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ABSTRACT

Option Pricing for a General Stock Model

in Discrete Time

by

Cindy Nichols

The University of Wisconsin-Milwaukee, 2014
Under the Supervision of Professor Richard H. Stockbridge

As there are no arbitrage opportunities in an efficient market, the seller of an

option must find a risk neutral price. This thesis examines different characterizations

of this option price. In the first characterization, the seller forms a hedging portfolio

of shares of the stock and units of the bond at the time of the option’s sale so as to

reduce his risk of losing money. Before the option matures, the present value stock

price fluctuates in discrete time and, based on those changes, the seller alters the

content of the portfolio at the end of each time period. The primal linear program

captures the seller’s hedging activities. We use linear programming to explore the

pricing of options for both the Trinomial Asset Pricing Model and the General Asset

Pricing Model, allowing us to consider the pricing of any style of option.

We first look at the Trinomial Asset Pricing Model. This model yields a finite-

dimensional linear program and is included to motivate the results for the General

Asset Pricing Model. We use the strong duality results for finite-dimensional linear

programs to characterize the solution to the primal linear program through the solu-

tion of the dual linear program. The dual program can be interpreted as minimizing

the expected present value of the contingent claim with respect to measures under

which the present value stock price process is a martingale relative to its natural

filtration. The dual program provides a second characterization of the option price.
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We then present a general asset pricing model in which the present value stock

price is a random process. The thesis examines the dual linear program correspond-

ing to the primal linear program arising from the seller’s hedging portfolio. The

optimal values of the two linear programs are related by weak duality in the general

case. In the interpretation of the dual linear program, this paper examines expec-

tations and conditional expectations of stock prices over time. It is here that the

use of measure theory in combination with the definition of conditional expectation

reveals that, even for this general model, our dual optimization problem minimizes

the expected present value of the contingent claim over measures under which the

present value stock price process is a martingale. The validity of strong duality

between the primal and dual linear programs is not addressed in this thesis.

At the end, we present possibilities for further work on this model.
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Chapter 1

Introduction

We would like to find the market efficient price of a general stock option. The

underlying assumption that the financial market consisting of stocks and bonds is

efficient dictates that a seller can not profit without risk. If arbitrage were allowed,

with the promise of a small risk free profit, a new seller would enter the market

listing the asset for just under the current price. More sellers would continue to

undercut each other until the asset was sold at the break even point.

A call option is a contract that gives the buyer of the option the right to purchase

stock for a strike price (set price) at or before a specified date. If the buyer purchases

an option that he can exercise any time up to the specified date, he would be

able to watch the market evolve and choose when to exercise the option. If the

buyer purchases an option that matures at the specified date, his decision would be

dominated by the price of the stock on that date alone. If the current market price

were higher than the strike price, the buyer could, and most likely would, choose to

purchase the stock for the strike price. If not, the buyer has only lost the amount

of money he has spent on the option.

Clearly, the seller benefits if the option is never exercised. The seller’s task is

to price the option to cover any shortfall between the strike price and the future

stock value at the time of maturity. The contingent claim is the difference of stock

value and the strike price, when the stock price exceeds the strike price, and zero

otherwise. The seller must think about how to hedge his risk of paying the contingent
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claim. At the time of the option’s sale, he will invest the proceeds from the option

into a hedging portfolio of bonds and stocks. The seller will manage this portfolio

in discrete time. As the bond price is fixed, the stock price will be a major factor

in all decisions. As the price of the stock fluctuates, the seller may decide to re-

balance by choosing a different mix of bonds and shares of stock. The goal is that

the portfolio is self-financing. If the seller must add his own money to finance the

portfolio, the option was not priced high enough. Pricing the option largely depends

on the analysis of what the contingent claim will be.
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Chapter 2

Background Theory and
Definitions

This chapter provides the theorems and definitions that are used to explore the topic

and write the paper. Although not every theorem or definition will be referenced,

they support one another to further the reader’s full understanding of the topic. It is

also important to note that the process of computing the dual linear program from

the primal linear program will not be fully discussed. The reader should acquaint

himself with this process before examining the figures provided in the paper.

2.1 Dual Spaces

This section follows the development of both finite- and infinite-dimensional linear

programming in Anderson and Nash [1]. We begin with the finite-dimensional case.

Definition 2.1. For each k ∈ N, and vectors x, y ∈ Rk, x ≤ y means xi ≤ yi for

all i.

Definition 2.2. (Finite Primal Linear Program)

Let c ∈ Rn, b ∈ Rm and A ∈ L(Rn,Rm). The finite primal linear program is defined

for x ∈ Rn to be
FLP: minimize cTx

subject to Ax ≥ b,
x unrestricted.
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Definition 2.3. (Dual of the Finite Primal Linear Program) Let an FLP be as given

in Definition 2.2. Then its finite dual linear program is defined by

FLP∗: maximize bTy
subject to ATy = c,

y ≥ 0.

In this, y ≥ 0 if and only if yi ≥ 0 for i = 1, . . . ,m.

Any x that satisfies the constraints of the FLP and y that satisfies the constraints

of the FLP∗ are called feasible solutions for their respective linear programs.

Theorem 2.4.

(i) (Weak Duality) If x and y are feasible solutions for FLP and FLP∗ respectively,

then cTx ≥ bTy.

(i) (Strong Duality) If x∗ is an optimal feasible solution of the FLP then there exists

y∗ which is optimal for FLP∗ and cTx∗ = bTy∗.

