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ABSTRACT

The pekeris method for lithium:

Possibilities and obstructions

by

Marcel Kreuter

The University of Wisconsin-Milwaukee, 2014
Under the Supervision of Professor Kevin McLeod

It is widely believed that the properties of atoms and molecules are accurately

described by the Schrödinger equation, at least in so far as relativistic effects may

be neglected. Extracting these properties from the equation in practice, however,

can be a highly challenging task. In 1958, Chaim L. Pekeris developed a method

for computing the ground state energy of the helium atom. This thesis surveys the

possibilities and obstructions that occur when one tries to compute the ground state

energy of lithium using Pekeris’s method.
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Chapter 1

Introduction

Modern Quantum Mechanics describes the interaction of elementary particles in

the language of Functional Analysis. Every such physical model has to be evaluated

based on its ability to predict the outcome of experiments. It was therefore one

of the great achievements of Quantum Mechanics that it was possible to compute

the different energy states of the Hydrogen atom analytically and that the resulting

values coincided with the empirical formula found by Johann Balmer in the 19th

century.

For Helium, the next atom in the periodic table, the approach is not so easy.

The extra electron of this element seems to gravely complicate the situation so that

an analytic computation such as that for Hydrogen is not possible. Instead, numer-

ical methods are considered to compute at least the state with the lowest energy:

the so called ground state. Most scientists use a variational method developed by

Egil Hylleraas in the early 20th century. In this method a class of different states

is chosen and one tries to minimize the energy among these states. The energy

is computed directly, using formulas derived from the mathematical model. These

computations include high-dimensional integration which is a hard task both nu-

merically and analytically. The effort required to compute the energy is so great

that even today only small systems of particles have been numerically analyzed to

a satisfying degree of accuracy via the mathematical model.



2

In 1958 Chaim L. Pekeris published a paper in which he computed the ground

state energy of Helium using a completely different method. Using a sophisticated

coordinate transform, he broke down the problem from complicated integration to

the computation of a determinant, an easy algebraic task. Even so, the transfor-

mation made the problem very lengthy. Therefore the computation itself was then

done by the WEIZAC computer of the Weizmann Institute in Israel.

Of course computations like this can be done much quicker today and so it seems

odd that even though Pekeris’s approach was a huge success, noone seems to have

ever taken the effort to approach other problems in the same way. The purpose

of this thesis is therefore to survey the possibilities and limitations of Pekeris’s

method, applied to the next atom, lithium. We will see that a coordinate transform

analogous to the one Pekeris used does not exist for lithium and that therefore the

biggest problem is to find a suited transform. We will consider several transforms

and observe how far Pekeris’s method can be accomplished in these cases and where

the approaches go wrong.
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Chapter 2

Quantum Mechanics and ground
states

The main purpose of this chapter is to give a brief introduction to modern Quantum

Mechanics and the Functional Analytic background to it. All theorems metioned

can be found in [1] and [2].

Let H be a separable, complex Hilbert space. A one dimensional subspace

span(ϕ) with ϕ 6= 0 is called a state of a quantum mechanical system. A self-

adjoint operator H ∈ L (H) is called an observable of the system.

Example 2.1 (N -particle system). We consider N particles with positions x1, . . . , xN

in R3. In this scenario the Hilbert space H is the space L2
(
R3N

)
and thus a state is

the span of a complex valued function ϕ. We will w.l.o.g. assume that ‖ϕ‖ = 1. In

this case, the function |ϕ|2 can be interpreted as a probability density. The resulting

probability measure tells us what the possibility of finding the particles in certain

positions is. This is necessary as Quantum Mechanics denies that it is possible to

predict the result of an experiment exactly.

The particles have a kinetic energy that is assumed to be the sum of the Laplacians

with respect to each particle divided by two times the mass of the particle. At the

same time, the particles interact by means of potential energy which is given by
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vij (xi, xj) where the functions vij have to be determined based on the kind of particles

that interact. If the particles interact by Coulomb forces, vij is given by
eiej
|xi−xj | where

ei is the charge of the i-th particle. The total energy of the system is given by the

sum of the kinetic and the potential energy. For an atom, a system with a nucleus

and N − 1 electrons, we get

H =
N∑
i=1

− ∆i

2mi

+
N∑

i 6=j=1

eiej
|xi − xj|

,

an operator in L
(
L2
(
R3N

))
. Note that we ignored physical constants which results

that this computation is not done in usual units for energy. We usually assume

that the mass of the nucleus is infinite and that the mass of each electron as well

as its charge is 1. The charge of the nucleus will be denoted by Z in the same unit

as the charge of the electrons and the particle distances |xi − xj| will be thought

of in Bohr radii. With this choice, the unit of energy we are computing is the so

called hartree in which most computations are done for the sake of simplicity. The

resulting operator takes the form

H =
N−1∑
i=1

−∆i

2
+

N−1∑
i=1

−Z
ri

+
∑
j 6=i

1

rij
,

where ri and rij denote the electron-nucleus and the electron-electron radii respec-

tively.

The operator H, the so called Hamiltonian is certainly defined on all C∞c -

functions. By a Kato’s theorem H is an essentially self-adjoint operator and thus

its closure is an observable.

As an observable is meant to describe a physical quantity of a system, it seems

unusual to define it as an operator on a Hilbert space. We have to make sense of the

output if we measure an observable. Just as with the position of the particles, the

energy and any other observables are not known exactly, but only by probability.

The probability measure of an observable H is given by d(ϕ,Pλϕ)
(ϕ,ϕ)

where Pλ is the
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projection valued measure associated with H by the spectral theorem. With help of

this theorem, the measured energy in an experiment if the system is in the state ϕ

will have the expected outcome

Eϕ (H) =

∫
R
λ
d (ϕ, Pλϕ)

(ϕ, ϕ)
=

(ϕ,Hϕ)

(ϕ, ϕ)
,

the so called Rayleigh quotient. Note that this quotient represents a real number as

H is self-adjoint.

Now we will look at how a system evolves over time. In classical mechanics, the

evolution of a system is governed by Hamilton’s equations

dp

dt
= −dH(q, p, t)

dq

dq

dt
=
dH(q, p, t)

dp
,

with p, q ∈ Rd and the Hamilton function H(q, p, t). This has the quantum mechan-

ical equivalent, the so called Schrödinger equation

d

dt
ϕ(t) = iHϕ.

By Stone’s theorem, this equation is uniquely solvable with the help of the strongly

continuous unitary group U (t) = exp (itH) generated by H where the exponen-

tial is given by the continuous functional calculus. The solution is then given by

ϕ(t) = U(t)ϕ where ϕ is the state of the system at time t = 0.

With this in mind we can now explain stability of particle systems, a question

that classical mechanics failed to answer. Suppose ϕ is an eigenvalue of H with

respect to the eigenvalue λ and that the system is in this state at time t = 0. The

expected total energy of the system at time t = 0 when measured is then given by

the Rayleigh quotient

(ϕ,Hϕ)

(ϕ, ϕ)
=

(ϕ, λϕ)

(ϕ, ϕ)
= λ,
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thus λ is interpreted as the total energy of the system in the state ϕ. Now we want

to know what the energy at some time t in the future would be. By the previous

results, the state of the system at this time is given by U(t)ϕ and thus we can

compute the energy of the system at time t to be

(U(t)ϕ,HU(t)ϕ)

(U(t)ϕ,U(t)ϕ)
.

Note, that the group U(t) and its generator H commute and that U(t) preserves

the inner product at any time. Therefore the Rayleigh quotient from above can be

evaluated and we get

(U(t)ϕ,HU(t)ϕ)

(U(t)ϕ,U(t)ϕ)
=

(U(t)ϕ,U(t)Hϕ)

(U(t)ϕ,U(t)ϕ)
=

(ϕ,Hϕ)

(ϕ, ϕ)
= λ.

This means that the total energy of the system does not change. Such a state is

therefore called a stationary state. The interpretation of this phenomenon is that

the system remains at a certain energy level while the state stays the same. Indeed

the spectral theorem tells us that U(t)ϕ = exp (itλ)ϕ which means that the vectors

ϕ and U(t)ϕ belong to the same one dimensional subspace.

According to this interpretation, the lowest possible energy in a stationary state

that a system can have is

inf (σp (H)) .

The eigenfunction to this eigenvalue is called the ground state of the system.
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Chapter 3

Pekeris’s approach for helium

As a quantum mechanical systems changes from one stationary state into another

one with a lower energy, the energy difference between those two states results in

the emission of light. The frequency of the light is directly proportional to the en-

ergy that is released. In 1885, Johann Jakob Balmer was the first person to find an

empirical formula for the spectral lines of the lightest element that exists, hydrogen.

He proposed a formula to compute the spectral lines which is today known as the

Balmer formula. It was a great success for modern Quantum Mechanics when the

eigenvalue problem of the hydrogen Hamiltonian could be solved analytically and

the resulting spectrum essentially reproduced the Balmer formula.

For atoms with more than one electron, this computation is not so easy. It seems

as if the eigenfunctions of the Hamilton operator are so complicated that it is im-

possible to write them down by hand. Instead, numerical methods where sought to

approximate at least the lowest eigenvalue, i.e. the ground state energy. The first

person to do so was Egil Hylleraas in his paper [3] for the helium atom. Hylleraas

used a variational method that is still used today: A parametrized class of func-

tions {ϕα;α ∈ A} is chosen and the energy is computed directly via the Rayleigh

quotient (ϕα,Hϕα)
(ϕα,ϕα)

. Via methods of mathematical optimization, this quotient is mini-

mized. The resulting minimal value is an upper bound for the ground state energy of

the system. The main problem with this method is the computation of the Rayleigh
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quotient, as the inner product is just a short notation for an integral. In the case

of helium, this integral has to be computed in three dimensions (two for the radius

of each electron and one for the distance between the two electrons). For the next

bigger atom, lithium, the integral would be six dimensional, and the number of vari-

ables will increase drastically for every new electron. Computing integrals in high

dimensions poses big problems both numerically and analytically, and in this case it

is also aggravated by the fact that the variables are not independent: Interelectron

distances cannot be arbitrarily large if the nucleus-electron radii stay fixed.

In 1958, Chaim L. Pekeris published a paper [4] in which he gave a different

approach to the problem. The purpose of this chapter is to summarize and explain

Pekeris’s approach.

Pekeris first performed a coordinate tranform into the so called perimetric coor-

dinates

u := ε (r2 + r12 − r1)

v := ε (r1 + r12 − r2)

w := ε (r1 + r2 − r12) ,

where ε :=
√
−E for the energy of the ground state E. Those coordinates were

introduced in [5] to investigate the Hylleraas method. The perimetric coordinates

range freely from 0 to∞ and are therefore also worth a thought when performing a

variational computation.

Pekeris’s next step was to choose an Ansatz for the eigenfunction. On physical

grounds, the function should decay exponentially with the coordinates, so Pekeris

suggested a decay of exp
(
−1

2
(u+ v + w)

)
. An orthogonal basis for the space

L2
(
R3

+,B
(
R3

+

)
, exp (− (u+ v + w)) du dv dw

)
is given by the Laguerre polynomials

Ln (x) :=
n∑
k=0

(
n

k

)
(−x)k

k!
,
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so the Ansatz for the eigenfunction was

ϕ (u, v, w) = exp

(
−1

2
(u+ v + w)

) ∞∑
l,m,n=0

A (l,m, n)Ll (u)Lm (v)Ln (w)

with the coefficients A (l,m, n) to be determined. The downside of the new coor-

dinates and the expansion in Laguere polynomials is of course that the eigenvalue

equation becomes far more complicated. This equation can be looked up in Equa-

tion (14) of [4].

Using the definition above, one can easily show that the Laguerre polynomials

satisfy the recurrence and differential equations

xL′′n (x) = (x− 1)L′n (x)− nLn (x)

xLn (x) = −(n+ 1)Ln+1 (x) + (2n+ 1)Ln (x)− nLn−1 (x)

xL′n (x) = nLn (x)− nLn−1 (x) .

Substituting these relations into Equation (14) it is possible to remove all occuring

variables u, v and w in the coefficients as well as all differentials leaving only co-

ordinate independent coefficients and Laguerre polynomials. As this expression is

equal to zero and the Laguerre polynomials are an orthogonal basis, all coefficients

must be zero. This yields a recursion relation for the coefficients, which is equation

(22) of [4]. Although this equation looks very complicated, it is actually linear and

thus, if broken down into a finite sum, the solvability of the equation comes down

to a determinant being equal to zero. Pekeris computed this determinant with the

WEIZAC computer of the Weizmann Institute and computed the smallest value of ε

for which it would be zero. The number E = −ε2 is an upper bound for the ground

state energy and Pekeris’s computation improved the results that were given by the

variational methods.

The big improvement of Pekeris’s method is that the computations are fairly

simple compared to the variational methods. Instead of computing highdimensional

integrals we only need to compute a determinant, a much easier algebraic task.



