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ABSTRACT
ASSOCIATED HYPOTHESES IN LINEAR MODELS FOR UNBALANCED

DATA

by

Carlos J. Soto

The University of Wisconsin-Milwaukee, 2015
Under the Supervision of Professor Dr. Jay Beder

When looking at factorial experiments there are several natural hypotheses that can

be tested. In a two-factor or a× b design, the three null hypotheses of greatest

interest are the absence of each main effect and the absence of interaction. There

are two ways to construct the numerator sum of squares for testing these, namely

either adjusted or sequential sums of squares (also known as type I and type III in

SAS). Searle has pointed out that, for unbalanced data, a sequential sum of squares

for one of these hypotheses is equal (with probability 1) to an adjusted sum of

squares for a non-standard associated hypothesis. In his view, then, sequential sums

of squares may test the wrong hypotheses. We give an exposition of this topic to

show how to derive the hypothesis associated to a given sequential sum of squares.
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1 Introduction

When looking at factorial experiments there are several natural hypotheses that can

be tested. In a two-factor or a×b design, the three null hypotheses of greatest interest

are the absence of each main effect and the absence of interaction. We are under the

assumption that no cell in our experiment is empty and further the cells could be

unbalanced, that is that, they do not necessarily have the same sample size in each

cell.

To test our hypothesis we first fit a linear model. Then there are two ways to

construct the “numerator” sum of squares for testing these hypotheses, namely either

“adjusted” or “sequential” sums of squares (also known as type I and type III in

SAS).

In Linear Models [2, Section 7.2(f)] Searle derives the hypotheses associated with

various sequential sum of squares in a a× b design. He has pointed out that, for un-

balanced data, a sequential sum of squares for one of these hypotheses is equal (with

probability 1) to an adjusted sum of squares for a non-standard “associated hypoth-

esis.” In his view, then, sequential sums of squares may test the wrong hypotheses.

Some of the hypotheses are not directly given in terms of the cell means µij, and the

computations are somewhat complicated and ad hoc. We then give an exposition to

build up to Theorem 3.3 and Corollary 3.1, and then derive from them hypotheses

associated with sequential sum of squares in a a× b design.

Linear models are first explored and the usual methods of testing hypotheses are

given. Several theorems that are presented without proofs are from Linear Models

and Design [1].
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2 Linear Models

For testing hypotheses we will be fitting a linear full model of E(Y ) = Xβ and

comparing it to a restricted model as that under our null hypothesis, H0. To fit our

model the method of least squares will be used. For the full and restricted models

the sum of squared errors are denoted as SSE and SSER respectively. If SSE and

SSER are significantly close to each other, then we will not reject H0. It’s important

to note that SSER ≥ SSE since a restricted model’s error can’t be less than a full

model. Thus, if SSER is significantly greater than SSE we will reject H0 which is

equivalent to SSER/SSE being significantly large.

2.1 Notation

Working with an a × b design there is several useful notation which we’ll be using.

First, let p = ab which is the number of cells. Let µij denote the mean of the cell

ij. Next, ni· is used to denote the sum of observations in the ith row. That is

ni· =
∑b

j=1 nij. Similarly for columns n·j =
∑a

i=1 nij. Thus the total number of

observations is N = n·· =
∑b

j=1

∑a
i=1 nij =

∑b
j=1 n·j =

∑a
i=1 ni·

In general when the lower and upper bounds of summations are obvious the following

notation will be used:
∑

i =
∑a

i=1 and
∑

j =
∑b

j=1.

2.2 Least Squares

Since the method of least squares will be used, a few notes about the method will be

made. However, since the method is quite standard, derivations of most equations are

omitted. LetX denote theN×p design matrix. Let Y represent the vector of observed

values and let Ŷ represents the vector of fitted values, both of which are N × 1. The
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method of least squares is that which minimizes SSE := ‖Y − Ŷ ‖2 =
∑N

j=1(Yj− Ŷj)2

To minimize the SSE, Ŷ = X(X ′X)−1X ′Y and since Ŷ = Xβ̂ then β̂ =

(X ′X)−1X ′Y . Throughout this paper, the “hat” matrix is defined to be P = X(X ′X)−1X ′.

The matrix P is a projection matrix from RN to RN where N is the total number

observations as defined in the previous section. It is useful to think of RN as the

observation space. Ŷ = PY is the orthogonal projection of Y onto V := R(X), the

column space of X.

2.3 Hypotheses

In a a × b design there are six main hypotheses of interest: “only A present”, “only

B present”, absence of each main effect and absence of interaction.

The hypotheses of “only A present” consists of the equations

µ11 = · · · = µ1b

µ21 = · · · = µ2b

...