The above definitions and theorem apply to finite dimensional linear programs.

We now establish the formulation for infinite-dimensional linear programs since these

will be needed in Chapter 4.

Definition 2.5. Let X be a real vector space. A linear functional on X is a linear

map from X to R. The set of all linear functionals, with the operations addition and

scalar multiplication is the vector space called the algebraic dual space of X, denoted

X∗.

Definition 2.6. Let X be real linear vector space and P be a convex cone in X

(a convex cone is a set closed under vector addition and multiplication by positive

scalars). Define the partial order on X by

x ≤ y if y − x ∈ P, (x, y ∈ X).

Notation 2.7. In each real linear vector space, the null vector will be denoted by θ.

The reader is cautioned that θ may be used for different vector spaces.
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Remark 2.8. Let P be defined as in Definition 2.6. Since it is a tautalogy that

x ∈ P if and only if x ≥ θ, P is called the positive cone.

Definition 2.9. Let X and V be two real vector spaces with a bilinear form defined

on X × V , that is a function from X × V to R which we write as 〈·, ·〉, with 〈x, v〉
a linear function of x for each fixed v and a linear function of v for each fixed x.

If

(i) for each x 6= θ there is some v ∈ V with 〈x, y〉 6= 0, and

(ii) for each v 6= θ there is some x ∈ X with 〈x, y〉 6= 0,

then the pair of spaces (X, V ) is called a dual pair.

Definition 2.10. Let (X, V ) and (Z,Q) be two dual pairs of vector spaces. Let A

be a linear map from X to Z. Then the adjoint of A, denoted by A∗, is the map

from Q to X∗ defined by the relationship

〈x,A∗q〉 = 〈Ax, q〉, for all x ∈ X, q ∈ Q.

In this, we have slightly abused notation by using 〈·, A∗q〉 to denote the linear func-

tional A∗q ∈ X∗. Notice that the linearity of A and bilinearity of 〈·, ·〉 implies that

for q1, q2 ∈ Q, x1, x2 ∈ X and real constants a1, a2, c1, and c2

A∗[c1q1 + c2q2](a1x1 + a2x2) = a1c1〈Ax1, q1〉+ a1c2〈Ax1, q2〉

+ a2c1〈Ax2, q1〉+ a2c2〈Ax2, q2〉

= a1c1A
∗q1(x1) + a1c2A

∗q2(x1)

+ a2c1A
∗q2(x1) + a2c2A

∗q2(x2)

so A∗ exists as a linear mapping of Q to X∗.

Remark 2.11. Let (X, V ) be a dual pair of vector spaces. We refer the reader to

page 36 of Anderson and Nash (1987) for the definition of the weak topology σ(X, V )

on the vector space X.
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Proposition 2.12. A∗ maps Q into V if and only if A is continuous with respect

to the topologies σ(X, V ) and σ(Z,Q).

Remark 2.13. We assume the vector spaces X and Z are endowed with the weak

topologies σ(X, V ) and σ(Z,Q), respectively. Then A is a continuous map from X

to Z and, further, A∗ maps Q into V . A full discussion of this can be found in

Anderson and Nash (1987).

Definition 2.14. Let (X, V ) be a dual pair and let P be the positive cone for X.

The dual cone of P is defined by

P ∗ = {v ∈ V | 〈x, v〉 ≥ 0 for all x ∈ P}.

Definition 2.15. Let (X, V ) and (Z,Q) be two dual pairs of vector spaces. Let P

and W be the positive cones in X and Z respectively. Let our topologies be σ(X, V )

and σ(Z,Q), then A is a continuous map from X to Z. We define an inequality

constrained linear program called IP as

IP: minimize 〈x, c〉
subject to Ax ≥ b,

x ∈ X.

Given the dual cones P ∗ and W ∗ of P and W respectively, we define the resulting

dual linear program of IP , IP ∗,as

IP∗: maximize 〈b, q〉
subject to −A∗q + c = θ,

q ∈ W ∗.

Theorem 2.16. (Weak Duality) If IP and IP∗ both have feasible solutions, then the

value of IP is greater than or equal to the value of IP∗ and both values are finite.

2.2 Probability and Measure Theory Background

The definitions and theorems of this section can be found in any measure theoretic

probability text, such as Billingsley [2]. For completeness, we give standard defi-

nitions. In this section, we follow standard probabilistic notation so P denotes a
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probability measure, no longer a positive cone, and X will denote a random variable,

not a vector space. We also assume that Ω 6= ∅.

Definition 2.17. A σ-algebra F on a set Ω is a collection of subsets of Ω that is

closed under complementation and countably many unions. The pair (Ω,F) is called

a measurable space and the sets of F are called measurable sets.

Definition 2.18. Let Ω be a set and F be a σ-algebra on Ω. A function µ : F → R+

is a measure if it satisfies the following property of Countable Additivity: namely,

for all countable collections {Gi}i∈N of pairwise disjoint sets in F ,

µ

(⋃
i∈N

Gi

)
=
∑
i∈N

µ(Gi).

Remark 2.19. A triple (Ω,F , µ) is called a measure space.

Definition 2.20. A probability measure, P , on a measurable space (Ω,F), is a

measure that assigns a mass of 1 to the entire space, P (Ω) = 1.

Definition 2.21. A probability space (Ω,F , P ) is a measurable space (Ω,F) with a

probability measure P defined on F .

