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ABSTRACT

A weak Simpson method for a class of stochastic

differential equations and numerical stability results

by

Ram Sharan Adhikari

The University of Wisconsin-Milwaukee, 2015
Under the Supervision of Professors Bruce Wade and Chao Zhu

This work proposes a novel weak Simpson method for numerical solution for a

class of stochastic differential equations. We show that such a method has weak con-

vergence of order one in general and weak convergence of order three under certain

additional assumptions. This work also aims to determine the mean-square stabil-

ity region of the weak Simpson method for linear stochastic differential equations

with multiplicative noises. In this work, a mean-square stability region of the weak

Simpson scheme is identified, and stepsizes for the numerical method where errors

propagation are under control in well-defined sense are given. The main results are

illustrated with numerical examples.
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Chapter 1

Introduction

Many real-world dynamics evolve over time in ways that can not be predicted with

certainty, for example, the price of an asset in the stock market, the number of

claims to an insurance company, the growth of a certain species in the random envi-

ronment, etc. Stochastic ordinary and partial differential equations naturally arise

as realistic yet tractable mathematical models to describe such complicated dynam-

ics subject to various noises. Stochastic differential equations (SDEs) have wide

range of applications in many fields such as mathematical biology, population dy-

namics, protein kinetics and genetics, psychology and neuronal activity, investment

finance and option pricing, turbulent diffusion and radio-astronomy, helicopter ro-

tor and satellite orbit stability, seismology and structural mechanics, blood clotting

dynamics and cellular energetics.

It is natural that people would like to understand and make inferences about

the real-world dynamics by studying the qualitative and quantitative properties of

the solutions to the underlying SDEs. Unfortunately, in most of the practical ap-

plications, we can not find explicit solutions for the underlying SDEs, as with most

ordinary differential equations (ODEs). In such situations, numerical approxima-

tion then becomes the one viable approach. For example, it is demonstrated in

Bruti-Liberati and Platen (2008) that simulation methods for the approximate so-

lution of stochastic differential equations have become absolutely necessary tools in

many areas of application. In fact, numerical solution of SDEs has been an impor-
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tant research area and has drawn continuing attention. We refer to the excellent

books Milstein (1995) and Kloeden and Platen (1992) for extensive treatments on

numerical solution of SDEs.

We consider the problem of constructing accurate approximations on fixed time

intervals to solutions of the following system of SDEs

X(s) = x+

∫ s

0

b(X(r)) dr +
M∑
k=1

∫ s

0

σk(X(r))νk dWk(r), s ≥ 0,

X(0) = x ∈ Rd,

(1.1)

where M ∈ N is a positive integer, b : Rd → Rd, σk : R
d → R, and for k = 1, . . . ,M ,

νk ∈ Rd, and Wk(t) are independent one dimensional Brownian motions. Here

for each k, νk represents the direction along which the random noise Wk enters

the system (1.1). Suppose the coefficients b and σk are measurable and are such

that a weak solution to (1.1) exists and is unique in probability law. Typically the

coefficients b and σk are assumed to satisfy the Lipschitz continuity and the linear

growth condition; see, for example, Øksendal (2003) or Karatzas and Shreve (1991).

This work is motivated by Anderson and Mattingly (2011) and improves their

weak trapezoidal method. In Anderson and Mattingly (2011), the weak trapezoidal

method has weak convergence of order two and seems to require a large number of

sample paths (10 million). The key idea behind the weak trapezoidal method in

Anderson and Mattingly (2011) is that the solution of (1.1) is equal in distribution

to the solution of a differential equation (2.10) driven by a space-time white noise.

Then they use the trapezoidal method to approximate the area under the diffusion

curve σ2
k(·), which is equivalent in determining the distribution of the diffusion term

in (1.1). Motivated by the fact that Simpson’s rule is usually an improvement of

the trapezoidal rule, we use a Simpson-like rule to approximate the area under

the diffusion term in (1.1). In other words, we use a weak Simpson method to

approximate the stochastic integral of (1.1) in our algorithm. We show that our

method has weak convergence of order one in general and weak convergence of order

three under certain additional assumptions (Assumption (A4)). However, we note

that our examples in Chapter 3 all demonstrate weak order three convergence, even
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though they do not necessarily satisfy the Assumption (A4). Moreover, in theses

examples, our method requires fewer number (in the order of 50,000) of sample

paths compared to Anderson and Mattingly (2011). Unfortunately, at this point,

we are not able to prove that the weak Simpson method enjoys weak order three

convergence without Assumption (A4).

The algorithm of our method consists of two steps, in the first an explicit Euler-

Maruyama type step is used and in the second the resulting fractional point is used

in combination with initial point to obtain higher order. We use variable steps to

obtain better approximation. The use of different paths for each time step-size make

sense in our setting because we are only concerned with the mean of the solution.

We can choose any sample
√
hN(0, 1) for the increment W (tk) − W (tk−1). This

work develops the method which produce weak approximation rather than strong

approximation. Hence, we produce an approximating sample path without giving

proper attention to the underlying Wiener process. Our algorithm does not require

simulation of the Itô integral.

It is worth noting that there are many other higher order weak Taylor schemes to

solve stochastic differential equations, see, for example, Kloeden and Platen (1992).

Generally, these higher order methods are much more complicated than ours, and

contain a large number of terms, such as all of the multiple Itô integrals of higher

multiplicity from Itô-Taylor expansion Kloeden and Platen (1992). For instance,

we need to include all of the third order multiple Itô integrals from the Itô-Taylor

expansion to construct order three weak Taylor scheme. This makes these methods

hard to implement in practice. Compared to those higher order weak Taylor schemes,

our algorithm is simple and derivative free, yet still enjoys weak convergence of order

three under certain additional assumptions.

Most stochastic differential equations can not be solved explicitly. However, a

great deal of useful qualitative information can be obtained about the behavior of

their solutions. Asymptotic behavior and the impact of small changes in initial

values are of particular interest in applications. We know that if a differential

equation is well-posed, then a solution exists and is unique; moreover, the solution is
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continuous with respect to the initial value in some sense. The concept of stability is

an extension of this idea to an infinite time interval (Kloeden and Platen (1992)). In

this thesis we shall study mean-square stability and almost sure asymptotic stability

of our proposed method in relation to a scalar Itô equation

dX(t) = b(X(t)) dt+ σ(X(t)) dW (t), X(0) = x0 ∈ Rd, (1.2)

where we assume that (1.2) has a steady solution X(t) ≡ 0.

In some sense, the stability of a numerical scheme refers to the conditions under

which the impact of an error vanishes asymptotically over time, see, for example,

Bruti-Liberati and Platen (2008). Generally, the notion of numerical stability is

challenging to quantify. Nevertheless various concepts of numerical stability for

different schemes have been extensively studied by many authors. Most of the lit-

erature in numerical stability use specially designed test equations, see for instance,

Kloeden and Platen (1992). We systemically analyze the stability properties of our

scheme for the given family of test equations.

To facilitate the presentation of the thesis, we introduce some notation here.

The notation aT denotes the transpose of a vector or matrix a. For a smooth

function f : Rd 7→ R, Df(x) = (∂f(x)
∂x1

, . . . , ∂f(x)
∂xd

)T denotes the gradient of f at x and

D2f(x) = ( ∂
2f(x)

∂xi∂xj
) is the Heissian of f at x. For η, x ∈ Rd, f ′[η](x) := η ·Df(x) is the

derivative of f in the direction of η evaluated at the point x. And for η, ν, x ∈ Rd,

f ′′[η, ν](x) := f ′(f ′[η])[ν](x). In a similar fashion, we define f ′′′[η, ν, ξ](x) etc. Note

that f ′′[η, ν](x) = tr(ηνTD2f(x)) = f ′′[ν, η](x).

A vector α = (α1, . . . , αd) with each component αi taking values from the set

of non-negative integers is called a multi-index. Moreover, we denote |α| := α1 +

· · · + αd and Dαf(x) = ∂|α|

∂x
α1
1 ...∂x

αd
d

f(x). We denote the space of continuous and

bounded functions whose first through kth order partial derivatives are continuous

and bounded by Ck(Rd), that is,

Ck(Rd) = {f : Rd → R s.t. Dαf exists, bounded and continuous, }.

for all multi-index α with |α| ≤ k. In addition, we define the norm of Ck(Rd) in the
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following way

∥f∥k = sup
{
|Dαf(x)| : x ∈ Rd, α = (α1, . . . , αd) is a multi-index with |α| ≤ k

}
.

(1.3)

Note that when k = 0, C(Rd) := C0(Rd) is the family of bounded and continuous

functions. Also, B(Rd) is the family of real-valued, bounded and Borel measurable

functions defined on Rd.

The rest of the thesis is organized as follows. Chapter 2 starts with a discussion

on various criteria for convergence. Then we propose our weak Simpson method and

describe why and how our method works by considering the simple cases. Next we

prove that our method converges with weak order one in general and three under

suitable additional conditions. We demonstrate the numerical performance of the

weak Simpson method in Chapter 3. In Chapter 4 we first recall the notions of

mean-square and asymptotic stability. Then we present a result for linear stability

of our scheme for the deterministic case. We also present the conditions for mean-

square and asymptotic stability for our scheme as well as the stability regions for

our scheme in Chapter 4. Finally we give the proof of Lemmas 2.7 and 2.10 in the

Appendix which we need to prove our local approximation theorem.



Chapter 2

The Weak Simpson Method

In this chapter, we discuss various criteria for convergence of numerical schemes in

Section 2.1. In addition, the appropriate assumptions as well as a basic moment

estimate for the solution to (1.1) are also arranged in Section 2.1. Next we propose

the weak Simpson method in Section 2.2. To illustrate the idea of our scheme, we

also present the motivation behind our algorithm for a simple case. We also give

the theoretical proof for the order of local and global convergence of our proposed

method in Section 2.3.

2.1 Preliminaries

The error criteria to be used depend on the type of application. If one is inter-

ested in just generating X(T ) sufficiently accurately (in the distributional sense),

an appropriate error criterion may be

sup
f∈C

|E[f(X(T ))]− E[f((Y (N))]| ,

for a suitable class C of smooth functions, where Y (.) is the simulated path. The

accuracy of the sample path approximation can be measured by a criterion such as

E
[

sup
t∈[0,T ]

|X(t)− Y (t)|
]
,

6
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assuming that X(·) and Y (·) can be generated on a common probability space, or,

for some suitably chosen p, via an Lp error criterion such as

E
[ ∫ T

0

|X(t)− Y (t)|p
]
dt,

E
[ ∑

0≤n≤T

|X(n)− Y (n)|p
]

in continuous and discrete time respectively (Asmussen and Glynn (2007)). We

recall the following definition from Kloeden and Platen (1992).

Definition 2.1. We say that an approximating process Y converges in the strong

sense with order γ ∈ (0,∞] if there exists a finite constant K and a positive constant

δ0 such that

E
[
|X(T )− Y (N)|

]
≤ Khγ, N =

T

h
,

for any time discretization stepsize 0 < h < δ0. The strong order of convergence

measures the rate at which the “mean of the error” decays as h → 0.

In fact this definition generalizes the standard convergence criterion for ordinary

differential equation, reducing to the usual definition when the diffusion coefficient

of (1.1) is zero.

