finite. Thus Q is locally

root finite, but it is not root finite.

• RT 6= T , that is, T is not R-closed. The condition of being residually finite is a

stronger condition than that of being residually root finite. Whatever homomorphisms

you would use to establish that a group is residually finite work for establishing that
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the group is residually root finite as well. However, it is not the case that residually

finite groups are necessarily root finite. An example, which will be discussed at greater

length later in this work, is the infinite dihedral group. This group is polycyclic-by-

finite, and thus residually finite, but it is not a root-finite group. See Chapter 12 for a

further discussion.

3.5 The Root-Finite Condition and Relations on Two

Generators

If a group is defined by its generators and relations, it may not be immediately apparent

whether the group is root finite. We now consider some examples of relations that give rise

to groups that lack the property of root finiteness.

Suppose, for example, that in some group G there are generators a and b satisfying

the relation a2 = b2 (the infinite dihedral group is an example of a group which has such a

relation). Then, if there is no further relation that restricts the order of ab−1, the group is not

root finite, as is shown by the following theorem. (If a and b commute, then (ab−1)2 = a2b−2,

which is equal to the identity e by the relation a2 = b2, so ab−1 would have order 2.)

Theorem 3.5.1. If in a group G there are noncommuting elements a and b such that a2 = b2

and ab−1 has infinite order, then there is an element of G having infinitely many square roots.

Proof. Denote by c the group element that is equal to a2. Since a2 = b2, by multiplying on

the left by a−1 and on the right by b−1, we obtain the identity ab−1 = a−1b. The claim is

that [a(ab−1)i]2 = c for all positive integers i. For i = 1,

[a(ab−1)]2 = [a(a−1b)]2 = b2 = c

Now, suppose that for some i, [a(ab−1)i]2 = c. The following computation shows that the

equation holds for i+1: We first write [a(ab−1)i+1]2 in the form a(ab−1)i[(ab−1)a(ab−1)](ab−1)i.

Using the identity ab−1 = a−1b, the sequence of elements in brackets becomes [ab−1a(a−1b)],

which simplifies to a. We thus obtain that [a(ab−1)i+1]2 equals [a(ab−1)i]2, which is equal to

c by the inductive assumption. Since ab−1 is assumed to have infinite order, the element c

is thus shown to have infinitely many square roots.

We now consider a relation that gives rise to a group with an infinite chain of roots.
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Theorem 3.5.2. If in a group G there are two elements a and b of infinite order such that

a−1ba = bn, where n is an integer with absolute value greater than or equal to 2. Then there

is an infinite chain of roots in G, and thus G is not root finite.

Proof. We adopt the following notation: Set g0 = b, and let gi = aiba−i for i = 1, 2, · · · . The

claim is that for i = 1, 2, · · · , gi is an nth root of gi−1. For the case i = 1, the given relation

a−1ba = bn gives us b = abna−1. Since abna−1 is equal to (aba−1)n, we have that g1(= aba−1)

is an nth root of g0(= b). For i ≥ 2, we have

gni = (aiba−i)n = aibna−i = ai(a−1ba)a−i = ai−1ba−(i−1) = gi−1

It remains to be shown that the gi are distinct. Suppose that for two distinct positive

integers p and q, gp = gq (with no loss of generality, we assume p < q). Then apba−p = aqba−q.

Multiplying on the left by a−p and on the right by ap, we get b = aq−pba−(q−p) = gq−p.

However, since gq−p is one of the gi and hence a root of b, this would imply that b is equal

to one of its roots. Since the conditions of the theorem give us that b is of infinite order, b

cannot equal any of its roots, and thus we have a contradiction. So we can conclude that all

of the gi are distinct, and hence there is an infinite root chain beginning at b = g0.

Corollary 3.5.3. There are finitely presented groups that do not satisfy the root-finite con-

dition.

Proof. Theorems 3.5.2 and 3.5.1 provide examples of such groups.

We have given examples of relations in two generators that give rise to groups that violate

two of the three conditions for groups to be root finite. It would be fitting to round out this

discussion by showing a relation that gives rise to a group in which some element has pth

roots for infinitely many prime numbers p. It may well be the case, however, that there is

no such group that can be finitely presented.

3.6 Subgroups Consisting of Root-Finite Elements

We now look at some theorems dealing with subsets of torsion-free groups that consist

entirely of root-finite elements. We begin with the following theorem establishing that there

is a maximal subgroup of this type.

Theorem 3.6.1. If G is a torsion-free group and S denotes the set of all root-finite elements

of G, then there is a subgroup of G maximal with respect to the property of consisting of

elements of S.
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Proof. Since G is assumed to be torsion free, the identity element e of G is an element of S,

and 〈e〉 is a subgroup of G consisting of elements of S. All such subgroups can be partially

ordered by inclusion. If

A1 ⊆ A2 ⊆ · · · ⊆ Ai ⊆ · · ·

is a chain of such subgroups, then A =
⋃
iAi is a subgroup of G consisting of elements

of S. For, if g and h are any elements of A, g ∈ Am and h ∈ An for some m and n. If

k = max(m,n), then gh−1 ∈ Ak, so gh−1 is in A, establishing that A is a subgroup of G.

Since A is the union of the Ai, for any given subgroup An in the chain, we have that An ⊆ A.

So every chain of subgroups of G that are subsets of S has an upper bound that is a subgroup

of G contained in S. Thus, by Zorn’s lemma, we conclude that there is a subgroup of G

maximal with respect to the property of consisting of elements of S.

We should not, however, form the impression that this maximal subgroup is all that large

if the group itself does not satisfy the root-finite condition. In fact, as the next theorem tells

us, in a torsion-free group that does not satisfy the root finite condition, any subgroup of

consisting entirely of root-finite elements will have infinite index.

Theorem 3.6.2. Let G be a torsion-free group that is not root-finite, and let H be a subgroup

of G consisting of root-finite elements of G. Then [G : H] =∞.

Proof. Let S denote the set of all root-finite elements of G. Suppose that G and S do not

coincide, so that there is some element g of G which is not in S (and hence also not in H).

Consider the cosets H, gH, g2H, g3H, · · · . If [G : H] < ∞, then it must be the case that

giH = gjH for some i 6= j, and we may take j > i. Then gj−i ∈ H. Since H is assumed to

consist entirely of root-finite elements of G, this implies that gj−i is a root-finite element of

G. However, g has infinitely many roots by assumption, and all of these roots are also roots

of gj−i. This is a contradiction, and so [G : H] =∞.

A word of caution may be in order at this point. At first blush, this theorem might appear

to tell us that a torsion-free group with a normal root-finite subgroup of finite index satisfies

the root-finite condition. A closer look, however, reveals that this is not the case. Let G be

a torsion-free group and H be a subgroup of finite index. If H consists entirely of root-finite

elements of G, then H, viewed as a group on its own, necessarily satisfies the root-finite

condition. However, if H itself satisfies the root-finite condition, it is not necessarily the

case that H consists entirely of root-finite elements of G. For example, an element h of H
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that has only finitely many roots in G that are also in H may have infinitely many roots in

G\H. So, if we have an exact sequence of groups,

1→ H → G→ Q→ 1

with H and G torsion-free, H satisfying the root-finite condition and Q finite, Theorem 3.6.2

does not permit us to conclude that G satisfies the root-finite condition.

There is, however, one of the subconditions in Theorem 3.3.2 where we can make such an

inference. If, in the above exact sequence of groups, H and G are torsion-free, H is normal

in G, Q is finite, and H satisfies condition (a) of Theorem 3.3.2 (the root chain condition),

then we are able to conclude that G also satisfies the root chain condition, as the following

theorem demonstrates.

Theorem 3.6.3. If G is a torsion-free group and H is a normal subgroup of finite index

satisfying condition (a) of Theorem 3.3.2, then G satisfies condition (a) of 3.3.2.

Proof. Let G and H be as given in the theorem. First, note that no element of G\H can

have a root that lies in H, for if g ∈ G\H had a root h in H, then g = hr for some positive

integer r, and since H is a group and thus closed under multiplication, that would force g

to lie in H.

Since H has no root chains that contain infinitely many distinct elements, and since no

root chain originating in an element of G\H can contain any elements of the subgroup H,

we have that if G contains a root chain with infinitely many distinct elements, all of those

elements must lie in G\H. Suppose that there exists a root chain of distinct elements:

g1 ≥r g2 ≥r · · · ≥r gi ≥ · · · (3.1)

with each of the gi in G\H. Since the index of H in G is assumed to be finite, we can refer

to [G : H] as q, and we have that for all elements ḡ of G/H, ḡq = ē, the identity element

of the quotient group G/H. Thus, for all g in G\H, we have that gq is in the subgroup H.

Also, note that if gi ≥r gj, then there is some positive integer r such that grj = gi and thus

(grj )
q = (gj)

rq = (gqj )
r = gqi , so that we have gqi ≥r g

q
j . So from (3.1) we have the following:

gq1 ≥r g
q
2 ≥r · · · ≥r g

q
i · · ·

Since each of the gqi lies in H, this is an infinite root chain in H. Since by assumption

there is no infinite root chain of distinct elements of H, it must be the case that not all

elements of the chain are distinct. Suppose that gqi and gqj are two elements of the root chain
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with j > i and that gqi = gqj . Since gqj ≥r g
q
i , we have that (gqi )

r = gqj for some positive

integer r ≥ 2. However, this gives us that (gqi )
r = gqi , and this cannot occur since it was

assumed that G is a torsion-free group. In light of this contradiction, we conclude that the

root chain of (3.1) cannot exist in G and thus G satisfies condition (a) of Theorem 3.3.2.

We might also consider the question of whether anything can be said about the case

where the conditions of Theorem 3.6.3 are weakened so that the subgroup H is required to

be torsion free, but not necessarily the group G. We can then demonstrate the following:

Theorem 3.6.4. If a group G has a torsion-free subgroup H of finite index satisfying con-

dition (a) of Theorem 3.3.2, then G satisfies condition (a) of 3.3.2 or there is an infinite

root chain of distinct elements of G\H such that each element of the root chain taken to the

power [G : H] equals the identity element of G.

Proof. Let G and H be as given in the theorem. As argued in the proof of Theorem 3.6.3,

no element of G\H can have a root that lies in the subgroup H, and H satisfies the root

chain condition of Theorem 3.3.2, so if G fails to satisfy the root chain condition, it must

have an infinite chain of distinct elements lying entirely in G\H. If we take each element of

this root chain to the power [G : H], again as in the proof of Theorem 3.6.3, we arrive at a

root chain that lies entirely in the subgroup H. Since it is given that this subgroup satisfies

the root chain condition, the elements of this root chain cannot all be distinct. Since H is

torsion free, the root chain cannot wrap around itself to produce recurring elements. The

only remaining possibility is that all of the elements in the root chain when taken to the

power [G : H] are equal to the identity element of G.
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Chapter 4

Free Groups

4.1 Definition and Preliminary Remarks

The free group on a generating set A is a group with elements (“words”) of the form w =

xm1
1 · · ·xmn

n where the xi (“letters”) are elements of A and mi = ±1, as well as an additional

element, the word consisting of zero letters, or the empty word. The group operation is

concatenation, with the empty word being the identity element. Adjacent letters that are

inverses of each other cancel each other out. A reduced word is a word in which there are no

consecutive letters that are inverses of each other. Every word is equal to a unique reduced

word.