Definition 2.22. The space of all finite measures on measurable space (Ω,F) is

denoted M(Ω,F).

Definition 2.23. Let (Ω,F) be a measurable space and (R,B) be the real numbers

with the Borel σ-algebra. A function X : Ω −→ R is said to be F-measurable if:

X−1(B) = {ω ∈ Ω| X(ω) ∈ B} ∈ F , for all B ∈ B.

Definition 2.24. The space L1(Ω,F , µ) is the set of all measurable functions from

Ω to R that satisfies the following condition:∫
Ω

|f |dµ <∞.

When (Ω,F , P ) is a probablity space, a F-measurable function X will be called a

random variable.
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Definition 2.25. The space L∞(Ω,F , µ) is the set of all measurable functions X

for which there exists some constant M <∞ such that µ({|X| > M}) = 0.

Definition 2.26. If X ∈ L1(Ω,F , P ), then the expected value of X, denoted E[X]

is given by

E[X] =

∫
Ω

XdP.

Theorem 2.27. Suppose that X ∈ L1(Ω,F , P ) and that G is a sub-σ-algebra in F .

There exists a random variable E[X|G] called the conditional expected value of X

given G having these two properties:

(i) E[X|G] is measurable and integrable;

(ii) E[X|G] satisfies the equation∫
G

E[X|G]dP =

∫
G

XdP, for all G ∈ G.

Definition 2.28. Let X be a random variable and B the Borel σ-algebra. Then the

σ-algebra generated by X, denoted σ(X) is given by

σ(X) = {X−1(S)| S ∈ B}.

Definition 2.29. Given a probability space (Ω,F , P ) and T ⊂ R+, a stochastic

process X is a collection

{Xt| t ∈ T},

where each Xt is a random variable on Ω.

Definition 2.30. Let (Ω,F) be a measurable space and let T ⊂ R+. A filtration is

a sequence of σ-algebras, {Ft}t∈T, satisfying the following conditions:

(i) Ft ⊂ F for each t ∈ T;

(ii) for each t1, t2 ∈ T, t1 ≤ t2 implies Ft1 ⊆ Ft2.
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Definition 2.31. The natural filtration {Ft} generated by the stochastic process X

is defined for t ∈ T by

Ft = σ({X−1
s (B)|s ∈ T, s ≤ t, B ∈ B}).

Definition 2.32. Let (Ω,F , P ) be a probability space with filtration Ft and let X =

{Xt| t ∈ T} be a stochastic process. Then X is a martingale with respect to a

filtration {Ft} if:

(i) for each t, Xt is Ft-measurable;

(ii) for each t, Xt ∈ L1(Ω,Ft, P ); and

(iii) for s < t, Xs = E[Xt| Fs].



10

Chapter 3

The Trinomial Asset Pricing
Model

We will now develop the finite linear program for the Trinomial Asset Pricing Model

in discrete time. For simplicity, we restrict the time horizon to the period T =

{0, 1, 2} for this model but will allow a more general time horizon in Chapter 4.

The market consists of two assets: a bond and a stock. The value of the bond is

fixed throughout, earning interest at the rate r. The interest rate offered in our

bond will reflect inflation in the market. For this model, the stock price process

S = {S0, S1, S2} branches from its current price to three prices in the succeeding

time period. We denote the possible prices by Snj in which n = 0, 1, 2 denotes the

time and j = 1, . . . , 3n gives the number of possible values at time n; at time n = 0,

the price is denoted S0. The value of the option at the time of maturity is given by

C2j with j = 1, . . . , 32.

The primal linear program models the actions of the option seller to invest the

money paid for the option in the market so as to hedge his risk of paying the

contingent claim at the time of maturity. Let B0x0 + S0y0 represent our initial

hedging portfolio where B0 is the fixed bond price, x0 the number of units of bond,

S0 is the stock price of a single share of stock, y0 the number of shares of stock.

At each time period past 0, there are two different portfolios happening almost

simultaneously. For instance, at time 1 there exists the portfolio that has just evolved

and has the same number of stock shares and bond units as were initially invested in
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the market. Then the portfolio is adjusted by the investor, a process we will refer to

as re-balancing, and the money in that portfolio is re-invested into a new number of

stock shares and bond units. This process of re-balancing the portfolio ensures that

it is self-financing. Each re-balancing of the portfolio gives an equality constraint

in the primal linear program. The seller’s goal is to have the final portfolio be

worth at least as much as the contingent claim and therefore contributes inequality

constraints on the portfolio that depend on the final stock price. Recalling that an

ideal market does not allow for arbitrage, the initial portfolio value B0x0+S0y0 must

be as small as possible and thus the primal linear program minimizes this expression

as its objective function.

Instead of watching the bond’s value accrue by (1+ r)n by time n, we will divide

our constraints by this quantity in order to see the entire model from the point of

view of present value at time 0. Formally, the non-negative present value stock price

process S̃ = {S̃0, S̃1, S̃2} takes values S̃nj =
Snj

(1+r)n
, j = 1, ..., 3n and n = 0, 1, 2. (In

reality, modeling the stock this way has a very limited ability to replicate the actual

market where stock prices vary by the penny.) At the time of maturity N = 2, the

present value of the contingent claim is

C̃2j =
C2j

(1 + r)2
, j = 1, ..., 9.

The primal linear program is now given in Figure 3.1. The first three constraints

show the re-balancing of the portfolio at time 1. The rest of the constraints, all in

terms of present value, show the final portfolio being chosen greater than or equal

to the contingent claim.

