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ABSTRACT
RESULTS ON N-ABSORBING IDEALS OF COMMUTATIVE RINGS

by

Alison Elaine Becker

The University of Wisconsin-Milwaukee, 2015
Under the Supervision of Dr. Allen Bell

Let R be a commutative ring with 1 6= 0. In his paper On 2-absorbing ideals of

commutative rings, Ayman Badawi introduces a generalization of prime ideals called

2-absorbing ideals, and this idea is further generalized in a paper by Anderson and

Badawi [1] to a concept called n-absorbing ideals. A proper ideal I of R is said to

be an n-absorbing ideal if whenever x1 · · ·xn+1 ∈ I for x1, · · · , xn+1 ∈ R then there

are n of the xi’s whose product is in I. This paper will provide proofs of several

properties in [1] which are stated without proof, and will study how several

theorems from Badawi’s initial paper on 2-absorbing ideals can be extended to

n-absorbing ideals of R. Additionally, Badawi introduces a generalization of

primary ideals in his paper On 2-absorbing primary ideals in commutative rings [3],

and this paper generalizes that idea further by defining n-absorbing primary ideals

of R. Let n be a positive integer. A proper ideal I of a commutative ring R is said

to be an n -absorbing primary ideal of R if whenever x1, . . . , xn+1 ∈ R and

x1x2 · · ·xn+1 ∈ I then either x1x2 · · ·xn ∈ I or a product of n of the x′is (other than

x1 · · ·xn) is in
√
I. We will prove several basic properties of n-absorbing primary

ideals, including that any n-absorbing primary ideal is m-absorbing for m ≥ n. We

will also show that for R = Z and I = nZ if n has k prime factors, then I is a

k-absorbing primary ideal, and is not, in fact, a (k − 1)-absorbing primary ideal of

R. This will lead us to a conclusion about the intersection of ideals of this form.
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1 Introduction

Throughout this paper we will assume that R is a commutative ring with unity.

The concept of a 2-absorbing ideal of R is first introduced by Badawi in [2], and an

n-absorbing ideal of R is introduced by Anderson and Badawi in [1]. We will study

these n-absorbing ideals of commutative rings, which are a generalization of prime

ideals. A proper ideal I of R is called an n-absorbing ideal if for x1, x2, . . . , xn+1 ∈ R

and x1 · · ·xn+1 ∈ I, we have that a product of n of the x′is are in I. For example,

consider the ideal I = (15) of Z, and a, b, c ∈ R such that abc ∈ I. Then we have that

3 · 5|abc ∈ I. Suppose we know that 3|a. Then if 5 divides b or c we see that I is 2-

absorbing, and if 5|a then a ∈ I and we see that I is 2-absorbing. We will prove several

basic properties of n-absorbing ideals. We show that if I is n-absorbing, then
√
I is

also an n-absorbing ideal of R. We also show that any n-absorbing ideal is also an

m-absorbing ideal for any m ≥ n (Theorem 5). Furthermore, we will prove properties

about the intersection of n-absorbing ideals, beginning with the relationship between

2-absorbing ideals and the intersection of prime ideals.

In [3], Badawi introduces a generalization of primary ideals, called 2-absorbing

primary ideals. This paper will generalize 2-absorbing primary ideals and study n-

absorbing primary ideals of R. A proper ideal I of commutative ring R is called an n-

absorbing primary ideal of R if whenever x1, x2, . . . , xn+1 ∈ R with x1x2 · · ·xn+1 ∈ I,

then x1 · · ·xn ∈ I or x1 · · · x̂i · · ·xn+1 ∈
√
I for some i ∈ [1, n]. For example, consider

ideal I = (18) of Z. Since 3· 3· 2· ∈ I and 3· 3 /∈ I and 3· 2 ∈
√
I we have that I is

a 2-absorbing primary ideal of R. We will show that all n-absorbing ideals are n-

absorbing primary ideals, however not all n-absorbing primary ideals are n-absorbing

ideals. We show that every n-absorbing primary ideal is an m-absorbing primary

ideal of R for n > m. Furthermore, if I is an n-absorbing primary ideal, then
√
I is

n-absorbing, and we investigate the relationship between I and
√
I if we know that
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√
I is n-absorbing. Finally, we introduce a new concept, that of an n-semi-absorbing

ideal, which is a generalization of a radical ideal. We give an example that shows an

n-semi-absorbing ideal need not be an intersection of n-absorbing ideals.