4.2 Free Groups and the Root-Finite Condition

Let w = xm1
1 · · ·xmn

n ,mi = ±1 be a reduced word. We denote by `(w) the length of w,

that is, the number of letters in the word. We denote by c(w) the cancellation length of w,

that is, the number of letters of w that cancel when w is concatenated with itself. So, for

example, if w = xm1
1 · · ·xmn

n with mi = ±1 is a reduced word, and if x1 = xn,m1 = −mn,

and x2 6= xn−1, then c(w) = 1.

It is not difficult to see that for all nonempty reduced words w, c(w) < `(w)/2. If

`(w) is even, then c(w) ≥ `(w)/2 would imply that for i = 1, · · · , `(w)/2, it must be

the case that xi = x`(w)−i+1 and mi = −m`(w)−i+1, which would cause the entire word

to cancel and become the empty word. If, on the other hand, we suppose that `(w) is

odd, then c(w) > `(w)/2 means that at least (`(w) + 1)/2 letters will cancel. Thus for

i = 1, · · · , (`(w) + 1)/2, xi = x`(w)−i+1 and mi = −m`(w)−i+1. However, for i = (`(w) + 1)/2,

i = `(w) − i + 1, so the condition mi = −m`(w)−i+1 cannot hold. Thus for all nonempty

words, c(w) is strictly less than `(w)/2.
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Suppose now that one has a word that consists of k iterations of the nonempty reduced

word w. If we concatenate this word with a (k+1)th copy of w, we add `(w) letters, and then

must subtract the 2c(w) letters that cancel (c(w) letters from the end of the kth iteration of

w and c(w) letters from the beginning of the (k+ 1)th iteration) to arrive at a reduced word.

That is, `(wk+1) = `(wk)+`(w)−2c(w). Since `(w) > 2c(w), `(wk+1) must be strictly greater

than `(wk). This observation enables us to prove the following theorem, which, though it

seems intuitively obvious, requires some work.

Theorem 4.2.1. Free groups are root finite.

Proof. Suppose that there exists a word w and a string of words w = w0, w1, w2, · · · such

that wi+1 is a root of wi. Assume that all words are written in reduced form. From the

observation that `(wk+1) is strictly greater than `(wk) for all positive integers k, we see

that `(wm) > `(wn) for all positive integers m,n with m > n, and so we conclude that

`(w0) > `(w1) > `(w2) > · · · , which implies that the string of roots cannot be longer than

`(w0). Thus there cannot be an infinite string of roots in a free group.

Suppose that there exists a reduced word w and reduced words wi such that wpii = w for

pi prime. Since each successive concatenation of wi produces a word that is strictly longer

than its predecessor, `(wpii ) = `(w) ≥ pi. Since there are only finitely many primes less than

or equal to `(w), there can be only finitely many distinct primes pi such that w has a pth
i

root.

It remains to show that a word w cannot have infinitely many nth roots for any positive

integer n. In fact, it will be shown that in free groups, nth roots are unique.

First, it will be shown that if vn = wn and v 6= w, then c(v) 6= 0 and c(w) 6= 0.

Suppose that we have two reduced words, v = xj11 · · ·xjrr with ji = ±1 for i = 1, · · · , r and

w = yk11 · · · ykss with ki = ±1 for i = 1, · · · s , and that vn = wn. Now if c(v) = 0 and

c(w) = 0, then no cancellation would occur in concatenating either v or w, then since the n

iterations of v and w would have to match letter by letter, we would immediately have that

v = w. So, cancellation must occur in concatenating one of the words, say v. Thus x1 = xr

and j1 = −jr. Since the first letter of vn must match the first letter of wn, x1 = y1 and

j1 = k1. Since the last letter of vn must match the last letter of wn, we must have xr = ys

and jr = ks. But since x1 = xr, this gives us that y1 = ys, and since j1 = −jr, we have

k1 = −ks. Thus cancellation occurs when w is concatenated with itself as well, so c(v) ≥ 1

and c(w) ≥ 1.

Now, denote by vi the word x
ji+1

i+1 · · ·x
jr−i

r−i , in other words, the word v with the first i

letters and the last i letters removed, and similarly denote by wi the word w with the first i

24



letters and the last i letters removed. Given that both c(v) and c(w) are at least 1, we can

conclude that vn = xj11 v
n
1x

jr
r and wn = yk11 w

n
1 y

ks
s . Since vn = wn, xj11 = yk11 , and xjrr = ykss ,

we can conclude that vn1 = wn1 .

The same argument can be made again, with v1 and w1 in place of v and w, and continuing

in this fashion, we get shorter words whose nth powers are equal. We can continue until one

of the `(vi) or `(wi) is equal to 1 or 2. Since it was shown that cancellation must occur with

both of the roots, we arrive at a contradiction. With a word length of 1, there is nothing

to cancel, and with a word length of 2, cancellation produces the empty word. Thus we

conclude that nth roots are unique in free groups.

We will see that the fact that nth roots are unique in free groups can be established

independently using Lemma 5.2.1.
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Chapter 5

Ordered Groups

5.1 Definition and Preliminary Remarks

An ordered group consists of a group G and a transitive relation < such that for all elements

g, h of G, g < h, h < g, or g = h, and only one of those three statements holds, and such that

the order respects the group operation, that is, g < h implies that for any a ∈ G, ag < ah

and ga < ha. Thus the integers as an additive group are an ordered group with the usual

ordering, but the nonzero rational numbers with the operation of multiplication are not an

ordered group with the usual ordering, because multiplying by a negative number changes

the order relation.

In ordered groups, if there are elements a, b, c and d, satisfying the relations a < b and

c < d, it is easy to see that ac < bd. Multiplying the relation a < b on the right by c and

multiplying the relation c < d on the left by b gives the relations ac < bc and bc < bd, and

the transitivity of the order relation gives ac < bd.

5.2 Ordered Groups and the Root-Finite Condition

When we consider the question of whether ordered groups are root finite, some familiar

counterexamples leap to mind, such as the rational numbers with the operation of addition,

which is an ordered group with the usual order relation, but which is not root finite. The

rational numbers as an additive group do not possess two of the three conditions that we

have seen are associated with root-finite groups, as there are infinite chains of roots, and a

nonzero rational a/b has a pth root a/bp for all primes p. However, the condition that no

group element has infinitely many nth roots is fulfilled by the rational numbers. This is, in

fact, generally true for ordered groups, as the following theorem demonstrates.
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Lemma 5.2.1. If G is an ordered group with the order relation < and g ∈ G, then g has at

most one nth root for all positive integers n.

Proof. We show by induction that if g and h are group elements such that g < h, then

gn < hn for all positive integers n. For the case n = 1, there is nothing to prove. Assuming

that the statement holds for all positive integers less than or equal to k, we show that it

holds for n = k + 1. From the relations g < h and gk < hk, we multiply the left sides and

right sides together to get gk+1 < hk+1. If g and h are distinct group elements, then either

g < h or h < g, so their nth powers can never be equal, and thus nth roots are unique.

Groups with the property that nth roots are unique are referred to as R groups. A

theorem of Vinogradov [21] establishes that every free group is an ordered group, so this

lemma provides another way of showing that free groups satisfy the R group property.

It also follows from this lemma that ordered groups are torsion free. If an element g of

an ordered group G has finite order n, then gn = e = en, so that the identity element would

have multiple nth roots, but that is impossible according to the lemma.

5.3 Group Rings of Ordered Groups

Ordered groups play an important role in the study of group rings, particularly with respect

to the zero-divisor problem (see [19]). If a group G has any elements of finite order, then

the group ring KG will have zero divisors. In particular, if a group element g has order

n then in the group ring KG, the product of (1 − g) and (1 + g + g2 + · · · + gn−1) is

zero. If G is an ordered group, then KG cannot have zero divisors. Consider any two

elements α and β of KG with Suppα = {a1, a2, · · · , am} and Suppβ = {b1, b2, · · · , bn}, and

let the elements of the support be ordered from least to greatest. Consider the product

αβ = (j1a1 + j2a2 + · · ·+ jmam)(k1b1 + k2b2 + · · ·+ knbn), where the ji and ki are elements of

the field K. This product will have a term with some nonzero coefficient and group element

ambn. Because the group operation respects the order relation and because am and bn are

the greatest elements in their respective supports, it is not possible for the product of any

other element of Suppα with another element of Suppβ to be equal to ambn. This shows

that KG can have no zero divisors.
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Chapter 6

Abelian Groups

6.1 Finitely Generated Abelian Groups and the Root-

Finite Condition

We now turn our attention to abelian groups, and consider the question of whether there is

a criterion or set of criteria that will allow us to determine whether a given abelian group

is root finite. Indeed, the following straightforward result identifies a large class of abelian

groups that are root finite.

Theorem 6.1.1. Finitely generated abelian groups are root finite.

Proof. The class T of root-finite groups has been shown to be D0 closed, that is, every direct

product of two root-finite groups is root finite. An inductive argument shows that every finite

direct product of root-finite groups is root finite, as follows. Suppose that direct products

of n root-finite groups are root finite. Consider the direct product G1 × G2 × · · · × Gn+1,

where the Gi are root-finite groups. This can be viewed as the direct product of two groups

G1 ×G2 × · · · ×Gn and Gn+1. From the inductive assumption, we are assured that both of

these groups are root finite, and thus their direct product is root finite by the D0 closure of

T .

Suppose, now, that G is a finitely generated abelian group. The fundamental theorem

of finitely generated abelian groups enables us to write G as a finite direct sum of copies of

Z and cyclic groups of prime power order. Since these groups are all root finite, G must be

root finite as well.
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6.2 Non-Finitely Generated Abelian Groups and the

Root-Finite Condition

The situation with respect to the root-finite condition for abelian groups that are not finitely

generated is considerably more complicated. We have only to consider the rational numbers

under addition, a group which is not root finite, and the nonzero rational numbers under

multiplication, a group which is root finite, to see that it can be a tricky matter to distinguish

root-finite and non-root-finite groups from each other in the case of abelian groups that are

not finitely generated. The approach that we will use to attempt to shed some light on this

problem is to consider what can intuitively be thought of as the density of elements having

nth roots in a group. In the rational numbers under addition, all elements of the group have

nth roots for all n. That is the greatest possible density of roots. In the rational numbers

under multiplication, group elements having nth roots are quite sparse. This concept will be

made more precise, and a key result concerning the density of roots will be presented.

We consider the set Ar of all group elements having rth roots for a positive integer r, or

equivalently the set of rth powers of elements of G. This set has a nice property in abelian

groups, as follows:

Lemma 6.2.1. If G is an abelian group, then for all positive integers r, Ar is a subgroup of

G.

Proof. Suppose that g and h are elements of Ar for some positive integer r. Then there exist

elements x and y of G such that g = xr and h = yr. Then

gh−1 = xr(yr)−1 = xr(y−1)r = (xy−1)r

So gh−1 is an element of Ar, from which we can conclude, by the one-element subgroup test,

that Ar is a subgroup of G.

Since the Ar are subgroups we can look at the number of cosets of Ar in any abelian

group G. Let’s first consider Z under addition. For any positive integer r, the elements of Z
that have rth roots are the multiples of r, and thus [G : Ar] = r for all r. We might wish to

consider the conjecture that this property constitutes a dividing line between abelian groups

that were root finite and those that were not. It might turn out to be the case that if roots

were denser in a group than they are in the integers, the group would not be root finite, and

if roots were sparser in a group than they are in the integers, then the group is root finite.

Indeed, the conjecture holds for torsion-free abelian groups in at least one direction, as the

following theorem demonstrates.
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Theorem 6.2.2. If G is a torsion-free abelian group, and if [G : Ar] < r for some positive

integer r, then G is not root finite.