We choose dual variables for each constraint in the primal linear program. Since

the first three constraints of the primal are equality constraints, the dual variables

q11, q12, q13 are unrestricted. The inequality constraints result in non-negative dual

variables so as a result the final constraints of the primal linear program result in

dual variable q2j ≥ 0. The dual of the primal linear program is given in Figure 3.2.
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Theorem 3.1. Let Q denote the set of all feasible

q := (q11, q12, q13, q21, q22, q23, q24, q25, q26, q27, q28, q29)

for the dual linear program. Then for each q ∈ Q

(i) (q11, q12, q13) is a probability measure on the time 1 stock prices {S̃11, S̃12, S̃13};
and

(ii) (q21, q22, q23, q24, q25, q26, q27, q28, q29) is a probability measure on the time 2 stock

prices {S̃21, S̃22, S̃23, S̃24, S̃25, S̃26, S̃27, S̃28, S̃29}.

Proof. Our first concern is to show that all of the dual variables are positive. The

bond constraint

−B0q11 +B0q21 +B0q22 +B0q23 = 0

is equivalent to

q21 + q22 + q23 = q11. (3.1)

Recall the dual variables q2j are positive so the left side of the (3.1) shows that q11

is also positive. Similarly, it follows that q12, and q13 are positive.

Now by the first constraint is B0q11 +B0q12 +B0q13 = B0 which simplifies to

q11 + q12 + q13 = 1. (3.2)

Thus the dual variables at time 1 represent probability measures on the outcomes

{S̃11, S̃12, S̃13} as claimed; that is, q11 = P (S̃1 = S̃11), q12 = P (S̃1 = S̃12) and

q13 = P (S̃1 = S̃13).

Next, summing all of the constraints pertaining to bonds from period 2 gives

−B0q11 +B0q21 +B0q22 +B0q23

−B0q12 +B0q24 +B0q25 +B0q26

−B0q13 +B0q27 +B0q28 +B0q29 = 0

or equivalently using (3.2)

q21 + q22 + q23 + q24 + q25 + q26 + q27 + q28 + q29 = q11 + q12 + q13 = 1.
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Since each q2j ≥ 0, the set {q21, q22, q23, q24, q25, q26, q27, q28, q29} represents a proba-

bility distribution on {S̃21, S̃22, S̃23, S̃24, S̃25, S̃26, S̃27, S̃28, S̃29} as claimed.

From Theorem 3.1, we can interpret the objective function of the dual linear

program as the expectation of the present value of the contingent claim under the

feasible probability measure q ∈ Q. Also, by Theorem 2.4, if we have an optimal

solution for our primal FLP then we have an optimal solution for our dual pro-

gram. Further, when these optimal values are entered into their respective objective

functions, the solutions are equal.

Remark 3.2. The analysis in the proof of Theorem 3.1 provides more information

that will be useful. Dividing both sides of (3.1) by q11, we get

q21

q11

+
q22

q11

+
q23

q11

= 1.

In this model, the possible values of S̃2 when S̃1 = S̃11 are {S̃21, S̃22, S̃23}. Hence

q21

q11

= P (S̃2 = S̃21| S̃1 = S̃11),

q22

q11

= P (S̃2 = S̃22| S̃1 = S̃11),

q23

q11

= P (S̃2 = S̃23| S̃1 = S̃11).

Similar statements can be made about the possible values of S̃2 when S̃1 = S̃12

and S̃1 = S̃13 and thus

q24

q12

+
q25

q12

+
q26

q12

= 1,

q27

q13

+
q28

q13

+
q29

q13

= 1.

These equations represent conditional probability measures on the values of S̃2 given

S̃1.

We now turn to an examination of the dual constraints pertaining to the stock

prices.
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Theorem 3.3. For each q ∈ Q, the present value stock price process S̃ is a martin-

gale.

Proof. Let q ∈ Q be chosen arbitrarily. First we see that

S̃11q11 + S̃12q12 + S̃13q13 = S0. (3.3)

The expected value of the present value stock price at time 1 under the probability

measure q ∈ Q is S0, Eq[S̃1|S0] = S0. We will continue to build on this fact to

show that our two period model satisfies the condition of being a martingale in

Definition 2.32.

Next we will examine the constraint that pertains to stock values at time 2

evolving from time 1 stock values being S11.

−S̃11q11 + S̃21q21 + S̃22q22 + S̃23q23 = 0

which is

S̃21
q21

q11

+ S̃22
q22

q11

+ S̃23
q23

q11

= S̃11.

This is the conditional expectation of the present value stock price at time 2 given

S̃1 = S̃11, Eq[S̃2|S̃1 = S̃11] = S̃11. Similarly we can see that Eq[S̃2|S̃1 = S̃12] = S̃12,

and Eq[S̃2|S̃1 = S̃13] = S̃13.

To finalize our argument that our limited 2 period model satisfies the definition

of a martingale, we must show that Eq[S̃2|S0] = S0. Now we will sum all of the

constraints pertaining to stock from the second time period to find the conditional

expected value of the present value of stock at time period 2 given S0, Eq[S2|S0] = S0.

The sum is as follows:

−S̃11q11 + S̃21q21 + S̃22q22 + S̃23q23 − S̃12q12 + S̃24q24 + S̃25q25 + S̃26q26

− S̃13q13 + S̃27q27 + S̃28q28 + S̃29q29 = 0.