CHAPTER 3. PEKERIS’S APPROACH FOR HELIUM 10

Pekeris’s computations can and have been redone using modern mathematical soft-

ware, see for example [6]. Even though this method is much easier to handle than the

variational methods, it has never been applied to higher systems like the lithium

atom. Literature like [7] mentions a huge numerical effort that is carried out to

compute ground states of three electron atoms using the variational method. The

main idea of this project was therefore to survey the possibilities and restrictions of

Pekeris’s method, applied to the lithium atom.
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Chapter 4

The convexity problem

The first step in applying Pekeris’s approach to the Lithium atom is to find an

appropriate coordinate system for the position of the three electrons. It turns out

that this task causes a lot of issues. Recall that the perimetric coordinates are given

by

u := ε (r2 + r12 − r1)

v := ε (r1 + r12 − r2)

w := ε (r1 + r2 − r12) .

These coordinates, which are based on triangular inequalities, have two major ben-

efits: First, the coordinates range independently from 0 to ∞, which plays an im-

portant role in the expansion in orthogonal polynomials. Second, the coordinate

transform is a linear map which can be inverted easily. This is important when it

comes to the computation of the Hamilton operator. So for the Lithium atom, we

would favour similar coordinates: freely ranging on an interval and obtained by a

linear transformation. It turns out that this is impossible. A nice discussion of this

fact is given in [8] by Benjamin P. Carter.

Let D be the region of all possible coordinates R = (r1, r2, r3, r12, r13, r23). A

point R is in D if and only if three vectors X1, X2, X3 ∈ R3 exist such that ri = ‖Xi‖
and rij = ‖Xi −Xj‖. The task is to find constraints on the numbers ri and rij such
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that R ∈ D if and only if R obeys these constraints. Suppose these constraints

would be linear, then the set D would be convex as any set of points constrained by

linear equations and inequalities is a convex subset of Rd. But an easy counterex-

ample shows that D cannot be convex.

Let the three electrons and the nucleus form a rectangle of length a and width b

such that a < b. Let c =
√
a2 + b2 be the length of the diagonals. This configuration

corresponds to a point R = (a, b, c, c, b, a) ∈ D. Let R′ ∈ D be the configuration of

the rectangle with lengths R′ = (b, a, c, c, a, b). Note that this rectangle is congruent

to the first rectangle.

nucleus

X1 X3

X2

a a

b

b

c

c

nucleus

X1 X3

X2

a

a

b b

c

c

Figure 4.1: Two possible configurations

IfD would be convex, then the configuration 1
2

(R +R′) = (a+b
2
, a+b

2
, c, c, a+b

2
, a+b

2
)

would be in D. With the radii r1, r2, r13 and r23 being equal, the radii r3 and r12

cannot be arbitrary long no matter how the particles are located. The maximal

value for these radii would be the diagonal of a square
√

2
(
a+b
2

)2
=

√
(a+b)2

2
, but as

b > a, the inequality of arithmetic and geometric means yields that c2 = a2 + b2 =
a2+b2

2
+ a2+b2

2
> a2+b2

2
+ ab = (a+b)2

2
, a contradiction.
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nucleus

X1 X3

X2

a+b
2

a+b
2

a+b
2

a+b
2

c

Figure 4.2: Convex combination of the two configurations - An impossible configu-
ration

The lack of a coordinate transform like the one Pekeris used, leads to an incon-

venient choice: Either we need to work with a coordinate transform that is exact,

but nonlinear and might therefore be very complex, or we choose to work with ap-

proximations to the real coordinates that might deliver imprecise results. The next

chapters are dedicated to the description of different coordinate systems that we

tried and the issues that arise with these choices of coordinates.
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Chapter 5

Normal coordinates

As we’ve seen in the last chapter, an exact coordinate system will always be non-

linear. For the computation of the Hamilton operator, we need the inverse of such

a transform, which might be hard to compute. In [8] Carter surveys the so called

normal coordinates. These coordinates are nonlinear and it is possible to invert

them.

Let D+ ⊂ D be the set arising from linearly independent points. The set D\D+

is described by the equation det (X1, X2, X3) = 0 and is therefore a one dimensional

set with Lebesgue measure zero. It is therefore enough to give a set of coordinates

that describe D+ instead of D. We define the normal coordinates for this set.

Given X̃1, X̃2, X̃3 ∈ D+ we choose new coordinate axis that result in three vectors

X1, X2, X3 respectively. We choose the x-axis of our coordinate system in direction

of the vector X̃1. As X̃1 6= 0, this choice is possible and unique. The y-axis is

chosen perpendicular to the x-axis in the X̃1 − X̃2 plane. If X̃1 and X̃2 are linearly

independent, there are exactly two such choices and we choose the one which makes

the y-component of X2 positive. Finally, the z-axis is chosen perpendicular to the

first two axis and as before we choose the option that makes the z-component of

X3 positive. With this choice of coordinates, we only have to look at six numbers,
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describing the positions of the electrons: X1 =

x1
0
0

 , X2 =

x2
y2
0

 , X3 =

x3
y3
z3

 .

From these coordinates, we can easily compute the particle distances R via

ri = ‖Xi‖ and rij = ‖Xi −Xj‖ ,

but it is not a-priori clear how to compute the mapping that transforms a set of

given radii in D+ into a set of normal coordinates. The inversion of the above com-

putation can be obtained in the following way:

Let pij := Xi •Xj (i, j = 1, 2, 3). These numbers are the entries of a symmetrical

matrix P which can be written as P = LLT , where L is the lower triangular matrix

L =

x1 0 0
x2 y2 0
x3 y3 z3

 .

It is possible to compute the elements pii from the set of radii R via pii = r2i . The

elements pij can also be computed using the law of cosines r2ij = r2i + r2j − 2rirj cos θ

where θ is the angle between Xi and Xj. This angle can be computed via Xi •Xj =

rirj cos θ. Putting both of these equations together we obtain pij = 1
2

(
r2i + r2j − r2ij

)
.

Suppose now that P is a positive matrix, then the matrix L can be computed via the

well known Cholesky decomposition algorithm (for a discussion of this algorithm,

see for example [9])

Lij =


√
pii −

∑i−1
k=1 p

2
ik , if i = j

1
pjj

(
pij −

∑j−1
k=1 pikpjk

)
, if i > j

0 , otherwise
.
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In fact, if we try the standard criterion for positivity, we see that P is positive

and therefore L can be computed by the above formula. A matrix is positive if and

only if the subdeterminants

p11,

∣∣∣∣p11 p12
p21 p22

∣∣∣∣ and det (P )

are all positive numbers. This condition can be interpreted geometrically: The first

number is the square of the length of X1, the second the square of the area of the

parallelogram spanned by X1 and X2 and the third is the square of the volume of

the parallelepiped spanned by X1, X2 and X3. These three numbers are positive for

any points in D+ and thus the matrix P is always positive.

Now that we have the coordinate transform together with its inverse, we can

compute the Hamilton operator in the normal coordinates. It is obvious from the

formulas used in the Cholesky decomposition that this will result in a rather com-

plicated differential operator. Carter invites the reader to try and write down the

equation to gain understanding of how complicated this task is. Our hope was that

the computations could be performed with the help of modern mathematical soft-

ware such as MAPLE. The worksheet ’normalCoordinates’ is supposed to compute

the equation symbolically, but it turns out that this task is too hard to handle for

the current desktop computers, we used. MAPLE runs out of memory, before the

computation can be finished. Even if we could compute the Hamilton, we would run

into the next problem on our way to perform the steps Pekeris did. The normal co-

ordinates are independent and three range from 0 to∞ while the three others range

from −∞ to ∞. Following Pekeris’s steps we would try an expansion in Laguerre

and Hermite polynomials for the eigenfunction in the different variables. But now

we need to get rid of all derivatives and variables in the coefficients to be able to

compute a recursion relation as Pekeris did. The Hermite polynomials obey certain

differential and recursion relations just as the Laguerre polynomials do, but with a

look at the relations one can clearly see, that it is only possible to handle certain

expressions of the form p(x)Ln(x) where p is a polynomial. The normal coordinates
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are much more complicated and thus it is unlikely, that Pekeris’s method can be

applied to the eigenvalue problem in this form.
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Chapter 6

Frolov’s four body perimetric
coordinates

The results of the last chapter suggest that exact nonlinear coordinates are too com-

plex to apply Pekeris’s method to the Lithium atom. We should find coordinates

that approximate D by a set D′ without being too complex. In order to get poly-

nomial prefactors, it would be the best to focus on the simplicity of the coordinates

rather than on the exactness of the set D′. A set of coordinates that might be able

to deliver this is described by Alexei M. Frolov in [10].

Note that the four particles of the Lithium atom form a tetrahydron with four

triangular faces. Numerating the three electrons by 1, 2 and 3 and the nucleus by 0,

we can denote the faces by U for the face with vertices (0, 1, 2), T for the face with

vertices (0, 1, 3), W for the face with the vertices (0, 2, 3) and S for the face with

vertices (1, 2, 3).
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0

1 2

3

U

T W

S

Figure 6.1: The four faces - Stereographic projection

These triangles can be described by the perimetric coordinates, which we will

denote in a slightly different form

x1 =
1

2
(r2 + r12 − r1)

x2 =
1

2
(r1 + r12 − r2)

x3 =
1

2
(r1 + r2 − r12).

With this choice, the inverse coordinates can be easily written as

r1 = x1 + x2

r2 = x1 + x3

r12 = x1 + x2.

Applying these coordinates to the four faces we get coordinates ui, ti, wi and si for

the faces U, T,W and S respectively.

u1 =
1

2
(r2 + r12 − r1), u2 =

1

2
(r1 + r12 − r2), u3 =

1

2
(r1 + r2 − r12)

t1 =
1

2
(r3 + r13 − r1), t2 =

1

2
(r1 + r13 − r3), t3 =

1

2
(r1 + r3 − r13)

w1 =
1

2
(r2 + r23 − r3), w2 =

1

2
(r3 + r23 − r2), w3 =

1

2
(r3 + r2 − r23)

s1 =
1

2
(r12 + r13 − r23), s2 =

1

2
(r23 + r13 − r12), s3 =

1

2
(r12 + r23 − r13)
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From the inverse coordinates, we can see that six additional constraints must hold.

u1 + u2 = r12 = s1 + s3, u1 + u3 = r2 = w1 + w3, u2 + u3 = r1 = t2 + t3

t1 + t2 = r13 = s1 + s2 t1 + t3 = r3 = w2 + w3, w1 + w2 = r23 = s2 + s3.

With these six constraints, we can reduce the number of necessary coordinates from

12 to 6. All remaining coordinates can be expressed in terms of the six chosen

coordinates. The six coordinates can be chosen in many different ways from the co-

ordinates ui, ti, wi and si. Frolov suggests to chose the three coordinates describing

U as well as one of each of the coordinates describing T,W and S. We will follow

Frolov’s suggestion and pick the coordinates u1, u2, u3, t1, w1 and s3.

As mentioned above, the six remaining coordinates can be expressed in terms

of the chosen ones, e.g. w3 = u1 + u3 − w1. Note that w3 is a positive number so

this yields an additional constraint w1 ≤ u1 + u3. In fact we get six constraints,

which we will not reproduce here. The constraints and their derivation can be seen

in equations (18) and (19) of [10]. Note that these constraints are necessary but not

sufficient, for if they were, the set D would be described by linear equations and

inequalities, but that cannot be true as we have seen earlier. Thus this paper is in

error when it claims that the six coordinates describe all possible configurations in

an arbitray four-body system. We will nevertheless use these coordinates as a model

and hope that the coordinates are not too far off from the actual set D.

The reason we do not care about the six constraints of equation (19) is that we

want to drop these constraints in order to be able to use Pekeris’s method. For this

method the variables need to range freely from 0 to ∞, so for our model, we will

look at the set D′, described by the six linear coordinates above without any further

constraints.

The MAPLE worksheet ’frolovCoordinates’ computes the Hamilton operator in
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these new variables which are renamed to x1, . . . , x6. The result is a 4884 term

partial differential equation on which we can now apply Pekeris’s method. Following

Pekeris’s steps, the Ansatz for the eigenfunction is

ϕ (x) = exp

(
−1

2
(x1 + x2 + x3 + x4 + x5 + x6)

)
∞∑

k,l,m,n,o,p=0

A (k, l,m, n, o, p)Lk (x1)Ll (x2)Lm (x3)Ln (x4)Lo (x5)Lp (x6).