2 Literature Review

The first generalization of prime ideals is in Ayman Badawi’s paper On 2-absorbing

ideals of commutative rings [2], where he defines the idea of a 2-absorbing ideal; if

a, b, c ∈ R and abc ∈ I then I is 2-absorbing if ab ∈ I or ac ∈ I or bc ∈ I. Expanding

on this definition, Anderson and Badawi introduce n-absorbing ideals in their paper,

On n-absorbing ideals of commutative rings [1]. They begin by listing basic properties

of n-absorbing ideals, such as if I is an n-absorbing ideal, then it is an m-absorbing

ideal for m ≥ n (Theorem 2.1). However, several of these properties are stated with-

out proof. This paper will provide the proof of those properties. After having defined

n-absorbing ideals and articulating their basic properties, it is of interest to consider

Badawi’s first paper on 2-absorbing ideals, and examine whether his ideas can be

extended from the 2-absorbing case to the n-absorbing case. For example, Theorem

2.1 [2] shows that if I is a 2-absorbing ideal, then
√
I is also a 2-absorbing ideal,

and x2 ∈ I for every x ∈
√
I. This paper will show that this theorem holds for the

case when I is an n-absorbing ideal of R. Badawi also shows in [2] (Theorem 2.4)

that if I is 2-absorbing ideal of R, then either
√
I = P is a prime ideal of R such

that P 2 ⊆ I or
√
I = P1

⋂
P2, P1P2 ⊆ I and

√
I
2 ⊆ I where P1, P2 are the only

distinct prime ideals of R that are minimal over I. The n-absorbing extension of

this has proven challenging to show and is left as further research. (We note that

Anderson and Badawi show that the theorem holds for the n-absorbing case only if

we assume I satisfies a property called strongly n-absorbing (Theorem 6.1, [1]), and

this paper will not assume all ideals satisfy such a property). Anderson and Badawi’s

paper goes on to study the properties of n-absorbing ideals in several special classes
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of commutative rings, including Dedekind domains and Noetherian integral domains.

They prove that all proper ideals of Noetherian rings are n-absorbing ideals for some

positive integer n (Theorem 5.3, [1]). Furthermore, the authors explore the converse

of this statement, and show in Theorem 5.9 that if we know all proper ideals of a

ring are n-absorbing ideals of R, then we must have that dim(R) = 0 and R has

at most n maximal ideals. In Badawi’s most recent publication on this topic, On

2-absorbing primary ideals in commutative rings [3] he introduces a generalization of

primary ideals in the following way; A proper ideal I of R is called a 2-absorbing

primary ideal of R if whenever a, b, c ∈ R with abc ∈ I, then ab ∈ I or ac ∈
√
I

or bc ∈
√
I. He then proves basic properties and theorems about 2-absorbing pri-

mary ideals. This paper introduces a generalization of 2-absorbing primary ideals

called n-absorbing primary ideals, and extends many of the properties in Badawi’s

paper [3] to the case when I is an n-absorbing primary ideal of R. For example,

in Theorem 2.8 of [3] Badawi shows that if
√
I is a prime ideal of R, then I is a

2-absorbing primary ideal of R. We will show that if
√
I is an n-absorbing ideal

of R, then I is an (n + 1)-absorbing primary ideal of R. Furthermore, in [3], it is

shown (Theorem 2.20) that if f is a homomorphism of commutative rings R −→ R
′
,

and I
′

is a 2-absorbing primary ideal of R
′
, then f−1(I

′
) is a 2-absorbing primary

ideal of R. We show that this theorem holds if I
′
is an n-absorbing primary ideal of R

′
.

3 Properties of n-absorbing ideals

Definition 1. Let n be a positive integer. A proper ideal I of a commutative ring R

is an n -absorbing ideal of R if whenever x1 · · ·xn+1 ∈ I for x1, . . . , xn+1 ∈ R then

x1 · · · x̂i · · ·xn+1 ∈ I for some i ∈ [1, n + 1].

Example. Consider the ideal I = (15) of Z, and a, b, c ∈ R such that abc ∈ I.

Then we have that 3 · 5|abc ∈ I. Suppose we know that 3|a. Then if 5 divides b or c

we see that I is 2-absorbing, and if 5|a then a ∈ I and we see that I is 2-absorbing.
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Suppose R = Z, or in general let R be any UFD. Then let I = mR for m ∈ R.

Suppose m = pa11 · · · p
ak
k , where p1, . . . , pk are distinct primes, and a1, . . . , ak ≥ 0.

We will explore what properties of m make I n-absorbing. First we will consider the

2-absorbing case.