Therefore,

S̃21q21 + S̃22q22 + S̃23q23 + S̃24q24 + S̃25q25 + S̃26q26 + S̃27q27 + S̃28q28 + S̃29q29

= S̃11q11 + S̃12q12 + S̃13q13.

The left hand side is Eq[S̃2|S0] and by (3.3) the right hand side is S0.
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In summary, the strong duality relationship between the primal FLP and the

dual FLP∗ tells us that the value of the minimum hedging portfolio is the maximum

of the expectation of the present value contingent claim over all the probability

measures q ∈ Q which make the present value of the stock price a martingale.

In the next chapter, we will investigate a general discrete time stock model. To

set the stage, we interpret the primal linear program in Figure 3.1 and the dual

linear program in Figure 3.2 using the general framework of dual pairs of vector

spaces in Chapter 2. We begin with the primal linear program.

Define the space Ω to be

S̃0 ×
((
{S̃11} × {S̃21, S̃22, S̃23}

)
∪
(
{S̃12} × {S̃24, S̃25, S̃26}

)
∪
(
{S̃13} × {S̃27, S̃28, S̃29}

))

and let F denote the discrete σ-algebra generated by the individual points. Notice

that the natural filtration of the present value stock price process S̃ has F0 = {∅,Ω},
F1 generated by the sets

{(S̃0, S̃11, S̃21), (S̃0, S̃11, S̃22), (S̃0, S̃11, S̃23)},
{(S̃0, S̃12, S̃24), (S̃0, S̃12, S̃25), (S̃0, S̃12, S̃26)},
{(S̃0, S̃13, S̃27), (S̃0, S̃13, S̃28), (S̃0, S̃13, S̃29)}

and F2 = F .

Now the decision variables are the values x = (x0, y0, x11, y11, x12, y12, x13, y13).

Notice that each of the variables is finite and that the pair (x0, y0) is based on

the initial price S0 of the stock whereas the pairs (x11, y11), (x12, y12) and (x13, y13)

depend on S̃1 taking values S̃11, S̃12 and S̃13, respectively. Thus the real vector

space X is the space of vector-valued functions x = (x0, y0, x1, y1) mapping Ω to R4

in which the pair (x0, y0) is F0-measurable and similarly (x1, y1) is F1-measurable.

Since Ω is a finite set, x is a bounded function.

The linear transformation A maps X using the matrix(
B0 S̃1 −B0 −S̃1

0 0 B0 S̃2

)
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so the space Z is L1(Ω,F1) × L1(Ω,F2). The right-hand side vector of the primal

problem is the vector b = (0, C̃2) and the objective function has coefficients c =

(B0, S0, 0, 0). With these selections, the primal problem in Figure 3.1 has the form

of the primal linear program in Definition 2.15 in which the constraints in the

Chapter 2 formulation are required to hold pointwise for each function.

To determine the dual linear program, the space Q of Definition 2.10, distinct

from but related to the feasible set Q of Theorem 3.1, is the space

Q =M(Ω,F1)×M(Ω,F2)

and the bilinear form 〈·, ·〉 is defined for z = (z1, z2) and q = (q1, q2) by

〈z, q〉 =

∫
z1 dq1 +

∫
z2 dq2.

The definition of the adjoint A∗ in Definition 2.10 now determines the space V . This

space will be clearly identified in Chapter 4 in which we analyze the general asset

pricing model.



19

Chapter 4

General Asset Pricing Model

We will now discuss the General Asset Pricing Model in discrete time. The model

consists of a present value stock price process S̃ = {S̃t|t ∈ N} defined on some

probability space (Ω,F , P ) and a (present value) contingent claim C̃N which matures

at time N ∈ N. The decisions for the hedging portfolio are pairs (xt, yt), for t =

0, 1, . . . , N − 1, in which xt denotes the bond units and yt is the number of shares

of stock in the portfolio at time t. The goal of the hedging portfolio is to avoid any

loss by the seller of option so the present value of the final portfolio is required to

be at least as great as C̃N .

There are many similarities in the set up between the trinomial and general

model. This is the reason why the trinomial model does such a good job at in-

troducing the general model. Again, the initial hedging portfolio, B0x0 + S0y0, of

stocks and bonds is equal to the initial price of the option. The portfolio is the

seller’s insurance against paying the contingent claim at the time of the stock op-

tion’s maturity. The same process of re-balancing of the portfolio happens at the

end of each time period. For the same reasons as proposed earlier, we will price our

stocks, bonds, and contingent claims in present value units.

There are some key differences between the two models. Although the linear

program for the trinomial can be viewed for more than two time periods, it isn’t

until this juncture that we see the linear program set up for the contingent claim to

mature in N time periods. Whereas before we allowed the stock price to fluctuate
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to a finite number of possible values, now we will view the present value stock price

at each time t, S̃t, as a non-negative integrable random variable. It is still true

that the re-balancing of the portfolio is dictated by the present value stock price,

however, now the number of shares of stocks, yt, and number of units of bonds, xt,

are bounded random variables.

The hedging portfolio leads to the primal linear program given in Figure 4.1.

Notice the first N−1 constraints show the re-balancing of the portfolio at each time

period. The last constraint requires the portfolio’s value to be greater than or equal

to the present value of the contingent claim, C̃N , at time of maturity N .