Strong convergence allows an accurate approximation to be computed and in-

volves direct simulation of the sample path and demands the approximation be

close to that of the Itô process. The order of convergence of strong approximation is

sometimes less in the stochastic case than in the corresponding deterministic case,

see, for example, Kloeden and Platen (1992). It is also observed in Bruti-Liberati

and Platen (2008) that strong explicit methods, particularly, the widely used Euler-

Maruyama method, sometimes work unreliably and generate large errors for certain

step-sizes.

But if the goal is to have a good approximation of the probability distribution of

the solution X(t), individual realizations are not of primary interest. Weak approx-

imations are used in simulating functionals of the form E[f(X(T ))], where T > 0

and f is some function. For instance, the arbitrage-free price of a European call
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option is given by EQ[e
−r(T−t)(S(T )−K)+|Ft], in which Q is the risk-neutral mea-

sure, r > 0 is the discounting factor, K is the strike price, and S(T ) is the price of

the underlying asset at time T . For weak approximation, in leu of Definition 2.1 for

strong approximation, a less demanding alternative is to measure the rate of decay

of the “error of the means”. This leads to the concept of weak convergence order.

We recall the following definition for weak convergence from Kloeden and Platen

(1992).

Definition 2.2. We say that a time discrete approximation Y converges in the weak

sense with order β > 0 if for any f ∈ C2(β+1)(Rd) there exists a finite constant K

and a positive constant δ0 such that

|E[f(X(T ))]− E[f(Y (N))]| ≤ Khβ, N =
T

h
(2.1)

for any time discretization with maximum step size h ∈ (0, δ0).

If the stochastic part of the differential equation is zero and the initial value is

deterministic, the definition reduces to the usual deterministic convergence crite-

rion for ordinary differential equation and also agrees with the strong convergence

criterion.

We state the following standing assumptions throughout the thesis:

(A1) The coefficients of (1.1) satisfy the Lipschitz and linear growth conditions:

|b(x)− b(y)|+
M∑
k=1

|σk(x)− σk(y)| ≤ κ |x− y| ,

|b(x)|+
M∑
k=1

|σk(x)| ≤ κ(1 + |x|),

(2.2)

for all k = 1, . . . ,M and x, y ∈ Rd, where κ is a positive constant.

(A2) For each k = 1, . . . ,M , we have infx∈Rd{σk(x)} > 0. In addition, there exists

a positive constant λ ∈ (0, 1] so that for any x, ξ ∈ Rd we have

λ |ξ|2 ≤ ξTa(x)ξ ≤ λ−1 |ξ|2 , (2.3)

where ξT denotes the transpose of ξ and a(x) :=
∑M

k=1 σ
2
k(x)νkν

T
k .
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(A3) For all multi-index α with |α| ≤ 8, we have

|Dαb(x)|+
M∑
k=1

|Dασk(x)| ≤ K(1 + |x|p), for all x ∈ Rd, (2.4)

where K and p are positive numbers.

It is well-known that under Assumption (A1), the stochastic differential equation

(1.1) has a unique strong solution; see, for example, Karatzas and Shreve (1991),

Øksendal (2003) or Yin and Zhu (2010). Moreover, we have the following moment

estimate:

Lemma 2.3 (Yin and Zhu (2010)). Assume (A1). Let T > 0 be fixed. Then for

any positive constant p, we have

E
[

sup
t∈[0,T ]

|Xx(t)|p
]
≤ C < ∞, x ∈ Rd ×M, (2.5)

where the constant C satisfies C = C(x, T, p) > 0 and Xx denotes the solution to

(1.1) with initial condition x ∈ Rd.

Remark 2.4. We note that Assumptions (A1)–(A3) are slightly weaker then those

in Anderson and Mattingly (2011), where it is assumed that b, σk, k = 1, . . . ,M are

bounded with bounded and continuous partial derivatives up to the sixth order and

that infx∈Rd{σk(x)} > 0 for each k. Also, (2.3) plays an important role in a certain

Gaussian tail estimate in the proof of Lemma 2.10.

2.2 The Algorithm

The weak Simpson method can be summarized as follows. Let T > 0 and Π :=

{0 = t0 < t1 < ... < tN = T} be a subdivision of [0, T ]. Let {η(i)1k , η
(i)
2k : i ∈ N, k ∈

{1, 2, . . . ,M}} be a collection of mutually independent normal random variables

with mean zero and variance 1. Fix θ ∈ (0, 1) and define

α1 =
5

12θ(1− θ)
and α2 = α1 − 1 =

5− 12θ + 12θ2

12θ(1− θ)
. (2.6)
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In this work, we take constant discretization stepsize h = T/N and so ti = ih for

i = 0, 1, . . . , N . Let Y0 = X(0) = x0 and, for i = 1, 2, . . . , N , we repeat the following

steps:

Step 1.

Y ∗
i = Yi−1 + b(Yi−1)θh+

M∑
k=1

σk(Yi−1)νkη
(i)
1k

√
θh. (2.7)

Step 2.

Yi =Y ∗
i + (α1b(Y

∗
i )− α2b(Yi−1))(1− θ)h

+
M∑
k=1

√
[α1σ2

k(Y
∗
i )− α2σ2

k(Yi−1)]+ νk η
(i)
2k

√
(1− θ)h.

(2.8)

We call such an algorithm the weak Simpson method. To motivate such a name, let

us temporarily ignore the diffusion terms in (1.1). In addition, if we take θ = 1
2
,

then α1 =
5
3
, α2 =

2
3
, and (2.7) reduces to Y ∗

i = Yi−1 +
h
2
b(Yi−1). Next we insert it

into (2.8) to obtain

Yi = Yi−1 +
h

6
[b(Yi−1) + 4b(Y ∗

i ) + b(Y ∗
i )]. (2.9)

On the other hand, the Simpson rule approximates the deterministic integral∫ ti
ti−1

b(Y (s)) ds by∫ ti

ti−1

b(Y (s)) ds ≈ ti − ti−1

6

[
b(Y (ti−1)) + 4b

(
Y

(
ti−1 + ti

2

))
+ b(Y (ti))

]
=

h

6

[
b(Y (ti−1)) + 4b

(
Y

(
ti−1 +

h

2

))
+ b(Y (ti))

]
.

Compare this with the second term of the right-hand side of (2.9), and notice that

Y ∗
i = Yi−1 +

h

2
b(Y (ti−1)) ≈ Y

(
ti−1 +

h

2

)
.

Therefore our algorithm (2.7)–(2.8) is similar to the deterministic Simpson rule,

though we use the θ-midpoint value b(Y ∗
i ) instead of the terminal value b(Y (ti)) in

(2.9). As a result, we have an explicit scheme.
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To further illustrate the idea behind the algorithm (2.7)–(2.8), we note from

Anderson and Mattingly (2011) that the solution of (1.1) is equivalent in distribution

to

X(t) = x+

∫ t

0

b(X(s)) ds+
M∑
k=1

νk

∫ ∞

0

∫ t

0

I[0,σ2
k(X(s))](u)ξk(du× ds), (2.10)

where ξk is a time-space white noise for each k = 1, . . . ,M . Recall that an F-adapted
centered Gaussian random field {ξk(t, x)}t≥0,x∈R+ is a time-space white noise if

E[ξ(s, y)ξ(t, x)] = δ(t− s)δ(x− y), for all t, s ≥ 0 and x, y ∈ R+,

where δ(·) is the delta function. In particular, it follows that if A,B are disjoint

subsets of [0,∞)2, then ξk(A) and ξk(B) are independent normal random variables

with means 0 and variances |A| and |B|, respectively, where |·| denotes the Lebesgue
measure on [0,∞)2. We refer to Walsh (1986) for introduction to space-time white

noise and stochastic partial differential equations.

To illustrate the idea, let us fix θ = 1
2
and modify a figure from Anderson and

Mattingly (2011) as in Figure 2.1.

Figure 2.1: A graphical illustration of weak Simpson scheme for θ = 1
2
, where

V = σ2
k(X(0))− σ2

k(Y
∗
1 )

For simplicity, we take i = 1 in (2.7) and (2.8). In order to approximate the

diffusion term in (2.10) over the interval [0, h], we must approximate ξk(A[0,h](σ
2
k)),

where A[0,h](σ
2
k) is the region under the curve σ2

k(X(t)) for 0 ≤ t ≤ h. Since ξk
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is a space-time white noise, ξk(A[0,h](σ
2
k)) is normally distributed with mean zero

and variance equals the area of the region A[0,h](σ
2
k). Thus it is enough to find an

accurate approximation to the area of the region A[0,h](σ
2
k).

We would like to approximate the area under the curve σ2
k(X(t)) using the Simp-

son rule. Recall that for a positive function f(x), the Simpson rule to approximate∫ b

a
f(x) dx which gives the area of the region under the curve y = f(x) between a

and b is given by

I(f) =
h

6

[
f(a) + 4f

(a+ b

2

)
+ f(b)

]
=

1

3
· h
2
(f(a) + f(b)) +

2

3
· hf

(a+ b

2

)
=

1

3
(Area of BCDF ) +

2

3
(Area of ACDE),

(2.11)

where we put h = b − a, BCDF is the trapezoid with base [a, b] and heights f(a)

and f(b), and ACDE is the rectangle with base [a, b] and height f(a+b
2
); see the

illustration in Figure 2.2.

a+b
2

a b
x

y

A

B

C D

E

F

Figure 2.2: The Simpson Rule

To approximate the area of the region A[0,h](σ
2
k), we first note that

ξk(Region 1)
d
= N

(
0, σ2

k(X(0))
h

2

)
d
= σk(X(0))

√
h

2
N(0, 1),

which is equivalent in distribution to the summand of the right-hand side of (2.7) in

Step 1 of our algorithm. Here and throughout the thesis, N(µ, σ2) denotes a normal

distribution with mean µ and variance σ2.
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Now using the estimated θ-midpoint Y ∗
1 from Step 1, we approximate the area

under the curve σ2
k(X(t)). Since we used the area of the green shaded region (Region

3 in Figure 2.1 (b)) in (2.7) of Step 1, we need to discard this area in Step 2. Observe

that Region 3 and the blue shaded region (Region 4 in Figure 2.1 (c)) have equal

areas. Thus in Step 2, we do not add the area of Region 4. This is equivalent to

discarding the area of Region 3.

Since Region 5 in Figure 2.1 (c) is the part of both the rectangle and the trape-

zoid, we take the whole region under consideration.

ξk(Region 5)
d
= N

(
0,
[
σ2
k(X(0))− 2(σ2

k(X(0))− σ2
k(Y

∗
1 ))
]h
2

)
d
= N

(
0,
[
2σ2

k(Y
∗
1 )− σ2

k(X(0))
]h
2

)
.

On the other hand, Region 6 in Figure 2.1 (c) is part of the rectangle only, we take
2
3
of the area of Region 6 only:

ξk

(2
3
Region 6

)
d
= N

(
0,

2

3
· 1
2
· (σ2

k(X(0))− σ2
k(Y

∗
1 )) ·

h

2

)
d
= N

(
0,

1

3
(σ2

k(X(0))− σ2
k(Y

∗
1 ))

h

2

)
.