Theorem 1. Let R be a UFD, let I = Ra be a proper nonzero principal ideal,

and let n be a positive integer. Then I is n-absorbing if and only if a is the product

of at most n irreducible elements (not necessarily distinct).

Remark. If we write a = u
∏k

i=1 p
ai
i for non-associate irreducible elements

p1, . . . , pk, a unit u, and positive integers a1, . . . , ak, the hypothesis on a can be

written
∑k

i=1 ai ≤ n.

Proof. We proceed by induction on n. The case n = 1 says Ra is a prime ideal if

and only if a is an irreducible element of R. This is clear.

Now suppose that n ≥ 2 and that for m < n, it is the case that I = Ra is m-

absorbing if and only if a is the product of at most m irreducible elements. Let us

suppose a = q1 · · · qk for irreducible elements q1, . . . , qk.

First suppose I is n-absorbing and k > n. Consider the product q1 · · · qn(qn+1 · · · qk),

regarded as a product of n + 1 elements of R as indicated by the parentheses. Since

I is n-absorbing, some product of less than k irreducible elements is in I and hence

is divisible by q1 · · · qk. This is impossible and so we must have k ≤ n.

Next suppose k ≤ n. If k = 1, then a is irreducible and hence I is n-absorbing

for any n. Suppose k > 1 and x1 · · · xnxn+1 ∈ I. Then qk divides some xi; without

loss of generality, we can assume xn+1 = qkyn+1. Set a′ = q1 · · · qk−1 and note that

a′ | x1 · · ·xn−1(xnyn+1). As k − 1 ≤ n − 1, the induction hypothesis implies either

a′ | x1 · · ·xn−1 or a′ | x1 · · · x̂i · · ·xnyn+1. In the first case we have that

a = a′qk | x1 · · ·xn−1qk | x1 · · ·xn−1xn+1 and in the second case

a = a′qk | x1 · · · x̂i · · ·xnqkyn+1 = x1 · · · x̂i · · ·xnxn+1. In either case, we see a divides

a product of n of the ai’s. This proves I = Ra is n-absorbing.
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Corollary 1. Suppose R is a UFD and I = Ra where a is the product of n

irreducible elements (not necessarily distinct). Then I is n-absorbing but not (n− 1)-

absorbing.

We will now consider several basic properties that are stated without proof in [1].

First, we look at the relationship between an n-absorbing ideal and its radical.

Theorem 2. Suppose I is an n-absorbing ideal of R. Then
√
I is an n-absorbing

ideal and xn ∈ I for all x ∈
√
I.

Proof. Suppose x ∈
√
I, so xm ∈ I for some m. If m ≤ n, then xn ∈ I. If

m > n, we can repeatedly use the n-absorbing property on products xx · · ·xxk to

conclude that xn ∈ I. Thus, let x1, . . . , xn+1 ∈ R such that x1x2 · · ·xn+1 ∈
√
I.

Then (x1x2 · · ·xn+1)
n = xn

1x
n
2 · · · xn

n+1 ∈ I. We have that I is n-absorbing, thus

xn
1 · · · x̂n

i · · ·xn
n+1 ∈ I for some i ∈ [1, n + 1]. Thus (x1 · · · x̂i · · ·xn+1)

n ∈ I which

implies that x1 · · · x̂i · · ·xn+1 ∈
√
I, and we see that

√
I is n-absorbing.

Next, we look at what happens when we intersect n-absorbing ideals. The first

case we consider is if both ideals are 1-absorbing, or prime, ideals of R.

Theorem 3. If P and Q are nonzero prime ideals of a ring R, then P
⋂
Q is a

2-absorbing ideal of R.

Proof. Suppose (ab)c ∈ P
⋂
Q and a, b, c ∈ R. Then (ab)c ∈ P and (ab)c ∈ Q. P

is prime, so either ab ∈ P or c ∈ P . If ab ∈ P then either a ∈ P or b ∈ P . Similarly,

a ∈ Q or b ∈ Q or c ∈ Q. Suppose a ∈ P
⋂
Q. Then ab ∈ P

⋂
Q and ac ∈ P

⋂
Q

since P
⋂

Q is an ideal. Thus P
⋂
Q is 2-absorbing. However, if the statements

above lead to different elements in P and Q, we still have that the intersection is

2-absorbing. For example, if a ∈ P and b ∈ Q, then clearly ab ∈ P and ab ∈ Q by

definition of an ideal, thus ab ∈ P
⋂

Q, which implies P
⋂

Q is 2-absorbing.