Remark 4.1. Given a probability space (Ω,F , P ), random variables are functions

mapping elements ω, in Ω, to R and, although, this cumbersome notation is sup-

pressed they may be represented St(ω), xt(ω), yt(ω), CN(ω).

Let {Ft} be the natural filtration of the present value stock price process S̃ as

given in Definition 2.31. Then S̃t is an element of L1(Ω,Ft, P ), for each t. Now xt

and yt depend on S̃t. Thus for each t = 0, 1, . . . , N − 1, bounded random variables

xt and yt are chosen from the set of functions L∞(Ω,Ft, P ). Provided by our LP,

elements of the vector space X look like (x0, y0, x1, y1, . . . , xN−1, yN−1) and each pair

(xt, yt) is a Ft-measurable random vector. Hence, the space X in the definition of

the primal linear program in Definition 2.15 is

X =
N−1∏
t=0

L∞(Ω,Ft, P )× L∞(Ω,Ft, P ).

Referring to the primal linear program in Figure 4.1, the mapping A of the vector

space X into the vector space Z is given by the matrix

A =


B0 S̃1 −B0 −S̃1 0 0 0 0 0 0

0 0 B0 S̃2 −B0 −S̃2 0 0 0 0
...

. . . . . .
...

0 0 0 0 0 0 B0 S̃N−1 B0 −S̃N−1

0 0 0 0 0 0 0 0 B0 S̃N

 .

We examine the first constraint

B0x0 + S̃1y0 −B0x1 − S̃1y1 = 0.
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By the nesting of our natural filtration, x0 and y0 are both F0-measurable and

F1-measurable, while x1 and y1 are only F1-measurable so z1 is in L1(Ω,F1, P ).

Looking at the next bond constraint

B0x1 + S̃2y1 −B0x2 − S̃2y2 = 0

Similarly, x1 and y1 are both F1-measurable and F2-measurable, while x2 and y2 are

only F2-measurable. Then z2 is in L1(Ω,F2, P ). This can be done for the remaining

constraints and thus the space Z is

Z = L1(Ω,F1, P )× L1(Ω,F2, P )× · · · × L1(Ω,FN , P )

and elements of Z are of the form (z1, z2, · · · , zN).

Turning to the derivation of the dual linear program, define

Q =M(Ω,F1)×M(Ω,F2) . . .×M(Ω,FN)

and for z = (z1, z2, . . . , zN) ∈ Z and q = (q1, q2, . . . , qN) ∈ Q, define the bilinear

form on the dual pair (Z,Q) to be

〈z, q〉 =

∫
z1dq1 +

∫
z2dq2 + · · ·+

∫
zNdqN .

We will work with the relationship, 〈Ax, q〉 = 〈x,A∗q〉, in Definition 2.10 to help the

reader understand how we acquired our dual linear program in Figure 4.2. Recall

x ∈ X is x = (x0, y0, x1, y1, . . . , xN−1, yN−1). To form the dual linear program, we

determine the adjoint A∗.

〈Ax, q〉 =

∫
(B0x0 + S1y0 −B0x1 − S1y1)dq1

+

∫
(B0x1 + S2y1 −B0x2 − S2y2)dq2

...

+

∫
(B0xN−2 + SN−2yN−2 −B0xN−1 − SN−1yN−1)dqN−1)

+

∫
(B0xN−1 + SNyN−1)dqN)
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=

∫
B0x0dq1

+

∫
S1y0dq1

−
∫
B0x1dq1 +

∫
B0x1dq2

−
∫
S1y1dq1 +

∫
S2y1dq2

...

−
∫
B0xN−1dqN−1 +

∫
B0xN−1dqN

−
∫
SN−1yN−1dqN−1 +

∫
SNyN−1dqN

= 〈x,A∗q〉

We need to identify the image of A∗q ∈ V so we need to clearly identify the space

V . Let SM(Ω,F) denote the space of signed measures on (Ω,F). For this model,

V =
N−1∏
t=0

SM(Ω,Ft)× SM(Ω,Ft).

Thus from the work above, A∗q = A∗(q1, q2, . . . , qN) has elements (in pairs)

(B0 dq1, S1 dq1),
(B0 dq2 −B0 dq1, S2 dq2 − S1 dq1),

...
(B0 dqN −B0 dqN−1, SN dqN − SN−1 dqN−1).

In this specification of the elements of V , the notation B0 dqj+1 −B0 dqj represents

the potentially signed measure µ ∈ SM(Ω,Fj) given by

µj(G) =

∫
G

B0 dqj+1 −
∫
G

B0 dqj, G ∈ Fj,

and similarly the signed measure ν ∈ SM(Ω,Fj) denoted Sj+1 dqj+1 − Sj dqj is

νj(G) =

∫
G

Sj+1 dqj+1 −
∫
G

Sj dqj, G ∈ Fj.

We define the dual linear program as that given in Figure 4.2.
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25

Theorem 4.2. (Weak Duality) Let x = (x0, y0, x1, y1, . . . , xN−1, yN−1) be feasible

for the Primal Linear Program and let q = (q1, q2, . . . , qN) be feasible for the Dual

Linear Program. Then ∫
C̃NdqN ≤ B0x0 + S0y0.

Proof. Refer to Chapter 2 Weak Duality Theorem.