Note that Region 5 and Region 6 are disjoint. Thus we have

ξk(Region 5) + ξk

(2
3
Region 6

)
d
= N

(
0,
[
2σ2

k(Y
∗
1 )− σ2

k(X(0))
]h
2

)
+N

(
0,

1

3
(σ2

k(X(0))− σ2
k(Y

∗
1 ))

h

2

)
d
= N

(
0,
(5
3
σ2
k(Y

∗
1 )−

2

3
σ2
k(X(0))

)h
2

)
d
=

√
5

3
σ2
k(Y

∗
1 )−

2

3
σ2
k(X(0))

√
h

2
N(0, 1).

Note that for θ = 1
2
we have α1 =

5
3
and α2 =

2
3
. Again, we find that ξk(Region 5)+

ξk(
2
3
Region 6) is equivalent in distribution to the summand of the right-hand side

of (2.8) of Step 2. Therefore it is reasonable to anticipate that the weak Simpson

algorithm shall work well. We note that the weak trapezoidal method in Anderson

and Mattingly (2011) does not consider Region 6.
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2.3 The Weak Convergence Rate

Define the Markov semigroup Pt : B(Rd) → B(Rd) related to (1.1) by

(Ptf)(x) :
def
= Ex[f(X(t))], t ≥ 0 (2.12)

where X(0) = x and Markov semigroup Ph : B(Rd) → B(Rd) associated with single

full step size h of the weak Simpson method (2.7)–(2.8) by

(Phf)(y) :
def
= Ey[f(Y1)], (2.13)

where Y0 = y. Since ∥f∥0 = sup{|f(x)| : x ∈ Rd}, it follows that ∥Ptf∥0 ≤ ∥f∥0
and similarly ∥Phf∥0 ≤ ∥f∥0.

The following Proposition is from Anderson and Mattingly (2011).

Proposition 2.5. If b, σ1, . . . , σM ∈ Ck, then for any 0 < t ≤ T and k ∈ N, there
exists a constant C = C(T, k, b, σ) > 0 such that ∥Ptf∥k ≤ C∥f∥k.

As in Anderson and Mattingly (2011), we define the induced operator norm for

any linear operator L : Ck → C l by

∥L∥k→l = sup
f∈Ck,f ̸=0

∥Lf∥l
∥f∥k

.

Then it follows from Proposition 2.5 that ∥Pt∥k→k ≤ C. In particular, we have

∥Pt∥0→0 = sup
f∈C0,f ̸=0

∥Ptf∥0
∥f∥0

≤ sup
f∈C0,f ̸=0

∥f∥0
∥f∥0

= 1.

Similarly, ∥Ph∥0→0 ≤ 1.

In terms of the induced operator norm, (2.1) can be rewritten equivalently as∥∥PT − PN
h

∥∥
k→0

≤ Chβ. (2.14)

The following theorems give respectively the weak local and global convergence rate

of the weak Simpson method (2.7)–(2.8) for general case.
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Theorem 2.6 (Local Approximation General Case). Assume (A1)–(A3). Then

there exist a constant κ so that

∥Ph − Ph∥4→0 ≤ κh2, for all h > 0 sufficiently small.

The proof of Theorem 2.6 depends on the following lemma, whose proof is given

in Appendix A.

Lemma 2.7. Assume (A1)–(A3). Then for all h > 0 sufficiently small and f ∈ C4,

we have

E [f(Y ∗
1 ) + (Bf)(Y ∗

1 )(1− θ)h] = f(x0) + (Af)(x0)h+O(h2), (2.15)

where

(Af)(x) =f ′[b(x)](x) +
1

2

M∑
k=1

σ2
k(x)f

′′[νk, νk](x), (2.16)

(Bf)(x) =f ′[α1b(Y
∗
1 )− α2b(x0)](x) +

1

2

M∑
k=1

[α1σ
2
k(Y

∗
1 )− α2σ

2
k(x0)]

+f ′′[νk, νk](x).

(2.17)

Proof of Theorem 2.6. We need to show that for any f ∈ C4 and h > 0 sufficiently

small, there exists a constant κ > 0 so that

|Ex0 [f(Y1)]− Ex0 [f(X(h))]| ≤ κ ∥f∥4 h
2, for all x0 ∈ Rd. (2.18)

To this end, we consider the stochastic differential equation

dy(t) = b(x0) dt+
M∑
k=1

σk(x0)νk dWk(t), t ≥ 0, y(0) = x0. (2.19)

Then we have

y(θh) = x0 + b(x0)θh+
M∑
k=1

σk(x0)νk(Wk(θh)−Wk(0)). (2.20)

Since Wk(θh)−Wk(0)
d
= N(0, θh)

d
= N(0, 1)

√
θh, we see that (2.7) in Step 1 of the

weak Simpson algorithm produces a value Y ∗
1 which is equal to y(θh) in distribution.
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Let B1 is the infinitesimal generator of (2.19). That is, for all f sufficiently smooth,

we define

(B1f)(x) = f ′[b(x0)](x) +
1

2

M∑
k=1

σk(x0)
2f ′′[νk, νk](x). (2.21)

Similarly, (2.8) in Step 2 produces a value Y1 that is equivalent to z(h) in distri-

bution, where z(t) solves the stochastic differential equationdz(t) = (α1b(Y
∗
1 )− α2b(x0)) dt+

M∑
k=1

√
[α1σ2

k(Y
∗
1 )− α2σ2

k(x0)]+νk dWk(t), t ≥ θh,

z(θh) = Y ∗
1 .

(2.22)

Recall the definitions of the operators A and B in (2.16) and (2.17), respectively.

Note that A is the infinitesimal generator of (1.1), and B the infinitesimal generator

for the process (2.22).

Let Ft denote the filtration generated by the Brownian motion processes Wk(t)

in (2.22). Then

E[f(z(h))] = E[E[f(z(h))|Fθh]]
def
= E[Eθh[f(z(h))]], (2.23)

where we defined Eθh[·]
def
= E[·|Fθh]. Let z(h) be the solution to (2.22). Since f ∈ C4,

we can use Dynkin’s formula repeatedly to obtain

Eθh[f(z(h))]

= f(Y ∗
1 ) +

∫ h

θh

Eθh[(Bf)(z(s))] ds

= f(Y ∗
1 ) + (Bf)(Y ∗

1 )(1− θ)h+

∫ h

θh

∫ s

θh

Eθh[(B
2f)(z(r))] dr ds. (2.24)

The term (B2f)(z(r)) in the last integral above depends only on the first four

derivatives of f . Therefore, using the fact that f ∈ C4 and Lemma 2.3, we obtain∣∣∣∣∫ h

θh

∫ s

θh

Eθh[(B
2f)(z(r))] dr ds

∣∣∣∣ ≤ C1 ∥f∥4 h
2 (2.25)

for some constant C1 independent of h.
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Recall that Y1 of (2.8) and z(h) of (2.22) have the same distribution and, in

particular, we have Ex0 [f(Y1)] = Ex0 [f(z(h))]. Then it follows from (2.23), (2.24),

and (2.25) that

Ex0 [f(Y1)] = Ex0 [Eθh[f(z(h))]]

= Ex0

[
f(Y ∗

1 ) + (Bf)(Y ∗
1 )(1− θ)h+O(h2)

]
.

On the other hand, proceeding as above and applying Dynkin’s formula to (1.1)

repeatedly gives

Ex0 [f(X(h))] = f(x0) + (Af)(x0)h+O(h2).

Then (2.18) follows from Lemma 2.7 and the above two displayed equations. This

completes the proof of the theorem.

Theorem 2.8 (Global Approximation General Case). Assume (A1)–(A3). Then

for any T > 0 there exists a constant C(T ) > 0 such that

sup
0≤nh≤T

||Pnh − P n
h ||4→0 ≤ C(T )h. (2.26)

Proof. Let us first observe the following nested sum:

P n
h − Pnh = P 1

hPh(n−1) − P 0
hPnh

+ P 2
hPh(n−2) − P 1

hPh(n−1) + P 3
hPh(n−3) − P 2

hPh(n−2)

+ · · ·+ P n−1
h Ph(n−(n−1)) − P n−2

h Ph(n−(n−2))

+ P n
hPh(n−n) − P n−1

h Ph(n−(n−1))

=
n∑

k=1

P k−1
h (Ph − Ph)Ph(n−k).

Thus it follows that

||Pnh − P n
h ||4→0 = ||

n∑
k=1

P k−1
h (Ph − Ph)Ph(n−k)||4→0

≤
n∑

k=1

||P k−1
h (Ph − Ph)Ph(n−k)||4→0

=
n∑

k=1

||P k−1
h ||0→0||(Ph − Ph)||4→0||Ph(n−k)||4→4.
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Using the fact that sup0≤s≤T ∥Ps∥4→4 ≤ C ′(T ) and ∥P k
h ∥0→0 ≤ 1 and using theorem

2.6 for any n with 0 ≤ nh ≤ T ,

∥Pnh − P n
h ∥4→0 ≤

n∑
k=1

C ′(T )Kh2 = nC ′(T )Kh2 ≤ KTC ′(T )h = C(T )h,

where C ′ and C are positive constants independent of h. This completes the proof

of the theorem.

Next we state the following assumption, which is necessary to show that the

weak Simpson method (2.7)–(2.8) has weak convergence order three.

(A4) For any sufficiently smooth functions f : Rd 7→ R, we have

(A2f)(x0) = (B2
1f)(x0), and

(A3f)(x0) = (B2
1(Af))(x0) = (B1g)(x0) = (B1(A(B1f)))(x0) = (B3

1f)(x0),
(2.27)

for all x0 ∈ R, where

g(x) = f ′′[b(x), b(x)](x) +
M∑
k=1

σ2
k(x)f

′′′[νk, νk, b(x)](x)

+
1

4

M∑
k,j=1

σ2
j (x)σ

2
k(x)f

(4)[νk, νk, νj, νj](x),

and we define (Anf)(x) = (A(An−1f))(x) for any integer n ≥ 2, and similarly

for B1 and B.

The following theorems give respectively the weak local and global convergence

rate of the weak Simpson method (2.7)–(2.8) under Assumptions (A1)–(A4).

Theorem 2.9 (Local Approximation). Assume (A1)–(A4). Then there exists a

constant κ1 so that

∥Ph − Ph∥8→0 ≤ κ1h
4, for all h > 0 sufficiently small.