Next we will examine what happens in a more general case, that is, what is the

structure of the intersection of m ideals that are each nj-absorbing ideals of R. This

theorem is stated without proof in Theorem 2.1 of [1], thus we will provide the proof.
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Theorem 4. If Ij is an nj-absorbing ideal of R for each 1 ≤ j ≤ m, then
⋂m

j=1 Ij

is an n-absorbing ideal, where n = Σm
j=1nj.

Proof. Suppose I1, . . . , Im are proper ideals of R such that Ij is nj-absorbing and

let k > n1 + · · ·+ nm. Now suppose x1 · · ·xk ∈
⋂m

j=1 Ij. Then we have for all j, that

there exists a product of nj of those k elements in Ij, since each Ij is nj-absorbing. Let

the collection of those elements be denoted Aj. Then let A =
⋃k

j=1 Aj. Thus A has

at most n1 + · · ·+ nm elements. Now since Ij is an ideal, the product of all elements

of A must be in each Ij. So
⋂m

j=1 Ij contains a product of at most n1 + · · · + nm

elements. Thus the intersections of the Ij’s is an n1 + · · ·+ nm-absorbing ideal of R.

Theorem 5. If I is an n-absorbing ideal of R, then I is an m-absorbing ideal of

R for all m ≥ n.

Proof. We prove by induction on n that if I is n-absorbing, it is (n + 1)-

absorbing. Induction Base. Suppose that I is 2-absorbing. We will show that

I is 3-absorbing. Let x1, x2, x3, x4 ∈ R such that x1x2(x3x4) ∈ I. I is 2-absorbing, so

either x1(x3x4) ∈ I or x2(x3x4) ∈ I or x1x2 ∈ I. If either x1(x3x4) ∈ I or x2(x3x4) ∈ I

then I is 3-absorbing and we are done. Thus suppose x1x2 ∈ I. Then since x3 ∈ R,

by definition of ideal we know that x1x2x3 ∈ I. Thus I is 3-absorbing. Induc-

tion step. Suppose I is n-absorbing. We will show that I is (n + 1)-absorbing.

Let (x1x2)x3 · · ·xnxn+1xn+2 ∈ I for x1, . . . , xn+2 ∈ R. I is n-absorbing, so either

(x1x2) · · · x̂i · · ·xn+2 ∈ I for some i ∈ [3, n+ 2] or we have that x3 · · · xn+2 ∈ I. In the

first cases it is clear that I is (n+ 1)-absorbing, so suppose only x3 · · ·xn+2 ∈ I holds

(note that this is a product of n terms). Since x1, x2 ∈ R, then by definition of ideal

we must have that x1x3 · · · xn+2 ∈ I and thus I is (n + 1)-absorbing.

Example. Let R = Z[x] and consider the proper ideal I = (2, x) of R. Then

elements of I can be expressed as xp(x)+2q(x) for p(x), q(x) ∈ Z[x] that is, every poly-

nomial in I has an even constant term. Clearly, I is a prime ideal (or 1-absorbing).

However, we also observe that I is 2-absorbing. For example, for a, b, c ∈ R and
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a(bc) ∈ I, we have that since I is prime, a ∈ I or bc ∈ I, and thus I is 2-absorbing.

In Anderson and Badawi’s paper [1], they make the following conjecture: If I is

an n-absorbing ideal of R, then I is a strongly n-absorbing ideal of R, where strongly

n-absorbing is defined as follows.

Definition 2. A proper ideal I is a strongly n-absorbing ideal of R if whenever

I1 · · · In+1 ⊆ I for ideals I1, . . . , In+1 of R then there are n of the I ′is whose product

is in I.

Anderson and Badawi set out to prove this conjecture by showing it implies an-

other conjecture, mainly, if I is n-absorbing, then
√
I
n ⊆ I. This second conjec-

ture has proven challenging to show (without the assumption that I is strongly n-

absorbing).

4 Properties of n-absorbing primary ideals

In his most recent publication on this topic, Ayman Badawi introduces a generaliza-

tion of primary ideals of commutative rings, which he defines as 2-absorbing primary

ideals. A proper, nonzero ideal I of commutative ring R is said to be a 2-absorbing

primary ideal of R if whenever a, b, c ∈ R with abc ∈ I, then ab ∈ I or ac ∈
√
I

or bc ∈
√
I. He notes that 2-absorbing and 2-primary absorbing ideals are different

concepts, and provides the following example. Consider the ideal I = (12) of Z. Since

2 · 2 · 3 ∈ I, but 2 · 2 /∈ I and 2 · 3 /∈ I, I is not 2-absorbing. However it is clear that

I = (12) is a 2-absorbing primary ideal of Z [3]. The author goes on to prove basic

properties of 2-absorbing primary ideals, and states several useful theorems. However,

he does not generalize this idea to an arbitrary n case, thus this paper will proceed to

do so. Additionally we will look at expanding various properties and theorems that

Badawi states for 2-absorbing primary ideals to this more general definition. We will

now generalize Badawi’s concept to the arbitrary n-absorbing primary ideal I of R,
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and we have the following definition.