Using the relations between the Laguerre polynomials, we want to get rid of all

derivatives and variables to get a recurrence relation just as Pekeris did. Unfortu-

nately, this is not possible for these coordinates. In the next chapter, we will analyze

the problem that arises.
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Chapter 7

Prefactors of the perimetric
coordinates

Recall the recurrence and differential equation satisfied by the Laguerre polynomials.

xL′′n (x) = (x− 1)L′n (x)− nLn (x)

xLn (x) = −(n+ 1)Ln+1 (x) + (2n+ 1)Ln (x)− nLn−1 (x)

xL′n (x) = nLn (x)− nLn−1 (x) .

These equations were used to eliminated all derivatives as well as all variables in

Pekeris’s original approach. Note that these relations are not able to deal with all

possible prefactors and derivatives that might occur. It is true that any expression

of the form p(x)Ln(x) with a polynomial p can be reduced to a sum of Laguerre

polynomials with prefactors that are independent of the variable x. In the same

way, we can handle expressions of the form p(x)L′n(x) if the polynomial p has no

constant term and expressions of the form p(x)L′′n(x) if the polynomial p has no

constant term and no term of order one. For these expressions, we can inductively

compute equivalent forms. But the expressions xL′′n and L′n cause serious problems

to the approach as they cannot be simplified to a sum of Laguerre polynomials with

prefactors independent of x. Looking at the first relation, we can make up a new

relation that helps us with this problem.

xL′′n (x) + L′n (x) = xL′n (x)− nLn (x)
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This equation tells us that the term xL′′n (x) + L′n (x) can be simplified into a con-

venient expression containing Ln and xL′n (x), which can then be simplified further.

This means that in order to get rid of all terms xL′′n and L′n we must ensure that

the prefactors of the two expressions in the examined equation are the same ones.

In Pekeris’s approach, this was the case and he was able to eliminate all variables

and derivatives as desired (see equation (14) of [4]). But with Frolov’s coordinates

for the Lithium atom, this condition is not satisfied and thus the approach fails.

We now want to examine if it is possible to alter the coordinates in a way that the

prefactors of xL′′n and L′n match. In order to do this, it is helpful to take a look at

Pekeris’s work first.

The perimetric coordinates were first introduced by Coolidge and James in [5]

to examine the convergence of Hylleraas’ variational method. In this paper, they

introduce the coordinates as

u := δ (r2 + r12 − r1)

v := δ (r1 + r12 − r2)

w := δ (r1 + r2 − r12) ,

with a prefactor δ. For his work, Pekeris changed the prefactors from (δ, δ, δ) to

(ε, ε, 2ε). It is not a-priori clear why he chose the coordinates in this way, but the

discussion above suggests that the reason might be that this choice of coordinates

results in matching prefactors for xL′′n and L′n. It was a surprise for us to see that

the original perimetric coordinates would have worked in the same way as Pekeris’s

perimetric coordinates did. The MAPLE worksheets ’PekerisPrefactors’ is an al-

tered version of the worksheets we have developed so far. This worksheet computes

the Hamilton operator for Helium in the perimetric coordinates with arbitrary pref-

actors a, b and c and compares the prefactors of xL′′n and L′n in all three variables

x = u, v, w. The surprising result is that any choice of the parameters a, b and c

yields matching prefactors.
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It is indeed interesting to see that the prefactors of the perimetric coordinates

can be chosen arbitrarily but at the same time this result is unsatisfactory as it

suggests that a change of the prefactors of Frolov’s coordinates might not yield a

different result from what we’ve seen before. The MAPLE worksheet ’FrolovPref-

actors’ computes the prefactors of xL′′n and L′n for an arbitrary choice of prefactors

a, b, c, d, e and f for the six coordinates that Frolov derived. Using this worksheet,

we can derive several equations that can never be satisfied by the prefactors. The

worksheet gives two examples: A comparison of coefficients for the first coordinate

shows, that e = −f where both e and f should be positive numbers. The other

comparisons for the fifth coordinate yield that a has to be zero. These contradic-

tions show that the problem of the coordinates are in fact not the prefactors. While

for Pekeris’s coordinates every prefactor worked, the new coordinates do not seem

to be suited to attack the problem in the same way.
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Chapter 8

Outlook and open questions

So far, none of the attempts was able to transfer Pekeris’s approach to the Lithium

atom. There are other things that might be tried in order to get a result. The

problem described in the last section could be avoided by multiplying the whole

equation with
∏6

i=1 x
2
i . Note that after this operation there are no first or second

derivatives of Laguerre polynomials left that do not have a prefactor of at least

x2. This means that all such expressions can be substituted by the desired form.

The problem with this approach is that the relations between the Laguerre poly-

nomials start to become extremely long. Instead of substitutions for terms of the

form x3L(x) we now need substitutions for terms of the form x5L(x). MAPLE

can quickly compute such relations but they would make the expression computed

by the worksheet ’FrolovCoordinates’, which already consists of 4884 terms, much

longer. MAPLE would have massive problems in computing the coefficients that are

needed to perform Pekeris’s method. This task must be decomposed into several

smaller computations that might lead to the desired recurrence relation. So far, we

were not able to perform this computation.

If the described approach works, one must ask the question how accurate the

result is. In this applied problem, the experimental values can serve as a reference

but not as the sample solution in the mathematical sense. It would therefore be nice

to know how much Frolov’s linear approximations influence the result and of course
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how much it is biased by the omitted boundaries for the variables. The computed

solution can only be seen as mathematically accurate if these influences are small

enough.

While working on this project, we came along many different coordinates that

might be used to perform Pekeris’s approach. We described the normal coordinates

which were accurate but too complicated and Frolov’s coordinates which were easy

too handle but not very accurate and eventually failed because the right terms in

the differential equation did not cancel out. There are other coordinates which are

in between these two approaches. One example are the coordinates pij which were

used to compute the inverse transform of the normal coordinates. These coordinates

are exact, nonlinear, but not as complicated as the normal coordinates. The inverses

of these coordinates contain roots but only one per inverse which might make them

easier to work with. They are not independent of each other but need to obey fewer

restrictions than Frolov’s coordinates do. Dropping these restrictions might not be

as severe as the restrictions we dropped while working with Frolov’s coordinates.

For a precise discussion of these coordinates, see [8]. Another set of coordinates

that might be helpful are the nonlinear coordinates described by P. S. C. Wang. For

a reference, see [8]. These coordinates range independently from 0 to ∞, but they

are not exact as they are derived purely from the triangular inequalities which does

not suffice as we have seen earlier. The problem we had with these coordinates is

that they are not as easy to invert as the pij and therefore might be too complicated

to apply Pekeris’s method.

Although it seems that there is no set of coordinates available in the short run

that can transfer Pekeris’s approach to higher dimensional systems, it is indeed

worth a try to search for them. If found, they would provide a computationally less

complex alternative to the variational methods that are used today.



27

Bibliography

[1] M. Reed, B. Simon, Methods of Modern Mathematical Physics I: Functional

Analysis Academic Press, 1980

[2] M. Reed, B. Simon, Methods of Modern Mathematical Physics II: Fourier

Analysis, Self-Adjointness Academic Press, 1975
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Appendix. MAPLE worksheets

These worksheets can serve as a reference to the different approaches described in

the thesis.

NormalCoordinates

> restart:

> apply(psi, a, b, c, d, e, f):

> #compute the laplacian in spherical coordinates

> fr1(x1, x2, x3, x4, x5, x6, x7, x8, x9) := sqrt(x1^2+x2^2+x3^2):

> fr2(x1, x2, x3, x4, x5, x6, x7, x8, x9) := sqrt(x4^2+x5^2+x6^2):

> fr3(x1, x2, x3, x4, x5, x6, x7, x8, x9) := sqrt(x7^2+x8^2+x9^2):

> fr12(x1, x2, x3, x4, x5, x6, x7, x8, x9) :=

sqrt((x4-x1)^2+(x5-x2)^2+(x6-x3)^2):

> fr13(x1, x2, x3, x4, x5, x6, x7, x8, x9) :=

sqrt((x7-x1)^2+(x8-x2)^2+(x9-x3)^2):

> fr23(x1, x2, x3, x4, x5, x6, x7, x8, x9) :=

sqrt((x7-x4)^2+(x8-x5)^2+(x9-x6)^2):

> with(LinearAlgebra):

> with(VectorCalculus):

> eq := simplify((1/2)*Laplacian(psi(

fr1(x1, x2, x3, x4, x5, x6, x7, x8, x9),

fr2(x1, x2, x3, x4, x5, x6, x7, x8, x9),

29
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fr3(x1, x2, x3, x4, x5, x6, x7, x8, x9),

fr12(x1, x2, x3, x4, x5, x6, x7, x8, x9),

fr13(x1, x2, x3, x4, x5, x6, x7, x8, x9),

fr23(x1, x2, x3, x4, x5, x6, x7, x8, x9)),

[x1, x2, x3, x4, x5, x6, x7, x8, x9])+

2*(E+Z/r1+Z/r2+Z/r3-1/r12-1/r13-1/r23),

{x1^2+x2^2+x3^2 = r1^2, x4^2+x5^2+x6^2 = r2^2,

x7^2+x8^2+x9^2 = r3^2, (x4-x1)^2+(x5-x2)^2+(x6-x3)^2 = r12^2,

(x7-x1)^2+(x8-x2)^2+(x9-x3)^2 = r13^2,

(x7-x4)^2+(x8-x5)^2+(x9-x6)^2 = r23^2}):

> eqsimple := sort(collect(simplify(eq, assume = positive), D)):

> #transform into normal coordinates

> apply(F, a, b, c, d, e, f):

> phi(a, b, c, d, e, f) := exp(-(1/2)*a-(1/2)

*b-(1/2)*c-(1/2)*d-(1/2)*e-(1/2)*f)*F(a, b, c, d, e, f):

> #compute the normal coordinates using the Cholesky decomposition

> g11 := simplify(sqrt(r1^2), assume = positive):

> g22 := simplify(sqrt(r2^2-g21^2), assume = positive)

> g31 := simplify((1/2)*(r3^2+r1^2-r13^2)/r1, assume = positive):

> g32 := simplify((1/2*(r3^2+r2^2-r23^2)-g31*g21)/g22,

assume = positive):

> g33 := simplify(sqrt(r3^2-g31^2-g32^2), assume = positive):

> x1(r1, r2, r3, r12, r13, r23) := r1:

> x2(r1, r2, r3, r12, r13, r23) := -(1/2)*(-r1^2-r2^2+r12^2)/r1:

> y2(r1, r2, r3, r12, r13, r23) := (1/2)*sqrt(2*r2^2*r1^2-r1^4

+2*r12^2*r1^2-r2^4+2*r12^2*r2^2-r12^4)/r1:

> x3(r1, r2, r3, r12, r13, r23) := -(1/2)*(-r3^2-r1^2+r13^2)/r1:

> y3(r1, r2, r3, r12, r13, r23) := -(1/2)*(-r3^2*r1^2-r2^2*r1^2

+2*r23^2*r1^2+r3^2*r2^2-r3^2*r12^2+r1^4-r12^2*r1^2-r13^2*r1^2

-r2^2*r13^2+r13^2*r12^2)/(r1*sqrt(2*r2^2*r1^2-r1^4+2*r12^2*r1^2



31

-r2^4+2*r12^2*r2^2-r12^4)):

> z3(r1, r2, r3, r12, r13, r23) := ((r12^2*r2^2*r1^2-r3^2*r2^2

*r12^2-r13^2*r3^2*r2^2-r13^2*r3^2*r12^2-r2^2*r13^2*r12^2+r23^2

*r3^2*r2^2-r23^2*r3^2*r12^2-r23^2*r13^2*r2^2+r23^2*r13^2*r12^2

-r3^2*r12^2*r1^2+r3^2*r12^4+r3^4*r12^2+r13^2*r3^2*r1^2-r2^2

*r13^2*r1^2+r2^4*r13^2+r2^2*r13^4-r23^2*r3^2*r1^2-r23^2*r2^2

*r1^2-r23^2*r12^2*r1^2-r23^2*r13^2*r1^2+r23^4*r1^2+r23^2*r1^4)

/(-2*r2^2*r1^2+r1^4-2*r12^2*r1^2+r2^4-2*r12^2*r2^2+r12^4))^(1/2):

> #compute the operator in the normal coordinates step by step

> #computation in one step runs out of memory

> eqnormal1 := (1/2)*(4*E*r1*r12*r13*r2*r23*r3

*(1/(r1*r12*r13*r2*r23*r3))):

> eqnormal2 := simplify((1/2)/r1r12r13r2r23r3*(-r1^3*r12*r2*r23

*(diff(phi(x1(r1, r2, r3, r12, r13, r23),

x2(r1, r2, r3, r12, r13, r23),

y2(r1, r2, r3, r12, r13, r23),

x3(r1, r2, r3, r12, r13, r23),

y3(r1, r2, r3, r12, r13, r23),

z3(r1, r2, r3, r12, r13, r23)), r3, r13))),

{r1 = x1, r12^2 = (x1-x2)^2+y2^2, r13^2 =

(x1-x3)^2+y3^2+z3^2, r2^2 = x2^2+y2^2,

r23^2 = (x2-x3)^2+(y2-y3)^2+z3^2, r3^2 = x3^2+y3^2+z3^2}):