The proof of Theorem 2.9 depends on the following lemma, whose proof is rele-

gated to Appendix A.
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Lemma 2.10. Assume (A1)–(A4). Then for all h > 0 sufficiently small and f ∈ C8,

we have

E
[
f(Y ∗

1 ) + (Bf)(Y ∗
1 )(1− θ)h+ (B2f)(Y ∗

1 )
(1− θ)2h2

2
+ (B3f)(Y ∗

1 )
(1− θ)3h3

6

]
= f(x0) + (Af)(x0)h+ (A2f)(x0)

h2

2
+ (A3f)(x0)

h3

6
+O(h4),

(2.28)

Proof of Theorem 2.9. We need to show that for any f ∈ C8 and h > 0 sufficiently

small, there exists a constant κ1 > 0 so that

|Ex0 [f(Y1)]− Ex0 [f(X(h))]| ≤ κ1 ∥f∥8 h
4, for all x0 ∈ Rd. (2.29)

Since f ∈ C8, we can use Dynkin’s formula repeatedly to obtain

Eθh[f(z(h))]

= f(Y ∗
1 ) +

∫ h

θh

Eθh[(Bf)(z(s))] ds

= f(Y ∗
1 ) + (Bf)(Y ∗

1 )(1− θ)h+

∫ h

θh

∫ s

θh

Eθh[(B
2f)(z(r))] dr ds

= f(Y ∗
1 ) + (Bf)(Y ∗

1 )(1− θ)h+ (B2f)(Y ∗
1 )

(1− θ)2h2

2

+

∫ h

θh

∫ s

θh

∫ r

θh

Eθh[(B
3f)(z(u))] du dr ds

= f(Y ∗
1 ) + (Bf)(Y ∗

1 )(1− θ)h+ (B2f)(Y ∗
1 )

(1− θ)2h2

2

+ (B3f)(Y ∗
1 )

(1− θ)3h3

6
+

∫ h

θh

∫ s

θh

∫ r

θh

∫ v

θh

Eθh[(B
4f)(z(w))] dw du dr ds. (2.30)

The term (B4f)(z(w)) in the last integral above depends only on the first eight

derivatives of f . Therefore, using the fact that f ∈ C8 and Lemma 2.3, we obtain∣∣∣∣∫ h

θh

∫ s

θh

∫ r

θh

∫ v

θh

Eθh[(B
4f)(z(w))] dw du dr ds

∣∣∣∣ ≤ C ′
1 ∥f∥8 h

4 (2.31)

for some constant C ′
1 independent of h.
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Recall that Y1 of (2.8) and z(h) of (2.22) have the same distribution and, in

particular, we have Ex0 [f(Y1)] = Ex0 [f(z(h))]. Then it follows from (2.23), (2.30),

and (2.31) that

Ex0 [f(Y1)] = Ex0 [Eθh[f(z(h))]]

= Ex0

[
f(Y ∗

1 ) + (Bf)(Y ∗
1 )(1− θ)h+ (B2f)(Y ∗

1 )
(1− θ)2h2

2

+ (B3f)(Y ∗
1 )

(1− θ)3h3

6
+O(h4)

]
.

On the other hand, proceeding as above and applying Dynkin’s formula to (1.1)

repeatedly gives

Ex0 [f(X(h))] = f(x0) + (Af)(x0)h+ (A2f)(x0)
h2

2
+ (A3f)(x0)

h3

6
+O(h4).

Then (2.29) follows from Lemma 2.10 and the above two displayed equations. This

completes the proof of the theorem.

With Theorem 2.9 in our hands, we can proceed to derive the global weak con-

vergence rate for the weak Simpson method (2.7)–(2.8).

Theorem 2.11. Assume (A1)–(A4). Then for any T > 0 there exists a constant

C ′′(T ) > 0 such that

sup
0≤nh≤T

||Pnh − P n
h ||8→0 ≤ C ′′(T )h3. (2.32)

The proof of Theorem 2.11 is similar to that of Theorem 2.8. We shall omit the

details here.
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Chapter 3

Examples

To illustrate the main results in Section 2.3, we present three examples in this

section. We start with the one-dimensional geometric Brownian motion (3.1) in Ex-

ample 3.1, so that we can compare the numerical computations using the weak Simp-

son method (2.7)–(2.8) with the theoretical values. Next we consider two nonlinear

two-dimensional SDEs which are investigated in Anderson and Mattingly (2011). In

particular, we want to compare the performance of the weak Simpson method with

that of the weak trapezoidal method proposed in Anderson and Mattingly (2011).

Example 3.1. We consider the one-dimensional geometric Brownian motion in the

following form
dX(t) = λX(t) dt+ µX(t) dW (t),
X(0) = X(0) ∈ R,

(3.1)

where λ and µ are real constants. The solution to (3.1) isX(t) = X(0)e(λ−
1
2
µ2)t+µW (t)

and we have

E[X(t)] = E[X(0)]eλt, E[(X(t)2] = E[X(0)2]e(2λ+µ2)t.

We test the performance of the weak Simpson method (2.7)–(2.8) for (3.1). We

take T = 1, λ = 3 , µ = 0.3, and X(0) = 1 in (3.1). Also, we use stepsizes hp =
1

100p
,

for p = 1, . . . , 4 to generate N = 48, 200 sample paths of (3.1) using the the weak

Simpson algorithm (2.7)–(2.8). We then compute

Error1p(1) = E[X(1)]− 1

N

N∑
k=1

Y
k,hp

Np
. (3.2)
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Again, we test the performance of the weak Simpson method (2.7)–(2.8) for (3.1).

We take T = 1, λ = 2 , µ = 0.1, and X(0) = 1 in (3.1). Also, we use step sizes

hp = 1
100p

, for p = 1, . . . , 5 to generate N = 45000 sample paths of (3.1) using the

the weak Simpson algorithm (2.7)–(2.8). We then compute

Error2p(1) = E[X(1)2]− 1

N

N∑
i=1

(
Y

k,hp

Np

)2
. (3.3)

where Np = 1
hp
, and Y

k,hp

Np
is the value obtained using the weak Simpson method

(2.7)–(2.8) in the kth simulation with step size hp. The results are plotted in Figure

3.1 in the log-log scale. Note that in both plots of Figure 3.1, the best fit lines have

slope 3 as the step size h tends to zero, as expected.
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(a) Error1p(1) of (3.2)
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(b) Error2p(1) of (3.3)

Figure 3.1: Log-Log plots of error versus step-size for Example 3.1

The stepsizes and corresponding errors for (3.2) are shown in TABLE 3.1. The

slopes of the line joining the points (−2.30,−1.115) and (−2.48,−1.69), (−2.48,−1.69)

and (−2.60,−2.05) are 3.19 and 3 respectively; see the fifth column of Table 3.1.

Hence we observe that the weak order of convergence of our algorithm is empirically

three.

Again, the stepsizes and corresponding errors for (3.3) are shown in TABLE 3.2.

The slopes of the line joining the points (−2.3010,−.6293) and (−2.4771,−1.1972) ,
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Table 3.1: Log-log table for stepsizes and errors.

step-size error log(step-size) log(error) slope

0.0100 0.1256 -2.00 -0.901
0.713

0.0050 0.0767 -2.30 -1.115
3.194

0.0033 0.0205 -2.48 -1.69
3.000

0.0025 0.0090 -2.60 -2.05

Table 3.2: Log-log table for stepsizes and errors.

step-size error log(stepsize) log(error) slope

0.0100 0.3212 -2.0000 -0.4932
0.452

0.0500 0.2348 -2.3010 -0.6293
3.22

0.0033 0.0635 -2.4771 -1.1972
2.12

0.0025 0.0345 -2.6021 -1.4622
3.06

0.0020 0.0174 -2.6990 -1.7595

(−2.4771,−1.1972) and (−2.6021,−1.4622), (−2.6021,−1.4622) and (−2.6990,−1.7595)

are 3.22, 2.12 and 3.06 respectively. Hence we observe that the weak order of con-

vergence of our algorithm is empirically three.

Example 3.2. Here we investigate the same example considered in Anderson and

Mattingly (2011).[
dX1(t)
dX2(t)

]
=

[
X1(t)
0

]
dt+X1(t)

[
0
1

]
dW1(t) +

1

10

[
1
1

]
dW2(t), (3.4)

where W1(t) and W2(t) are independent standard one-dimensional Brownian motion

processes. In our system of SDE b1(x) = x1, b2(x) = 0, σ1(x) = x1, σ2(x) = 1
10
,

ν1 = [0, 1]T and ν2 = [1, 1]T . The system (3.4) can be rewritten in component wise

as

dX1(t) = X1(t) dt+
1

10
dW2(t), (3.5)

dX2(t) = X1(t) dW1(t) +
1

10
dW2(t). (3.6)

To solve (3.5), let f(t, x) = xe−t. Using Itô’s formula,

d
(
X1(t)e

−t
)
= −X1(t)e

−t dt+ e−t dX1(t) =
1

10
e−t dW2(t). (3.7)
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Thus it follows that

X1(t) = X1(0)e
t +

1

10

∫ t

0

e(t−s) dW2(s).

Then we have

X1(t)
2 = X1(0)

2e2t +
1

100

(∫ t

0

e(t−s) dW2(s)

)2

+
1

5
X1(0)

∫ t

0

e(2t−s) dW2(s),

from which we deduce

E[X1(t)
2] = E[X1(0)

2]e2t +
1

100
E
∫ t

0

e2(t−s) ds

= E[X1(0)
2]e2t +

1

200
e2t − 1

200
. (3.8)

We compute 50,000 different discretized Brownian paths with step size hp =
1

55p

for 1 ≤ p ≤ 4 and initial condition X1(0) = X2(0) = 1. We computed

Errorp(1) = E[X1(1)
2]− 1

5× 104

5×104∑
k=1

(
Y

k,hp

1,Np

)2
, (3.9)

where Y
k,hp

1,Np
is the numerically simulated sample path and E[X1(t)

2] is from (3.8).

The resulting error is displayed in Figure 3.2(a) where we have plotted the weak

error against h on log-log scale. The stepsizes and corresponding errors for (3.9) are

shown in TABLE 3.3. The slopes of the line joining the points (−2.0414,−1.8996)

and (−2.2175,−2.4437), (−2.2175,−2.4437) and (−2.3424,−3.0458) are 3.08 and

4.82 respectively. Hence it is observed that the slope of the best fit line is empirically

three.

Table 3.3: Log-log table for step-sizes and errors.

step-size error log(step-size) log(error) slope

0.0182 0.0261 -1.7404 -1.5834
1.05

0.0091 0.0126 -2.0414 -1.8996
3.08

0.0061 0.0036 -2.2175 -2.4437
4.82

0.0045 0.0009 -2.3424 -3.0458
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(a) Errorp(1) of (3.9) in Example 3.2
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(b) Errorp(2) of (3.11) in Example 3.2

Figure 3.2: Log-Log plots of error versus step-size for Examples 3.2

Next we solve (3.6). Consider the function f(t, x) = x2. Using Itô’s formula, we

have,

dX2(t)
2 = 2X2(t) dX2(t) + dX2(t) · dX2(t)

= 2X1(t)X2(t) dW1(t) +
1

5
X2(t) dW2(t) +X1(t)

2 dt+
1

100
dt

Thus

X2(t)
2 = X2(0)

2 +

∫ t

0

2X1(s)X2(s) dW1(s)

+
1

5

∫ t

0

X2(s) dW2(s) +

∫ t

0

(
X1(s)

2 +
1

100

)
ds.

Note that

E
[(∫ t

0

X1(s)X2(s) dW1(s)

)2]
= E

[∫ t

0

X1(s)
2X2(s)

2 ds

]
≤ E

[∫ t

0

1

2

(
X1(s)

4 +X2(s)
4
)
ds

]
< ∞,

and

E
[(∫ t

0

X2(s) dW2(s)

)2]
= E

[∫ t

0

X2(s)
2 ds

]
< ∞.
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Therefore, the expected value of the stochastic integrals
∫ t

0
X1(s)X2(s) dW1(s) and∫ t

0
X2(s) dW2(s) are zero. Hence

E[X2(t)
2] = E[X2(0)

2] +

∫ t

0

E[X1(s)
2] ds+

∫ t

0

(
1

100

)
ds.

Furthermore, using (3.8), we arrive that

E[X2(t)
2] = E[X2(0)

2]− 1

2
E[X1(0)

2] +
1

400
e2t(200E[X1(0)

2] + 1) +
t

200
− 1

400
.