Definition 3. Let n be a positive integer. A proper ideal I of a commutative ring

R is said to be an n -absorbing primary ideal of R if whenever x1, . . . , xn+1 ∈ R

and x1x2 · · ·xn+1 ∈ I then either x1x2 · · · xn ∈ I or a product of n of the x′is (other

than x1 · · ·xn) is in
√
I.

It is of interest to note that not all n-absorbing primary ideals are n-absorbing

ideals of R. In [3], the author provides the following example.

Example. Consider the ideal I = (12) of Z. Then 2 · 2 · 3 ∈ I however, 2 · 2 /∈ I

and 2 · 3 /∈ I so I is not a 2-absorbing ideal. However, we see that I is a 2-absorbing

primary ideal of R.

Equivalently, we can define n-absorbing primary ideals in the following way.

Definition 4. A proper, nonzero ideal I of R is an n-absorbing primary ideal

of R if and only if x1, . . . , xn+1 ∈ R and x1 · · ·xn+1 ∈ I implies x1 · · · x̂k · · · xn+1 ∈ I

for some k ∈ [1, n + 1] or x1 · · · x̂i · · ·xn+1 ∈
√
I and x1 · · · x̂j · · ·xn+1 ∈

√
I for

i, j ∈ [1, n + 1], i 6= j. We see that if there are no products of n elements in I,

then we have n products of the form x1 · · · xn+1 ∈ I, that is, x2 · · ·xn+1x1 ∈ I,

x3 · · ·xn+1x1x2 ∈ I, and so forth. Thus we see that if any two products of n elements

are in
√
I, then there is a product of n elements in

√
I for each case.

First, we consider the analog for n-absorbing primary ideals of Theorem 4, that

is, if n-absorbing primary ideals are m-absorbing primary ideals where m > n.

Theorem 6. Every primary ideal is a 2-absorbing primary ideal.

Proof. Suppose that ideal I of R is primary. Then for (ab)c ∈ I we have that

either ab ∈ I or c ∈
√
I. Since

√
I is an ideal, and a, b ∈ R, we have ac ∈

√
I or

bc ∈
√
I. Thus I is a 2-absorbing primary ideal.

Theorem 7. Every n-absorbing primary ideal of R is an m-absorbing primary

ideal for m > n.

Proof. We will show every n-absorbing primary ideal of R is an n + 1-absorbing
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primary ideal of R. Suppose that I is an n-absorbing primary ideal. Then suppose

for x1, x2, . . . , xn+1, xn+2 ∈ R we have (x1x2) · · ·xn+1xn+2 ∈ I. Let (x1x2) =: x1′

Since I is an n-absorbing primary ideal of R, we have that either x1′ · · · xn+1 ∈ I or

x1′x3 · · · x̂i · · ·xn+2 ∈
√
I for some i ∈ {1′

, 3, . . . , n, n + 1}. Note that if i 6= 1
′

then

done. Thus suppose that i = 1
′
. Then since x1, x2 ∈ R, we have by definition of an

ideal that x1x3 · · ·xn+2 ∈
√
I, or x2x3 · · ·xn+2 ∈

√
I. Thus I is an n + 1-absorbing

primary ideal of R.

Thus it is interesting to consider various relationships between n-absorbing ideals

and n-absorbing primary ideals. It is clear that any n-absorbing ideal of R is an

n-absorbing primary ideal of R. However, the converse is not always true.

Example. Consider the ideal I = (24) of R = Z. We have that 2· 3· 4 ∈ I, and

clearly 2· 3 /∈ I, and 3· 4 /∈ I and 2· 4 /∈ I. Thus I is clearly not a 2-absorbing ideal of

R. However, we have that (3· 4)2 ∈ I and thus I is a 2-absorbing primary ideal of R.

As we did for n-absorbing ideals, we consider R = Z, or in general R is any UFD,

and I = mR for m ∈ R. Suppose m = pa11 · · · p
ak
k , where p1, . . . , pk are distinct primes,

and a1, . . . , ak ≥ 0. We will explore what properties of m make I an n-absorbing

primary ideal of R.