Proof. Suppose [G : Ar] = k < r, and that h is some element of G that is not an element of

Ar. Since |G/Ar| = k the coset hAr taken to the kth power is the identity in G/Ar, which

implies that hk is an element of Ar. Of course, hr is also an element of Ar, by construction

of Ar.

If k and r are coprime, then mk + nr = 1 for some integers m and n. Since hk and hr

are in Ar, so is hmk+nr = h1 = h. Since h was assumed not to be an element of Ar, we have

a contradiction, and thus G = Ar. Since all elements of G have rth roots, beginning with

any nonidentity element of G, we can thus take an rth root, and then an rth root of the rth

root, and continue the process infinitely. Since G is assumed to be torsion free, all of these

roots must be distinct. Since there is an infinite chain of distinct rth roots, we conclude that

G is not root finite. (The reason that we have to select a nonidentity element of G is that

in a torsion-free group the identity is an element of Ar by virtue of the fact that er = e, in

other words, the identity is its own rth root. Thus the infinite chain of rth roots constructed

in this proof would simply be an infinite repetition of the identity element.)

If k and r are not coprime, let s be their greatest common divisor. Then for some integers

m and n, mk + nr = s. Thus for the element h of G that is assumed not to be in Ar, since

hk and hr are both in the group Ar, so is hmk+nr = hs. From this, we can see that As ⊆ Ar.

The argument proceeds as follows: Suppose a is an element of As. Then a = xs for some

x ∈ G. If x is an element of Ar, then xs must also be an element of Ar, since Ar is a group.

If x is not an element of Ar, then xs is still an element of Ar, since it has been shown that

the sth power of an arbitrary element h of G\Ar must be in Ar. Thus a ∈ Ar, and thus

As ⊆ Ar.

Since s|r, r = js for some integer j. Suppose that b is an arbitrary element of Ar. Then

b = yr for some y ∈ G. So b = yjs = (yj)s, and thus b is in As. Thus Ar ⊆ As, and since Ar

and As are subsets of each other, they must coincide.

We now construct an infinite chain of roots beginning from any nonidentity element g0

of Ar, and, recalling that s is a proper divisor of r, let q = r/s. we proceed to construct an

infinite chain of qth roots. Since g0 has an rth root by construction of Ar, it must have an qth

root (the rth root taken to the power s), which we call g1. Then g1 has an sth root (the rth

root of g0), so g1 is an element of As. But then g1 is also in Ar, and since g1 has an rth root,

it must also have a qth root, which we call g2. Continuing in this fashion, we can construct

an infinite chain of roots, so G is not root finite.
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Though Theorem 6.2.2 has been presented in the context of providing a way of deter-

mining whether abelian groups that are not finitely generated are root finite, there is no

assumption in the theorem that the group is not finitely generated. This leads to the follow-

ing corollary.

Corollary 6.2.3. If G is a torsion-free, finitely generated abelian group, then [G : Ar] ≥ r

for all positive integers r.

Proof. Let G be a torsion-free, finitely generated abelian group. If for some r, [G : Ar] < r,

then we would conclude from the theorem that G is not root finite. However, since G is a

finitely generated abelian group, we know that it must be root finite. Thus it must be the

case that [G : Ar] ≥ r for all positive integers r.

Having examined the Ar subgroups in abelian groups, let us now consider a subset of

Ar, the set Ir of group elements that do not just have rth roots, but have infinitely many of

them. In root-finite groups, of course, the Ir are all empty sets. For abelian groups having

some nonempty Ir, we might wish to know whether the Ir were subgroups of the Ar, and, if

so, what was the relationship between the two. The relationship, in fact, is quite striking. It

turns out that Ir will either be empty or it will be all of Ar, as the following theorem shows.

Theorem 6.2.4. If G is abelian and Ir is nonempty for some r ≥ 2, then Ir is a subgroup

of G, and, in fact, Ir = Ar.

Proof. If g and h are any elements of Ir, fix an rth root of g, say k, and consider hi(i =

1, 2, · · · ) such that (hi)
r = h. Then for each i, (h−1

i )r = h−1. Then (kh−1
i )r = kr(h−1

i )r =

gh−1. Since the elements kh−1
i are all distinct, gh−1 has infinitely many rth roots, and so is

in Ir. Thus, by the one-step subgroup test, Ir is a subgroup of G.

Suppose b ∈ Ar and g ∈ Ir. Fix one of the rth roots of b, and call it h. Now let

(gi)
r = g(i = 1, 2, · · · ), so that the gi are infinitely many distinct rth roots of g. Then for

each i, (hgi)
r = hr(gi)

r = bg. Sinch the hgi are distinct elements of G, bg ∈ Ir. Since Ir is a

group and g ∈ Ir, this implies that (bg)g−1 = b is an element of Ir. Thus Ar ⊆ Ir. We have

that Ir ⊆ Ar by the definition of the two sets, so Ar = Ir.

6.3 Group Rings of Abelian and Abelian-by-Finite Groups

In the study of group rings, abelian groups provide the most basic instance of group rings

that satisfy a polynomial identity. A group ring KG is said to satisfy a polynomial identity
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if there is some polynomial in n variables f(x1, x2, · · · , xn) such that for all a1, a2, · · · , an ∈
KG, f(a1, a2, · · · , an) = 0. If the group G is abelian, then the group ring KG can be seen to

satisfy the polynomial identity in two variables f(x1, x2) = x1x2 − x2x1. If G is abelian by

finite, that is, if G has an abelian subgroup of finite index, then the group ring KG satisfies

a polynomial identity. This was first shown by Kaplansky [11] for the case where K is a field

of characteristic 0. Fifteen years later, Isaacs and Passman [10] showed that these were the

only group rings over fields of characteristic 0 that satisfied a polynomial identity.

For the case of group rings KG satisfying a polynomial identity with K having charac-

teristic p > 0, it is necessary to introduce the concept of a p-abelian group. A group G is

said to be p-abelian if the commutator group G′ is a finite p-group. (Recall that a p-group,

for some prime number p, is a group in which the order of every element is a power of p.)

Passman [18] proved that a group ring KG for K a field of characteristic p > 0 satisfies a

polynomial identity if and only if the group G has a p-abelian subgroup of finite index.
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Chapter 7

Finite Conjugate Groups

7.1 Definitions and Preliminary Remarks

In this chapter, we consider a more general class of groups than abelian groups, namely,

groups having the property that all elements have a finite conjugacy class. We examine the

conditions under which such groups may possess the root-finite condition, and look at some

results concerning root-finite finite conjugate groups. This is a class of groups that is of

great importance in the theory of group rings, and we review some of the major results on

group rings of finite conjugate groups. We also look at groups that have a finite conjugate

group of finite index, and discuss such groups in the context of the topics of root finiteness

and the properties of the group rings of such groups.

For any group G, we define the delta subgroup ∆(G) to be the set of all elements g of G

such that the conjugacy class of g is finite. To see that this is a subgroup of G, suppose that g

and h are elements of ∆(G). If it can be shown that gh−1 has only finitely many conjugates,

then ∆(G) will be seen to be a subgroup of G by the one-element subgroup test. Let k

be an arbitrary element of G, so that k−1gh−1k is an arbitrary conjugate of gh−1. Then,

since k−1gh−1k = (k−1gk)(k−1h−1k), we see that all conjugates of gh−1 are the product of

a conjugate of g and a conjugate of h−1. Since h is an element of ∆(G), it has only finitely

many conjugates, and since every conjugate of h−1 is an inverse of a conjugate of h, there

can be only finitely many conjugates of h−1 as well. So, since g and h−1 both have finitely

many conjugates, there can only be finitely many products formed from a conjugate of g

and a conjugate of h−1. Thus gh−1 can have only finitely many conjugates and so we are

justified in referring to ∆(G) as a subgroup.

An equivalent formulation is as follows: We denote by CG(g) the centralizer of g in G,

that is, the set of all elements of G that commute with g. The centralizer of an element

33



is a subgroup of G. The delta subgroup is defined to be the set of all elements g of G

such that the centralizer CG(g) has finite index in G. These two definitions are seen to be

equivalent when we fix an element g of G and consider the mapping h 7→ h−1gh. There is

a one-to-one correspondence between the conjugates of h and the cosets of CG(g). To see

this, suppose that h and k are elements of G such that h−1gh = k−1gk. By multiplying this

equation on the left by h and on the right by k−1, we see that this equation is equivalent

to g(hk−1) = (hk−1)g, in other words, that hk−1 is an element of CG(g). The fact that

hk−1 is an element of CG(g) is, in turn, equivalent to h and k lying in the same coset of

CG(g), thus establishing the one-to-one correspondence, and, hence, the equivalence of the

two definitions of the delta subgroup.

A group G is said to be a finite conjugate group if ∆(G) = G.

7.2 Finite Conjugate Groups and the Root-Finite Con-

dition

We now return to the topic of root-finite groups and consider whether the delta subgroup of

a root-finite group has any special properties. We begin with the following theorem, which

establishes a relationship between the set of elements of finite order and the delta subgroup

of a root-finite group.

Theorem 7.2.1. Let G be a root-finite group, and let T be the set of elements of finite order

in G. Then T is finite, and T ⊆ ∆(G).

Proof. Since G is assumed to be root finite, in particular, the identity element of the group

can have only finitely many roots, which is the same as saying that the group has only finitely

many elements of finite order. So T must be finite.

Suppose that there is an element t of T that has infinitely many conjugates. For each

conjugate element g−1tg and each positive integer n, consider the element (g−1tg)n = g−1tng.

Since t is assumed to be an element of T , there is some power of t that equals the identity.

But if tn = e, it follows that g−1tng = e as well, so that each of the infinitely many conjugates

of t has finite order. However, this is not possible, since G is assumed to be root finite, so

the identity can only have finitely many roots. Therefore t must be in ∆(G), and thus

T ⊆ ∆(G).

This theorem, along with a classical result concerning elements of finite order in finite
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conjugate groups, enables us to draw the following conclusion about the set of torsion ele-

ments in root-finite groups.

Corollary 7.2.2. The set of elements of finite order in a root-finite group G is a normal

subgroup of G.

Proof. A theorem of B. H. Neumann [16] states that the set of elements of finite order in

a finite conjugate group constitutes a subgroup. Given a root-finite group G and the set of

its torsion elements T , we saw in Theorem 7.2.1 that T ⊆ ∆G. Since ∆(∆(G)) = ∆(G)

(∆(G) ⊆ G, so an element of ∆(G) cannot have infinitely many conjugates in ∆(G) if it has

only finitely many conjugates in G), ∆(G) is a finite conjugate group, and thus applying

Neumann’s theorem, we have that the set of elements of finite order in ∆(G) is a subgroup

of ∆(G) and hence of G. We must still show that the set of elements of finite order in ∆(G),

which we will refer to as T∆, is equal to T , the set of elements of finite order in G. Let t be

an element of T . Since T ⊆ ∆(G), t is also an element of ∆(G), and since G and ∆(G) have

the same identity, t is of finite order in ∆(G) and thus is in T∆. If t is in T∆, then it is of

finite order in ∆(G) and thus also in G, and so t ∈ T . To see that T is a normal subgroup

of G, suppose that t is an element of T with order n. Then any conjugate g−1tg of t will

also have finite order, since (g−1tg)n = g−1tng = g−1eg = e. Thus T is a normal subgroup

of G.

In general, it is possible for an element of a group G that is not in ∆(G) to have finite

order. For example, in the group of 2×2 upper-triangular matrices over Z with determinants

equal to 1 or -1, the matrix (
1 0
0 −1

)
has order 2, and yet it has an infinite conjugacy class, as for any a ∈ Z(

1 −a
0 1

)(
1 0
0 −1

)(
1 a
0 1

)
=

(
1 2a
0 −1

)
This is also illustrative of a phenomenon that cannot occur in a root-finite group, taking

a power of an element that is not in the delta subgroup and ending up inside the delta

subgroup, as the following theorem demonstrates.