(3.10)

Next we use (3.10) to compute the error

Errorp(2) = E[X2(1)
2]− 1

N

N∑
k=1

(
Y

k,hp

2,Np

)2
, (3.11)

by generating N = 46, 300 sample paths of (3.4), where hp = 1
10p

for p = 1, . . . , 4,

Np =
1
hp
, and (Y

k,hp

1,Np
, Y

k,hp

2,Np
)′ ∈ R2 is the approximated value of (3.4) obtained using

the weak Simpson method (2.7)–(2.8) in the kth simulation, for 1 ≤ k ≤ N . The

resulting error is displayed in Figure 3.2 (b), where we have plotted the weak error

against hp on log-log scale. We observe that the slope of the best fit line in Figure

3.2 (b) is three as the the step size h tends to zero. The stepsizes and corresponding

errors for (3.11) are shown in TABLE 3.4. The slopes of the line joining the points

(−1.301,−1.279) and (−1.477,−1.86), (−1.477,−1.86) and (−1.602,−2.208) are

3.30 and 2.784 respectively. Hence it is observed that the slope of the best fit line

is empirically three.

Table 3.4: Log-log table for step-sizes and errors.

step-size error log(step-size) log(error) slope

0.0100 0.1075 -1.000 -0.969
1.03

0.0050 0.0526 -1.301 -1.279
3.30

0.0033 0.0138 -1.477 -1.860
2.78

0.0025 0.0062 -1.602 -2.208

Using (3.8) and (3.10), we have

E[X(t)2] =
1

2
E[X1(0)

2](3e2t − 1) + E[X2(0)
2] +

1

400
(3e2t + 2t− 3). (3.12)
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We use (3.12) to compute the error

Errorp(1) = E[X(1)2]− 1

N

N∑
k=1

(
Y

k,hp

Np

)2
, (3.13)

by generating N = 46, 000 sample paths of (3.4), where hp = 1
25p

for p = 1, . . . , 4,

Np = 1
hp
, and (Y

k,hp

Np
)′ ∈ R2 is the approximated value of (3.4) obtained using the

weak Simpson method (2.7)–(2.8) in the kth simulation, for 1 ≤ k ≤ N . The re-

sulting error is displayed in Figure 3.3(a), where we have plotted the weak error

against hp on log-log scale. We observe that the slope of the best fit line in Fig-

ure 3.3(a) is empirically three as the the step size h tends to zero. The stepsizes

and corresponding errors for (3.13) are shown in TABLE 3.5 . The slopes of the

Table 3.5: Log-log table for step-sizes and errors.

step-size error log(step-size) log(error) slope

0.040 0.1307 -1.398 -0.884
1.69

0.020 0.0405 -1.699 -1.393
3.88

0.013 0.0084 -1.875 -2.076
7.06

0.010 0.0011 -2.000 -2.959

line joining the points (−1.398,−0.884) and (−1.699,−1.393), (−1.699,−1.393) and

(−1.875,−2.076), (−1.875,−2.076) and (−2.000,−2.959) are 1.69, 3.88 and 7.06 re-

spectively. Hence we observe that the weak order of convergence of our algorithm

is empirically three.

Example 3.3. Here we consider the system[
dX1(t)
dX2(t)

]
=

[
−X2(t)
X1(t)

]
dt+

√
sin2(X1(t) +X2(t))

t+ 1

[
1
0

]
dW1(t)

+

√
cos2(X1(t) +X2(t))

t+ 1

[
0
1

]
dW2(t).

(3.14)

where W1(t) and W2(t) are independent standard one-dimensional Brownian mo-

tions. The system (3.14) is similar to the one considered in Anderson and Mattingly

(2011). Then E[|X(t)|2] can be calculated as

E[|X(t)|2] = E[X(0)2] + log(1 + t). (3.15)
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(a) Errorp(1) of (3.13) in Example 3.2
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(b) Errorp(1) of (3.16) in Example 3.3

Figure 3.3: Log-Log plots of error versus step-size for Examples 3.2 and 3.3

We generate N = 51, 000 different sample paths of (3.14) using the weak Simpson

algorithm (2.7)–(2.8) with step sizes h = 1
5p

for 1 ≤ p ≤ 4 and initial condition

X(0) = (1, 1)′. We then compute

Errorp(1) = E[|X(1)|2]− 1

N

N∑
k=1

∣∣∣Y k,hp

Np

∣∣∣2 , (3.16)

where Np = 1/hp, for 1 ≤ k ≤ 51, 000, Y
k,hp

Np
∈ R2 is the kth numerical value of

(3.14) obtained from the weak Simpson method and E[|X(1)|2] is from (3.15). The

result of numerical experiment is shown in Figure 3.3 (b), where we have plotted

the error against h on log-log scale. It is observed that the slope of the best fit line

is empirically three as the the step size h tends to zero.

Remark 3.4. We note that the weak trapezoidal method in Anderson and Mat-

tingly (2011) gives a weak convergence order two; and seems to require 10 million

sample paths to obtain such a convergence order for Examples 3.2 and 3.3. In con-

trast, the weak Simpson method (2.7)–(2.8) gives a weak convergence order three

and requires only approximately 5× 104 sample paths. Therefore it is a substantial

improvement over the method in Anderson and Mattingly (2011).

Remark 3.5. The computation of the error may be sometimes influenced by dif-

ferent kind of errors like sampling error, random number bias and rounding error.
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In our algorithm we generate more than one sample of random numbers. So, for a

large number of sample paths there is a greater chance of dependency in the samples

that might degrade the order of convergence of our algorithm.
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Chapter 4

Numerical Mean-square And
Asymptotic Stability Analysis For
The Weak Simpson Method

The concept of weak convergence given in Definition 2.2 concerns the accuracy of

a numerical method over a finite interval [0, T ] for small step sizes h. However, in

many applications the long-term behavior of an SDE is of interest. The concept of

numerical stability means whether a numerical solution can keep a similar asymp-

totic property as n → ∞, when it is applied to the stable SDEs. The stability

of various stochastic processes has been extensively studied by many authors; see

for instance Khasminskii (2012), Kushner (1967), Mao and Yuan (2006), Meyn and

Tweedie (2009), Yin and Zhu (2010) and references therein. Assume that a unique

solution X(t) = X(t; x0) for (1.2) exists for all initial condition x0 ∈ Rd and t ≥ 0.

Furthermore, we assume that b(0) = σ(0) = 0 and hence X(t) ≡ 0 is a steady

solution to (1.2). Often, 0 is called an equilibrium point of (1.2). We recall the def-

inition for pth-mean stability and asymptotically stable in pth-mean from Kloeden

and Platen (1992).

Definition 4.1. The steady solution Xt ≡ 0 is called stable in pth mean if for every

ϵ > 0, there exists a δ = δ(ϵ) > 0 such that E[|X(t, x0)|p] < ϵ for all t ≥ 0 and

|x0| < δ. The steady solution Xt ≡ 0 is asymptotically stable in pth mean if it is
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stable in pth mean and in addition, there exists a δ0 > 0 such that

lim
t→∞

E[|X(t, x0)|p] = 0 for all |x0| < δ0.

We call stability in mean and mean-square stability for p = 1 and p = 2 respec-

tively.

Let us also recall the following definition of asymptotic stability from Bruti-

Liberati and Platen (2008).

Definition 4.2. The steady solution X(t) ≡ 0 is called almost surely asymptotically

stable if

P
(
lim
t→∞

|X(t; x0)| = 0
)
= 1, for all x0 ∈ R.

In simulations and numerical approximations, roundoff and truncation errors,

sampling error, random number bias, etc. are common. The utility of a numerical

method depends upon its ability to control the propagation of such errors in extended

time horizon. Concerning the long-time behavior or stability analysis of numerical

schemes, the following two questions are fundamental:

(i) Do the numerical solutions of SDEs preserve stability properties of the original

SDEs? And if the answer is yes,

(ii) For what range of step sizes h so that the numerical solutions are stable in

appropriate senses?

These question have received a lot of attention; some recent developments in this

line of research can be found in Higham (2000a,b, 2001), Saito and Mitsui (1996,

2002) and references therein.

In this work, we are concerned with mean-square and almost surely asymptotic

stability analysis for the weak Simpson method (2.7)–(2.8). As in the aforementioned

references on numerical stability, we will focus on the linear test equation

X(t) = X(0) +

∫ t

0

λX(s) ds+

∫ t

0

µX(s) dW (s), t ≥ 0, (4.1)
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for real or complex constants λ and µ. Here the underlying idea is one that has

proved valuable throughout many areas of numerical analysis- study a numerical

method on a test problem which is simple enough to allow analysis to be performed,

but which retains features present in more general problems of interest. In this thesis

we work on the linear, scalar, and autonomous test problem, and the property under

consideration is the stability of the trivial or steady solution.

4.1 Linear Stability Analysis For Deterministic

Case

We start with the deterministic case when µ = 0 and hence (4.1) reduces to

dX(t)

dt
= λX(t), t > 0

X(0) = x ̸= 0.
(4.2)

Here λ ∈ C is a complex constant. The solution to (4.2) is X(t) = xeλt and hence

limt→+∞X(t) = 0 if and only if λ ∈ C−, where C− denotes the left-half complex

plane. This is the stability region for (4.2).

The weak Simpson method (2.7)–(2.8) applied to (4.2) produces the recurrence

Yn =

(
1 + λh+

5

12
λ2h2

)
Yn−1. (4.3)

Then it follows from (4.3) that

lim
n→+∞

Yn = 0 if and only if
∣∣∣1 + λh+

5

12
λ2h2

∣∣∣ < 1 (4.4)

Therefore for a given step size h > 0, the stability region for the weak Simpson

method is

Sw =

{
λ ∈ C :

∣∣∣1 + λh+
5

12
λ2h2

∣∣∣ < 1

}
. (4.5)

It is more common to speak of the region of absolute stability as a region in the

complex λh-plane. Setting z = λh = x+ iy in (4.5) and detailed calculation gives

Sw =
{
(x, y) ∈ R2 : 25x4 + 25y4 + 50x2y2 + 120x3

+ 120xy2 + 264x2 + 24y2 + 288x < 0
}
.

(4.6)
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The stability domain (4.6) of weak Simpson method for the deterministic linear test

equation is shown in Figure 4.1.

Figure 4.1: Stability domain for weak-Simpson method (blue shaded region)

4.2 Mean-square Stability Analysis

Returning to the SDE (4.1), where we assume that λ and µ are real constants and

that X(0) ̸= 0, since the solution is X(t) = X(0)e(λ−
1
2
µ2)t+µW (t), we have

lim
t→+∞

E[|X(t)|2] = 0 if and only if 2λ+ µ2 < 0, (4.7)

and

lim
t→+∞

|X(t)| = 0 with probability 1 if and only if λ− 1

2
µ2 < 0. (4.8)

It is clear from (4.7) and (4.8) that mean-square stability implies asymptotic stability

but not vice versa. Note that if W = {W (t) : 0 ≤ t < ∞} is a Brownian motion,

so is the process −W = {−W (t) : 0 ≤ t < ∞}. Thus we can and will assume
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without loss of generality in the rest of the subsection that µ > 0. For ease of later

presentation, we denote by

SP = {(λ, µ) ∈ R : 2λ+ µ2 < 0},

the set of ordered pairs of real parameters (λ, µ) so that the trivial solution of (4.1)

is mean-square stable.