Theorem 8. Let R be a UFD, let I = Ra be a proper nonzero principal ideal, and

let n be a positive integer. Then I is n-absorbing primary if and only if a is divisible

by at most n non-associate irreducible elements.

Remark. If we write a = u
∏k

i=1 p
ai
i for non-associate irreducible elements

p1, . . . , pk, a unit u, and positive integers a1, . . . , ak, the hypothesis on a can be

written k ≤ n.

Proof. We proceed by induction on n. The case n = 1 says Ra is a primary ideal

if and only if a = upk for some irreducible element p and some unit u in R. This is

clear.

Now suppose that n ≥ 2 and that for m < n, it is the case that I = Ra is m-
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absorbing primary if and only if a is divisible by at most m non-associate irreducible

elements. Let us suppose a = u
∏k

i=1 p
ai
i for the non-associate irreducible elements

p1, . . . , pk, a unit u, and positive integers a1, . . . , ak. Set b = p1 · · · pk and note that
√
I = yR.

First suppose I is n-absorbing primary and k > n. Set xi = paii for 1 ≤ i ≤ n

and set xn+1 =
∏k

i=n+1 p
ai
i , so a = x1 · · ·xnxn+1. Since I is n-absorbing, either

a | x1 · · ·xn or b | x1 · · · x̂i · · ·xnxn+1. In either case, the “divides” statement cannot

be true, because k non-associate irreducible elements occur on the left and fewer than

k appear on the right.

Next suppose k ≤ n. If k = 1, then a is a unit times the power of an irre-

ducible element and hence I is n-absorbing primary for any n. Suppose k > 1 and

x1 · · ·xnxn+1 ∈ I. Then for each i = 1, . . . , n + 1, we can write xi = pmi
k yi, where∑n+1

i=1 mi = ki. By re-numbering if necessary, we can assume mn+1 6= 0. It follows

that a′ =
∏k−1

i=1 p
ai
i divides y1 · · · yn−1(ynyn+1). Since a′ has k − 1 non-associate irre-

ducible divisors and k − 1 ≤ n − 1, we can assume by induction that Ra′ is n − 1

absorbing primary. Therefore, either y1 · · · yn−1 ∈ Ra′ or y1 · · · ŷi · · · ynyn+1 ∈
√
Ra′

for some i = 1, . . . , n − 1. In the first case, a = a′pakk | x1 · · ·xn−1p
xk
k , whence

b | x1 · · · xn−1x̂nxn+1. In the second case, x1 · · · x̂i · · ·xnxn+1 ∈
√
Ra′pk =

√
Ra. In

either case, an appropriate product is in
√
I, so I is n-absorbing primary.

Corollary 2. Suppose R is a UFD and I = Ra where the prime factorization of

R has n non-associate irreducible elements. Then I is n-absorbing primary but not

(n− 1)-absorbing primary.

Thus we can consider the intersection of n-absorbing primary ideals. Let I =

I1
⋂

I2
⋂
· · ·

⋂
Ik where each Ij is an nj-absorbing primary ideal of R. If we let

l = lcm(n1, . . . , nk) then we see that from Theorem 8, if m denotes the number of

prime factors of l, that I will be an m-absorbing primary ideal of R.
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Theorem 9. If I is an n -absorbing primary ideal of R then
√
I is an n -absorbing

ideal of R.

Proof. Let x1, x2, . . . , xn+1 ∈ R satisfy x1x2 · · ·xn+1 ∈
√
I and suppose we know

all products of n of the x′is except x1x2 · · ·xn are not in
√
I. Note that in the other

cases we are done, there is nothing to prove. We will show that x1x2 · · ·xn ∈
√
I.

Since x1x2 · · ·xn+1 ∈
√
I then ∃ m ∈ Z+ such that (x1x2 · · ·xn+1)

m ∈ I. Thus we

have xm
1 x

m
2 · · ·xm

n+1 ∈ I. Now, I is an n -absorbing primary ideal and since none of the

products of the x′is are in
√
I, we must conclude that xm

1 x
m
2 · · ·xm

n = (x1x2 · · · xn)m ∈

I. That is, x1x2 · · ·xn ∈
√
I. Thus

√
I is an n-absorbing ideal of R.

Definition 5. Let I be an n-absorbing primary ideal of R. Then P =
√
I is an

n-absorbing ideal. We say that I is a P − n− absorbing primary ideal of R.