Theorem 7.2.3. Let G be a root-finite group. Then ∆(G) and (∆(G))C = G\∆(G) are

closed under the operations of taking powers and taking roots.
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Proof. ∆(G) is a group, so it is closed under taking powers, regardless of whether G is root

finite.

Suppose g is some element of G that is not in ∆(G) and gn is some power of this element

that is in ∆(G). Then since g is not in ∆(G), there are infinitely many distinct elements of G

of the form h−1gh, each of which has an nth power (h−1gh)n = h−1gnh. Since gn is assumed

to be in ∆(G), it has only finitely many conjugates, at least one of these finitely many

conjugates of gn must be the nth power of infinitely many of the conjugates of g. So there

is some element of G with infinitely many distinct nth roots, contradicting the assumption

that G is root finite. It can then be concluded that (∆(G))C is closed under taking powers.

It now follows that ∆(G) and (∆(G))C are closed under taking roots. The assertion that

∆(G) is closed under taking powers is equivalent to the assertion that (∆(G))C is closed

under taking roots, and likewise (∆(G))C being closed under taking powers is equivalent to

∆(G) being closed under taking roots.

The following corollary makes an observation concerning the delta subgroup of torsion-

free, root-finite groups. As previously noted, such groups must contain elements with no

nth roots for any n ≥ 2, as otherwise the group would contain infinite root chains. We will

denote the set of rootless elements in a group by C, that is,

C =
∞⋂
n=2

ACn

We have the following result concerning the relationship of C and the delta subgroup.

Corollary 7.2.4. If G is a torsion-free, root-finite group, then the intersection of ∆(G) and

the set C of rootless elements of G is nonempty.

Proof. Take G to be a torsion-free, root-finite group. Then G contains at least one rootless

element, and since every root chain can be extended until it eventually terminates in a

rootless element, every element of G is either rootless or the power of a rootless element,

that is,

G =
⋃
c∈C

〈c〉

where 〈c〉 is the cyclic subgroup of G generated by c. Let g be an element of ∆(G). If g

is rootless, then we are done. If g is not rootless, it is a power of some rootless element c,

and according to Theorem 7.2.3, c must be in ∆(G), so the intersection of C and ∆(G) is

nonempty.
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We now consider what conditions might lead to the circumstance that an element g of

G lying outside of the delta subgroup has a power in the delta subgroup. The following

theorem identifies a large class of groups with this property.

Theorem 7.2.5. Suppose G is a group that is not a finite conjugate group, and that the

index of the subgroup ∆(G) in G is finite. Then (∆(G))C is not closed under taking powers,

and, in fact, every g ∈ (∆(G))C has a power in ∆(G).

Proof. Suppose that g is an element of G that is not in the delta subgroup of G. If g has

finite order, then gn = e for some positive integer n, and since the identity element is in

the delta subgroup, we are done. If g has infinite order, consider the cosets of the delta

subgroup g∆(G), g2∆(G), g3∆(G), · · · . Since [G : ∆(G)] is assumed to be finite, these cosets

are not all distinct, and so for some positive integers k and j with k > j, it must be the case

that gk∆(G) = gj∆(G), which implies that gk−j is an element of the delta subgroup. Thus

every element of G that is not in the delta subgroup has some power that lies in the delta

subgroup.

The division hull of a subset S of a group G is defined to be the set of all elements g of

G such that gn is an element of S for some positive integer n. It should be remarked that

the concept of a division hull occurs often in the literature, but different terminology is used

to refer to the concept. Some authors (for example, [22]) refer to the division hull of a set

as the isolator of the set. Another term that is used for this set is the root set (for example,

[19]). Thus Theorem 7.2.5 tells us that if G is a group such that 1 < [G : ∆(G)] < ∞, the

division hull of ∆(G) equals G itself.

We are now able to identify another class of groups that are not root finite, as demon-

strated in the following corollary.

Corollary 7.2.6. If G is a group such that 1 < [G : ∆(G)] <∞, then G is not root finite.

Proof. Since 1 < [G : ∆(G)], the delta subgroup does not encompass all of G, so there is

some element g of G that lies outside of ∆(G). According to Theorem 7.2.5, there is some

power gn of g that lies in ∆(G). This tells us that ∆(G) is not closed under the operation of

taking roots. Since the delta subgroup of a root-finite group is closed under the operation

of taking roots (Theorem 7.2.3), it therefore follows that a group G satisfying the conditions

of this corollary is not root finite.

This theorem tells us that if G is a root-finite group, then the quotient group G/∆(G)

cannot be finite, unless it is trivial. We can actually use a similar argument to say a bit

more, as demonstrated in the following theorem.
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Theorem 7.2.7. If G is a root-finite group and G 6= ∆(G), then G/∆(G) contains no

elements of finite order.

Proof. Let g be an element of the root-finite group G which is not an element of the delta

subgroup of G. Then ḡ is not the identity in G/∆(G). Suppose that ḡ has finite order in

G/∆(G), so that for some integer n, ḡn = e, the identity element of G/∆(G). But that

implies that gn is in ∆(G). This cannot occur in the root-finite group G, because according

to Theorem 7.2.3, the delta subgroup is closed under the operation of taking roots. So

G/∆(G) contains no elements of finite order.

We now consider finite conjugate groups that are not root finite, particularly those having

the property that there is some element of the group with infinitely many rth roots for some

positive integer r. We first consider the case r = 2, which is the subject of the following

lemma, which deals with the commutator elements of a group, that is, elements of the form

g−1h−1gh.

Lemma 7.2.8. If G is a finite conjugate group and there exists an element g of G that has

infinitely many square roots, then there is a commutator element of G with infinitely many

square roots.

Proof. Let G be a finite conjugate group and let g be an element of G such that for infinitely

many elements x of G, x2 = g. Fix one of these elements, a, with a2 = g. Then for every

element bi such that b2
i = a2, we can multiply on the left by a−1 and on the right by b−1

i to

obtain a−1bi = ab−1
i . From this we get that (a−1bi)

2 = a−1biab
−1
i , so (a−1bi)

2 is a commutator

element of G. The expression a−1biab
−1
i is also the product of a−1 and a conjugate of a, so

since G is a finite conjugate group, there are only finitely many elements of G that can be

obtained as bi varies among all the infinitely many elements of G such that b2
i = a. Thus

there is at least one commutator element that is equal to a−1biab
−1
i for infinitely many of

the bi, and this element has infinitely many distinct square roots a−1bi.

The next theorem looks further at finite conjugate groups that fail to have the root-finite

condition, in particular, groups that have an element with infinitely many rth roots for some

positive integer r.

Theorem 7.2.9. If G is a finite conjugate group such that there is some element g of G

having infinitely many rth roots for some positive integer r, then there are infinitely many

elements of G having finite order.
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Proof. Let G be a finite conjugate group and let T be the set of elements of finite order in

G. It is known that the elements of finite order in a finite conjugate group form a normal

subgroup and that G/T is torsion-free abelian (this was proven in [16]; see also Lemma 4.1.6

of [19]).

Suppose g is an element of G with infinitely many rth roots. If g itself is an element of

T , we are done, since if g has order n, then for each of the infinitely many elements h of G

such that hr = g, we have that hnr = e, so they have finite order.

If, on the other hand, g has infinite order, the argument proceeds as follows. Let h1 and

h2 be two rth roots of g, and denote by h̄1 and h̄2 the respective cosets of these elements in

G/T . Then h̄1
r
h̄2
−r

= (h̄1h̄2
−1

)r since G/T is abelian. But since hr1h
−r
2 = gg−1 = e, we have

that (h̄1h̄2
−1

)r = ē, and since G/T is torsion free, this implies that h̄1h̄2
−1

= ē, so h̄1 = h̄2,

in other words, all the rth roots of g are in the same coset of T .

Now we fix an element h of G such that hr = g, and consider the elements hj−1
i , where

the ji are infinitely many distinct elements of G such that jri = g. Since all of the rth roots

of g lie in the same coset of T , this implies that for each ji, h̄j̄i
−1

= ē in the group G/T .

Therefore, hj−1
i is in T for all i. Since T is the set of elements of G of finite order and the

elements hj−1
i are all distinct, this gives us what we set out to prove.

An immediate consequence of this theorem is that in any torsion-free, finite conjugate

group, there can be no elements with infinitely many rth roots for any integer r. It should

also be emphasized that this theorem holds for a fixed integer r. The rational numbers as

an additive group, for example, are a torsion-free, finate conjugate group in which all of the

nonidentity elements have infinitely many roots, but not infinitely many rth roots for any

particular r.

We also can deduce the following corollary regarding finitely generated finite conjugate

groups.

Corollary 7.2.10. No element of a finitely generated finite conjugate group has infinitely

many rth roots for any positive integer r.

Proof. Suppose that G is a finitely generated finite conjugate group and g is an element of

G with infinitely many rth roots for some positive integer r. Then by Theorem 7.2.9, there

are infinitely many elements of G with finite order. However, this contradicts a theorem of

[16] that finitely generated finite conjugate groups have a finite torsion subgroup.

A more general theorem regarding finitely generated finite conjugate groups will be pre-

sented later in this chapter. First, though, we note the following property of the delta
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subgroup which may on occasion be useful.

Lemma 7.2.11. In a group G, if g ∈ ∆(G) and h is an element of G with infinite order,

then g commutes with some positive power of h.

Proof. We take conjugates of g by powers of h, that is, elements of the form h−nghn for

n = 1, 2, · · · . Since g ∈ ∆(G), these elements are not all distinct, so we can choose positive

integers j and k with j < k such that h−jghj = h−kghk. Then, multiplying on the left by

hj and on the right by h−j we arrive at g = hjh−kghkh−j = h−(k−j)ghk−j, so we see that g

commutes with hk−j.

This enables us to make the following observation about torsion-free, finite conjugate

groups.

Corollary 7.2.12. In torsion-free, finite conjugate groups, every element commutes with a

power of every other element.

Proof. LetG be a torsion-free, finite conjugate group, and let g and h be arbitrary elements of

G. Since G is a finite conjugate group, G coincides with its delta subgroup so g ∈ ∆(G), and

since G is torsion-free, h has infinite order. Applying Lemma 7.2.11 to g and h, we conclude

that g commutes with some power of h, and since g and h are arbitrary, the assertion of the

corollary is proven.

Another immediate consequence of Lemma 7.2.11 is the following.

Corollary 7.2.13. In a finite conjugate group G, with T the torsion subgroup of G,

TC ⊆
⋂
g∈G

dh(CG(g))

where dh denotes the division hull.

Proof. Since G is a finite conjugate group, G coincides with its delta subgroup. So if x ∈ TC ,

that is, if x has infinite order, then Lemma 7.2.11 tells us that some power of x commutes

with all g in G. So for all g, x is in the division hull of CG(g).

The following theorem identifies another large class of root-finite groups. It turns out to

be a generalization of both Theorem 6.1.1 and Corollary 7.2.10.

Theorem 7.2.14. Finitely generated finite conjugate groups are root finite.
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Proof. A theorem of Nishigori [17] states that finitely generated finite conjugate groups are

direct products of a finite number of copies of Z and a finite group. Since the class of root-

finite groups is D0-closed, any finite direct product of root-finite groups is root finite. Since

Z is root finite, and any finite group is, of course, root finite, we can conclude that finitely

generated finite conjugate groups are root finite.