Applying the weak Simpson method to (4.1) produces the following iterative

sequence:

Yn =
[
A+Bη

(n)
1

]
Yn−1 +

√
(1− θ)h

[
C +Dη

(n)
1 + E

(
η
(n)
1

)2]+
η
(n)
2 |Yn−1| , (4.9)

for n = 1, 2, . . . , where {η(n)1 , η
(n)
2 , n = 1, 2, . . . } are mutually independent Gaussian

random variables with mean zero and variance one, and

A := 1 + λh+
5

12
λ2h2,

B := µ
√
θh

(
1 +

5

12θ
λh

)
,

C := µ2
(
1 + α1λ

2θ2h2 + 2α1λθh
)

D := 2α1µ
3(λθh+ 1)

√
θh,

E := α1µ
4θh > 0.

(4.10)

Notice C is positive when λ ≥ 0. When λ < 0, it is easy to see that C is positive

when 0 < h < 1
λθ

(
−1 +

√
α2/α1

)
.

The sequence Yn of (4.9) is mean-square stable if limn→∞ E[|Yn|2] = 0 (Higham

(2000b)). By the construction, Yn−1, η
(n)
1 and η

(n)
2 are mutually independent. Thus

it follows from (4.9) that

E[|Yn|2] = E[|Yn−1|2]
(
A2 +B2 + (1− θ)hE

[[
C +Dη

(n)
1 + E

(
η
(n)
1

)2]+])
. (4.11)

Lemma 4.3. Assume either one of the following is true:

λ ≥ 0, and h > 0; (4.12)

λ < 0, and 0 < h <
1

λθ

(
−1 +

√
α2/α1

)
. (4.13)
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Then we have

E
[
[C +Dη

(n)
1 + E(η

(n)
1 )2]+

]
≤ C + E + o(h2). (4.14)

Proof. Consider the function g(x) := C+Dx+Ex2, x ∈ R. As we observed before,

under condition (4.12) or (4.13), both C and E are positive. By straightforward

computations, g(x) > 0 for x ∈ (−∞, x1) ∪ (x2,∞), where

x1 = −
1 +

√
α2/α1 + λθh

µ
√
θh

< x2 =
−1 +

√
α2/α1 − λθh

µ
√
θh

.

Note from (2.6) that 0 < α2/α1 < 1. Thus −1+
√

α2/α1 < 0 and x2 < 0. Moreover,

x2 → −∞ as h ↓ 0. Let φ(x) = 1√
2π
e−

x2

2 , x ∈ R denote the probability density

function of a standard normal random variable. Since η
(n)
1 is normally distributed

with mean 0 and variance 1, we compute

E
[
[C +Dη

(n)
1 + E(η

(n)
1 )2]+

]
=

∫ x1

−∞
(C +Dx+ Ex2)φ(x) dx+

∫ ∞

x2

(C +Dx+ Ex2)φ(x) dx

≤ C + E

∫ ∞

−∞
x2φ(x) dx+D

∫ x1

−∞
xφ(x) dx+D

∫ ∞

x2

xφ(x) dx

= C + E −D

∫ x2

x1

xφ(x) dx

= C + E +
D√
2π

[
exp

{
−x2

2

2

}
− exp

{
−x2

1

2

}]
.

The proof will be complete if we can show that

D√
2π

[
exp

{
−x2

2

2

}
− exp

{
−x2

1

2

}]
= o(h2) as h ↓ 0.

To this end, we note from the expression forD in (4.10) and the fact that x1 < x2 < 0

that ∣∣∣∣ D√
2πh2

[
exp

{
−x2

2

2

}
− exp

{
−x2

1

2

}]∣∣∣∣ ≤ K1
e−

x22
2

h
3
2

≤ K2
h− 3

2

e
K3
h

→ 0,

as h ↓ 0, where K1, K2, and K3 are positive constants independent of h. This

completes the proof of the lemma.
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Putting (4.14) into (4.11) and using the expressions for A,B,C,D,E in (4.10),

detailed computations reveal that

E[|Yn|2] < E[|Yn−1|2]
(
A2 +B2 + (1− θ)h(C + E + o(h2))

)
= E[|Yn−1|2]

[
1 + (2λ+ µ2)h+

1

12
[22λ2 + 20λµ2 + 5µ4]h2 + o(h3)

]
.

(4.15)

Furthermore, for the expression inside the brackets of the right-hand side of (4.15),

we notice that

22λ2 + 20λµ2 + 5µ4 = 22
(
λ+

5

11
µ2
)2

+
5

11
µ4 > 0. (4.16)

Next we compute the discriminant

∆ =
(
2λ+ µ2

)2− 4

(
1

12

)(
22λ2 + 20λµ2 + 5µ4

)
= −10

3

[(
λ+

2

5
µ2
)2

+
1

25
µ4

]
< 0.

Thus it follows that for any h > 0,

1 + (2λ+ µ2)h+
1

12
[22λ2 + 20λµ2 + 5µ4]h2 > 0.

Putting this observation into (4.15), we obtain a condition for mean-square stability

of the weak Simpson method (2.7)–(2.8) for (4.1)

1 + (2λ+ µ2)h+
1

12
[22λ2 + 20λµ2 + 5µ4]h2 < 1. (4.17)

Since h > 0, and noting (4.16), we can rewrite equation (4.17) as

0 < h <
−12(2λ+ µ2)

22λ2 + 20λµ2 + 5µ4
. (4.18)

Note that when λ ≥ 0, the set of h that satisfies (4.18) is an empty set. On the

other hand, when λ < 0, 2λ+µ2 < 0, and h > 0 satisfies (4.13) and (4.18), then the

weak Simpson method (2.7)–(2.8) is mean-square stable for (4.1). In other words,

given (λ, µ) ∈ SP , the combination of (4.13) and (4.18):

0 < h < min

{
−12(2λ+ µ2)

22λ2 + 20λµ2 + 5µ4
,
1

λθ

(
−1 +

√
α2/α1

)}
. (4.19)
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gives a sufficient condition for mean-square stability of the weak Simpson method

(2.7)–(2.8) for (4.1).

Conversely, suppose the weak Simpson method with discretization stepsize h > 0

is mean-square stable for (4.1). Note from (4.11) that

E[|Yn|2] ≥ E[|Yn−1|2](A2 +B2) = E[|Yn−1|2](1 + (2λ+ µ2θ)h+O(h2)).

Thus for the weak Simpson method to be mean-square stable, λ, µ, and θ necessarily

satisfy 2λ+ µ2θ ≤ 0.

We summarize the above discussion into the following theorem:

Theorem 4.4. The following assertions are true:

(a) Given (λ, µ) ∈ SP , the weak Simpson method is mean-square stable if the

discretization stepsize h satisfies (4.19). Therefore the mean square stability

of the process (4.1) implies the mean square stability of the weak Simpson

method if the discretization stepsize h satisfies (4.19).

(b) Conversely, if the weak Simpson method with discretization stepsize h > 0 is

mean-square stable for (4.1), then the parameters λ and µ of (4.1) satisfies

2λ+ µ2θ ≤ 0.

We can visualize the stability region when

−12(2λ+ µ2)

22λ2 + 20λµ2 + 5µ4
<

1

λθ

(
−1 +

√
α2/α1

)
. (4.20)

It is common in the literature to visualize the region of stability in the xy-plane, in

which x = λh and y = µ2h > 0. Therefore using (4.17), we have

SM :=
{
(x, y) ∈ R2 : 22x2 + 20xy + 5y2 + 24x+ 12y < 0

}
. (4.21)

Note that since 22x2 + 20xy + 5y2 = 22(x + 5
11
y)2 + 5

11
y2 > 0, for any (x, y) ∈ SM ,

we necessarily have 24x + 12y < 0 or y < −2x. See Figure 4.2 for the plot of the

mean-square stability domain for the weak Simpson method SM .
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Figure 4.2: Real mean-square stability domain for weak Simpson method (crossed
hashing)

Example 4.5. Again, we test the mean-square stability over [0, 30] with non-

random initial value X0 = 1. We take λ = −2 and µ =
√
2 in (4.1). We have

2λ + µ2 < 0 and hence thanks to (4.7), the trivial solution of (4.1) is mean-square

stable. The left-hand side of (4.20) is equal to 6
7
and the right-hand side of (4.20)

is equal to 0.37. We apply weak Simpson method to simulate 45000 discrete sample

paths of (4.1) for stepsizes h = 1, 1
2
, 1
4
. The stepsize h = 1

4
satisfy (4.20) but not the

stepsizes h = 1 and h = 1
2
. Therefore the weak Simpson method is mean-square

stable for (4.1) when h = 1
4
. We plot the sample average of Y 2

n against tn := nh

with logarithmically scaled y-axis in Figure 4.3. The numerical experiments indi-

cates that weak Simpson method is mean-square stable for h = 1
2
or 1

4
, and unstable

for h = 1. These observations are consistent with Theorem 4.4.

4.3 Almost Sure Asymptotic Stability Analysis

The sequence (4.9) is almost surely asymptotically stable if limn→∞ |Yn| = 0 with

probability one. The weak-Simpson method is almost surely asymptotically stable
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Figure 4.3: Mean-square stability test

if it produces an almost surely asymptotically stable sequence.

Let us first quote the following lemma from Higham (2000b).

Lemma 4.6. Given a sequence of real-valued, nonnegative, independent and iden-

tically distributed random variables Zn, consider the sequence of random variables

{Yn}n≥1 defined by

Yn = Y0

n−1∏
i=0

Zi, (4.22)

where Y0 ≥ 0 and Y0 ̸= 0 with probability one. Suppose that the random variables

log(Zi) are square-integrable. Then

lim
n→∞

Yn = 0 with probability one ⇐⇒ E[log(Zi)] < 0.

In order to apply lemma 4.6, as in Higham (2000b) we take

Zi =
∣∣∣[A+Bη

(i)
1

]∣∣∣+ ∣∣∣∣∣
√

(1− θ)h
[
C +Dη

(i)
1 + E

(
η
(i)
1

)2]+
η
(i)
2

∣∣∣∣∣
where A,B,C,D and E are constants defined in (4.10) and η

(i)
1 and η

(i)
2 are mutually

independent normal random variables with mean zero and variance one. Further-
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more assume that log(Zi) are square integrable. We see that a sufficient condition

for almost surely asymptotic stability is

E

[
log

(∣∣∣[A+Bη
(i)
1

]∣∣∣+ ∣∣∣∣∣
√
(1− θ)h

[
C +Dη

(i)
1 + E

(
η
(i)
1

)2]+
η
(i)
2

∣∣∣∣∣
)]

< 0. (4.23)

We use the parameters λ = 1
3
and µ =

√
3 to test the asymptotic stability of our

scheme. The SDE is asymptotically stable but not mean-square stable for λ = 1
3

and µ =
√
3. We integrate over [0, 600] using weak Simpson method for step sizes

h = 1, 1
2
, 1
4
. The plot of |Yn| versus tj is shown in Figure 4.4. We see that the

solutions for h = 1
2
, 1
4
decay to zero as t increases, in a manner consistent with the

theory.

Figure 4.4: Asymptotic stability test
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Appendix A

The Proofs of Lemmas 2.7 and
2.10

The proofs of Lemmas 2.7 and 2.10 depend on the following Lemmas.