> eqnormal3 := simplify((1/2)/r1r12r13r2r23r3

*(-r1^3*r13*r23*r3*(diff(phi(

x1(r1, r2, r3, r12, r13, r23),

x2(r1, r2, r3, r12, r13, r23),

y2(r1, r2, r3, r12, r13, r23),

x3(r1, r2, r3, r12, r13, r23),

y3(r1, r2, r3, r12, r13, r23),

z3(r1, r2, r3, r12, r13, r23)), r2, r12))),
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{r1 = x1, r12^2 = (x1-x2)^2+y2^2, r13^2 =

(x1-x3)^2+y3^2+z3^2, r2^2 = x2^2+y2^2,

r23^2 = (x2-x3)^2+(y2-y3)^2

+z3^2, r3^2 = x3^2+y3^2+z3^2}):

> eqnormal4 := simplify((1/2)*r1^2*r12*r2*r23*r3

*(diff(phi(x1(r1, r2, r3, r12, r13, r23),

x2(r1, r2, r3, r12, r13, r23),

y2(r1, r2, r3, r12, r13, r23),

x3(r1, r2, r3, r12, r13, r23),

y3(r1, r2, r3, r12, r13, r23),

z3(r1, r2, r3, r12, r13, r23)), r1, r13))

/r1r12r13r2r23r3, {r1 = x1, r12^2 = (x1-x2)^2

+y2^2, r13^2 = (x1-x3)^2+y3^2+z3^2,

r2^2 = x2^2+y2^2, r23^2 = (x2-x3)^2+

(y2-y3)^2+z3^2, r3^2 = x3^2+y3^2+z3^2}):

> eqnormal5 := simplify((1/2)*r1^2*r13*r2*r23*r3

*(diff(phi(x1(r1, r2, r3, r12, r13, r23),

x2(r1, r2, r3, r12, r13, r23),

y2(r1, r2, r3, r12, r13, r23),

x3(r1, r2, r3, r12, r13, r23),

y3(r1, r2, r3, r12, r13, r23),

z3(r1, r2, r3, r12, r13, r23)), r1, r12))

/r1r12r13r2r23r3,{r1 = x1, r12^2 = (x1-x2)^2

+y2^2, r13^2 = (x1-x3)^2+y3^2+z3^2,

r2^2 = x2^2+y2^2, r23^2 = (x2-x3)^2

+(y2-y3)^2+z3^2, r3^2 = x3^2+y3^2+z3^2}):

> eqnormal6 := simplify((1/2)/r1r12r13r2r23r3

*(-r1*r12^3*r2*r3

*(diff(phi(x1(r1, r2, r3, r12, r13, r23),

x2(r1, r2, r3, r12, r13, r23),
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y2(r1, r2, r3, r12, r13, r23),

x3(r1, r2, r3, r12, r13, r23),

y3(r1, r2, r3, r12, r13, r23),

z3(r1, r2, r3, r12, r13, r23)),r13, r23))),

{r1 = x1, r12^2 = (x1-x2)^2+y2^2,

r13^2 = (x1-x3)^2+y3^2+z3^2, r2^2 = x2^2

+y2^2, r23^2 = (x2-x3)^2+(y2-y3)^2+z3^2,

r3^2 = x3^2+y3^2+z3^2}):

> eqnormal7 := simplify((1/2)*r1*r12^2*r13*r2*r3

*(diff(phi(x1(r1, r2, r3, r12, r13, r23),

x2(r1, r2, r3, r12, r13, r23),

y2(r1, r2, r3, r12, r13, r23),

x3(r1, r2, r3, r12, r13, r23),

y3(r1, r2, r3, r12, r13, r23),

z3(r1, r2, r3, r12, r13, r23)), r12, r23))

/r1r12r13r2r23r3,{r1 = x1, r12^2 = (x1-x2)^2

+y2^2, r13^2 = (x1-x3)^2+y3^2+z3^2,

r2^2 = x2^2+y2^2, r23^2 = (x2-x3)^2+(y2-y3)^2+z3^2,

r3^2 = x3^2+y3^2+z3^2}):

> eqnormal8 := simplify((1/2)*r1*r12^2*r13*r23*r3

*(diff(phi(x1(r1, r2, r3, r12, r13, r23),

x2(r1, r2, r3, r12, r13, r23),

y2(r1, r2, r3, r12, r13, r23),

x3(r1, r2, r3, r12, r13, r23),

y3(r1, r2, r3, r12, r13, r23),

z3(r1, r2, r3, r12, r13, r23)), r2, r12))

/r1r12r13r2r23r3, {r1 = x1, r12^2 = (x1-x2)^2

+y2^2, r13^2 = (x1-x3)^2+y3^2+z3^2, r2^2 = x2^2+y2^2,

r23^2 = (x2-x3)^2+(y2-y3)^2+z3^2,

r3^2 = x3^2+y3^2+z3^2}):
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> eqnormal9 := simplify((1/2)*r1*r12^2*r2*r23*r3

*(diff(phi(x1(r1, r2, r3, r12, r13, r23),

x2(r1, r2, r3, r12, r13, r23),

y2(r1, r2, r3, r12, r13, r23),

x3(r1, r2, r3, r12, r13, r23),

y3(r1, r2, r3, r12, r13, r23),

z3(r1, r2, r3, r12, r13, r23)), r12, r13))

/r1r12r13r2r23r3, {r1 = x1, r12^2 = (x1-x2)^2

+y2^2, r13^2 = (x1-x3)^2+y3^2+z3^2,

r2^2 = x2^2+y2^2, r23^2 = (x2-x3)^2

+(y2-y3)^2+z3^2, r3^2 = x3^2+y3^2+z3^2}):

> eqnormal10 := simplify((1/2)*r1*r12*r13^2*r2*r23

*(diff(phi(x1(r1, r2, r3, r12, r13, r23),

x2(r1, r2, r3, r12, r13, r23),

y2(r1, r2, r3, r12, r13, r23),

x3(r1, r2, r3, r12, r13, r23),

y3(r1, r2, r3, r12, r13, r23),

z3(r1, r2, r3, r12, r13, r23)), r3, r13))

/r1r12r13r2r23r3, {r1 = x1, r12^2 = (x1-x2)^2

+y2^2, r13^2 = (x1-x3)^2+y3^2+z3^2, r2^2 = x2^2

+y2^2, r23^2 = (x2-x3)^2+(y2-y3)^2+z3^2,

r3^2 = x3^2+y3^2+z3^2}):

> eqnormal11 := simplify((1/2)*r1*r12*r13^2*r2*r3

*(diff(phi(x1(r1, r2, r3, r12, r13, r23),

x2(r1, r2, r3, r12, r13, r23),

y2(r1, r2, r3, r12, r13, r23),

x3(r1, r2, r3, r12, r13, r23),

y3(r1, r2, r3, r12, r13, r23),

z3(r1, r2, r3, r12, r13, r23)),

r13, r23))/r1r12r13r2r23r3, {r1 = x1, r12^2 =
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(x1-x2)^2+y2^2, r13^2 = (x1-x3)^2+y3^2+z3^2,

r2^2 = x2^2+y2^2,r23^2 = (x2-x3)^2+(y2-y3)^2

+z3^2, r3^2 = x3^2+y3^2+z3^2}):

> eqnormal12 := simplify((1/2)/r1r12r13r2r23r3

*(-r1*r12*r13*r2^3*(diff(phi(

x1(r1, r2, r3, r12, r13, r23),

x2(r1, r2, r3, r12, r13, r23),

y2(r1, r2, r3, r12, r13, r23),

x3(r1, r2, r3, r12, r13, r23),

y3(r1, r2, r3, r12, r13, r23),

z3(r1, r2, r3, r12, r13, r23)), r3, r23))),

{r1 = x1, r12^2 = (x1-x2)^2+y2^2,

r13^2 = (x1-x3)^2+y3^2+z3^2, r2^2 = x2^2+y2^2,

r23^2 = (x2-x3)^2+(y2-y3)^2+z3^2,

r3^2 = x3^2+y3^2+z3^2}):

> eqnormal13 := simplify((1/2)*r1*r12*r13*r2^2*r3

*(diff(phi(x1(r1, r2, r3, r12, r13, r23),

x2(r1, r2, r3, r12, r13, r23),

y2(r1, r2, r3, r12, r13, r23),

x3(r1, r2, r3, r12, r13, r23),

y3(r1, r2, r3, r12, r13, r23),

z3(r1, r2, r3, r12, r13, r23)), r2, r23))

/r1r12r13r2r23r3, {r1 = x1, r12^2 = (x1-x2)^2

+y2^2, r13^2 = (x1-x3)^2+y3^2+z3^2, r2^2 = x2^2

+y2^2, r23^2 = (x2-x3)^2+(y2-y3)^2+z3^2,

r3^2 = x3^2+y3^2+z3^2}):

> eqnormal14 := simplify((1/2)*r1*r12*r13*r2*r23^2

*(diff(phi(x1(r1, r2, r3, r12, r13, r23),

x2(r1, r2, r3, r12, r13, r23),

y2(r1, r2, r3, r12, r13, r23),
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x3(r1, r2, r3, r12, r13, r23),

y3(r1, r2, r3, r12, r13, r23),

z3(r1, r2, r3, r12, r13, r23)), r3, r23))

/r1r12r13r2r23r3, {r1 = x1,

r12^2 = (x1-x2)^2+y2^2,r13^2 = (x1-x3)^2

+y3^2+z3^2, r2^2 = x2^2+y2^2,

r23^2 = (x2-x3)^2+(y2-y3)^2+z3^2,

r3^2 = x3^2+y3^2+z3^2}):

> eqnormal15 := simplify((1/2)*r1*r12*r13*r2*r23*r3

*(diff(phi(x1(r1, r2, r3, r12, r13, r23),

x2(r1, r2, r3, r12, r13, r23),

y2(r1, r2, r3, r12, r13, r23),

x3(r1, r2, r3, r12, r13, r23),

y3(r1, r2, r3, r12, r13, r23),

z3(r1, r2, r3, r12, r13, r23)), r1, r1))

/r1r12r13r2r23r3, {r1 = x1,

r12^2 = (x1-x2)^2+y2^2, r13^2 = (x1-x3)^2

+y3^2+z3^2,r2^2 = x2^2+y2^2, r23^2 = (x2-x3)^2+

(y2-y3)^2+z3^2, r3^2 = x3^2+y3^2+z3^2}):

> eqnormal16 := simplify((1/2)*r1*r12*r13*r2*r23*r3

*(diff(phi(x1(r1, r2, r3, r12, r13, r23),

x2(r1, r2, r3, r12, r13, r23),

y2(r1, r2, r3, r12, r13, r23),

x3(r1, r2, r3, r12, r13, r23),

y3(r1, r2, r3, r12, r13, r23),

z3(r1, r2, r3, r12, r13, r23)), r2, r2))

/r1r12r13r2r23r3, {r1 = x1, r12^2 = (x1-x2)^2

+y2^2, r13^2 = (x1-x3)^2+y3^2+z3^2,

r2^2 = x2^2+y2^2, r23^2 = (x2-x3)^2+(y2-y3)^2

+z3^2, r3^2 = x3^2+y3^2+z3^2}):
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> eqnormal17 := simplify((1/2)*r1*r12*r13*r2*r23*r3

*(diff(phi(x1(r1, r2, r3, r12, r13, r23),

x2(r1, r2, r3, r12, r13, r23),

y2(r1, r2, r3, r12, r13, r23),

x3(r1, r2, r3, r12, r13, r23),

y3(r1, r2, r3, r12, r13, r23),

z3(r1, r2, r3, r12, r13, r23)), r3, r3))

/r1r12r13r2r23r3, {r1 = x1, r12^2 = (x1-x2)^2

+y2^2, r13^2 = (x1-x3)^2+y3^2+z3^2,

r2^2 = x2^2+y2^2,r23^2 = (x2-x3)^2+(y2-y3)^2

+z3^2,r3^2 = x3^2+y3^2+z3^2}):

> eqnormal18 := simplify((1/2)/r1r12r13r2r23r3

*(2*r1*r12*r13*r2*r23*r3*(diff(phi(

x1(r1, r2, r3, r12, r13, r23),

x2(r1, r2, r3, r12, r13, r23),

y2(r1, r2, r3, r12, r13, r23),

x3(r1, r2, r3, r12, r13, r23),

y3(r1, r2, r3, r12, r13, r23),

z3(r1, r2, r3, r12, r13, r23)), r12, r12))),

{r1 = x1, r12^2 = (x1-x2)^2+y2^2, r13^2 =

(x1-x3)^2+y3^2+z3^2, r2^2 = x2^2+y2^2,

r23^2 = (x2-x3)^2+(y2-y3)^2+z3^2,

r3^2 = x3^2+y3^2+z3^2}):