µa1 = · · · = µab

Let ρi denote the ith row mean. That is ρi = 1
b

∑b
j=1 µij. A natural hypotheses

would be H0 : ρ1 = ρ2 = · · · = ρa, that is all rows have the same mean. This is

referred to as “A effect absent.”

The hypotheses of “only B present” consists of the equations

µ11 = · · · = µa1
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µ12 = · · · = µa2

...

µ1b = · · · = µab

Let γj denote the jth column mean. That is γj = 1
a

∑a
i=1 µij. A natural hypotheses

would be H0 : γ1 = γ2 = · · · = γb, that is all columns have the same mean. This is

referred to as “B effect absent.”

Another main hypothesis tested is that of “interaction” of A and B, defined to

be lack of additivity. The factors A and B are considered to be additive if a change

from row i to i∗ can be achieved by adding the same constant to each cell mean of

row i. Note that the constant need not be the same amongst different pairs of rows.

Whilst it is true that additivity holds between any pair of rows it’s more useful to

equivalently consider additivity between row 1 and row i, i = 2, . . . , a. The hypothesis

of additivity consists of the (a− 1)(b− 1) equations

µij − µ1j = µi1 − µ11, i = 2, . . . , a, j = 2, . . . , b

The last main hypothesis tested is that of no effect present, that is, H0 : µij equal

for all ij.

2.4 Restrictions

In our hypothesis of interest some sort of restriction or linear constraint is made on

β where β ∈ Rp. It is useful to think of Rp as the parameter space of the model. A

hypothesis which makes a linear constraint is considered a linear hypothesis. There

are several ways in which a linear constraint can be written and few are given below.
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Lemma 2.1. The following are equivalent

(i) There exists a subspace U ⊂ Rp such that

β ⊥ U

(ii) There exists a subspace W ⊂ Rp such that

β ∈ W

(iii) There exists a matrix W and a vector β0 such that

β = Wβ0

U is a set of contrast vectors. From this Lemma it’s important to note that W

and U are orthogonal complements of each other.

Since the hypotheses we will be testing are defined by a linear constraint then it’s im-

portant to know how the model acts under such a linear constraint. It seems natural

that a linear model under a linear constraint should still be a linear model. We thus

have the following theorem

Theorem 2.1. If E(Y ) = Xβ and if β is subject to a linear constraint β ∈ W , then

the constrained model is also a linear model

E(Y ) = X0β0

where X0 = XW0 and appropriate β0.

We will be assuming that X has full rank and thus W ∩N(X) = (0), where N(X)

is the nullspace of X, that is N(X) = {c|Xc = 0}. Therefore X0 has full rank as well.
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3 Hypothesis in Linear Models

3.1 Linear Hypothesis

We have already shown how to fit the unrestricted model and now that we know how

to restrict our β then fitting a restricted model is similar in method.

Let H0 : β ∈ W be our null hypothesis, where W is a subspace of Rp and let

V0 := X(W ), a subspace of V . To fit the restricted model, we find the value of

Ŷ ∈ V0 that minimizes the distance to Y . Thus, Ŷ is the orthogonal projection of Y

onto V0, and we define

SSER := ‖Y − Ŷ0‖2.

At this point, we have Y , Ŷ , and Ŷ0 and since Ŷ , Ŷ0 ∈ V = R(X) then we can see

that these three vectors form a right triangle. Thus we have,

‖Y − Ŷ0‖2 = ‖Y − Ŷ ‖2 + ‖Ŷ − Ŷ0‖2.

If we denote SS(H0) = ‖Ŷ − Ŷ0‖2 (notation will become apparent shortly) then

SSER = SSE + SS(H0)⇒
SSER

SSE
= 1 +

SS(H0)

SSE

Recall that we will reject H0 when SSER/SSE is significantly large. Thus this is

equivalent to rejecting when SS(H0)
SSE

is large. Thus, we call SS(H0) the sum of squares

for testing H0.

3.2 Nested Hypothesis and Sequential Sum of Squares

Thus far, we have been interested in testing a single linear hypothesis. Generally an

analysis of variance tests several hypotheses. Several interesting things occur when
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there are more than one hypothesis and we’ll begin to explore this.

Definition 3.1. A hypothesis H(1) is nested in hypothesis H(2) if H(1) implies H(2).

Since in our linear model β ∈ Rp, then from Lemma 2.1 a general hypothesis H(i)

may be expressed as β ∈ W(i) for an appropriate subspace W(i) ⊂ Rp. Thus H(1) is

nested in H(2) if and only if W1 ⊂ W2.

Applying Lemma 2.1, H(i) may be expressed as β ⊥ U(i). Thus H(1) is nested in

H(2) if and only if U2 ⊂ U1.

The choice of H0 is the simplest possible hypothesis model. Generally this is the

mean of all cells being equal.