Lemma A.1. Let X, Z, W , and Y be real valued random variables on some prob-

ability space (Ω,F ,P). Let p, q > 1 with 1
p
+ 1

q
= 1. Then the following assertions

are true:

(i) if ∥XY ∥Lp(Ω) < ∞, then

E
[∣∣Y X+ − Y X

∣∣] ≤ ∥XY ∥Lp(Ω)(P {X < 0})
1
q ,

(ii) if ∥ZXY ∥Lp(Ω) < ∞, then

E
[∣∣ZY +X+ − ZY X

∣∣] ≤ ∥XY Z∥Lp(Ω)(P {X < 0 or Z < 0})
1
q ,

(iii) if ∥WXY Z∥Lp(Ω) < ∞, then

E
[∣∣ZW+X+Y + − ZWXY

∣∣] ≤ ∥WYXZ∥Lp(Ω)(P {W < 0 or X < 0 or Y < 0})
1
q .

Proof. Let A = {X < 0}. Observe that Y X+ − Y X = 0 on Ac and Y X+ − Y X =

−Y X on A. Thus it follows from the Hölder inequality that

E
[
|Y X+ − Y X|

]
= E[| − Y XIA|] ≤ ∥XY ∥Lp(Ω)(P {X < 0})

1
q ,
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proving the first assertion.

The proof of the second assertion follows from similar arguments. Observe that

ZY +X+ − Y XZ = −Y XZ on the set {X < 0 or Y < 0} and ZY +X+ − Y XZ = 0

on the set {X < 0 or Y < 0}c = {X ≥ 0 and Y ≥ 0}. Thus

E[|ZY +X+ − ZY X|] = E[| − ZY X|I{X<0 or Y <0}]

≤ ∥XY Z∥Lp(Ω)(P {X < 0 or Y < 0})
1
q .

For the proof of the third assertion, let A := {W < 0 or X < 0 or Y < 0}.
Then we have Ac = {W ≥ 0 and X ≥ 0 and Y ≥ 0}. Moreover, on the set Ac,

ZW+X+Y + = ZWXY . Thus it follows from the Hölder inequality that

E
[∣∣ZW+X+Y + − ZWXY

∣∣] = E[|−ZWXY IA|] ≤ ∥ZWXY ∥Lp(Ω)P(A)1/q.

Lemma A.2. Suppose Assumptions (A1) and (A2). Then for each k = 1, . . . ,M

and any p > 0, there exists an h0 > 0 so that

P
{
α1σ

2
k(Y

∗
1 )− α2σ

2
k(x0) < 0

}
= O(hp) for all 0 < h < h0, (A.1)

where Y ∗
1 is given in (2.7).

Proof. Denote Ek := {α1σ
2
k(Y

∗
1 )− α2σ

2
k(x0) < 0}. As we noted before, Y ∗

1 of (2.7)

and y(θh) of (2.20) have the same distribution. Thus

P(Ek) = P
{
α1σ

2
k(y(θh))− α2σ

2
k(x0) < 0

}
= P

{
|σk(y(θh))| <

√
α2/α1 |σk(x0)|

}
= P

{
|σk(y(θh))| − |σk(x0)| <

(√
α2/α1 − 1

)
|σk(x0)|

}
.

(A.2)

On the other hand, using the triangle inequality and (2.2), we have

|σk(y(θh))| − |σk(x0)| ≥ − |σk(y(θh))− σk(x0)| ≥ −L |y(θh)− x0| .
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Putting this into (A.2), we have

P(Ek) ≤ P
{
−L |y(θh)− x0| ≤

(√
α2/α1 − 1

)
|σk(x0)|

}
= P {|y(θh)− x0| ≥ C}

= P

{∣∣∣∣b(x0)θh+
M∑
k=1

σk(x0)νk(Wk(θh)−Wk(0))

∣∣∣∣ ≥ C

}

≤ P

{∣∣∣∣ M∑
k=1

σk(x0)νk(Wk(θh)−Wk(0))

∣∣∣∣ ≥ C − |b(x0)| θh

}

= P

{∣∣∣∣ M∑
k=1

σk(x0)νk
Wk(θh)−Wk(0)√

θh

∣∣∣∣ ≥ C − |b(x0)| θh√
θh

}
,

where C := 1
L
(1 −

√
α2/α1) |σk(x0)|. Note that C > 0 since by (2.6), 0 < α2 <

α1. For each k = 1, . . . ,M and h > 0, Zk := Wk(θh)−Wk(0)√
θh

has standard normal

distribution. This, together with the assumption that W1, . . . ,WM are independent

Brownian motions, implies that
∑M

k=1 σk(x0)νk
Wk(θh)−Wk(0)√

θh
has multivariate normal

distribution with mean zero and covariance matrix
∑M

k=1 σ
2
k(x0)νkν

T
k = a(x0). Now

(A.1) follows from (2.3) and the usual Gaussian tail estimation (see, for instance,

Theorem 1 of Hüsler et al. (2002)).

Corollary A.3. Assume the conditions of Lemma A.2. Suppose f ∈ C8(Rd) and

that for all multi-index α with |α| ≤ 8, we have

|Dαf(x)| ≤ K(1 + |x|q) (A.3)

for some positive constants K and q ≥ 1. Then for any k, j, l = 1, . . . ,M and p ≥ 1,

there exists an h0 > 0 so that for all h ∈ (0, h0], we have

E
[
(α1σ

2
k(Y

∗
1 )− α2σ

2
k(x0))

+f ′′[νk, νk](Y
∗
1 )
]

(A.4)

= E
[
(α1σ

2
k(Y

∗
1 )− α2σ

2
k(x0))f

′′[νk, νk](Y
∗
1 )
]
+O(hp),

E
[
[α1σ

2
k(Y

∗
1 )− α2σ

2
k(x0)]

+[α1σ
2
j (Y

∗
1 )− α2σ

2
j (x0)]

+f (4)[νk, νk, νj, νj](Y
∗
1 )
]

(A.5)

= E
[
[α1σ

2
k(Y

∗
1 )− α2σ

2
k(x0)][α1σ

2
j (Y

∗
1 )− α2σ

2
j (x0)]f

(4)[νk, νk, νj, νj](Y
∗
1 )
]
+O(hp),
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and

E
[
[α1σ

2
k(Y

∗
1 )− α2σ

2
k(x0)]

+[α1σ
2
j (Y

∗
1 )− α2σ

2
j (x0)]

+[α1σ
2
l (Y

∗
1 )− α2σ

2
l (x0)]

+ (A.6)

× f (6)[νk, νk, νj, νj, νl, νl](Y
∗
1 )
]

= E
[
[α1σ

2
k(Y

∗
1 )− α2σ

2
k(x0)][α1σ

2
j (Y

∗
1 )− α2σ

2
j (x0)][α1σ

2
l (Y

∗
1 )− α2σ

2
l (x0)]

× f (6)[νk, νk, νj, νj, νl, νl](Y
∗
1 )
]
+O(hp),

Proof. As observed in the proof of Lemma A.2, Y ∗
1 is equal to y(θh) in distribution,

where y(θh) is given by (2.20). Therefore, in view of (A.3), the standard arguments

as those in Øksendal (2003) or Yin and Zhu (2010) yield

∥(α1σ
2
k(Y

∗
1 )− α2σ

2
k(x0))f

′′[νk, νk](Y
∗
1 )∥Lp

= ∥(α1σ
2
k(y(θh))− α2σ

2
k(x0))f

′′[νk, νk](y(θh))∥Lp

≤ K < ∞.

Then (A.4) follows from Lemmas A.1 and A.2.

Observe that

P
{
[α1σ

2
k(Y

∗
1 )− α2σ

2
k(x0) < 0] or [α1σ

2
j (Y

∗
1 )− α2σ

2
j (x0) < 0]

}
≤ P

{
α1σ

2
k(Y

∗
1 )− α2σ

2
k(x0) < 0

}
+ P

{
α1σ

2
j (Y

∗
1 )− α2σ

2
j (x0) < 0

}
.

Then (A.5) follows from a similar argument as above using Lemmas A.1 and A.2.

In a similar fashion, we can establish (A.6).

Lemma A.4. For any sufficiently smooth function f : Rd 7→ R, we have

B2
1f(x) = f ′′[b(x0), b(x0)](x) +

M∑
k=1

σ2
k(x0)f

′′′[νk, νk, b(x0)](x)

+
1

4

M∑
k,j=1

σ2
k(x0)σ

2
j (x0)f

(4)[νk, νk, νj, νj](x),

A(B1f)(x) = f ′′[b(x), b(x0)](x) +
1

2

M∑
k=1

σ2
k(x0)f

′′′[νk, νk, b(x)](x)

+
1

2

M∑
k=1

σ2
k(x)f

′′′[νk, νk, b(x0)](x)
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+
1

4

M∑
k,j=1

σ2
k(x)σ

2
j (x0)f

(4)[νk, νk, νj, νj](x),

B2f(x) = f ′′[α1b(Y
∗
1 )− α2b(x0), α1b(Y

∗
1 )− α2b(x0)](x)

+
M∑
k=1

(α1σ
2
k(Y

∗
1 )− α2σ

2
k(x0))

+f ′′′[νk, νk, α1b(Y
∗
1 )− α2b(x0)](x)

+
1

4

M∑
k,j=1

(α1σ
2
k(Y

∗
1 )− α2σ

2
k(x0))

+(α1σ
2
j (Y

∗
1 )− α2σ

2
j (x0))

+

× f (4)[νk, νk, νj, νj](x),

B3
1f(x) = f ′′′[b(x0), b(x0), b(x0)](x) +

3

2

M∑
k=1

σ2
k(x0)f

(4)[νk, νk, b(x0), b(x0)](x)

+
3

4

M∑
k,j=1

σ2
k(x0)σ

2
j (x0)f

(5)[νk, νk, νj, νj, b(x0)](x)

+
1

8

M∑
k,j,l=1

σ2
k(x0)σ

2
j (x0)σ

2
l (x0)f

(6)[νk, νk, νj, νj, νl, νl](x)

and

B3f(x) = f ′′′[α1b(Y
∗
1 )− α2b(x0), α1b(Y

∗
1 )− α2b(x0), α1b(Y

∗
1 )− α2b(x0)](x)

+
3

2

M∑
k=1

(α1σ
2
k(Y

∗
1 )− α2σ

2
k(x0))

+

× f (4)[νk, νk, α1b(Y
∗
1 )− α2b(x0), α1b(Y

∗
1 )− α2b(x0)](x)

+
3

4

M∑
k,j=1

(α1σ
2
k(Y

∗
1 )− α2σ

2
k(x0))

+(α1σ
2
j (Y

∗
1 )− α2σ

2
j (x0))

+

× f (5)[νk, νk, νj, νj, α1b(Y
∗
1 )− α2b(x0)](x)

+
1

8

M∑
k,j,l=1

(α1σ
2
k(Y

∗
1 )− α2σ

2
k(x0))

+(α1σ
2
j (Y

∗
1 )− α2σ

2
j (x0))

+

× (α1σ
2
l (Y

∗
1 )− α2σ

2
l (x0))

+f (6)[νk, νk, νj, νj, νl, νl](x).

Proof. This lemma follows from straightforward and tedious calculations. We shall

omit the details here.
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Now we prove Lemma 2.7 and then we prove Lemma 2.10.

Proof of Lemma 2.7. We analyze every term on the left hand side of (2.15).