> eqnormal19 := simplify((1/2)/r1r12r13r2r23r3

*(2*r1*r12*r13*r2*r23*r3

*(diff(phi(x1(r1, r2, r3, r12, r13, r23),

x2(r1, r2, r3, r12, r13, r23),

y2(r1, r2, r3, r12, r13, r23),

x3(r1, r2, r3, r12, r13, r23),

y3(r1, r2, r3, r12, r13, r23),
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z3(r1, r2, r3, r12, r13, r23)), r13, r13))),

{r1 = x1, r12^2 = (x1-x2)^2+y2^2, r13^2 =

(x1-x3)^2+y3^2+z3^2, r2^2 = x2^2+y2^2,

r23^2 = (x2-x3)^2+(y2-y3)^2+z3^2,

r3^2 = x3^2+y3^2+z3^2}):

> eqnormal20 := simplify((1/2)/r1r12r13r2r23r3

*(2*r1*r12*r13*r2*r23*r3

*(diff(phi(x1(r1, r2, r3, r12, r13, r23),

x2(r1, r2, r3, r12, r13, r23),

y2(r1, r2, r3, r12, r13, r23),

x3(r1, r2, r3, r12, r13, r23),

y3(r1, r2, r3, r12, r13, r23),

z3(r1, r2, r3, r12, r13, r23)), r23, r23))),

{r1 = x1, r12^2 = (x1-x2)^2+y2^2,

r13^2 = (x1-x3)^2+y3^2+z3^2,

r2^2 = x2^2+y2^2, r23^2 = (x2-x3)^2

+(y2-y3)^2+z3^2, r3^2 = x3^2+y3^2+z3^2}):

> eqnormal21 := simplify((1/2)*r1*r12*r13*r2*r3^2

*(diff(phi(x1(r1, r2, r3, r12, r13, r23),

x2(r1, r2, r3, r12, r13, r23),

y2(r1, r2, r3, r12, r13, r23),

x3(r1, r2, r3, r12, r13, r23),

y3(r1, r2, r3, r12, r13, r23),

z3(r1, r2, r3, r12, r13, r23)), r3, r23))

/r1r12r13r2r23r3, {r1 = x1, r12^2 = (x1-x2)^2

+y2^2, r13^2 = (x1-x3)^2+y3^2+z3^2, r2^2 = x2^2

+y2^2, r23^2 = (x2-x3)^2+(y2-y3)^2+z3^2,

r3^2 = x3^2+y3^2+z3^2}):

> eqnormal22 := simplify((1/2)*r1*r12*r13*r23^2*r3

*(diff(phi(x1(r1, r2, r3, r12, r13, r23),
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x2(r1, r2, r3, r12, r13, r23),

y2(r1, r2, r3, r12, r13, r23),

x3(r1, r2, r3, r12, r13, r23),

y3(r1, r2, r3, r12, r13, r23),

z3(r1, r2, r3, r12, r13, r23)), r2, r23))

/r1r12r13r2r23r3, {r1 = x1, r12^2 = (x1-x2)^2

+y2^2, r13^2 = (x1-x3)^2+y3^2+z3^2,

r2^2 = x2^2+y2^2, r23^2 = (x2-x3)^2

+(y2-y3)^2+z3^2, r3^2 = x3^2+y3^2+z3^2}):

> eqnormal23 := simplify((1/2)/r1r12r13r2r23r3

*(-r1*r12*r13*r3^3*(diff(phi(

x1(r1, r2, r3, r12, r13, r23),

x2(r1, r2, r3, r12, r13, r23),

y2(r1, r2, r3, r12, r13, r23),

x3(r1, r2, r3, r12, r13, r23),

y3(r1, r2, r3, r12, r13, r23),

z3(r1, r2, r3, r12, r13, r23)), r2, r23))),

{r1 = x1, r12^2 = (x1-x2)^2+y2^2, r13^2 =

(x1-x3)^2+y3^2+z3^2, r2^2 = x2^2+y2^2,

r23^2 = (x2-x3)^2+(y2-y3)^2+z3^2,

r3^2 = x3^2+y3^2+z3^2}):

> eqnormal24 := simplify((1/2)*r1*r12*r2*r23^2*r3

*(diff(phi(x1(r1, r2, r3, r12, r13, r23),

x2(r1, r2, r3, r12, r13, r23),

y2(r1, r2, r3, r12, r13, r23),

x3(r1, r2, r3, r12, r13, r23),

y3(r1, r2, r3, r12, r13, r23),

z3(r1, r2, r3, r12, r13, r23)), r13, r23))

/r1r12r13r2r23r3, {r1 = x1, r12^2 = (x1-x2)^2

+y2^2, r13^2 = (x1-x3)^2+y3^2+z3^2,
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r2^2 = x2^2+y2^2,r23^2 = (x2-x3)^2+(y2-y3)^2

+z3^2, r3^2 = x3^2+y3^2+z3^2}):

> eqnormal25 := simplify((1/2)*r1*r12*r2*r23*r3^2

*(diff(phi(x1(r1, r2, r3, r12, r13, r23),

x2(r1, r2, r3, r12, r13, r23),

y2(r1, r2, r3, r12, r13, r23),

x3(r1, r2, r3, r12, r13, r23),

y3(r1, r2, r3, r12, r13, r23),

z3(r1, r2, r3, r12, r13, r23)), r3, r13))

/r1r12r13r2r23r3, {r1 = x1, r12^2 = (x1-x2)^2

+y2^2, r13^2 = (x1-x3)^2+y3^2+z3^2,

r2^2 = x2^2+y2^2, r23^2 = (x2-x3)^2

+(y2-y3)^2+z3^2, r3^2 = x3^2+y3^2+z3^2}):

> eqnormal26 := simplify((1/2)/r1r12r13r2r23r3

*(-r1*r13^3*r2*r3

*(diff(phi(x1(r1, r2, r3, r12, r13, r23),

x2(r1, r2, r3, r12, r13, r23),

y2(r1, r2, r3, r12, r13, r23),

x3(r1, r2, r3, r12, r13, r23),

y3(r1, r2, r3, r12, r13, r23),

z3(r1, r2, r3, r12, r13, r23)), r12, r23))),

{r1 = x1, r12^2 = (x1-x2)^2+y2^2,

r13^2 = (x1-x3)^2+y3^2+z3^2,

r2^2 = x2^2+y2^2, r23^2 = (x2-x3)^2+(y2-y3)^2

+z3^2, r3^2 = x3^2+y3^2+z3^2}):

> eqnormal27 := simplify((1/2)*r1*r13^2*r2*r23*r3

*(diff(phi(x1(r1, r2, r3, r12, r13, r23),

x2(r1, r2, r3, r12, r13, r23),

y2(r1, r2, r3, r12, r13, r23),

x3(r1, r2, r3, r12, r13, r23),
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y3(r1, r2, r3, r12, r13, r23),

z3(r1, r2, r3, r12, r13, r23)),r12, r13))

/r1r12r13r2r23r3,{r1 = x1, r12^2 = (x1-x2)^2

+y2^2, r13^2 = (x1-x3)^2+y3^2+z3^2,

r2^2 = x2^2+y2^2, r23^2 = (x2-x3)^2+(y2-y3)^2

+z3^2, r3^2 = x3^2+y3^2+z3^2}):

> eqnormal28 := simplify((1/2)*r1*r13*r2^2*r23*r3

*(diff(phi(x1(r1, r2, r3, r12, r13, r23),

x2(r1, r2, r3, r12, r13, r23),

y2(r1, r2, r3, r12, r13, r23),

x3(r1, r2, r3, r12, r13, r23),

y3(r1, r2, r3, r12, r13, r23),

z3(r1, r2, r3, r12, r13, r23)), r2, r12))

/r1r12r13r2r23r3, {r1 = x1, r12^2 = (x1-x2)^2

+y2^2, r13^2 = (x1-x3)^2+y3^2+z3^2,

r2^2 = x2^2+y2^2, r23^2 = (x2-x3)^2+(y2-y3)^2

+z3^2, r3^2 = x3^2+y3^2+z3^2}):

> eqnormal29 := simplify((1/2)*r1*r13*r2*r23^2*r3

*(diff(phi(x1(r1, r2, r3, r12, r13, r23),

x2(r1, r2, r3, r12, r13, r23),

y2(r1, r2, r3, r12, r13, r23),

x3(r1, r2, r3, r12, r13, r23),

y3(r1, r2, r3, r12, r13, r23),

z3(r1, r2, r3, r12, r13, r23)),

r12, r23))/r1r12r13r2r23r3, {r1 = x1,

r12^2 = (x1-x2)^2+y2^2, r13^2= (x1-x3)^2

+y3^2+z3^2, r2^2 = x2^2+y2^2, r23^2 = (x2-x3)^2

+(y2-y3)^2+z3^2, r3^2 = x3^2+y3^2+z3^2}):

> eqnormal30 := simplify((1/2)/r1r12r13r2r23r3

*(-r1*r2*r23^3*r3*(diff(phi(
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x1(r1, r2, r3, r12, r13, r23),

x2(r1, r2, r3, r12, r13, r23),

y2(r1, r2, r3, r12, r13, r23),

x3(r1, r2, r3, r12, r13, r23),

y3(r1, r2, r3, r12, r13, r23),

z3(r1, r2, r3, r12, r13, r23)), r12, r13))),

{r1 = x1, r12^2 =(x1-x2)^2+y2^2, r13^2 = (x1-x3)^2

+y3^2+z3^2, r2^2 = x2^2+y2^2, r23^2 = (x2-x3)^2

+(y2-y3)^2+z3^2, r3^2 = x3^2+y3^2+z3^2}):

> eqnormal31 := simplify((1/2)*r12^2*r13*r2*r23*r3

*(diff(phi(x1(r1, r2, r3, r12, r13, r23),

x2(r1, r2, r3, r12, r13, r23),

y2(r1, r2, r3, r12, r13, r23),

x3(r1, r2, r3, r12, r13, r23),

y3(r1, r2, r3, r12, r13, r23),

z3(r1, r2, r3, r12, r13, r23)), r1, r12))

/r1r12r13r2r23r3, {r1 = x1, r12^2 = (x1-x2)^2

+y2^2, r13^2 =(x1-x3)^2+y3^2+z3^2,

r2^2 = x2^2+y2^2, r23^2 = (x2-x3)^2+(y2-y3)^2

+z3^2, r3^2 = x3^2+y3^2+z3^2}):

> eqnormal32 := simplify((1/2)*r12*r13^2*r2*r23*r3

*(diff(phi(x1(r1, r2, r3, r12, r13, r23),

x2(r1, r2, r3, r12, r13, r23),

y2(r1, r2, r3, r12, r13, r23),

x3(r1, r2, r3, r12, r13, r23),

y3(r1, r2, r3, r12, r13, r23),

z3(r1, r2, r3, r12, r13, r23)), r1, r13))

/r1r12r13r2r23r3, {r1 = x1, r12^2 = (x1-x2)^2

+y2^2, r13^2 = (x1-x3)^2 +y3^2+z3^2,

r2^2 = x2^2+y2^2, r23^2 = (x2-x3)^2+(y2-y3)^2
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+z3^2, r3^2 = x3^2+y3^2+z3^2}):

> eqnormal33 := simplify((1/2)/r1r12r13r2r23r3

*(-r12*r2*r23*r3^3*(diff(phi(

x1(r1, r2, r3, r12, r13, r23),

x2(r1, r2, r3, r12, r13, r23),

y2(r1, r2, r3, r12, r13, r23),

x3(r1, r2, r3, r12, r13, r23),

y3(r1, r2, r3, r12, r13, r23),

z3(r1, r2, r3, r12, r13, r23)), r1, r13))),

{r1 = x1, r12^2 = (x1-x2)^2+y2^2, r13^2

= (x1-x3)^2+y3^2+z3^2,

r2^2 = x2^2+y2^2, r23^2 = (x2-x3)^2+

(y2-y3)^2+z3^2, r3^2 = x3^2+y3^2+z3^2}):

> eqnormal34 := simplify((1/2)/r1r12r13r2r23r3

*(-r13*r2^3*r23*r3

*(diff(phi(x1(r1, r2, r3, r12, r13, r23),

x2(r1, r2, r3, r12, r13, r23),

y2(r1, r2, r3, r12, r13, r23),

x3(r1, r2, r3, r12, r13, r23),

y3(r1, r2, r3, r12, r13, r23),

z3(r1, r2, r3, r12, r13, r23)),r1, r12))),

{r1 = x1, r12^2 = (x1-x2)^2

+y2^2, r13^2 =(x1-x3)^2+y3^2+z3^2,

r2^2 = x2^2+y2^2, r23^2 = (x2-x3)^2

+(y2-y3)^2+z3^2, r3^2 = x3^2+y3^2+z3^2}):