In general, suppose W0 ⊂ W1 which thus means the hypothesis β ∈ W0 is nested

in β ∈ W1. Let Vi = X(Wi) be the image of Wi so thus V = R(X) the column space

of X. Thus V0 ⊂ V1 ⊂ V

Theorem 3.1. We have Ŷ − Ŷ1 ∈ V 	 V1 and Ŷ1 − Ŷ0 ∈ V1 	 V0. In particular,

Y − Ŷ , Ŷ − Ŷ1 and Ŷ1 − Ŷ0 are pairwise orthogonal.

Suppose we wanted to test β ∈ W0, given that β ∈ W1. Note that

‖Y − Ŷ0‖2 = ‖Y − Ŷ ‖2 + ‖Ŷ − Ŷ1‖2 + ‖Ŷ1 − Ŷ0‖2

= ‖Y − Ŷ1‖2 + ‖Ŷ1 − Ŷ0‖2

As when we defined SS(H0), if we divided both sides by SSE = ‖Y − Ŷ1‖2 then,

‖Y − Ŷ0‖2

SSE
= 1 +

‖Ŷ1 − Ŷ0‖2

SSE

Thus ‖Ŷ1 − Ŷ0‖2 is appropriate for testing β ∈ W0, given that β ∈ W1. We thus

denote this as

SS(β ∈ W0|β ∈ W1) = ‖Ŷ1 − Ŷ0‖2
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Keeping with this notation

‖Ŷ − Ŷ0‖2 = ‖Ŷ − Ŷ1‖2 + ‖Ŷ1 − Ŷ0‖2

⇒ ‖Ŷ1 − Ŷ0‖2 = ‖Ŷ − Ŷ0‖2 − ‖Ŷ − Ŷ1‖2

⇒ SS(β ∈ W0|β ∈ W1) = SS(β ∈ W0)− SS(β ∈ W1)

Since SS(β ∈ W0) = ‖Ŷ − Ŷ0‖2 is the simplest model, it is generally referred to

as the sum of squares for the model. Thus since SS(β ∈ W0) = S(β ∈ W0|β ∈

W1) + SS(β ∈ W1), then S(β ∈ W0|β ∈ W1) and SS(β ∈ W1) are referred to as

sequential sums of squares. This is so because if we started with ‖Y − Ŷ ‖2 and add

SS(β ∈ W1) = ‖Ŷ − Ŷ1‖2 and SS(β ∈ W0|β ∈ W1) = ‖Ŷ1 − Ŷ0‖2 sequentially, then

we build the sum of squares for the model.

To generalize Theorem 3.1 we can consider H0 : β ∈ Wi where W0 ⊂ W1 ⊂ · · ·Wk ⊂

Rp and the Wi are distinct. Then V0 ⊂ V1 ⊂ · · · ⊂ V .

Theorem 3.2. We have Ŷ − Ŷk ∈ V 	 Vk and Ŷj − Ŷj−1 ∈ Vj 	 Vj−1. In particular,

Y − Ŷ , Ŷ − Ŷk, Ŷk − Ŷk−1,..., Ŷ1 − Ŷ0 are pairwise orthogonal.

3.3 Associated Hypothesis

Definition 3.2. Given a hypothesis H(1) nested in H(2), the hypothesis H∗ is asso-

ciated to SS(H(1)|H(2)) and SS(H(1)|H(2)) = SS(H∗).

Theorem 3.3. Consider the model E(Y ) = Xβ, where XN×p has full rank, and let

W1 ⊂ W2 ⊂ Rp. Then there is a unique subspace W ∗ satisfying SS(β ∈ W ∗) =

SS(β ∈ W1|β ∈ W2), and we have

df(β ∈ W ∗) = df(β ∈ W1|β ∈ W2).
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The subspace is given by W ∗ = R(TP ∗), where T = (X ′X)−1X ′ and P ∗ is defined as

follows.

Let Vi = X(Wi), V = R(X) be the column space of X, and let P be Pi be the

orthogonal projections of RN on V and on Vi, respectively. Then P ∗ = P − P2 + P1.

Corollary 3.1. The subspace U∗ is given by U∗ = N(P ∗T )

4 Some Associated Hypotheses

Throughout the rest of this paper instead of working with an a × b design, we’ll be

working with a 2× 3 design.

4.1 Rows

Theorem 4.1. Consider the hypotheses H(0) :all µij equal and H(1) :Only A present.

Clearly H(0) is nested in H(1). The hypothesis associated with the sequential sum of

squares SS(H(0)|H(1)) is H∗ : ρ′1 = ρ′2 = · · · = ρ′a where ρ′i = 1
ni·

∑
j nijµij.

Thus let H(0) : µ11 = µ12 = µ13 = µ21 = µ22 = µ23 and H(1) : µ11 = µ12 = µ13 and

µ21 = µ22 = µ23. The hypothesis associated with SS(H(0)|H(1)) of is H∗ : ρ′1 = ρ′2.