Step 1. Since Y ∗
1 is equal to y(θh) of (2.20) in distribution, and noting that the

infinitesimal generator of (2.19) is given by B1 in (2.21), we can apply the Dynkin

formula repeatedly to obtain

E[f(Y ∗
1 )] = f(x0) +

∫ θh

0

E[(B1f)(Y
∗
1 )] ds

= f(x0) + (B1f)(x0)θh+

∫ θh

0

∫ s

0

E[(B2
1f)(Y

∗
1 (r))] dr ds.

The term (B2
1f)(Y

∗
1 (r)) in the last integral above depends on the first four deriva-

tives of f. Since f ∈ C4,∣∣∣∣∫ θh

0

∫ s

0

E(B2
1f)(Y

∗
1 (r))dr ds

∣∣∣∣ ≤ C2||f ||4h2

for some constant C2 independent of h. Thus we have

E[f(Y ∗
1 )] = f(x0) + (B1f)(x0)θh+O(h2)

= f(x0) + (Af)(x0)θh+O(h2),
(A.7)

where the second equality follows from the observation that (B1f)(x0) = (Af)(x0).

Step 2. Next we deal with the term E[(Bf)(Y ∗
1 )]. It follows from the definition

of B and (A.4) that

E[(Bf)(Y ∗
1 )]

= E
[(
f ′[α1b(Y

∗
1 )− α2b(x0)] +

1

2

M∑
k=1

[α1σ
2
k(Y

∗
1 )− α2σ

2
k(x0)]

+f ′′[νk, νk]
)
(Y ∗

1 )

]
= E

[
f ′[α1b(Y

∗
1 )− α2b(x0)](Y

∗
1 )
]

+
1

2

M∑
k=1

E
[
[α1σ

2
k(Y

∗
1 )− α2σ

2
k(x0)]f

′′[νk, νk])(Y
∗
1 )
]
+O(h)

= (Af)(x0) +O(h).
(A.8)

Step 3. Combining (A.7) and (A.8) gives the desired result.
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Proof of Lemma 2.10. We analyze every term on the left hand side of (2.28).

Step 1. Since Y ∗
1 is equal to y(θh) of (2.20) in distribution, and noting that the

infinitesimal generator of (2.19) is given by B1 in (2.21), we can apply the Dynkin

formula repeatedly to obtain

E[f(Y ∗
1 )] = f(x0) +

∫ θh

0

E[(B1f)(Y
∗
1 )] ds

= f(x0) + (B1f)(x0)θh+

∫ θh

0

∫ s

0

E[(B2
1f)(Y

∗
1 (r))] dr ds

= f(x0) + (B1f)(x0)θh+ (B2
1f)(x0)

θ2h2

2

+

∫ θh

0

∫ s

0

∫ r

0

E[(B3
1f)(Y

∗
1 (u))] du dr ds

= f(x0) + (B1f)(x0)θh+ (B2
1f)(x0)

θ2h2

2
+ (B3

1f)(x0)
θ3h3

6

+

∫ θh

0

∫ s

0

∫ r

0

∫ v

0

E[(B4
1f)(Y

∗
1 (w))] dw du dr ds.

The term (B4
1f)(Y

∗
1 (w)) in the last integral above depends on the first eight

derivatives of f. Since f ∈ C8,∣∣∣∣∫ θh

0

∫ s

0

∫ r

0

∫ v

0

E(B4
1f)(Y

∗
1 (w))dw du dr ds

∣∣∣∣ ≤ C ′
2||f ||8h4

for some constant C ′
2 independent of h.

E[f(Y ∗
1 )] = f(x0) + (B1f)(x0)θh+ (B2

1f)(x0)
θ2h2

2
+ (B3

1f)(x0)
θ3h3

6
+O(h4)

= f(x0) + (Af)(x0)θh+ (B2
1f)(x0)

θ2h2

2
+ (B3

1f)(x0)
θ3h3

6
+O(h4),

(A.9)

where the second equality follows from the observation that (B1f)(x0) = (Af)(x0).

Step 2. Next we deal with the term E[(Bf)(Y ∗
1 )]. It follows from the definition
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of B and (A.4) that

E[(Bf)(Y ∗
1 )]

= E
[(
f ′[α1b(Y

∗
1 )− α2b(x0)] +

1

2

M∑
k=1

[α1σ
2
k(Y

∗
1 )− α2σ

2
k(x0)]

+f ′′[νk, νk]
)
(Y ∗

1 )

]
= E

[
f ′[α1b(Y

∗
1 )− α2b(x0)](Y

∗
1 )
]

+
1

2

M∑
k=1

E
[
[α1σ

2
k(Y

∗
1 )− α2σ

2
k(x0)]f

′′[νk, νk])(Y
∗
1 )
]
+O(h3)

= E
[
f ′[α1b(y(θh))− α2b(x0)](y(θh))

]
+

1

2

M∑
k=1

E
[
[α1σ

2
k(y(θh))− α2σ

2
k(x0)]f

′′[νk, νk])(y(θh))
]
+O(h3).

In the above, we again used the fact that Y ∗
1 and y(θh) of (2.20) have the same

distribution to obtain the third equality. Moreover, since

f ′[α1b(y(θh))− α2b(x0)](y(θh)) = α1b(y(θh)) ·Df(y(θh))− α2b(x0) ·Df(y(θh))

= α1f
′[b(y(θh))](y(θh))− α2f

′[b(x0)](y(θh)),

and for each k = 1, . . . ,M ,

[α1σ
2
k(y(θh))− α2σ

2
k(x0)]f

′′[νk, νk](y(θh))

= α1σ
2
k(y(θh))f

′′[νk, νk](y(θh))− α2σ
2
k(x0)f

′′[νk, νk](y(θh)),

we have

E[(Bf)(Y ∗
1 )] = α1E

[
f ′[b(y(θh))](y(θh)) +

1

2

M∑
k=1

σk(y(θh))
2f ′′[νk, νk])(y(θh))

]

− α2E
[
f ′[b(x0)](y(θh)) +

1

2

M∑
k=1

σk(x0)
2f ′′[νk, νk])(y(θh))

]
= α1E[Af(y(θh))]− α2E[B1f(y(θh))],

(A.10)

where A and B1 are defined in (2.16) and (2.21); they are the infinitesimal generators

for the stochastic differential equations (1.1) and (2.19), respectively. Now we apply
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Dynkin’s formula repeatedly to obtain

E[Af(y(θh))] = Af(x0) +

∫ θh

0

E[B1(Af)(y(s))] ds

= Af(x0) +B1(Af)(x0)θh+

∫ θh

0

∫ s

0

E[B2
1(Af)(y(r))] dr ds

= Af(x0) +B1(Af)(x0)θh+B2
1(Af)(x0)

θ2h2

2

+

∫ θh

0

∫ s

0

∫ r

0

E[B3
1(Af)(y(u))] du dr ds

= Af(x0) +B1(Af)(x0)θh+B2
1(Af)(x0)

θ2h2

2
+O(h3).

(A.11)

Similarly, we have

E[B1f(y(θh))] = B1f(x0) +B2
1f(x0)θh+B3

1f(x0)
θ2h2

2
+O(h3). (A.12)

Notice that B1f(x0) = Af(x0) and hence B1(Af)(x0) = A(Af)(x0) = A2f(x0).

Using these observations in (A.11) and (A.12) and plugging them into (A.10), and

noting α1 − α2 = 1, we have

E[(Bf)(Y ∗
1 )] = (Af)(x0) + α1(A

2f)(x0)θh− α2(B
2
1f)(x0)θh

+ α1B
2
1(Af)(x0)

θ2h2

2
− α2(B

3
1f)(x0)

θ2h2

2
+O(h3).

(A.13)

Step 3. Next we evaluate E(B2f)(Y ∗
1 ). Thanks to Lemma A.4 and Corollary

A.3, we have

E[B2f(Y ∗
1 )] = E[f ′′[α1b(Y

∗
1 )− α2b(x0), α1b(Y

∗
1 )− α2b(x0)](Y

∗
1 )]

+
M∑
k=1

E[(α1σ
2
k(Y

∗
1 )− α2σ

2
k(x0))

+

× f ′′′[νk, νk, α1b(Y
∗
1 )− α2b(x0)](Y

∗
1 )]

+
1

4

M∑
k,j=1

E[(α1σ
2
k(Y

∗
1 )− α2σ

2
k(x0))

+(α1σ
2
j (Y

∗
1 )− α2σ

2
j (x0))

+

× f (4)[νk, νk, νj, νj](Y
∗
1 )]

= E[f ′′[α1b(Y
∗
1 )− α2b(x0), α1b(Y

∗
1 )− α2b(x0)](Y

∗
1 )]
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+
M∑
k=1

E[(α1σ
2
k(Y

∗
1 )− α2σ

2
k(x0))f

′′′[νk, νk, α1b(Y
∗
1 )− α2b(x0)](Y

∗
1 )]

+
1

4

M∑
k,j=1

E[(α1σ
2
k(Y

∗
1 )− ασ2

k(x0))(α1σ
2
j (Y

∗
1 )− α2σ

2
j (x0))

× f (4)[νk, νk, νj, νj](Y
∗
1 )] +O(h2).

Moreover, detailed calculations using Lemma A.4 reveal that

E[B2f(Y ∗
1 )]

= E

[
α2
2B

2
1f(Y

∗
1 )− 2α1α2A(B1f)(Y

∗
1 ) + α2

1

[
M∑
k=1

σ2
k(Y

∗
1 )f

′′′[νk, νk, b(Y
∗
1 )](Y

∗
1 )

+ f ′′[b(Y ∗
1 ), b(Y

∗
1 )](Y

∗
1 ) +

1

4

M∑
k,j=1

σ2
k(Y

∗
1 )σ

2
j (Y

∗
1 )f

(4)[νk, νk, νj, νj](Y
∗
1 )

]]
+O(h2).

Next we apply Dynkin’s formula repeatedly to obtain

E[B2f(Y ∗
1 )]

= E[B2f(y(θh))]

= α2
2

[
B2

1f(x0) +B3
1f(x0)θh+

∫ θh

0

∫ s

0

E[B4
1f(y(r))] dr ds

]
− 2α1α2

[
A(B1f)(x0) +B1(A(B1f))(x0)θh+

∫ θh

0

∫ s

0

E[B2
1(A(B1f))(y(r))drds]

]
+ α2

1

[
(B2

1f)(x0) + (B3
1f)(x0)θh+

∫ θh

0

∫ s

0

E[B4
1f(y(r))

]
dr ds] +O(h2).

The detailed calculation shows that,

E[B2f(Y ∗
1 )] = (B2

1f)(x0) + (B3
1f)(x0)θh+O(h2). (A.14)

Step 4. Proceeding in the same way as above, we have

E(B3f)(Y ∗
1 ) = (B3

1f)(x0) +O(h). (A.15)

Step 5. Combining (A.9), (A.13), (A.14), (A.15) and observing

α1θ(1− θ)h2 − α2θ(1− θ)h2 +
(1− θ)2h2

2
+

θ2h2

2
=

h2

2
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and

θ3h3

6
+ α1

θ2(1− θ)

2
h3 − α2

θ2(1− θ)

2
h3 +

θ(1− θ)2

2
h3 +

(1− θ)3

6
h3 =

h3

6

give the desired result.
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