7.3 Group Rings of Finite Conjugate Groups

Turning our attention now to group rings, we make an observation concerning the relationship

between root-finite groups and group rings that satisfy a polynomial identity.

Theorem 7.3.1. If G is a root-finite group, K is a field, and the group ring KG satisfies a

polynomial identity, then G is a finite conjugate group.

Proof. According to Theorem 5.2.14 of [19], if a group ring KG satisfies a polynomial identity

of degree n, then [G : ∆(G)] ≤ n/2. So since the index of the delta subgroup of G is finite,

Corollary 7.2.6 tells us that G can only be root finite if the index is equal to 1. Since G

is assumed to be root finite, we conclude that G and ∆(G) coincide, that is, G is a finite

conjugate group.

Since we know that group rings of abelian-by-finite groups satisfy polynomial identities,

this theorem tells us that an abelian-by-finite group that is not a finite conjugate group is

not root finite.
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Chapter 8

Groups With Finitely Many
Conjugacy Classes

8.1 Preliminary Remarks

Having looked at groups with the finiteness property that every element has a finite number of

conjugate classes, we can also look at the other extreme, groups with the finiteness property

that there are only a finite number of conjugacy classes in the group.

Recall that we have introduced the notation Ar to indicate the set of elements of G that

have rth roots. The following simple theorem will be useful throughout the discussion of this

topic.

Theorem 8.1.1. In any group G, for n = 2, 3, · · · , An is the union of conjugacy classes of

G.

Proof. Let g be an element of An for some integer n greater than or equal to 2. Then for

some x in G, xn = g. Now suppose that h is an element of G that is conjugate to g, so that

for some element k of G, k−1gk = h. But then we have h = k−1gk = k−1xnk = (k−1xk)n, so

that h has an nth root, namely k−1xk, and thus h is in An. Since h was an arbitrary element

of the conjugacy class of g, we can conclude that the conjugacy class of g is a subset of An,

and thus An is seen to be the union of conjugacy classes of G.

8.2 Groups With Finitely Many Conjugacy Classes and

the Root-Finite Condition

In exploring whether groups with finitely many conjugacy classes may possess the root-

finite condition, we begin by considering the most extreme case, groups that have only two
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conjugacy classes, the identity belonging to one conjugacy class and everything else belonging

to the other conjugacy class. For such groups, we can make the following observation.

Theorem 8.2.1. If G is a group in which all the nonidentity elements are conjugate, then

for all but at most one prime p, Ap = G.

Proof. For a group G in which all the nonidentity elements are conjugate, and for any prime

p, Theorem 8.1.1 tells us that there are technically four conceivable possibilities for what Ap

can be: the empty set, the identity, everything that is not the identity, or the entire group.

The empty set is not a possibility, however, since every group element has a pth power and

thus Ap can never be empty. It is also clear that Ap contains the identity element, since

ep = e. So the only possibilities that remain are Ap = {e} or Ap = G. If Ap = {e}, then

every nonidentity element of G must have order p. That situation can arise for at most one

prime p, and in all other cases Ap must be the entire group.

It was previously noted that homomorphic images of root-finite groups need not be root

finite. We see in the next corollary just how far the class of root-finite groups is from being

closed under the operation of homomorphic images.

Corollary 8.2.2. If G is a torsion-free group, then there is a group H and an injective

homomorphism ι : G → H such that every nonidentity element of H has an nth root for

n = 2, 3, · · · .

Proof. If G is a torsion-free group, then it is known that there is an injective homomorphism

from G to a group H in which all of the nonidentity elements are conjugates, and thus

satisfying the conditions of Theorem 8.2.1 [12]. We can eliminate the case where in the

group H, there is a prime p such that Ap = {e}, since in an injective homomorphism an

element g of G having infinite order cannot be mapped to an element h of H having order p.

If that were the case, then gp would map to the identity in H, but injective homomorphisms

have trivial kernels. So it must be the case that Ap = H for all primes p, and thus every

nonidentity element of H has a pth root for all primes p. If n is not a prime, then we obtain

the nth root of a nonidentity element of H by writing n in its prime factorization form and

successively taking prime roots, which will always exist given Theorem 8.2.1.

We now consider the more general case of groups having a finite number of conjugacy

classes. Although the results are somewhat weaker than the case for groups with exactly

two conjugacy classes, we will see that if one is looking for root-finite groups, this is not the

class of groups in which to find them.
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Theorem 8.2.3. If a group G has only finitely many conjugacy classes and at least one

element of infinite order, then there exists a conjugacy class of G and an infinite set of

primes P such that every element of that conjugacy class has a pth root for every p ∈ P .

Proof. Let Q = {p1, p2, · · · , pi, · · · } be an infinite set of primes and let g be an element of G

with infinite order. Then consider the elements gp1 , gp2 , · · · , gpi , · · · in G. Since G has only

finitely many conjugacy classes, at least one of the conjugacy classes has to contain infinitely

many of the gpi . We choose one such conjugacy class, and take as the set P the subset of

Q consisting of those primes pi such that gpi are in the conjugacy class. So the conjugacy

class contains at least one element that has a pth
i root for infinitely many primes. But by

Theorem 8.1.1, this means that the entire conjugacy class must be a subset of Api for all of

those primes. Thus every member of the conjugacy class has a pth
i root for each pi in P .

We continue our investigation of groups with finitely many conjugacy classes and at least

one element of infinite order. As the next theorem demonstrates, these groups, which have

already been shown not to satisfy one of the criteria for a group to be root finite, fail to

satsify a second criterion as well, that of having an infinite root chain. To demonstrate that

this criterion fails, we can actually relax the condition that the group have an element of

infinite order, provided that it has sufficiently large order, as seen in the following theorem.

Theorem 8.2.4. If a group G has only finitely many conjugacy classes and there is an

element of G with order greater than 2n, where n is the number of conjugacy classes, then

G contains an infinite root chain.

Proof. Let G be a group that has only finitely many conjugacy classes, and let n represent

the number of conjugacy classes. We suppose that there exists an element g of G with order

greater than 2n. We consider the elements g0, g1, · · · , gn, where gi is defined to be g2i . Since

the order of g is assumed to be greater than 2n these n + 1 elements are distinct. We also

notice that if j and k are integers and 0 ≤ j < k ≤ n, gk = g2k−j

j . Since there are n + 1

distinct group elements gi and n conjugacy classes, by the pigeonhole principle, there is a

conjugacy class having at least two of the gi. Now, it has previously been shown (Theorem

3.5.2) that whenever an element of a group is conjugate to one of its rth powers, for r ≥ 2,

then the group contains an infinite root chain. Thus G contains an infinite root chain.
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Chapter 9

Polycyclic Groups and
Polycyclic-by-Finite Groups

9.1 Definitions and Preliminary Remarks

In this chapter, we consider polycyclic and polycyclic-by-finite groups. First, this class

of groups is defined, and certain important and well-known properties of these groups are

mentioned. The question that is foremost in this chapter is under what conditions are these

groups root finite. While a complete resolution of this question remains elusive, several results

are presented that provide some insight into the problem. Finally, material is presented

regarding group rings of polycyclic and polycyclic-by-finite groups.

For any class of groups X, we can define a class of groups that are referred to as poly-

X and have the following property: A group G is poly-X if there is a finite sequence of

subgroups

G0 = 〈e〉 ⊆ G1 ⊆ G2 ⊆ · · · ⊆ Gn = G

such that each Gi is normal in Gi+1 (though not necessarily in G) for i = 0, 1, · · · , n − 1

and each of the quotient groups Gi+1/Gi is in the class X. So if each of the Gi+1/Gi is

cyclic, G is polycyclic, and if G has a normal polycyclic subgroup of finite index, then G is

referred to as polycyclic-by-finite. There is also a class of groups where each of the Gi+1/G

is infinite cyclic, and these groups are referred to as poly-(infinite cyclic) or poly-Z groups.

We could also discuss groups where each of the Gi+1/Gi is either finite or cyclic and call

these groups poly-(finite or cyclic). However, it turns out that we need not resort to such

clumsy nomenclature as it has been proven that poly-(finite or cyclic) groups are, in fact,

poly-Z-by-finite (see, for example, [22]), and are generally referred to as polycyclic-by-finite

groups.
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Consider a polycylic-by-finite group G and the sequence of subsets:

G0 = 〈e〉 ⊆ G1 ⊆ G2 ⊆ · · · ⊆ Gn ⊆ Gn+1 = G

with Gi normal in Gi+1 for i = 0, 1, · · ·n, Gi+1/Gi infinite cyclic for i = 0, 1, · · ·n − 1, and

Gn+1/Gn finite. In general, there may be more than one such sequence of subsets from 〈e〉
to G, but over all such sequences the number of infinite cyclic quotients is invariable and is

referred to as the Hirsch number of the group.

Some of the key properties of polycyclic-by-finite groups are as follows:

• Polycyclic-by-finite groups satisfy the finiteness condition known as the maximal condi-

tion on subgroups, that is, the property that any strictly ascending chain of subgroups

is finite (see, for example, [22]).

• Polycyclic-by-finite groups are residually finite [9].

• Every soluble subgroup of GL(n,Z) is polycyclic [13].

• Any polycyclic-by-finite groups is isomorphic to a subgroup of GL(n,Z) for some n [1].

9.2 Polycyclic, Polycyclic-by-Finite Groups and the Root-

Finite Condition

We now turn our attention to the question of when polycyclic groups (or poly-Z or polycyclic-

by-finite groups) are root finite or fail to meet the root-finite condition. We recall that there

are three subconditions which must be fulfilled in order for the root-finite condition to apply

to any given group. The following theorems demonstrate the relationships between these

subconditions and polycyclic groups.

Theorem 9.2.1. Polycyclic-by-finite groups satisfy condition (a) of Theorem 3.3.2, that is,

in polycyclic-by-finite groups, there are no infinite root chains.

Proof. Suppose that G is a polycyclic-by-finite group and that G fails to satisfy condition

(a) of Theorem 3.3.2. Then for some element g of G, there is an infinite chain of elements

(g = x0, x1, x2, · · · ) such that for i = 1, 2, · · · , there is some positive integer ni such that

xi−1 = xni
i . Then looking at the cyclic subgroups generated by each successive element in

the chain, we have an infinite chain of subgroups

〈x0〉 ⊂ 〈x1〉 ⊂ 〈x2〉 ⊂ · · ·
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in which each of the inclusions is strict. However, this is not possible if G is polycylic-

by-finite, since polycyclic-by-finite groups have the max condition on subgroups. Thus we

conclude that if G is polycyclic-by-finite, it satisfies condition (a) of Theorem 3.3.2.

We now consider subcondition (b) of Theorem 3.3.2 and show that it holds in the case

of poly-(infinite cyclic) or poly-Z groups.

Theorem 9.2.2. If G is a poly-Z group, then it satisfies subcondition (b) of Theorem 3.3.2,

that is, for all g in G, there are only finitely many distinct primes pi such that there exists

an element x of G such that g is a power of x and [〈x〉 : 〈g〉] = pi.

Proof. Now we shall assume that G is a poly-Z and that G fails to satisfy condition (b) of

Theorem 3.3.2. Then there is some element g of G and some infinite root set R consisting

of elements of G, R = {x1, x2, · · · }, such that for each i = 1, 2, · · · , there exists some prime

integer pi such that g = xpii and such that all of the xi and all of the pi are distinct. Since

G is poly-Z, there is a finite subnormal chain of subgroups of G,

〈e〉 = H0 ⊂ H1 ⊂ H2 ⊂ · · · ⊂ Hn = G

such that Hi/Hi−1 is infinite cyclic for i = 1, 2, · · · , n.