Proof. We need P ∗ = P − P1 + P0 by Theorem 3.3.

Let 1k be the k × 1 vector of 1’s, let Jn×m be the n × m matrix of 1′s, and Jn the

n× n matrix of 1’s.

For our unrestricted full model we have



10

X =



1n11 0 0 0 0 0

0 1n12 0 0 0 0

0 0 1n13 0 0 0

0 0 0 1n21 0 0

0 0 0 0 1n22 0

0 0 0 0 0 1n23



Thus P = X(X ′X)−1X ′ =



A 0 0 0 0 0

0 B 0 0 0 0

0 0 C 0 0 0

0 0 0 D 0 0

0 0 0 0 E 0

0 0 0 0 0 F


where

A = 1
n11
Jn11 B = 1

n12
Jn12 C = 1

n13
Jn13

D = 1
n21
Jn21 E = 1

n22
Jn22 F = 1

n23
Jn23

Under our null hypothesis of equality of means in rows we want µ11 = µ12 = µ13

and µ21 = µ22 = µ23. We have two equations so we have two free parameters, say µ11

and µ21. So by Theorem 2.1 we want a matrix W1 such that



µ11

µ12

µ13

µ21

µ22

µ23


= W1

µ11

µ21
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We can see that W1 =



1 0

1 0

1 0

0 1

0 1

0 1


since



µ11

µ11

µ11

µ21

µ21

µ21


= W1

µ11

µ21

.

Therefore, we have X1 = XW1.

Thus

X1 =

1n1· 0

0 1n2·



and

P1 = X1(X
′
1X1)

−1X ′1 =

A 0

0 B


where A = 1

n1·
Jn1· and B = 1

n2·
Jn2· .

For the simplest model we have µ11 = µ21 = µ12 = µ22 = µ13 = µ23. We have one free

parameter, say µ11. By Theorem 2.1 so we need a W0 such that



µ11

µ12

µ13

µ21

µ22

µ23


= W0

[
µ11

]
.
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It is clear that, W0 =



1

1

1

1

1

1


since



µ11

µ11

µ11

µ11

µ11

µ11


= W0

[
µ11

]

Therefore, we have X0 = XW0 = 1N×1. Further P0 = X0(X
′
0X0)

−1X ′0 = 1
N
JN×N

Since P is a projection matrix from RN to RN , all P matrices are N ×N matrices.

We have P ∗ = P − P1 + P0. The only matrix we need now is T ′ where T =

(X ′X)−1X ′ =.

T ′ =



1
n11

1n11 0 0 0 0 0

0 1
n12

1n12 0 0 0 0

0 0 1
n13

1n13 0 0 0

0 0 0 1
n21

1n21 0 0

0 0 0 0 1
n22

1n22 0

0 0 0 0 0 1
n23

1n23


N×6

Remark 4.1. The very next step is to calculate P ∗T ′ and then according to Corollary

3.1. find its nullspace. Let us introduce the notation C(P ∗T ′) which we’ll think of

as the “core” of our matrix. The matrix P ∗T ′ has several repeated rows, in fact only

6 unique rows. Thus N − 6 rows can be eliminated when finding the nullspace. The

6 unique rows compose C(P ∗T ′) and thus C(P ∗T ′) is 6 × 6. To picture P ∗T ′, the

first row of C(P ∗T ′) is repeated n11 times, the second row is repeated n12 times, the

third is repeated n13 times, etc. Note that N(P ∗T ′) = N(C(P ∗T ′)) since eliminated

repeated rows do not effect the nullspace.

C(P ∗T ′) =

 A 1
N
J3

1
N
J3 B
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where

A =


1

n11
− 1

n1·
+ 1

N
1
N
− 1

n1·
1
N
− 1

n1·

1
N
− 1

n1·
1

n12
− 1

n1·
+ 1

N
1
N
− 1

n1·

1
N
− 1

n1·
1
N
− 1

n1·
1

n13
− 1

n1·
+ 1

N



and

B =


1

n21
− 1

n2·
+ 1

N
1
N
− 1

n2·
1
N
− 1

n2·

1
N
− 1

n2·
1

n22
− 1

n2·
+ 1

N
1
N
− 1

n2·

1
N
− 1

n2·
1
N
− 1

n2·
1

n23
− 1

n2·
+ 1

N



The next step is to put the matrix in reduced row echelon form. It’s important

to note that the Gaussian elimination method is not efficient and should be avoided

if replicating this result. The reduced matrix is as follows.