> eqnormal35 := simplify((1/2)/r1r12r13r2r23r3

*(4*Z*r1*r12*r13*r2*r23), {r1 = x1,

r12^2 = (x1-x2)^2+y2^2, r13^2 = (x1-x3)^2

+y3^2+z3^2, r2^2 = x2^2+y2^2, r23^2 = (x2-x3)^2

+(y2-y3)^2+z3^2, r3^2 = x3^2+y3^2+z3^2}):
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> eqnormal36 := simplify((1/2)/r1r12r13r2r23r3

*(4*Z*r1*r12*r13*r23*r3), {r1 = x1,

r12^2 = (x1-x2)^2+y2^2, r13^2 = (x1-x3)^2

+y3^2+z3^2, r2^2 = x2^2+y2^2, r23^2 = (x2-x3)^2

+(y2-y3)^2+z3^2, r3^2 = x3^2+y3^2+z3^2}):

> eqnormal37 := simplify((1/2)/r1r12r13r2r23r3

*(4*Z*r12*r13*r2*r23*r3), {r1 = x1, r12^2 =

(x1-x2)^2+y2^2, r13^2 = (x1-x3)^2+y3^2+z3^2,

r2^2 = x2^2+y2^2, r23^2 = (x2-x3)^2+(y2-y3)^2+z3^2,

r3^2 = x3^2+y3^2+z3^2}):

> eqnormal38 := simplify((1/2)/r1r12r13r2r23r3

*(2*r1*r12*r13*r2*r23*(diff(phi(

x1(r1, r2, r3, r12, r13, r23),

x2(r1, r2, r3, r12, r13, r23),

y2(r1, r2, r3, r12, r13, r23),

x3(r1, r2, r3, r12, r13, r23),

y3(r1, r2, r3, r12, r13, r23),

z3(r1, r2, r3, r12, r13, r23)), r3))),

{r1 = x1, r12^2 = (x1-x2)^2+y2^2,

r13^2 = (x1-x3)^2+y3^2+z3^2, r2^2

= x2^2+y2^2,r23^2 = (x2-x3)^2+(y2-y3)^2

+z3^2, r3^2 = x3^2+y3^2+z3^2}):

> eqnormal39 := simplify((1/2)/r1r12r13r2r23r3

*(4*r1*r12*r13*r2*r3

*(diff(phi(x1(r1, r2, r3, r12, r13, r23),

x2(r1, r2, r3, r12, r13, r23),

y2(r1, r2, r3, r12, r13, r23),

x3(r1, r2, r3, r12, r13, r23),

y3(r1, r2, r3, r12, r13, r23),

z3(r1, r2, r3, r12, r13, r23)), r23))),
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{r1 = x1, r12^2 = (x1-x2)^2+y2^2,

r13^2 = (x1-x3)^2+y3^2+z3^2, r2^2 = x2^2

+y2^2, r23^2 = (x2-x3)^2+(y2-y3)^2+z3^2,

r3^2 = x3^2+y3^2+z3^2}):

> eqnormal40 := simplify((1/2)/r1r12r13r2r23r3

*(2*r1*r12*r13*r23*r3

*(diff(phi(x1(r1, r2, r3, r12, r13, r23),

x2(r1, r2, r3, r12, r13, r23),

y2(r1, r2, r3, r12, r13, r23),

x3(r1, r2, r3, r12, r13, r23),

y3(r1, r2, r3, r12, r13, r23),

z3(r1, r2, r3, r12, r13, r23)), r2))),

{r1 = x1, r12^2 = (x1-x2)^2+y2^2,

r13^2 = (x1-x3)^2+y3^2+z3^2,

r2^2 = x2^2+y2^2, r23^2 = (x2-x3)^2

+(y2-y3)^2+z3^2, r3^2 = x3^2+y3^2+z3^2}):

> eqnormal41 := simplify((1/2)

/r1r12r13r2r23r3*(4*r1*r12*r2*r23*r3

*(diff(phi(x1(r1, r2, r3, r12, r13, r23),

x2(r1, r2, r3, r12, r13, r23),

y2(r1, r2, r3, r12, r13, r23),

x3(r1, r2, r3, r12, r13, r23),

y3(r1, r2, r3, r12, r13, r23),

z3(r1, r2, r3, r12, r13, r23)), r13))),

{r1 = x1, r12^2 = (x1-x2)^2+y2^2,

r13^2 = (x1-x3)^2+y3^2+z3^2, r2^2 = x2^2

+y2^2, r23^2 = (x2-x3)^2+(y2-y3)^2

+z3^2, r3^2 = x3^2+y3^2+z3^2}):

> eqnormal42 := simplify((1/2)

/r1r12r13r2r23r3*(4*r1*r13*r2*r23*r3



46

*(diff(phi(x1(r1, r2, r3, r12, r13, r23),

x2(r1, r2, r3, r12, r13, r23),

y2(r1, r2, r3, r12, r13, r23),

x3(r1, r2, r3, r12, r13, r23),

y3(r1, r2, r3, r12, r13, r23),

z3(r1, r2, r3, r12, r13, r23)), r12))),

{r1 = x1, r12^2 = (x1-x2)^2+y2^2, r13^2 =

(x1-x3)^2+y3^2+z3^2, r2^2 = x2^2+y2^2,

r23^2 = (x2-x3)^2+(y2-y3)^2+z3^2,

r3^2 = x3^2+y3^2+z3^2}):

> eqnormal43 := simplify((1/2)/r1r12r13r2r23r3

*(2*r12*r13*r2*r23*r3

*(diff(phi(x1(r1, r2, r3, r12, r13, r23),

x2(r1, r2, r3, r12, r13, r23),

y2(r1, r2, r3, r12, r13, r23),

x3(r1, r2, r3, r12, r13, r23),

y3(r1, r2, r3, r12, r13, r23),

z3(r1, r2, r3, r12, r13, r23)), r1))),

{r1 = x1, r12^2 = (x1-x2)^2+y2^2,

r13^2 = (x1-x3)^2+y3^2+z3^2, r2^2 = x2^2+y2^2,

r23^2 = (x2-x3)^2+(y2-y3)^2+z3^2,

r3^2 = x3^2+y3^2+z3^2}):

> eqnormal44 := simplify((1/2)/r1r12r13r2r23r3

*(-4*r1*r12*r13*r2*r3), {r1 = x1,

r12^2 = (x1-x2)^2+y2^2, r13^2 = (x1-x3)^2

+y3^2+z3^2, r2^2 = x2^2+y2^2, r23^2 = (x2-x3)^2

+(y2-y3)^2+z3^2, r3^2 = x3^2+y3^2+z3^2}):

> eqnormal45 := simplify((1/2)/r1r12r13r2r23r3

*(-4*r1*r12*r2*r23*r3), {r1 = x1,

r12^2 = (x1-x2)^2+y2^2, r13^2 = (x1-x3)^2
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+y3^2+z3^2, r2^2 = x2^2+y2^2, r23^2 = (x2-x3)^2

+(y2-y3)^2+z3^2, r3^2 = x3^2+y3^2+z3^2}):

> eqnormal46 := simplify((1/2)

/r1r12r13r2r23r3*(-4*r1*r13*r2*r23*r3),

{r1 = x1, r12^2 = (x1-x2)^2+y2^2,

r13^2 = (x1-x3)^2+y3^2+z3^2, r2^2 = x2^2+y2^2,

r23^2 = (x2-x3)^2+(y2-y3)^2+z3^2,

r3^2 = x3^2+y3^2+z3^2}):

> eqnormalFinal :=simplify(eqnormal1+eqnormal2+eqnormal3

+eqnormal4+eqnormal5+eqnormal6+eqnormal7+eqnormal8+eqnormal9

+eqnormal10+eqnormal11+eqnormal12+eqnormal13+eqnormal14

+eqnormal15+eqnormal16+eqnormal17+eqnormal18+eqnormal19

+eqnormal20+eqnormal21+eqnormal22+eqnormal23+eqnormal24

+eqnormal25+eqnormal26+eqnormal27+eqnormal28+eqnormal29

+eqnormal30+eqnormal31+eqnormal32+eqnormal33+eqnormal34

+eqnormal35+eqnormal36+eqnormal37+eqnormal38+eqnormal39

+eqnormal40+eqnormal41+eqnormal42+eqnormal43+eqnormal44

+eqnormal45+eqnormal46,{r1 = x1, r12^2 = (x1-x2)^2+y2^2,

r13^2 = (x1-x3)^2+y3^2+z3^2, r2^2 = x2^2+y2^2,

r23^2 = (x2-x3)^2+(y2-y3)^2+z3^2, r3^2 = x3^2+y3^2+z3^2}):

> #not enough memory for these computations either
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FrolovCoordinates and FrolovPrefactors

The first parts of these two worksheets are identical. The only difference is that in

the worksheet ’FrolovCoordinates’ the special choice (a, b, c, d, e, f) = (1, 1, 1, 1, 1, 1)

is made. The first part for both worksheets is:

> restart:

> #compute the laplacian in spherical coordinates

> apply(psi, a, b, c, d, e, f):

> fr1(x1,x2,x3,x4,x5,x6,x7,x8,x9):= sqrt(x1^2+x2^2+x3^2):

> fr2(x1,x2,x3,x4,x5,x6,x7,x8,x9):=sqrt(x4^2+x5^2+x6^2):

> fr3(x1,x2,x3,x4,x5,x6,x7,x8,x9):=sqrt(x7^2+x8^2+x9^2):

> fr12(x1,x2,x3,x4,x5,x6,x7,x8,x9):=sqrt((x4-x1)^2

+(x5-x2)^2+(x6-x3)^2):

> fr13(x1,x2,x3,x4,x5,x6,x7,x8,x9):=sqrt((x7-x1)^2

+(x8-x2)^2+(x9-x3)^2):

> fr23(x1,x2,x3,x4,x5,x6,x7,x8,x9):=sqrt((x7-x4)^2

+(x8-x5)^2+(x9-x6)^2):

> with(LinearAlgebra): with(VectorCalculus):

> eq := simplify((1/2)*Laplacian(psi(

fr1(x1, x2, x3, x4, x5, x6, x7, x8, x9),

fr2(x1, x2, x3, x4, x5, x6, x7, x8, x9),

fr3(x1, x2, x3, x4, x5, x6, x7, x8, x9),

fr12(x1, x2, x3, x4, x5, x6, x7, x8, x9),

fr13(x1, x2, x3, x4, x5, x6, x7, x8, x9),

fr23(x1, x2, x3, x4, x5, x6, x7, x8, x9)),

[x1, x2, x3, x4, x5, x6, x7, x8, x9])

+(2*(E+Z/r1+Z/r2+Z/r3-1/r12-1/r13-1/r23))

*psi(fr1(x1, x2, x3, x4, x5, x6, x7, x8, x9),

fr2(x1, x2, x3, x4, x5, x6, x7, x8, x9),
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fr3(x1, x2, x3, x4, x5, x6, x7, x8, x9),

fr12(x1, x2, x3, x4, x5, x6, x7, x8, x9),

fr13(x1, x2, x3, x4, x5, x6, x7, x8, x9),

fr23(x1, x2, x3, x4, x5, x6, x7, x8, x9)),

{x1^2+x2^2+x3^2 = r1^2, x4^2+x5^2+x6^2 = r2^2,

x7^2+x8^2+x9^2 = r3^2, (x4-x1)^2+(x5-x2)^2

+(x6-x3)^2 = r12^2, (x7-x1)^2+(x8-x2)^2

+(x9-x3)^2 = r13^2, (x7-x4)^2+(x8-x5)^2

+(x9-x6)^2 = r23^2}):

> eqsimple := expand(sort(collect(simplify(eq,

assume = positive), D))):

> #introduce frolov coordinates

> #a,b,c,d,e,f can be substituted by any positive numbers

> a1 := a: a2 := b: a3 := c: a4 := d: a5 := e: a6 := f:

> x1(r1,r2,r3,r12,r13,r23):=a11/(2)(r1+r2-r12):

> x2(r1,r2,r3,r12,r13,r23):=a21/(2)(r1+r12-r2):

> x3(r1,r2,r3,r12,r13,r23):=a31/(2)(r12+r2-r1):

> x4(r1,r2,r3,r12,r13,r23):=a41/(2)(r3+r13-r1):

> x5(r1,r2,r3,r12,r13,r23):=a51/(2)(r23+r12-r13):

> x6(r1,r2,r3,r12,r13,r23):=a61/(2)(r23+r2-r3):

> #substitute the Ansatz into the differential equation

> #this is done via string mainpulation

> phi(a,b,c,d,e,f):=exp(-1/2*(a+b+c+d+e+f))

*L(a)*L(b)*L(c)*L(d)*L(e)*L(f):

> eqStr := convert(eqsimple, string):

> with(StringTools):