Now that we have identified the dual linear program in Figure 4.2, we utilize

the measurability of each xt and yt, for each t, to reformulate it. In the first and

second constraint, x0 and y0 are constants, so they can easily be divided out of the

equations. Examining the third equation,

−
∫
B0x1dq1 +

∫
B0x1dq2 = 0,

must hold for all bounded, F1-measurable random vectors (x1, y1); this condition is

equivalently expressed as∫
Ω

x1dq2 =

∫
Ω

x1dq1, ∀x1 ∈ L∞(Ω,F1).

Now let G1 ∈ F1 and take x1 = IG1 . Then we see that∫
G1

dq2 =

∫
G1

dq1, ∀G1 ∈ F1.

This implies that q2(G1) = q1(G1) and thus q2, restricted to sets from F1, is q1 .

Now we will examine the fourth constraint by integrating over sets from the

smaller σ-algebra F1, to get

−
∫
G1

S̃1dq1 +

∫
G1

S̃2dq2 = 0, ∀G1 ∈ F1

Remark 4.3. By Definition 2.31, the elements of our natural filtration are the

nested σ-algebras Fi ⊂ Fi+1 for i = 0, 1, . . . , N . When presented with two measures

in the same equation, we integrate over the sets from the coarser σ-algebra. The

argument above allows us to reformulate the constraints as in Figure 4.3.
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Remark 4.4. In Figure 4.3, notice that the first two constraints are being integrated

over the whole space Ω. This is the result of the constant S0 generating the discrete

σ-algebra F0 = {Ω, ∅}. Measuring over the empty set results in a measure of 0, so

it is ignored.

We will now examine all of the dual constraints pertaining to bonds. As in the

trinomial model, our first burden of proof is to show that our dual measures are all

positive regardless of the primal constraint function being responsible for labeling

some of them as unrestricted. Our last constraint pertaining to bonds,

−
∫
GN−1

B0dqN−1 +

∫
GN−1

B0dqN = 0, for all GN−1 ∈ FN−1,

says

qN(GN−1) = qN−1(GN−1), for all GN−1 ∈ FN−1.

Since qN is non-negative measure, qN−1 is also a non-negative measure. Going to

the second to last bond constraint, this argument can be applied to show that qN−2

is non-negative. Recursively, it can be shown that all of the dual variables are

non-negative measures.

Having that our dual measures are positive, we will continue our examination

of the bond constraints to show that the dual measures are actually probability

measures. Recall by Definition 2.18, that given a measure space (Ω,F , µ), measures

are functions that map elements from the σ-algebra to R+. By Definition 2.20, a

probability measure assigns a mass of 1 to the entire space, Ω.

Proposition 4.5. Let q = (q1, q2, . . . , qN) be feasible for the dual linear program.

Then, for each t, qt is a probability measure on (Ω,Ft), for 1 ≤ s < t ≤ N , and qt

is an extension of qs to the larger σ-algebra Ft.

Proof. Looking at the first bond constraint,∫
Ω

B0dq1 = B0,∫
Ω

dq1 = 1.
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This implies that q1(Ω) = 1. Then q1 is a probability measure on (Ω,F1).

Manipulating the next bond constraint,

−
∫
G1

B0dq1 +

∫
G1

B0dq2 = 0 for all G1 ∈ F1,

which implies q2(G1) = q1(G1) for all G1 ∈ F1.

We will examine the next bond constraint and then propose a pattern. The next

bond constraint is

−
∫
G2

B0dq2 +

∫
G2

B0dq3 = 0 for all G2 ∈ F2.

From this we see that q3(G2) = q2(G2) for all G2 ∈ F2. Continuing this evaluation

develops a pattern of equations:

q1(Ω) = 1; (4.1)

q2(G1) = q1(G1), for all G1 ∈ F1; (4.2)

q3(G2) = q2(G2), for all G2 ∈ F2;
...

qN(N − 1) = qN−1(N − 1), for all GN−1 ∈ FN−1.

The next pattern emerges because of the nesting of our natural filtration. First

recall that Ω is in every σ-algebra Ft. Then evaluating the last pattern with the set

Ω yields

qN(Ω) = qN−1(Ω) = . . . = q1(Ω) = 1,

and every measure has been shown to be a probability measure. Now we have

exhausted Equation 4.1, as it can only be evaluated at Ω and we will focus on the

subsequent equations which can all be evaluated for all G1 in F1. This gives us

qN(G1) = qN−1(G1) = . . . = q1(G1), for all G1 ∈ F1.

We are done examining Equation 4.2, as q1 cannot be evaluated at sets from σ-

algebras greater than F1. We examine the rest of the equations while restricting to
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sets G2 from F2 and get

qN(G2) = qN−1(G2) = . . . = q2(G2), for all G2 ∈ F2.

To complete our proof, we present our finding as the pattern:

qN(Ω) = qN−2(Ω) = . . . = q1(Ω) = 1;

qN(G1) = qN−2(G1) = . . . = q1(G1), for all G1 ∈ F1;

qN(G2) = qN−2(G2) = . . . = q2(G2), for all G2 ∈ F2;
...

qN(GN−2) = qN−1(GN−2) = qN−2(GN−2), for all GN−2 ∈ FN−2;

qN(GN−1) = qN−1(GN−1), for all GN−1 ∈ FN−1.

Now we will turn our focus to the constraints pertaining to stocks. We will use

the fact that we are dealing with probability measures in our examination. Now

would be a good time for the reader to look at Definition 2.27, as most of the

following requires that one understand the definition of conditional expectation.

Our first stock constraint is ∫
Ω

S̃1dq1 = S0.