Theorem 10. Let I1, I2, . . . , Im be P − n− absorbing primary ideals of R for

some n-absorbing ideal P of R. Then I =
⋂m

i=1 Ii is a P − n− absorbing primary

ideal of R.

Proof. Note that P =
√
I =

⋂m
i=1

√
Ii. Let x1x2 · · ·xn+1 ∈ I for some x1, . . . , xn+1 ∈

R, and assume x1x2 · · ·xn /∈ I. (If it is, we are done). Then x1x2 · · ·xn /∈ Ii for some

i ∈ [1,m]. Since each Ii is a P − n− absorbing primary ideal and x1x2 · · ·xn /∈ Ii,

we must have that x1 · · · x̂i · · ·xn+1 ∈
√
Ii = P for some i ∈ [1, n + 1]. Thus I is a

P − n− absorbing primary ideal of R.

Theorem 11. Let f : R→ R′ be a homomorphism of commutative rings. Then

(1) If I ′ is an n-absorbing primary ideal of R′, then f−1(I ′) is an n-absorbing

primary ideal of R.

(2) If f is an epimorphism and I is an n-absorbing primary ideal of R containing

Ker(f), then f(I) is an n-absorbing primary ideal of R′.

Proof. (1) Suppose x1, . . . , xn, xn+1 ∈ R such that x1 · · ·xnxn+1 ∈ f−1(I ′). Then

we have that f(x1x2 · · ·xn+1) = f(x1)f(x2) · · · f(xn+1) ∈ I ′. Now I ′ is an n-absorbing

primary ideal of R′, so either
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f(x1)f(x2) · · · f(xn) = f(x1x2 · · · xn) ∈ I ′ =⇒ x1x2 · · ·xn ∈ f−1(I ′), or

f(x1) · · · f̂(xi) · · · f(xn+1) = f(x1 · · · x̂i · · ·xn+1) ∈
√
I ′ =⇒ x1 · · · x̂i · · ·xn+1 ∈

f−1(
√
I ′) =

√
f−1(I ′) for some i ∈ [1, n]. Thus f−1(I ′) is n-primary absorbing.

(2) Suppose that x
′
1, x

′
2, . . . , x

′
n, x

′
n+1 ∈ R′ such that x

′
1 · · ·x

′
nx

′
n+1 ∈ f(I). Then there

are elements in R, say, x1, . . . , xn+1 such that f(x1) = x
′
1, . . . , f(xn) = x

′
n. Then

we have f(x1 · · ·xn+1) = f(x1) · · · f(xn+1) = x
′
1 · · ·x

′
n+1 ∈ f(I). Since ker(f) ⊆ I

we have x1...xn+1 ∈ I. I is n-absorbing primary ideal of R, thus we know either

x1 · · ·xn ∈ I =⇒ f(x1 · · ·xn) = f(x1) · · · f(xn) = x
′
1 · · · x

′
n ∈ f(I), or we have

that x1 · · · x̂i · · ·xn+1 ∈
√
I =⇒ f(x1 · · · x̂i · · ·xn+1) = f(x1) · · · f̂(xi) · · · f(xn+1) =

x
′
1 · · · x̂

′
i · · ·x

′
n+1 ∈ f(

√
I) ⊆

√
f(I) for some i ∈ [1, n]. Thus f(I) is an n-absorbing

primary ideal of R′.

Theorem 12. Let I be an ideal of R. If
√
I is a 2-absorbing ideal of R, then I

is a 3-absorbing primary ideal of R.

Proof. Suppose for a, b, c, d ∈ R we have that abcd ∈ I and abc /∈ I. Now since

abcd ∈ I, then (ad)bc ∈ I ⊆
√
I we have that (ad)bc ∈

√
I. Since

√
I is 2-absorbing,

we have that either (ad)b = abd ∈
√
I or (ad)c = acd ∈

√
I or bc ∈

√
I =⇒ bcd ∈

√
I

since
√
I is an ideal. Thus I is a 3-absorbing primary ideal of R.

Theorem 13. If
√
I is an (n + 1)-absorbing primary ideal of R, then I is an

(n + 1)-primary ideal of R.