> for i to 6 do

if i < 4 then hi := i

elif i = 4 then hi := 12

elif i = 5 then hi := 13
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elif i = 6 then hi := 23

end if:

eqStr := SubstituteAll(eqStr, Join(["D[",

convert(i, string), "]psi)(r1,r2,r3,r12,r13,r23)"],

""),Join(["diff(phi(x1(r1,r2,r3,r12,r13,r23),

x2(r1,r2,r3,r12,r13,r23),x3(r1,r2,r3,r12,r13,r23),

x4(r1,r2,r3,r12,r13,r23),x5(r1,r2,r3,r12,r13,r23),

x6(r1,r2,r3,r12,r13,r23),r", convert(hi, string),

")"], "")):

for j to 6 do

if j < 4 then hj := j

elif j = 4 then hj := 12

elif j = 5 then hj := 13

elif j = 6 then hj := 23

end if:

eqStr := SubstituteAll(eqStr, Join(["D[",

convert(i, string),",", convert(j, string), "]

(psi)(r1,r2,r3,r12,r13,r23)"], ""),Join

(["diff(phi(x1(r1,r2,r3,r12,r13,r23),

x2(r1,r2,r3,r12,r13,r23),x3(r1,r2,r3,r12,r13,r23),

x4(r1,r2,r3,r12,r13,r23),x5(r1,r2,r3,r12,r13,r23),

x6(r1,r2,r3,r12,r13,r23)),r", convert(hi, string),

",r", convert(hj, string), ")"], "")):

end do

end do:

> eqStr := SubstituteAll(eqStr, "psi(r1,r2,r3,r12,r13,r23)",

"phi(x1(r1,r2,r3,r12,r13,r23),x2(r1,r2,r3,r12,r13,r23),

x3(r1,r2,r3,r12,r13,r23),x4(r1,r2,r3,r12,r13,r23),

x5(r1,r2,r3,r12,r13,r23),x6(r1,r2,r3,r12,r13,r23))"):

> eqparsed := parse(eqStr):
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> #invert the coordinates to simplify

> r1sim := (a2*x1+a1*x2)/(a1*a2)

> r2sim := (a3*x1+a1*x3)/(a1*a3):

> r3sim := (a4*a5*a6*x1+a1*a5*a6*x4+a1*a4*a6*x5-a1*a4*a5*x6)

/(a1*a4*a5*a6):

> r12sim := (a3*x2+a2*x3)/(a2*a3):

> r13sim := (a4*a5*a6*x2+a2*a5*a6*x4+a2*a4*a5*x6-a2*a4*a6*x5)

/(a2*a4*a5*a6):

> r23sim := (a3*a5*a6*x4+a3*a4*a6*x5+a3*a4*a5*x6-a4*a5*a6*x3)

/(a3*a4*a5*a6):

> eqfrolov := subs(r1 = r1sim, r2 = r2sim, r3 = r3sim,

r12 = r12sim,r13 = r13sim, r23 = r23sim, eqparsed):

> #further simplifications

> eqfrolov := numer(eqfrolov):

> eqfrolov := simplify(expand(eqfrolov

/(exp(-(1/2)*x2-(1/2)*x3)*exp(-(1/2)*x3-(1/2)*x1)

*exp(-(1/2)*x6-(1/2)*x4-(1/2)*x5+(1/2)*x3)))):

At this point the worksheets continue differently. The worksheet ’FrolovCoordi-

nates’ continues to apply Pekeris’ method on the expression ’eqfrolov’ containing of

4884 terms.

> nops(eqfrolov):

> #again use string manipulation

> a := convert(eqfrolov, string):

> a := SubstituteAll(a, "L(x1)", "Lx1"):

> a := SubstituteAll(a, "L(x2)", "Lx2"):

> a := SubstituteAll(a, "L(x3)", "Lx3"):

> a := SubstituteAll(a, "L(x4)", "Lx4"):

> a := SubstituteAll(a, "L(x5)", "Lx5"):



52

> a := SubstituteAll(a, "L(x6)", "Lx6"):

> a := SubstituteAll(a, "D(L)(x1)", "DLx1"):

> a := SubstituteAll(a, "D(L)(x2)", "DLx2"):

> a := SubstituteAll(a, "D(L)(x3)", "DLx3"):

> a := SubstituteAll(a, "D(L)(x4)", "DLx4"):

> a := SubstituteAll(a, "D(L)(x5)", "DLx5"):

> a := SubstituteAll(a, "D(L)(x6)", "DLx6"):

> a := SubstituteAll(a, "‘@@‘(D,2)(L)(x1)", "DDLx1"):

> a := SubstituteAll(a, "‘@@‘(D,2)(L)(x2)", "DDLx2"):

> a := SubstituteAll(a, "‘@@‘(D,2)(L)(x3)", "DDLx3"):

> a := SubstituteAll(a, "‘@@‘(D,2)(L)(x4)", "DDLx4"):

> a := SubstituteAll(a, "‘@@‘(D,2)(L)(x5)", "DDLx5"):

> a := SubstituteAll(a, "‘@@‘(D,2)(L)(x6)", "DDLx6"):

> eq := parse(a):

> #collect terms that can be simplified

> eq := simplify(eq, {x1^3*Lx1 = x3Lx1}):

> eq := simplify(eq, {x2^3*Lx2 = x3Lx2}):

> eq := simplify(eq, {x3^3*Lx3 = x3Lx3}):

> eq := simplify(eq, {x4^3*Lx4 = x3Lx4}):

> eq := simplify(eq, {x5^3*Lx5 = x3Lx5}):

> eq := simplify(eq, {x6^3*Lx6 = x3Lx6}):

> eq := simplify(eq, {x1^3*DLx1 = x3DLx1}):

> eq := simplify(eq, {x2^3*DLx2 = x3DLx2}):

> eq := simplify(eq, {x3^3*DLx3 = x3DLx3}):

> eq := simplify(eq, {x4^3*DLx4 = x3DLx4}):

> eq := simplify(eq, {x5^3*DLx5 = x3DLx5}):

> eq := simplify(eq, {x6^3*DLx6 = x3DLx6}):

> eq := simplify(eq, {x1^3*DDLx1 = x3DDLx1}):

> eq := simplify(eq, {x2^3*DDLx2 = x3DDLx2}):

> eq := simplify(eq, {x3^3*DDLx3 = x3DDLx3}):
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> eq := simplify(eq, {x4^3*DDLx4 = x3DDLx4}):

> eq := simplify(eq, {x5^3*DDLx5 = x3DDLx5}):

> eq := simplify(eq, {x6^3*DDLx6 = x3DDLx6}):

> eq := simplify(eq, {x1^2*Lx1 = x2Lx1}):

> eq := simplify(eq, {x2^2*Lx2 = x2Lx2}):

> eq := simplify(eq, {x3^2*Lx3 = x2Lx3}):

> eq := simplify(eq, {x4^2*Lx4 = x2Lx4}):

> eq := simplify(eq, {x5^2*Lx5 = x2Lx5}):

> eq := simplify(eq, {x6^2*Lx6 = x2Lx6}):

> eq := simplify(eq, {x1^2*DLx1 = x2DLx1}):

> eq := simplify(eq, {x2^2*DLx2 = x2DLx2}):

> eq := simplify(eq, {x3^2*DLx3 = x2DLx3}):

> eq := simplify(eq, {x4^2*DLx4 = x2DLx4}):

> eq := simplify(eq, {x5^2*DLx5 = x2DLx5}):

> eq := simplify(eq, {x6^2*DLx6 = x2DLx6}):

> eq := simplify(eq, {x1^2*DDLx1 = x2DDLx1}):

> eq := simplify(eq, {x2^2*DDLx2 = x2DDLx2}):

> eq := simplify(eq, {x3^2*DDLx3 = x2DDLx3}):

> eq := simplify(eq, {x4^2*DDLx4 = x2DDLx4}):

> eq := simplify(eq, {x5^2*DDLx5 = x2DDLx5}):

> eq := simplify(eq, {x6^2*DDLx6 = x2DDLx6}):

> eq := simplify(eq, {x1*Lx1 = xLx1}):

> eq := simplify(eq, {x2*Lx2 = xLx2}):

> eq := simplify(eq, {x3*Lx3 = xLx3}):

> eq := simplify(eq, {x4*Lx4 = xLx4}):

> eq := simplify(eq, {x5*Lx5 = xLx5}):

> eq := simplify(eq, {x6*Lx6 = xLx6}):

> eq := simplify(eq, {x1*DLx1 = xDLx1}):

> eq := simplify(eq, {x2*DLx2 = xDLx2}):

> eq := simplify(eq, {x3*DLx3 = xDLx3}):
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> eq := simplify(eq, {x4*DLx4 = xDLx4}):

> eq := simplify(eq, {x5*DLx5 = xDLx5}):

> eq := simplify(eq, {x6*DLx6 = xDLx6}):

> eq := simplify(eq, {x1*DDLx1 = xDDLx1}):

> eq := simplify(eq, {x2*DDLx2 = xDDLx2}):

> eq := simplify(eq, {x3*DDLx3 = xDDLx3}):

> eq := simplify(eq, {x4*DDLx4 = xDDLx4}):

> eq := simplify(eq, {x5*DDLx5 = xDDLx5}):

> eq := simplify(eq, {x6*DDLx6 = xDDLx6}):

> #Laguerre relations

> #placeholders for the Laguerre polynomials

> Lx1 := u^k:

> Lx2 := v^l:

> Lx3 := w^m:

> Lx4 := x^n:

> Lx5 := y^o:

> Lx6 := z^p:

> #compute the relations

> xDDLx1 := -k*subs(k = k-1, Lx1)-DLx1:

> xDDLx2 := -l*subs(l = l-1, Lx2)-DLx2:

> xDDLx3 := -m*subs(m = m-1, Lx3)-DLx3:

> xDDLx4 := -n*subs(n = n-1, Lx4)-DLx4:

> xDDLx5 := -o*subs(o = o-1, Lx5)-DLx5:

> xDDLx6 := -p*subs(p = p-1, Lx6)-DLx6:

> xLx1 := -(k+1)*subs(k = k+1, Lx1)+(2*k+1)

*Lx1-k*subs(k = k-1, Lx1):

> x2Lx1 := -(k+1)*subs(k = k+1, xLx1)+(2*k+1)

*xLx1-k*subs(k = k-1, xLx1):

> x3Lx1 := -(k+1)*subs(k = k+1, x2Lx1)+(2*k+1)

*x2Lx1-k*subs(k = k-1, x2Lx1):
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> xDLx1 := k*Lx1-k*subs(k = k-1, Lx1):

> x2DLx1 := k*xLx1-k*subs(k = k-1, xLx1):

> x3DLx1 := k*x2Lx1-k*subs(k = k-1, x2Lx1):

> x2DDLx1 := -k*subs(k = k-1, xLx1)-xDLx1:

> x3DDLx1 := -k*subs(k = k-1, x2Lx1)-x2DLx1:

> xLx2 := subs(k = l, u = v, xLx1):

> x2Lx2 := subs(k = l, u = v, x2Lx1):

> x3Lx2 := subs(k = l, u = v, x3Lx1):

> xDLx2 := subs(k = l, u = v, xDLx1):

> x2DLx2 := subs(k = l, u = v, x2DLx1):

> x3DLx2 := subs(k = l, u = v, x3DLx1):

> x2DDLx2 := subs(k = l, u = v, x2DDLx1):

> x3DDLx2 := subs(k = l, u = v, x3DDLx1):

> xLx3 := subs(k = m, u = w, xLx1):

> x2Lx3 := subs(k = m, u = w, x2Lx1):

> x3Lx3 := subs(k = m, u = w, x3Lx1):

> xDLx3 := subs(k = m, u = w, xDLx1):

> x2DLx3 := subs(k = m, u = w, x2DLx1):

> x3DLx3 := subs(k = m, u = w, x3DLx1):

> x2DDLx3 := subs(k = m, u = w, x2DDLx1):

> x3DDLx3 := subs(k = m, u = w, x3DDLx1):

> xLx4 := subs(k = n, u = x, xLx1):

> x2Lx4 := subs(k = n, u = x, x2Lx1):

> x3Lx4 := subs(k = n, u = x, x3Lx1):

> xDLx4 := subs(k = n, u = x, xDLx1):

> x2DLx4 := subs(k = n, u = x, x2DLx1):

> x3DLx4 := subs(k = n, u = x, x3DLx1):

> x2DDLx4 := subs(k = n, u = x, x2DDLx1):

> x3DDLx4 := subs(k = n, u = x, x3DDLx1):

> xLx5 := subs(k = o, u = y, xLx1):
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> x2Lx5 := subs(k = o, u = y, x2Lx1):

> x3Lx5 := subs(k = o, u = y, x3Lx1):

> xDLx5 := subs(k = o, u = y, xDLx1):

> x2DLx5 := subs(k = o, u = y, x2DLx1):

> x3DLx5 := subs(k = o, u = y, x3DLx1):

> x2DDLx5 := subs(k = o, u = y, x2DDLx1):

> x3DDLx5 := subs(k = o, u = y, x3DDLx1):

> xLx6 := subs(k = p, u = z, xLx1):

> x2Lx6 := subs(k = p, u = z, x2Lx1):

> x3Lx6 := subs(k = p, u = z, x3Lx1):

> xDLx6 := subs(k = p, u = z, xDLx1):

> x2DLx6 := subs(k = p, u = z, x2DLx1):

> x3DLx6 := subs(k = p, u = z, x3DLx1):

> x2DDLx6 := subs(k = p, u = z, x2DDLx1):

> x3DDLx6 := subs(k = p, u = z, x3DDLx1):

> #unfortunately, not all derivatives vanished

The second part of the worksheet ’FrolovPrefactors’ computes and compares the

prefactors.