1 0 0 0 0 n11n2·
n1·n23

0 1 0 0 0 n12n2·
n1·n23

0 0 1 0 0 n13n2·
n1·n23

0 0 0 1 0 −n21

n23

0 0 0 0 1 −n22

n23

0 0 0 0 0 0


.
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Next to find the nullspace we need to solve



1 0 0 0 0 n11n2·
n1·n23

0 1 0 0 0 n12n2·
n1·n23

0 0 1 0 0 n13n2·
n1·n23

0 0 0 1 0 −n21

n23

0 0 0 0 1 −n22

n23

0 0 0 0 0 0





c11

c12

c13

c21

c22

c23


=



0

0

0

0

0

0


.

Thus we have 

c11 = −n11n2·
n1·n23

c23

c12 = −n12n2·
n1·n23

c23

c13 = −n13n2·
n1·n23

c23

c21 = n21

n23
c23

c22 = n22

n23
c23

If we let c23 = −n23

n2·
, then 

c11 = n11

n1·

c12 = n12

n1·

c13 = n13

n1·

c21 = −n21

n2·

c22 = −n22

n2·

.

Thus

n11

n1·
µ11 +

n12

n1·
µ12 +

n13

n1·
µ13 −

n21

n2·
µ21 −

n22

n2·
µ22 −

n23

n2·
µ23 = 0

n11

n1·
µ11 +

n12

n1·
µ12 +

n13

n1·
µ13 =

n21

n2·
µ21 +

n22

n2·
µ22 +

n23

n2·
µ23
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1

n1·
[n11µ11 + n12µ12 + n13µ13] =

1

n2·
[n21µ21 + n22µ22 + n23µ23]

Recall that ρ′i = 1
ni·

∑
j nijµij. Therefore, the associated hypothesis is ρ′1 = ρ′2, as

claimed.

Example 4.1. Lets see the hypothesis H0 : ρ1 = ρ2 as applied to the following

experiment. Consider the following data: Searle claims that the sequential sum of

Variety
Soil 1 2 3
1 6, 10, 11 13, 15 14, 22
2 12, 15, 19, 18 31 18, 9, 12

Table 4.1: This is a table of soil and variety

squares for Soil only tests the hypothesis 1
7
(3µ11 +2µ12 +2µ13) = 1

8
(4µ21 +µ22 +3µ23).

Using the previous theorem to derive this hypothesis we have

X =



13 0 0 0 0 0

0 12 0 0 0 0

0 0 12 0 0 0

0 0 0 14 0 0

0 0 0 0 1 0

0 0 0 0 0 13
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Using statistical software we get

P ∗T ′ =



9
35

−8
105

−8
105

1
15

1
15

1
15

9
35

−8
105

−8
105

1
15

1
15

1
15

9
35

−8
105

−8
105

1
15

1
15

1
15

−8
105

89
210

−8
105

1
15

1
15

1
15

−8
105

89
210

−8
105

1
15

1
15

1
15

−8
105

−8
105

89
210

1
15

1
15

1
15

−8
105

−8
105

89
210

1
15

1
15

1
15

1
15

1
15

1
15

23
120

−7
120

−7
120

1
15

1
15

1
15

23
120

−7
120

−7
120

1
15

1
15

1
15

23
120

−7
120

−7
120

1
15

1
15

1
15

23
120

−7
120

−7
120

1
15

1
15

1
15

−7
120

113
120

−7
120

1
15

1
15

1
15

−7
120

−7
120

11
40

1
15

1
15

1
15

−7
120

−7
120

11
40

1
15

1
15

1
15

−7
120

−7
120

11
40



As we can see the first row is repeated n11 = 3 times, the fourth row is repeated

n12 = 2 times and etc. Since our total sample size is N = 15 we ended up with a

15× 6 matrix. The core of P ∗T ′ is

C(P ∗T ′) =



1 0 0 0 0 8
7

0 1 0 0 0 16
21

0 0 1 0 0 16
21

0 0 0 1 0 −4
3

0 0 0 0 1 −1
3
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Thus we have 

c11 = −8
7
c23

c12 = −16
21
c23

c13 = −16
21
c23

c21 = 4
3
c23

c22 = 1
3
c23

If we let c23 = −n23

n2·
= −3

8
then



c11 = −8
7
(−3

8
) = 3

7

c12 = −16
21

(−3
8
) = 2

7

c13 = −16
21

(−3
8
) = 2

7

c21 = 4
3
(−3

8
) = −4

8

c22 = 1
3
(−3

8
) = −1

8

Therefore

H∗ : 3
7
µ11 + 2

7
µ12 + 2

7
µ13 − 4

8
µ21 − 1

8
µ22 − 3

8
µ23 = 0. So,

H∗ : 3
7
µ11 + 2

7
µ12 + 2

7
µ13 = 4

8
µ21 + 1

8
µ22 + 3

8
µ23, or

H∗ : 1
7
(3µ11 + 2µ12 + 2µ13) = 1

8
(4µ21 + µ22 + 3µ23), as Searle claims.