There must be some subgroup Hi in which the element g first appears, that is g ∈ Hi

and g /∈ Hk for all k < i. We can then infer that no element of the root set R is in any of

the Hk for k < i, since the Hk are subgroups and if some element of R were in Hk, all of its

powers, including g, would be in Hk.

We can also infer that there cannot be an element of R that first appears in Hk for k > i.

To see this, suppose that there is an element xr of R that is an element of Hk\Hk−1 for some

k > i. Since k > i and the subgroup Hi is the subgroup in which g first appears, we have

that g ∈ Hk−1. Now, for xr in Hr\Hr−1, some prime power pr of xr is equal to g by the

construction of the root set R, and since g is in Hr−1, x̄r has order pr in the quotient group

Hr/Hr−1. However, Hr/Hr−1 is assumed to be infinite cyclic, so there are no elements of

finite order. However, each of the pj is assumed to be distinct, and since Hr/Hr−1 is infinite

cyclic, it cannot have elements of prime order. Thus we can conclude that there cannot be

an element of R making its first appearance in the subgroup chain in some subgroup Hk,

where k > i.

Thus we have seen that for all the elements of R make their first appearance in the

subgroup chain in the same subgroup Hi in which g first appears. Since Hi/Hi−1 is cyclic,

we can denote its generator by ā and for some positive integer t, ḡ = āt. Furthermore, for
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each of the elements xj of R in Hi, there is some positive integer mj such that x̄j = āmj .

Then for each xj in R, ḡ = āmjpj since g = x
pj
j . This implies that t has infinitely many prime

factors pj. As this cannot be the case, we conclude that poly-Z groups satisfy condition (b)

of Theorem 3.3.2.

We can extend this result to torsion-free polycyclic and polycyclic-by-finite groups.

Corollary 9.2.3. Torsion-free polycyclic and polycyclic-by-finite groups satisfy condition (b)

of Theorem 3.3.2.

Proof. Suppose that the group G is polycyclic or polycyclic-by-finite and that G is torsion-

free. If G is poly-infinite cyclic, then Theorem 9.2.2 tells us that we are done. So we say

that G is either polycyclic group with at least one of the quotient groups in the subnormal

series a finite cyclic group or a polycyclic-by-finite group, and in either case, we have a series

of subgroups

〈e〉 = G0 ⊆ G1 ⊆ G2 ⊆ · · · ⊆ Gn−1 ⊆ Gn = G

with Gi−1 a normal subgroup of Gi for i = 1, 2, · · ·n, Gi/Gi−1 normal for i = 1, 2, · · ·n− 1,

and Gn/Gn−1 finite. For convenience of notation, we assign the letter q to the index of Gn−1

in Gn, so q will be some integer greater than or equal to 2.

Now we suppose that there is some element g of G that has a pth
i root for infinitely many

primes pi. Necessarily, these are distinct roots, for if r was a pth
j root and a pth

k root of g

for j 6= k and we take k to be greater than j, then rpk = rpj = g, and so rpk−pj = e, which

violates the assumption that G is a torsion-free group. Theorem 9.2.2 tells us that it is not

the case that g and infinitely many of the pth
i roots lie in Gn−1. So, all but finitely many of

the pth
i roots lie in G\Gn−1. Since the index of Gn−1 in Gn is q, then the qth power of all the

elements of G\Gn−1 lies in Gn−1. Moreover, if an element h of Gn is a pth
i root of g, then the

element hq in Gn−1 is a pth
i root of gq (also in Gn−1) and since G is torsion-free, the pth

i roots

are distinct. However, Gn−1 is a poly-Z group, so according to Theorem 9.2.2, no element of

Gn−1 can have a pth
i root for infinitely many distinct primes pi. This contradiction tells us

that there is no element g in G with infinitely many pth
i roots for distinct primes pi, and thus

that torsion-free polycyclic or polycyclic-by-finite groups satisfy condition (b) of Theorem

3.3.2.

We can now combine some results to obtain the following useful result.

Corollary 9.2.4. If a torsion-free polycyclic-by-finite group does not satisfy the root-finite

condition, then there is some element of the group with infinitely many rth roots for some

positive integer r.
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Proof. Suppose that G is a torsion-free polycyclic-by-finite group and that G does not satisfy

the root-finite condition. Failure to satisfy the root-finite condition implies failure to satisfy

one of the three conditions of Theorem 3.3.2. However, by Theorem 9.2.1 and Corollary

9.2.3, G satisfies conditions (a) and (b) of Theorem 3.3.2. Therefore G must fail to satisfy

condition (c), and so there is some element g of G with infinitely many rth roots for some

positive integer r.

We now look at some additional theorems regarding poly-Z groups. The set C of rootless

elements, that is, elements that have no rth roots for any positive integer r ≥ 2, cannot be

empty in poly-Z (and more generally in polycyclic-by-finite groups), since if there are no

rootless elements, root chains could be extended indefinitely, and Theorem 9.2.1 insures that

this is not the case. The next theorem identifies some of these rootless elements in poly-Z
groups.

Theorem 9.2.5. Suppose that G is a poly-Z group, such that there is a series of subgroups

〈e〉 = G0 ⊆ G1 ⊆ · · · ⊆ Gn = G

with Gi/Gi−1 = 〈āi〉 infinite cyclic, i = 1, 2, · · · , n. Then the ai are elements of G that do

not have rth roots for any positive integer r ≥ 2.

Proof. Suppose that G is a poly-Z group, g is an element of G, and g is an rth root of one

of the ai. We consider first where g would have to occur in the series of subgroups Gj. If

g were an element of Gi−1, then since ai = gr, ai would lie in Gi−1, so āi could not be a

generating element of the quotient group Gi/Gi−1. Thus g is not in Gi−1.

If g were an element of Gi, then g would lie in some coset akiGi−1 for some k 6= 0. Then,

since gr = ai, we can conclude that ai ∈ akri Gi−1, which implies that āi = ākri , contradicting

the assumption that Gi/Gi−1 = 〈āi〉 is infinite cyclic. Thus g cannot lie in the subgroup Gi.

Therefore g ∈ Gj for some j > i and we can choose j to be minimal, so that g ∈ Gj\Gj−1.

Then g is in some coset amj Gj−1 of Gj−1 for some m 6= 0. Then, since ai = gr, we conclude

that ai is in the coset amrj Gj−1. But ai is in Gj−1, since ai ∈ Gi and i < j. This gives us

that āj
mr is equal to the identity in Gj/Gj−1, which contradicts that the quotient groups are

infinite cyclic.

Since it has been shown that g cannot lie in any of the subgroups Gj for j < i, j = i or

j > i, we conclude that no such element exists, and that the ai are rootless elements of G.
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We now explore under what conditions poly-Z groups are root finite. First, we will need

the following lemma.

Lemma 9.2.6. Suppose that G is a poly-Z group, such that there is a series of subgroups

〈e〉 = G0 ⊆ G1 ⊆ · · · ⊆ Gn = G

with Gi/Gi−1 = 〈āi〉 infinite cyclic, i = 1, 2, · · · , n. Then if g ∈ Gj\Gj−1 for some j =

1, 2, · · · , n, then gk ∈ Gj\Gj−1 for all integers k ≥ 1.

Proof. Let G be a poly-Z group with notation as in the statement of the theorem, and let g

be some element of Gj\Gj−1. Then g is in some coset amj Gj−1 with m 6= 0, so that for any

positive integer k, ḡk = āj
km in the quotient group Gj/Gj−1. If it were the case that gk were

in the subgroup Gj−1, then āj
km would be equal to the identity in Gj/Gj−1, contradicting

that the quotient groups are infinite cyclic. Therefore all of the powers of g must lie in the

subgroup Gj but not in the subgroup Gj−1.

In the next theorem, we identify a sufficient condition for rth roots to be unique in poly-

(infinite cyclic) groups. Since those groups have been shown to satisfy two of the three

conditions for groups to be root finite (Theorems 9.2.1 and 9.2.2, the additional property

of uniqueness of rth roots gives us that the groups meeting the conditions of the following

theorem are root finite.

Theorem 9.2.7. Suppose that G is a poly-Z group, such that there is a series of subgroups

〈e〉 = G0 ⊆ G1 ⊆ · · · ⊆ Gn = G

with Gi/Gi−1 = 〈āi〉 infinite cyclic, i = 1, 2, · · · , n. If the elements ai are central in Gi for

all i, then rth roots are unique in G for all positive integers r.

Proof. We use induction on the Hirsch number h. If h = 1, G is isomorphic to Z, so rth

roots are unique.

Suppose that the theorem holds for Hirsch numbers h ≤ k, and G is a poly-Z group with

Hirsch number h = k + 1. We may assume that g ∈ G\Gk, since if g were in Gk, the rth

roots of g would also be in Gk by Lemma 9.2.6, and that would contradict the induction

hypothesis.

Let g = xr = yr ∈ G\Gk. By Lemma 9.2.6, x and y are also in G\Gk, so they are equal

to ask+1h1 and atk+1h2 for some nonzero integers s and t and some elements h1 and h2 of Gk.
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Since xr = yr and since x̄ = āsk+1 and ȳ = ātk+1 in the quotient group Gk+1/Gk, and so s = t

since 〈āk+1〉 is infinite cyclic. So (ask+1h1)r = (ask+1h2)r, and, since ak+1 is assumed central

in Gk, we have that asrk+1h
r
1 = asrk+1h

r
2, and thus hr1 = hr2. Since h1 and h2 are in Gk and since

rth roots are unique in Gk by the induction hypothesis, we conclude that x = y and thus

that rth roots are unique in G.

9.3 Groups Rings of Polycyclic and Polycyclic-by-Finite

Groups

In this section we make note of some of the important theorems relating to group rings of

polycyclic and polycyclic-by-finite groups.

With respect to the zero-divisor problem for groups rings, if G is a torsion-free polycyclic-

by-finite group and if K is a field of characteristic 0, then the group ring KG has no proper

zero divisors [3].

A well-known property of group rings of polycyclic-by-finite groups is that such rings

are Noetherian. The only known examples of Noetherian group rings are group rings of

polycyclic-by-finite groups. It remains an open question whether any other Noetherian group

rings exist [22].
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Chapter 10

Nilpotent Groups

10.1 Definition and Preliminary Remarks

Another important class of groups consists of nilpotent groups. In this chapter, a definition

of nilpotent groups is given, and several important properties of these groups are discussed.

Then we examine the circumstances under which nilpotent groups can be determined to

possess the root-finite condition. Finally, we review some theorems relating to group rings

of nilpotent groups.

If x and y are two elements of a group G, the commutator of x and y, denoted [x, y], is

the group element x−1y−1xy. Of course, if x and y commute, [x, y] is the identity element

of the group.

We can generalize this concept, so that for any two subgroups H and K of G, we define the

commutator subgroup of H and K, denoted as [H,K], the subgroup of G that is generated

by the set of all the commutators of pairs of elements from H and K, that is, [H,K] =

〈[h, k]|h ∈ H, k ∈ K〉.
We now construct a descending series of subgroups of G, known as the lower central

series, in the following recursive manner:

γ1(G) = G

and

γi+1(G) = [γi(G), G] i ≥ 1

If the lower central series stabilizes at the identity, that is, if there is some c such that

γc+1 = 〈e〉, then the group G is said to be nilpotent, and the least c for which γc+1 = 〈e〉 is

called the nilpotency class of G.