> #find the coefficients for x1

> coeffDLx1 := coeff(eqfrolov, (D(L))(x1)):

> coeffDLx1 := simplify(coeffDLx1, {x1 = 0, L(x2) = 1, L(x3) = 1,

L(x4) = 1, L(x5) = 1, L(x6) = 1, (D(L))(x2) = 1,

(D(L))(x3) = 1, (D(L))(x4) = 1, (D(L))(x5) = 1, (D(L))(x6) = 1}):

> coeffDDLx1 := coeff(eqfrolov, ((D@@2)(L))(x1)):

> coeffDDLx1 := simplify(coeffDDLx1, {x1^2 = 0, L(x2) = 1,

L(x3) = 1, L(x4) = 1, L(x5) = 1, L(x6) = 1}):

> coeffDDLx1 := coeffDDLx1/x1:

> #x2
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> coeffDLx2 := coeff(eqfrolov, (D(L))(x2)):

> coeffDLx2 := simplify(coeffDLx2, {x2 = 0, L(x1) = 1, L(x3) = 1,

L(x4) = 1, L(x5) = 1, L(x6) = 1, (D(L))(x1) = 1,

(D(L))(x3) = 1, (D(L))(x4) = 1, (D(L))(x5) = 1, (D(L))(x6) = 1}):

> coeffDDLx2 := coeff(eqfrolov, ((D@@2)(L))(x2)):

> coeffDDLx2 := simplify(coeffDDLx2, {x2^2 = 0, L(x1) = 1,

L(x3) = 1, L(x4) = 1, L(x5) = 1, L(x6) = 1}):

> coeffDDLx2 := coeffDDLx2/x2:

> #x3

> coeffDLx3 := coeff(eqfrolov, (D(L))(x3)):

> coeffDLx3 := simplify(coeffDLx3, {x3 = 0, L(x1) = 1, L(x2) = 1,

L(x4) = 1, L(x5) = 1, L(x6) = 1, (D(L))(x1) = 1,

(D(L))(x2) = 1, (D(L))(x4) = 1, (D(L))(x5) = 1, (D(L))(x6) = 1}):

> coeffDDLx3 := coeff(eqfrolov, ((D@@2)(L))(x3)):

> coeffDDLx3 := simplify(coeffDDLx3, {x3^2 = 0, L(x1) = 1,

L(x2) = 1,L(x4) = 1, L(x5) = 1, L(x6) = 1}):

> coeffDDLx3 := coeffDDLx3/x3:

> #x4

> coeffDLx4 := coeff(eqfrolov, (D(L))(x4)):

> coeffDLx4 := simplify(coeffDLx4, {x4 = 0, L(x1) = 1, L(x2) = 1,

L(x3) = 1, L(x5) = 1, L(x6) = 1, (D(L))(x1) = 1,

(D(L))(x2) = 1, (D(L))(x3) = 1, (D(L))(x5) = 1, (D(L))(x6) = 1}):

> coeffDDLx4 := coeff(eqfrolov, ((D@@2)(L))(x4)):

> coeffDDLx4 := simplify(coeffDDLx4, {x4^2 = 0, L(x1) = 1,

L(x2) = 1, L(x3) = 1, L(x5) = 1, L(x6) = 1}):

> coeffDDLx4 := coeffDDLx4/x4:

> #x5

> coeffDLx5 := coeff(eqfrolov, (D(L))(x5)):

> coeffDLx5 := simplify(coeffDLx5, {x5 = 0, L(x1) = 1, L(x2) = 1,

L(x3) = 1, L(x4) = 1, L(x6) = 1, (D(L))(x1) = 1, (D(L))(x2) = 1,
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(D(L))(x3) = 1, (D(L))(x4) = 1, (D(L))(x6) = 1}):

> coeffDDLx5 := coeff(eqfrolov, ((D@@2)(L))(x5)):

> coeffDDLx5 := simplify(coeffDDLx5, {x5^2 = 0, L(x1) = 1,

L(x2) = 1, L(x3) = 1, L(x4) = 1, L(x6) = 1}):

> coeffDDLx5 := coeffDDLx5/x5:

> #x6

> coeffDLx6 := coeff(eqfrolov, (D(L))(x6)):

> coeffDLx6 := simplify(coeffDLx6, {x6 = 0, L(x1) = 1, L(x2) = 1,

L(x3) = 1, L(x4) = 1, L(x5) = 1, (D(L))(x1) = 1, (D(L))(x2) = 1,

(D(L))(x3) = 1, (D(L))(x4) = 1, (D(L))(x5) = 1}):

> coeffDDLx6 := coeff(eqfrolov, ((D@@2)(L))(x6)):

> coeffDDLx6 := simplify(coeffDDLx6, {x6^2 = 0, L(x1) = 1,

L(x2) = 1, L(x3) = 1, L(x4) = 1, L(x5) = 1}):

> coeffDDLx6 := coeffDDLx6/x6:

> #comparing examples

> #x1

> coeff(coeff(coeff(coeff(coeff(coeffDLx1, x2, 3), x3, 1),

x4, 1), x5, 1), x6, 0);

> coeff(coeff(coeff(coeff(coeff(coeffDDLx1, x2, 3), x3, 1),

x4, 1), x5, 1), x6, 0);

> #x5

> factor(coeff(coeff(coeff(coeff(coeff(coeffDLx5, x1, 0),

x2, 3), x3, 0), x4, 2), x6, 1));

> coeff(coeff(coeff(coeff(coeff(coeffDDLx5, x1, 0), x2,

3), x3, 0), x4, 2), x6, 1);

> factor(coeff(coeff(coeff(coeff(coeff(coeffDLx5, x1, 3),

x2, 2), x3, 0), x4, 1), x6, 0));

> coeff(coeff(coeff(coeff(coeff(coeffDDLx5, x1, 3), x2,

2), x3, 0), x4, 1), x6, 0);

> factor(coeff(coeff(coeff(coeff(coeff(coeffDLx5, x1, 1),



59

x2, 1), x3, 2), x4, 1), x6, 1));

> coeff(coeff(coeff(coeff(coeff(coeffDDLx5, x1, 1), x2,

1), x3, 2), x4, 1), x6, 1);

> factor(coeff(coeff(coeff(coeff(coeff(coeffDLx5, x1, 1),

x2, 2), x3, 1), x4, 1), x6, 1));

> coeff(coeff(coeff(coeff(coeff(coeffDDLx5, x1, 1), x2, 2),

x3, 1), x4, 1), x6, 1);

The output of this worksheet is

(1) 2a5c3bd3e3f 5 + 2a5c3bd3e4f 4

(2) 0

(3) −2a4bc4d2e5f 3(−b+ c+ f + a)

(4) 0

(5) 2ab2c4d3e5f 4(−b+ c− d+ 2f + a)

(6) 0

(7) −2a3b3c2d3e5f 3(2b− 2c− 5d+ 3f + 2a)

(8) 0

(9) −2a3b2c3d3e5f 3(−2b+ 2c− 3d+ 5f + 2a)

(10) 0
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PekerisPrefactors

> restart:

> #compute the Laplacian in spherical coordinates

> apply(psi, a, b, c):

> fr1(x1, x2, x3, x4, x5, x6) := sqrt(x1^2+x2^2+x3^2):

> fr2(x1, x2, x3, x4, x5, x6) := sqrt(x4^2+x5^2+x6^2):

> fr12(x1, x2, x3, x4, x5, x6) := sqrt(

(x4-x1)^2+(x5-x2)^2+(x6-x3)^2):

> with(LinearAlgebra): with(VectorCalculus):

> eq := simplify(Laplacian(psi(fr1(x1, x2, x3, x4, x5, x6),

fr2(x1, x2, x3, x4, x5, x6), fr12(x1, x2, x3, x4, x5, x6)),

[x1, x2, x3, x4, x5, x6])+(2*(E+Z/r1+Z/r2-1/r12))

*psi(fr1(x1, x2, x3, x4, x5, x6), fr2(x1, x2, x3, x4, x5, x6),

fr12(x1, x2, x3, x4, x5, x6)), {x1^2+x2^2+x3^2 = r1^2, x4^2

+x5^2+x6^2 = r2^2, (x4-x1)^2+(x5-x2)^2+(x6-x3)^2 = r12^2}):

> eqsimple := expand(sort(collect(simplify(eq,

assume = positive), D))):

> #perimetric coordinates

> #a,b,c can be substituted by positive numbers

> a1 := a:

> a2 := b:

> a3 := c:

> x1(r1, r2, r12) := a1*(r2+r12-r1):

> x2(r1, r2, r12) := a2*(r1+r12-r2):

> x3(r1, r2, r12) := a3*(r1+r2-r12):

> phi(a, b, c) := exp(-(1/2)*a-(1/2)*b-(1/2)*c)*L(a)*L(b)*L(c):

> #substituted the Ansatz into the equation

> #this is done using string manipulation

> eqStr := convert(eqsimple, string):

> with(StringTools):
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> for i to 3 do

if i < 3 then hi := i

else hi := 12

end if:

eqStr := SubstituteAll(eqStr, Join(["D[", convert(i,

string), "](psi)(r1,r2,r12)"], ""), Join(["diff(phi

(x1(r1,r2,r12),x2(r1,r2,r12),x3(r1,r2,r12)),r",

convert(hi, string), ")"], "")):

for j to 3 do

if j < 3 then hj := j

else hj := 12

end if:

eqStr := SubstituteAll(eqStr, Join(["D[", convert(i,

string),",", convert(j, string), "](psi)(r1,r2,r12)"],

""),Join(["diff(phi(x1(r1,r2,r12),x2(r1,r2,r12),

x3(r1,r2,r12)),r", convert(hi, string), ",r",

convert(hj, string), ")"], ""))

end do

end do:

> eqStr := SubstituteAll(eqStr, "psi(r1,r2,r12)", "phi(

x1(r1,r2,r12),x2(r1,r2,r12),x3(r1,r2,r12))"):

> eqparsed := parse(eqStr):

> #inverse coordinates to simplify

> r1sim := (a3*x2+a2*x3)/(2*a2*a3):

> r2sim := (a3*x1+a1*x3)/(2*a1*a3):

> r12sim := (a2*x1+a1*x2)/(2*a1*a2):

> eqpekeris := subs(r1 = r1sim, r2 = r2sim,

r12 = r12sim, eqparsed):

> eqpekeris := simplify(eqpekeris

*exp(1/2*(x1+x2+x3))):
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> eqpekeris := numer(eqpekeris):

> #compare the prefactors

> x1 := u: x2 := v: x3 := w:

> coeffDLu := coeff(eqpekeris, (D(L))(u)):

> coeffDLu := simplify(coeffDLu, {u = 0, L(v) = 1, L(w) = 1}):

> coeffDDLu := coeff(eqpekeris, ((D@@2)(L))(u)):

> coeffDDLu := simplify(coeffDDLu, {u^2 = 0, L(v) = 1, L(w) = 1}):

> coeffDLv := coeff(eqpekeris, (D(L))(v)):

> coeffDLv := simplify(coeffDLv, {v = 0, L(u) = 1, L(w) = 1}):

> coeffDDLv := coeff(eqpekeris, ((D@@2)(L))(v)):

> coeffDDLv := simplify(coeffDDLv, {v^2 = 0, L(u) = 1, L(w) = 1}):

> coeffDLw := coeff(eqpekeris, (D(L))(w)):

> coeffDLw := simplify(coeffDLw, {w = 0, L(u) = 1, L(v) = 1}):

> coeffDDLw := coeff(eqpekeris, ((D@@2)(L))(w)):

> coeffDDLw := simplify(coeffDDLw, {w^2 = 0, L(u) = 1, L(v) = 1}):

> verify(coeffDLu*u, coeffDDLu);

> verify(coeffDLv*v, coeffDDLv);

> verify(coeffDLw*w, coeffDDLw);

The output of this worksheet is

(1) true

(2) true

(3) true
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