4.2 Columns

Theorem 4.2. Consider the hypotheses H(0) :all µij equal and H(1) :Only B present.

Clearly H(0) is nested in H(1). The hypothesis associated with the sequential sum of

squares SS(H(0)|H(1)) is H∗ : γ′1 = γ′2 = · · · = γ′b where γ′i = 1
n·j

∑
i nijµij.

Thus let H(0) : µ11 = µ12 = µ13 = µ21 = µ22 = µ23 and H(1) : µ11 = µ21, µ12 = µ22,

and µ13 = µ23. The hypothesis associated with SS(H(0)|H(1)) of is H∗0 : γ′1 = γ′2 = γ′3.
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Proof. First we will note that the full model and simplest model are the same as in

the hypothesis of row equality in the previous section. Thus P , P0, and T are the

same as in the previous section.

Under our null hypothesis of equality of means in columns we want µ11 = µ21,

µ12 = µ22, and µ13 = µ23. We have three equations so we have three free parameters,

say µ11, µ12, and µ13. So by Theorem 2.1 we want a matrix W1 such that



µ11

µ12

µ13

µ21

µ22

µ23


= W1


µ11

µ12

µ13



Thus we can see that

W1 =



1 0 0

0 1 0

0 0 1

1 0 0

0 1 0

0 0 1
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since 

µ11

µ12

µ13

µ11

µ12

µ13


= W1


µ11

µ12

µ13

 .

Thus we have

X1 = XW1 =



1n11 0 0

0 1n12 0

0 0 1n13

1n21 0 0

0 1n22 0

0 0 1n23


.

Further

P1 = X1(X
′
1X1)

−1X ′1 =



1
n·1
Jn11 0 0 1

n·1
Jn21 0 0

0 1
n·2
Jn12 0 0 1

n·2
Jn22 0

0 0 1
n·3
Jn13 0 0 1

n·3
Jn23

1
n·1
Jn11 0 0 1

n·1
Jn21 0 0

0 1
n·2
Jn12 0 0 1

n·2
Jn22 0

0 0 1
n·3
Jn13 0 0 1

n·3
Jn23



Again, P ∗T ′ has 6 unique rows and C(P ∗T ′) =

[
A B

]
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where

A =



1
n11
− 1

n·1
+ 1

N
1
N

1
N

1
N

1
n12
− 1

n·2
+ 1

N
1
N

1
N

1
N

1
n13
− 1

n·3
+ 1

N

1
N
− 1

n·1
1
N

1
N

1
N

1
N
− 1

n·2
1
N

1
N

1
N

1
N
− 1

n·3


and

B =



1
N
− 1

n·1
1
N

1
N

1
N

1
N
− 1

n·2
1
N

1
N

1
N

1
N
− 1

n·3

1
n21
− 1

n·1
+ 1

N
1
N

1
N

1
N

1
n22
− 1

n·2
+ 1

N
1
N

1
N

1
N

1
n23
− 1

n·3
+ 1

N



The matrix C(P ∗T ′) in reduced row echelon form is as follows:



1 0 0 0 n·2n11

n·1n22

n·3n11

n·1n23

0 1 0 0 −n12

n22
0

0 0 1 0 0 −n13

n23

0 0 0 1 n·2n21

n·1n22

n·3n21

n·1n23

0 0 0 0 0 0

0 0 0 0 0 0
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Thus to find the nullspace of C(P ∗T ′) we need to solve



1 0 0 0 n·2n11

n·1n22

n·3n11

n·1n23

0 1 0 0 −n12

n22
0

0 0 1 0 0 −n13

n23

0 0 0 1 n·2n21

n·1n22

n·3n21

n·1n23

0 0 0 0 0 0

0 0 0 0 0 0





c11

c12

c13

c21

c22

c23


=



0

0

0

0

0

0


Thus we have 

c11 = −n·2n11

n·1n22
c22 − n·3n11

n·1n23
c23

c12 = n12

n22
c22

c13 = n13

n23
c23

c21 = −n·2n21

n·1n22
c22 − n·3n21

n·1n23
c23

If we let c22 = n22

n·2
and c23 = n23

n·2
, then



c11 = −2n11

n·1

c12 = n12

n·2

c13 = n13

n23

c21 = −2n21

n·1

.

So

−2n11

n·1
µ11 +

n12

n·2
µ12 +

n13

n·3
µ13 −

2n21

n·1
µ21 +

n22

n·2
µ22 +

n23

n·2
µ23 = 0

[(
n12

n·2
µ12 +

n22

n·2
µ22)− (

n11

n·1
µ11 +

n21

n·1
µ21)]− [(

n11

n·1
µ11 +

n21

n·1
µ21)− (

n13

n·3
µ13 +

n23

n·2
µ23)] = 0

1

n·2
(n12µ12+n22µ22)−

1

n·1
(n11µ11+n21µ21) =

1

n·1
(n11µ11+n21µ21)−

1

n·3
(n13µ13+n23µ23)
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Recall that γ′i = 1
n·j

∑
i nijµij. Thus

γ′2 − γ′1 = γ′1 − γ′3.