Recall that
∫

Ω
dq1 = 1. Then we can rewrite our equation like this∫

Ω

S̃1dq1 = S0

∫
Ω

dq1.

Since S0 is a constant, F0 = {∅,Ω} so we have∫
Ω

S̃1dq1 =

∫
Ω

S0dq1.

As S̃1 is not a constant, it is important that we use Theorem 2.27 to explain the

integration. Recall from Remark 4.4, when integrating over Ω that we are actually

integrating over all sets but one (the empty set) from the σ-algebra F0. Thus the
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conditional expected value with respect to feasible measures q of S̃1 given F0 is S0,

Eq[S̃1|F0] = Eq[S1] = S0. This is an interesting initial finding about our stochastic

process S̃.

Now look at the next stock constraint

−
∫
G1

S̃1dq1 +

∫
G1

S̃2dq2 = 0 for all G1 ∈ F1.

We recall from working with our bond constraints that measures q1 and q2 agree

with one another when restricted to sets G1 from F1. Then we can rearrange the

equation and replace dq2 with dq1 to get∫
G1

S̃2dq1 =

∫
G1

S̃1dq1 for all G1 ∈ F1.

Now that the measures match, we can proceed to use our definition of conditional

expectation again to give us Eq[S̃2|F1] = S̃1.

In fact, looking at all of the stock constraints in this way gives us the pattern:

Eq[S̃1|F0] = S̃0;

Eq[S̃2|F1] = S̃1;
...

Eq[S̃N−1|FN−2] = S̃N−2;

Eq[S̃N |FN−1] = S̃N−1.

This finding motivates us to look further and see if we can establish the final require-

ment for our stochastic process, S̃, to be a martingale. Referring back to Definition

2.32, we would need Eq[S̃t|Fs] = S̃s, for each 0 ≤ s < t ≤ N .

Proposition 4.6. Let q = (q1, q2, . . . , qN) be feasible for the dual linear program.

Then the present value stock price process S̃ is a martingale under q with respect to

the natural filtration {Ft}0≤t≤N .

Proof. For t ≤ N − 1, a general form stock constraint is

−
∫
Gt−1

S̃t−1dqt−1 +

∫
Gt−1

S̃tdqt−1 = 0 for all Gt−1 ∈ Ft−1.
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Now we will choose some σ-algebra Fs such that 0 ≤ s < t ≤ N . Since we have

already covered the matter of s being equal to t− 1, we will assume that s < t− 1.

By the work we did with our measures in the bond constraints, we will restrict

our general stock constraint to sets from the σ-algebra Fs to get∫
Gs

S̃tdqs =

∫
Gs

S̃t−1dqs for all Gs ∈ Fs.

The left side is Eq[S̃t|Fs] while the right hand side is Eq[S̃t−1|Fs]. By the recursive

nature of our stock constraints, it is true that Eq[S̃t−1|Fs] = Eq[S̃t−2|Fs] = . . . =

Eq[S̃s+1|Fs]. But, we have shown that Eq[S̃s+1|Fs] = S̃s and therefore we can say

that Eq[S̃t|Fs] = S̃s. Thus, our present value stock price process S̃ is a martingale.

Corollary 4.7. The maximal expected present value of the contingent claim C̃N

over all martingale measures q ∈ Q is a lower bound on the minimal value of the

initial portfolio over all the feasible hedging portfolios.



32

Chapter 5

Summary

In conclusion, we summarize our findings and indicate possible further topics of in-

vestigation. We now know that we have a weak duality relationship between the pri-

mal linear program and the dual linear program. By this relationship, the objective

function of our dual linear program provides a lower bound for the objective function

of the primal linear program, for feasible points of both. For the finite-dimensional

linear program arising from the Trinomial Asset Pricing Model, strong duality of

linear programming establishes that the optimal values of the two linear programs

are equal. This strong result does not necessarily hold for infinite-dimensional linear

programs.

The evolution of the present value stock price process, S̃, is captured by its

natural filtration. Utilizing the dual pair structure of infinite-dimensional linear

programming, the dual space is seen to be a space of measures and the bilinear form

is given by the (summation of the) integration of the measurable random variables

against these measures. The dual constraints required the feasible dual measures be

probability measures and be such that the expected value of S̃ is a martingale.

There are several directions for further investigation on option pricing.

• As indicated above, the issue of strong duality remains to be examined for

the infinite-dimensional linear programs. Under what conditions on the model

will the optimal values of the primal and dual linear programs be equal?

• The finding of S̃ being a martingale is due to the fact that our hedging port-
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folio places no hard restrictions on how much money can be borrowed or how

many shares of stock can be short-sold. As a result, all of the variables were

unrestricted in our primal linear program. How would the placing of such

restrictions affect the interpretation of the dual linear program?



34

Bibliography

[1] E. J. Anderson, P. Nash, Linear Programming in Infinite Dimensional

Spaces , John Wiley and Sons, New York, 1987.

[2] Billingsley, Probability and Measure, Third Ed., John Wiley and Sons, New

York, 1995.


	University of Wisconsin Milwaukee
	UWM Digital Commons
	August 2014

	Option Pricing for a General Stock Model in Discrete Time
	Cindy Lynn Nichols
	Recommended Citation


	Introduction
	Background Theory and Definitions
	Dual Spaces
	Probability and Measure Theory Background

	The Trinomial Asset Pricing Model
	General Asset Pricing Model
	Summary
	  Bibliography