52



There is another series of subgroups, known as the upper central series, which is con-

structed recursively as follows. Z0(G) is the subgroup of G consisting of only the identity

element. Then Zn+1 is the unique subgroup of G that satisfies the relation Zn+1(G)/Zn(G) =

Z(G/Zn(G)). If the upper central series stabilizes at G after a finite number of steps, then G

is nilpotent. The definitions based on the construction of lower and upper central series can

be shown to be equivalent. Moreover, the nilpotency class of G as defined in terms of lower

central series is equal to the lowest n for which Zn(G) = G in terms of the upper central

series.

There are two theorems regarding nilpotent groups that will be needed when developing

criteria for determining if a nilpotent group satisfies the root-finite condition. It is not in

general true that subgroups of finitely generated groups are finitely generated. It is known,

for example, that every group with countably many elements can be embedded in a group

generated by two elements [6]. Since groups with countably many elements need not be

finitely generated (the rationals as a group with the operation of addition is an example), it

is possible to have finitely generated groups with subgroups that are not finitely generated.

There are, however, classes of groups for which it is the case that subgroups of finitely

generated groups are finitely generated. One such example is the class of abelian groups.

Since nilpotent groups are defined in terms a finite series involving commutators, it is plau-

sible that nilpotent groups are sufficiently like abelian groups that they will share some of

the properties of abelian groups. In this instance, that indeed is the case, according to the

following theorem.

Theorem 10.1.1. Subgroups of finitely generated nilpotent groups are finitely generated.

Proof. See Lemma 3.4.2 of [19].

We will have occasion to use the following property of finitely generated nilpotent groups,

proven in [7] and [8].

Theorem 10.1.2. Finitely generated nilpotent groups are polycyclic.

Proof. See Theorem 2.13 of [22]. (Wehrfritz offers three proofs for this theorem.)

There is an interesting result concerning the division hull of subgroups of finitely gener-

ated nilpotent groups. In general, the division hull of a subgroup need not be a subgroup.

For example, the division hull of the trivial subgroup 〈e〉 is the set of elements of finite order,

and that set is not generally a subgroup. However, in finitely generated nilpotent groups,

the division hull of a subgroup is a subgroup, as stated in the following theorem.
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Theorem 10.1.3. If G is a finitely generated nilpotent group and H is a subgroup of G,

then the division hull of H, dh(H), is a subgroup of G and [dh(H) : H] <∞.

Proof. See [22], Theorem 5.11.

An immediate consequence of this, taking the subgroup H to be 〈e〉, is that in finitely

generated nilpotent groups, there are only finitely many elements of finite order.

The following technical lemma will turn out to be useful for deriving several results

concerning nilpotent groups and the root-finite condition.

Lemma 10.1.4. Let G be a nilpotent group, and let x, y ∈ G with (xr, ys) = e for some

integers r, s ≥ 1. Then the commutator (x, y) has finite order.

Proof. This is Lemma 11.1.4 of [19].

10.2 Nilpotent Groups and the Root-Finite Condition

In this section, we explore the question of which nilpotent groups satisfy the root-finite

condition. We first present a theorem that follows from Lemma 10.1.4 and which establishes

the relationship between the delta subgroup of a torsion-free nilpotent group and its center.

Theorem 10.2.1. If G is a torsion-free nilpotent group, then ∆(G) = Z(G).

Proof. The inclusion Z(G) ⊆ ∆(G) is immediate.

Suppose g ∈ ∆(G), and let x 6= e be an element of G. By Lemma 7.2.11, it is known

that there exists an integer r ≥ 1 such that xr commutes with g. Then by Lemma 10.1.4,

the commutator (g, x) has finite order. Since G is assumed to be torsion-free, it follows

that (g, x) = e, so we conclude that g is central, thus giving the inclusion ∆(G) ⊆ Z(G).

Therefore Z(G) = ∆(G).

It is always the case in groups that all the powers of a fixed element commute with each

other. The fixed element generates a cyclic subgroup, and all cyclic groups are abelian.

It is, however, not generally the case that all the roots of a fixed element commute with

one another. A familiar example is the quaternion group, in which i, j, and k are all square

roots of −1, but they do not commute. Continuing our investigation of torsion-free nilpotent

groups, we see in the following theorem that all the roots of a fixed element do commute

with one another.
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Theorem 10.2.2. Let G be a torsion-free nilpotent group and let g be an element of G.

Then all the roots of g commute with each other.

Proof. Let x and y be roots of g, i.e, there exist integers r, s ≥ 1 such that xr = ys = g.

Since xr and ys represent the same group element, they certainly commute with other, and

so their commutator (xr, ys) equals the identity. Since (xr, ys) = e, it follows from Lemma

10.1.4 that (x, y) has finite order. Since G is assumed to be torsion-free, this implies that

(x, y) = e, and thus x and y commute.

We can say more about the roots of finitely generated torsion-free nilpotent groups. It

turns out that such groups are R-groups, as the following theorem demonstrates.

Theorem 10.2.3. In finitely generated torsion-free nilpotent groups, nth roots are unique.

Proof. Let G be a finitely generated torsion-free nilpotent group, and let g ∈ G. Denote by

Rg the set of all roots of g, Rg = {x ∈ G|xr = g for some r ≥ 1}. Let Hg = 〈Rg〉 be the

subgroup of G generated by the elements of Rg. By construction Hg contains all the roots

of g in G. Since, by Theorem 10.2.2, the generators of Hg commute with each other, Hg is

abelian. Furthermore, Hg is finitely generated, since by Theorem 10.1.1 subgroups of finitely

generated nilpotent groups are finitely generated. Hg is torsion-free, since G is. Thus Hg is

isomorphic to a finite direct sum of copies of Z, and in such groups nth roots are unique.

We are now ready to prove that another class of groups satisfies the root-finite condition.

Corollary 10.2.4. Finitely generated torsion-free nilpotent groups are root-finite.

Proof. This follows from the fact, given in Theorem 10.1.2, that finitely generated nilpotent

groups are polycyclic. It was previously shown that in polycyclic groups that are not root-

finite, there exists an element with infinitely many nth roots for some n ≥ 2. Theorem 10.2.3

shows that such an element does not exist in finitely generated torsion-free nilpotent groups,

so these groups are root-finite.

10.3 Group Rings of Nilpotent Groups

We now make some observations about group rings of nilpotent groups. We make use of the

fact, a direct consequence of Theorem 10.1.3, that in finitely generated nilpotent groups, the

set of elements of finite order forms a finite subgroup. This subgroup is normal, since group
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elements that are conjugate have the same order. Furthermore, for a group G and a field

K, the group ring KG is prime if and only if G has no nonidentity finite normal subgroup.

This leads us to observe that if G is a finitely generated nilpotent group and if G is not

torsion-free, then the group ring KG is not prime.

56



Chapter 11

The Module Problem for Group Rings

11.1 Preliminary Lemmas

The question to be addressed in this chapter and which is referred to herein as “the module

problem for group rings” was raised by [15]: The question deals with a class of modules

of a group ring that are indexed by the elements of the group and are constructed in the

following manner. In the group ring KG, for any x ∈ G\ 〈e〉, consider the left module

Mx = KG/KG(x− 1).

Under what circumstances is Mx a faithful module?

The significance of this condition is that if KG is prime and KG(x− 1) is essential and

Mx is faithful, then KG is not bounded. The following lemma will prove useful:

Lemma 11.1.1. Let x ∈ G. If α ∈ KG is a nontrivial element of annMx, then α ∈ annMy

for all y ∈ G that are conjugate to x.

Proof. Let β be an arbitrary element of KG. Since α ∈ annMx, there exists some γβ ∈ KG
such that

αβ = γβ(x− 1).

Let y = h−1xh for some h ∈ G. Applying the previous observation to the element βh−1 of

KG, there exists some γβh−1 ∈ KG such that

αβh−1 = γβh−1(x− 1)
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Then

αβ = γβh−1(x− 1)h

αβ = γβh−1h(h−1xh− 1)

αβ = γβh−1h(y − 1)

Thus

αβ = δβ(y − 1)

where

δβ = γβh−1h

Since β is arbitrary, this shows that α ∈My.

For every x ∈ G, we define an equivalence relation ∼x on Suppα as follows: g ∼x h if

g = hxn for some integer n. For any g ∈ Suppα, the equivalence class containing g under

such a partition is denoted by [g]x.

We have the following lemma.

Lemma 11.1.2. Let KG be a group ring and let α be an element of KG. If x is an element

of G such that α ∈ annMx, then for all y ∈ Suppα, [y]x has at least two elements.

Proof. Since α ∈ annMx, there is some β ∈ KG such that α = β(x− 1). We write α as

n∑
i=1

aigi

for some finite n, with ai ∈ K and gi ∈ G. Similarly,

β =
m∑
j=1

bjhj

for some finite m, bj ∈ K, hj ∈ G. Now we break these expressions down into a component

with support in [y]x and a component with support disjoint from [y]x:

α(1) =
∑
gi∈[y]x

aigi

α(2) =
∑
gi /∈[y]x

aigi
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β(1) =
∑
hj∈[y]x

bjhj

β(2) =
∑
hj /∈[y]x

bjhj

We then have

α(1) + α(2) = β(1)(x− 1) + β(2)(x− 1)

Note that Suppα(1) is precisely the equivalence class [y]x. The claim now is that α(1) =

β(1)(x − 1). Since by construction the equivalence class [y]x is closed under multiplication

by x, all elements of Supp β(1)(x − 1) are in the equivalence class [y]x, and no elements of

Supp β(2)(x−1) are in that equivalence class. Thus it must be the case that α(1) = β(1)(x−1).

Now because α(1) is a multiple of x − 1, it is in the augmentation ideal of KG. But this

implies that Suppα(1) is not a singleton, and since Suppα(1) coincides with [y]x, the lemma

is proved.

11.2 Main Theorems

We are now ready to prove the main results of this chapter.

Theorem 11.2.1. Let G be a root-finite group. If x ∈ G has an infinite conjugacy class,

then Mx is faithful.

Proof. Suppose α ∈ annMx. Denote the elements of Suppα by y1, · · · , yn, and let [x] denote

the conjugacy class of x ∈ G. For each yi, 2 < i ≤ n, define the set Ai by Ai = {z ∈ [x]

such that y1 ∼z yi}. The claim now is that Ai must be infinite for some i. Suppose that

this is not the case. Then
∑n

i=2 |Ai| <∞, and since [x] is assumed to be infinite, there must

be some z∗ ∈ [x] such that z∗ /∈ Ai for all i. However, this means that there is no yi for

2 ≤ i ≤ n such that y1 ∼z yi. This cannot be the case because of Lemma 11.1.2. So at least

one of the Ai must be infinite. With no loss of generality, we can let A2 be one such infinite

set. This implies that y1 = y2z
nz for infinitely many z ∈ [x] (and hence in G), and with no

loss of generality we can take nz > 0 for infinitely many z. Thus y−1
2 y1 = znz for infinitely

many distinct z, which is impossible if G is root finite. Thus there can be no yi ∈ Suppα,

meaning that the only element of annMx is zero, and thus Mx is faithful.

Theorem 11.2.2. Let Mx = KG
KG(x−1)

and [x] be the conjugacy class of x ∈ G. Then

annMx =
⋂
y∈[x] KG(y − 1).
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Proof. I. annMx ⊆
⋂
y∈[x] KG(y − 1).

Let α ∈ annMx. Then for all β ∈ KG there exists γβ ∈ KG such that αβ = γβ(x− 1).

In particular, α · 1 = γ1(x − 1), so α ∈ KG(x − 1). It was shown in Lemma 11.1.1 that if

α ∈ annMx, then α ∈ annMy for all y ∈ [x]. Thus α ∈
⋂
y∈[x] KG(y − 1).