Similarly, if we go back to our system of equations and let c22 = n22

n·2
and c23 = 0 then

γ′2 − γ′1 = 0

Thus γ′1 = γ′2 and by our previous equations, γ′1 = γ′2 = γ′3, as claimed.

Example 4.2. Continuing using the data from Example 4.1, we will be examining

the hypothesis of of variety only.

C(P ∗T ′) =



9
35

1
15

1
15

−8
105

1
15

1
15

1
15

7
30

1
15

1
15

−4
15

1
15

1
15

1
15

11
30

1
15

1
15

−2
15

−8
105

1
15

1
15

73
420

1
15

1
15

1
15

−4
15

1
15

1
15

11
15

1
15

1
15

1
15

−2
15

1
15

1
15

1
5


.

After reducing the matrix we get



1 0 0 0 9
7

5
7

0 1 0 0 −2 0

0 0 1 0 0 −2
3

0 0 0 1 12
7

20
21

0 0 0 0 0 0

0 0 0 0 0 0


.
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Thus we have 

c11 = −9
7
c22 − 5

7
c23

c12 = 2c22

c13 = 2
3
c23

c21 = −12
7
c22 − 20

21
c23

If we let c22 = n22

n·2
= 1

3
and c23 = n23

n·3
= 3

5
then



c11 = −6
7

c12 = 2
3

c13 = 2
5

c21 = −8
7

Thus

−6

7
µ11 +

2

3
µ12 +

2

5
µ13 −

8

7
µ21 +

1

3
µ22 +

3

5
µ23 = 0

2

3
µ12 +

1

3
µ22 −

3

7
µ11 −

4

7
µ21 =

3

7
µ11 +

4

7
µ21 −

2

5
µ13 −

3

5
µ23

1

3
(2µ12 + µ22)−

1

7
(3µ11 + 4µ21) =

1

7
(3µ11 + 4µ21)−

1

5
(2µ13 + 3µ23)

Recall that γ′i = 1
n·j

∑
i nijµij, so,

γ′2 − γ′1 = γ′1 − γ′3.
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Similarly if we let c22 = n22

n·2
= 1

3
and c23 = 0 then we get



c11 = −3
7

c12 = 2
3

c13 = 0

c21 = −4
7

Thus

−3
7
µ11 + 2

3
µ12 − 4

7
µ21 + 1

3
µ22 = 0, or

2
3
µ12 + 1

3
µ22 = 3

7
µ11 + 4

7
µ21, so

γ′2 = γ′1 and thus γ′1 = γ′2 = γ′3.

4.3 Additivity

Theorem 4.3. Consider the hypotheses H(1) :Only A present and H(2) :Additivity.

H(1) is nested in H(2). Then the hypothesis associated with the sequential sum of

squares SS(H(1)|H(2)) is H∗ : γ′j = 1
n·j

∑
i nijρ

′
i∀j where γ′i = 1

n·j

∑
i nijµij.

Thus for our 2 × 3 case we have H(1) : µ11 = µ12 = µ13 and µ21 = µ22 = µ23 and

H(2) : µ22 − µ12 = µ21 − µ11 and µ23 − µ13 = µ21 − µ11. The hypothesis associated

with SS(H(1)|H(2)) is H∗0 : γ′1 = 1
n·1

(n11ρ
′
1 + n21ρ

′
2) and γ′2 = 1

n·2
(n12ρ

′
1 + n22ρ

′
2).

Proof. This hypothesis actually ending up being the most challenging to calculate,

so instead of doing this with unbalanced data we will be using balanced data.
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For the unrestriced model we have

X =



1n 0 0 0 0 0

0 1n 0 0 0 0

0 0 1n 0 0 0

0 0 0 1n 0 0

0 0 0 0 1n 0

0 0 0 0 0 1n


and

P = X(X ′X)−1X ′ =



1
n
Jn 0 0 0 0 0

0 1
n
Jn 0 0 0 0

0 0 1
n
Jn 0 0 0

0 0 0 1
n
Jn 0 0

0 0 0 0 1
n
Jn 0

0 0 0 0 0 1
n
Jn


.

For the model of “A only” in the balanced case we have

P1 = X1(X
′
1X1)

−1X ′1 =

 1
3n
Jn 0

0 1
3n
Jn

 .
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Under our hypothesis of additivity we have µ22− µ12 = µ21− µ11 and µ23− µ13 =

µ21 − µ11. Thus we want W2 such that



µ11

µ12

µ13

µ21

µ22

µ23


= W2



µ11

µ12

µ13

µ21



Thus we want

W2 =



1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

−1 1 0 1

−1 0 1 1


.

Therefore, we have

X2 = XW2 =



1n 0 0 0

0 1n 0 0

0 0 1n 0

0 0 0 1n

−1n 1n 0 1n

−1n 0 1n 1n
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and

P2 = X2(X
′
2X2)

−1X ′2 =



2
3n
Jn

1
6n
Jn

1
6n
Jn

2
3n
Jn

−1
6n
Jn

−1
6n
Jn

1
6n
Jn

2
3n
Jn

1
6n
Jn

−1
6n
Jn

1
3n
Jn

−1
6n
Jn

1
6n
Jn

1
6n
Jn

2
3n
Jn

−1
6n
Jn

−1
6n
Jn

1
3n
Jn

1
3n
Jn

−1
6n
Jn

−1
6n
Jn

2
3n
Jn

1
6n
Jn

1
6n
Jn

−1
6n
Jn

1
3n
Jn

1
6n
Jn

1
6n
Jn

2
3n
Jn

1
6n
Jn

−1
6n
Jn

−1
6n
Jn

1
3n
Jn

1
6n
Jn

1
6n
Jn

2
3n
Jn


.

Thus we have

P ∗ = P − P2 + P1 =



2
3n
Jn

1
6n
Jn

1
6n
Jn

−1
3n
Jn

1
6n
Jn

1
6n
Jn

1
6n
Jn

2
3n
Jn

1
6n
Jn

1
6n
Jn

−1
3n
Jn

1
6n
Jn

1
6n
Jn

1
6n
Jn

2
3n
Jn

1
6n
Jn

1
6n
Jn

−1
3n
Jn

−1
3n
Jn

1
6n
Jn

1
6n
Jn

2
3n
Jn

1
6n
Jn

1
6n
Jn

1
6n
Jn

−1
3n
Jn

1
6n
Jn

1
6n
Jn

2
3n
Jn

1
6n
Jn

1
6n
Jn

1
6n
Jn

−1
3n
Jn

1
6n
Jn

1
6n
Jn

2
3n
Jn


and

C(P ∗T ′) =



2
3n

1
6n

1
6n

−1
3n

1
6n

1
6n

1
6n

2
3n

1
6n

1
6n

−1
3n

1
6n

1
6n

1
6n

2
3n

1
6n

1
6n

−1
3n

−1
3n

1
6n

1
6n

2
3n

1
6n

1
6n

1
6n

−1
3n

1
6n

1
6n

2
3n

1
6n

1
6n

1
6n

−1
3n

1
6n

1
6n

2
3n


.
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After some algebra we have the reduced form of



1 0 0 0 1 1

0 1 0 0 −1 0

0 0 1 0 0 −1

0 0 0 1 1 1

0 0 0 0 0 0

0 0 0 0 0 0


.

To find the nullspace of this matrix, so we want to solve



1 0 0 0 1 1

0 1 0 0 −1 0

0 0 1 0 0 −1

0 0 0 1 1 1

0 0 0 0 0 0

0 0 0 0 0 0





c11

c12

c13

c21

c22

c23


=



0

0

0

0

0

0


We have 

c11 = −c22 − c23

c12 = c22

c13 = c23

c21 = −c22 − c23

.

In this case, deriving the associated hypothesis isn’t straightforward. So instead, we

can verify that the associated hypothesis is correct. Consider γ′1 = 1
2
(ρ′1 + ρ′2) then

1

2n
(nµ11 + nµ21) =

1

2
(

1

3n
(nµ11 + nµ12 + nµ13) +

1

3n
(nµ21 + nµ22 + nµ23))
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1

2
(µ11 + µ21) =

1

2
(
1

3
(µ11 + µ12 + µ13) +

1

3
(µ21 + µ22 + µ23))

µ11 + µ21 =
1

3
(µ11 + µ12 + µ13 + µ21 + µ22 + µ23)

2

3
µ11 −

1

3
µ12 −

1

3
µ13 +

2

3
µ21 −

1

3
µ22 −

1

3
µ23 = 0

Thus if we let c22 = −1
3

and c23 = −1
3

, then



c11 = 2
3

c12 = −1
3

c13 = −1
3

c21 = 2
3

,

thus verifying the associated hypothesis.

5 Conclusion

We have shown to how use Theorem 3.1 and Corollary 3.1 [1] to derive certain as-

sociated hypotheses, namely those for sequential sum of squares of the form SS(no

effect|Only A present). The corresponding computations for sequential sum of

squares such as SS(Only A present|No interaction) turn out to be much more dif-

ficult for unbalanced data. This needs to be carried out to make the theorem truly

usable.
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