II.
⋂
y∈[x] KG(y − 1) ⊆ annMx.

Let α ∈
⋂
y∈[x] KG(y − 1) and let γ =

∑n
i=1 aigi be an arbitrary element of KG. Then,

for each gi ∈ Supp γ, we can write α = βi(gixg
−1
i − 1) for some βi ∈ KG, since α ∈⋂

y∈[x] KG(y − 1). We then compute

α(
n∑
i=1

aigi) =
n∑
i=1

aiαgi

=
n∑
i=1

aiβi(gixg
−1
i − 1)gi

=
n∑
i=1

aiβigi(x− 1)

So α ∈ annMx.

Therefore
⋂
y∈[x] KG(y − 1) = annMx.

Theorem 11.2.3. Let KG be a prime group ring and let x ∈ ∆(G). Then Mx is not

faithful.

Proof. Since KG is prime, we have that ∆(G) is torsion-free and abelian (Theorem 2.3.1).

Since [x] is finite (by definition of ∆(G)) and since all elements of [x] are in ∆(G) and

therefore commute with each other,

α =
∏
y∈[x]

(y − 1)

is well defined. By construction, α is an element of the group ring K∆(G). Since ∆(G) =

∆(∆(G)) and since ∆(G) is torsion-free abelian, it follows from Theorem 2.3.1 that K∆(G) is

a prime ring. But since ∆(G) is abelian, the ring K∆(G) is commutative. Since commutative

prime rings have no proper nonzero divisors, we can conclude that α is nonzero. So

α ∈
⋂
y∈[x]

KG(y − 1)

and thus α ∈ annMx, so Mx is not faithful.
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This leads to the following corollary:

Corollary 11.2.4. If KG is a prime group ring and G is root-finite, then Mx is not faithful

if and only if x ∈ ∆(G).

Proof. This is an immediate consequence of Theorems 11.2.1 and 11.2.3.
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Chapter 12

A Case Study: The Infinite Dihedral
Group

As a case study of the results in the previous chapter, we now turn our attention to the

infinite dihedral group. There are two presentations of this group that are commonly used:

G = 〈a, b|a2 = b2 = 1〉

and

G = 〈x, y|x2 = 1, x−1yx = y−1〉

where b in the first presentation corresponds to xy in the second. The second presentation

will be used in this chapter.

Since the second relation gives us that

yx = xy−1

it can be seen that all elements of G can be written uniquely in the form

xiyj, i ∈ {0, 1}, j ∈ Z

It should also be noted that if g ∈ G has the form xyj, then

g2 = (xyj)(xyj) = (xyjx)yj = y−jyj = 1

Thus G is not a root-finite group, since the identity has infinitely many square roots.

We now look at the conjugacy classes of G. Consider, first, an element of G of the form

xyj. If we conjugate by the element xyk, we obtain

(xyk)−1xyj(xyk) = (xyk)(xyjx)(yk) = (xyk)(y−j)(yk) = xy2k−j
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If we conjugate xyj by yk, we obtain

(y−k)(xyj)(yk) = (y−kx)(yj+k) = (xyk)(yj+k) = xyj+2k

So this gives us two infinite conjugacy classes, one of elements of the form xy2k and the other

of the elements of the form xy2k+1, with k ∈ Z.

Now suppose we have an element of G of the form yj. If we conjugate by xyk, we obtain

(xyk)−1yj(xyk) = (xyk)(yjx)(yk) = (xyk)(xy−j)yk = (xykx)y−j+k = y−ky−j+k = y−j

Since conjugation of yj by another power of y has no effect, we see that the remaining

conjugacy classes of G are {y±j}, j ∈ Z, and thus the Delta subgroup is ∆(G) = {yj, j ∈ Z}.
Since ∆(G) is torsion free abelian, we have by Theorem 2.3.1 that KG is a prime ring, and

thus by Theorem 11.2.3, Myj is not faithful, and we obtain that

ann(Myj) = KG(yj − 1)(y−j − 1) = KG(2− yj − y−j)

Note that KG has an abelian subgroup of index 2, so it is PI by Corollary 5.3.8 of [19], and

it is FBN by Theorem 2.2.3. So every essential left ideal contains a nonzero two-sided ideal.
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Chapter 13

Skew Polynomial Rings and
Skew-Laurent Polynomial Rings

13.1 Definitions

We now consider skew polynomial rings and skew-Laurent polynomial rings and raise the

same sorts of questions that we have been exploring for group rings. Following [5], we adopt

the following definitions for skew polynomial rings and skew-Laurent polynomial rings.

To define a skew polynomial ring T , we let R be a ring, σ an automorphism of R, and δ

a derivation on R, that is, an additive map satisfying δ(rs) = rδ(s) + δ(r)s. We write

T = R[x;σ, δ]

to mean that

1. T is a ring containing R as a subring,

2. x is an invertible element of T ,

3. T is a free left R-module with basis {xn|n = 0, 1, 2, · · · },

4. for all r ∈ R, xr = σ(r)x+ δ(r).

Similarly, to define a skew-Laurent polynomial ring T , we let R be a ring and σ an

automorphism of R. We write

T = R[x±;σ]
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to mean that

1. T is a ring containing R as a subring,

2. x is an invertible element of T ,

3. T is a free left R-module with basis {1, x, x−1, x2.x−2, · · · },

4. for all r ∈ R, xr = σ(r)x.

13.2 The Module Problem

We consider the left module Mr = T/T (x − r) for some r ∈ R, and ask the question,

analogous to the question that examined for modules of group rings, for what r is Mr

faithful.

We first prove the following lemma:

Lemma 13.2.1. If α ∈ ann(Mr), then α ∈ ann(Mσ(r)).

Proof. If α ∈ ann(Mr), then for all β ∈ T there exists some γ ∈ T such that

αβ = γβ(x− r)

In particular, there is some γβx ∈ T such that

αβx = γβx(x− r)

Then

αβ = γβx(x− r)x−1

= γβx(x
−1)(x2 − xr)(x−1)

= γβx(x
−1)(x2 − σ(r)x)(x−1)

= γβx(x
−1)(x− σ(r))

So, α ∈ ann(Mσ(r)).
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Corollary 13.2.2. ann(Mr) = ann(Mσk(r)) for all k ∈ Z.

Proof. The inclusion ann(Mr) ⊆ ann(Mσk(r)) for k > 0 follows from repeated applications

of Lemma 13.2.1, and for k < 0, it follows from repeated applications of Lemma 13.2.1

substituting the automorphism σ−1 for σ.

The inclusion ann(Mr) ⊇ ann(Mσk(r)) for k > 0 follows from repeated applications of

Lemma 13.2.1 substituting σk(r) for r as the ring element and substituting σ−1 for σ as

the automorphism. The inclusion ann(Mr) ⊇ ann(Mσk(r)) for k < 0 follows from repeated

applications of Lemma 13.2.1 substituting σk(r) for r as the ring element and retaining σ as

the automorphism.

Theorem 13.2.3. ann(Mr) ⊆
⋂
k∈Z T (x− σk(r))

Proof. Suppose α ∈ ann(Mr). Then, by the Corollary 13.2.2, we have that α ∈ ann(Mσk(r))

for k ∈ Z. This implies that for all β ∈ T , there exists an element of T , say, γβ such that

αβ = γβ(x− σk(r))

In particular, there exists γ1 ∈ T such that

α · 1 = γ1(x− σk(r))

so that α ∈ T (x− σk(r)) for all k ∈ Z, and the theorem is proved.

In the following lemmas, we assume that R is a commutative integral domain and φ is

an automorphism of R. We set T = R[x;φ]. The same results should hold for T = R[x±;φ].

Lemma 13.2.4. Let I be a nonzero ideal of T , and suppose φ has infinite order. If n is the

minimal degree of a nonzero element of I, then I has an element of the form rxn for r 6= 0.

(In fact, every element of I of degree n has this form.)

Proof. Let f =
∑n

i=0 rix
i ∈ I be an element of degree n (so rn 6= 0). Since φ has infinite

order, R must contain elements with infinite φ-orbits or elements with arbitrarily large finite

φ-orbits. In particular, R must contain an element s whose φ-orbit has greater than n

elements. Consider the element g = φn(s)f − fs of T . Since I / T , we have that g ∈ I.

Moreover, the degree n term of g is (φn(s)rn−rnφn(s))xn, which is zero. Thus deg g < n and

so g = 0. This implies that φn(s)ri = riφ
i(s) for i = 0, · · · , n−1, that is, (φn(s)−φi(s))ri = 0.

Since the orbit of s has more than n elements, no φn(s) − φi(s) can be 0. Thus each ri,

i = 0, · · · , n− 1 must be 0, and the lemma is proven.
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Lemma 13.2.5. Let a ∈ R be nonzero. Then no nonzero element of the left ideal T (x− a)

has the form rxn for r 6= 0 and n ∈ N.

Proof. Let f =
∑m

i=k rix
i ∈ T be nonzero where k ≤ m, rk 6= 0, and rm 6= 0. Then f(x− a)

has leading term rmx
m+1 and lowest term −rkφk(a)xk; neither of these terms is 0 since R is

an integral domain and φ is an automorphism. Thus f(x− a) must have at least two terms

(k < m+ 1), and thus cannot equal any rnx
n.

Corollary 13.2.6. Let a ∈ R be nonzero and let φ have infinite order. Then the left T -

module mathcalMa is faithful.

Proof. If I is the annihilator of mathcalMa, then I is an ideal of T contained in T (x − a).

However, Lemmas 13.2.4 and 13.2.5, taken together, show that there is no nonzero ideal

contained in T (x− a).
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Chapter 14

Questions for Further Research

There remain many unresolved questions related to the topics of this dissertation. Among

these questions, the following are of particular interest:

• Having identified two relations that give rise to elements with infinitely many roots

in groups with two generators, we might be interested in knowing what other such

relations could be found. In particular, one of the relations gave rise to elements with

infinitely many square roots. It may be possible to come up with some sort of analogous

relation that would produce elements with infinitely many rth roots for some r greater

than 2.

• It was shown in Theorem 6.2.2 that torsion-free abelian groups do not satisfy the root-

finite condition if the rth roots in the group are denser than in Z for some positive

integer r. It would be interesting to know whether the converse holds as well so that

we could have a criterion for determining if torsion-free abelian groups satisfy the

root-finite condition. A further exploration of root density could also be extended to

nonabelian groups. The set of group elements having rth roots, Ar, is not necessarily a

group if A is not abelian, but we can still speak of the index of Ar in G as the minimum

number of translations of Ar that can achieve a covering of G. (The concept of index

of a subset of a group is discussed in [19] (see pages 180-190); in general, there may

be different left and right indices, but since Ar is defined in such a way that it is a

union of conjugacy classes, this complication would not occur.) It might be possible

to come up with a more general criterion linking the indices of the Ar to the question

of whether a group satisfies the root-finite condition.

• One of the lacunae in the theory of the root-finite condition as developed in this work

is the lack of any criteria for determining whether groups whose delta subgroup is
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of infinite index satsify the root-finite condition. This class of groups includes many

matrix groups where the delta subgroup and the center coincide. It would be interesting

to consider under what circumstances such groups satisfy the root-finite condition.

• The conjecture that polycyclic-by-finite groups necessary satisfy conditions (a) and (b)

of Theorem 3.3.2 remains under investigation. Corollary 9.2.4 is a weakened version

of that assertion, applying only to the case of torsion-free polycyclic-by-finite groups.

It would be interesting arrive at a proof of the more general assertion or to find a

counterexample.
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