Proof. Suppose x1 · · ·xn+1xn+2 ∈ I and x1 · · · xn+1 /∈ I. Then x1 · · ·xn+1xn+2 ∈

I ⊆
√
I. Thus we have that x1x2 · · · (xn+1xn+2) ∈

√
I which is n-absorbing. Let

(xn+1xn+2) = x0. Then we know x1x2 · · · x̂i · · ·xnx0 ∈
√
I for some i ∈ 0, 1, 2, . . . , n

which is a product of n + 1 elements if i ∈ [1, n]. Thus suppose that i = 0. Then

x1x2 · · ·xn ∈
√
I. Since xn+2 ∈ R, and

√
I is an ideal, we have that x1 · · ·xnxn+2 ∈

√
I. Thus I is an (n + 1)-absorbing primary ideal of R.

Theorem 14. Let R = R1× · · ·×Rn+1, and J be a proper nonzero ideal of R. If

J is an n+1-absorbing primary ideal of R, then J = I1×· · ·×In+1 for some proper n-
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absorbing primary ideals I1, . . . , In+1 of R1, . . . , Rn+1 and I1 6= R1, . . . , In+1 6= Rn+1.

Proof. Let a1, . . . , an+1 ∈ R such that a1 · · · an+1 ∈ I1 and suppose by contradic-

tion that I1 is not an n-absorbing primary ideal of R. Then define the following ele-

ments of R; x1 = (a1, 1, . . . , 1), x2 = (a2, 1, . . . , 1), . . . , xn+1 = (an+1, 1, . . . , 1), xn+2 =

(1, 0, . . . , 0). Then we have x1x2 · · ·xn+2 = (a1 · · · an+1, 0, . . . , 0) ∈ J and x1 · · ·xn+1 =

(a1 · · · an+1, 1, . . . , 1) /∈ J , and x1 · · · x̂i · · · xn+2 = (a1 · · · âi · · · an+2, 0, . . . , 0) /∈
√
J for

some i ∈ [1, n + 1]. This is a contradiction, since we have that J is n + 1-absorbing

primary ideal. Thus I1 must be an n-absorbing primary ideal of R. Similarly we can

conclude that each Ii is an n-absorbing primary ideal, and thus we are done.

Furthermore, we can extend the idea of strongly n-absorbing ideals to n-absorbing

primary ideals, and introduce the following definition.

Definition 6. A proper nonzero ideal I of R is a strongly n-absorbing primary

ideal of R if whenever I1 · · · In+1 ⊆ I for ideals I1, . . . , In+1 of R then either I1 · · · In ⊆

I or I1 · · · Îi · · · In+1 ⊆ I for some i ∈ [1, n].

Proving properties of strongly n-absorbing primary ideals is open to future work

in this area.

5 Properties of n-semi-absorbing ideals

Definition 7. A proper, nonzero ideal I of a commutative ring R is said to be n-

semi-absorbing for the positive integer n if xn+1 ∈ I implies xn ∈ I for any

x ∈ R.

Clearly I is 1-semi-absorbing if and only if I is a radical, or semiprime, ideal. As far

as we know, the concept of n-semi-absorbing ideals for n ≥ 2 is new. Semi-absorbing

ideals have some unexpected properties; the example after the next proposition shows

that an n-semi-absorbing ideal need not be an n + 1-semi-absorbing ideal.

Recall that for a real number r, the ceiling of r, denoted dre, is the smallest integer

greater than or equal to r.
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Theorem 15. Let R be a UFD, let I = Ra be a proper nonzero principal ideal,

and let n be a positive integer. Then I is n-semi-absorbing if and only if for every

irreducible element p, if ` is the largest exponent such that p` | a, then d `
n
e = d `

n+1
e.

Remark. If we write a = u
∏k

i=1 p
ai
i for non-associate irreducible elements

p1, . . . , pk, a unit u, and positive integers a1, . . . , ak, the hypothesis on a can be

written dai
n
e = d ai

n+1
e for all i.

Proof. Write a = u
∏k

i=1 p
ai
i for non-associate irreducible elements p1, . . . , pk, a

unit u, and positive integers a1, . . . , ak. First assume dai
n
e = d ai

n+1
e for all i and

suppose xn+1 ∈ I for some x ∈ R. We can then write x =
∏k

i=1 p
xi
i y for some positive

integers x1, . . . , xn and some y ∈ R such that y is relatively prime to each pi. The fact

that a | xn+1 tells us ai ≤ (n + 1)xi for each i. Thus
ai

n + 1
≤ xi and our hypothesis

implies ai
n
≤ dai

n
e = d ai

n+1
e ≤ xi. This shows ai ≤ nxi and so a | xn. This proves I is

n-semi-absorbing.

For the converse, suppose that dai
n
e > d ai

n+1
e for some i. Set bi = d ai

n + 1
e and set

x = pbii
∏

j 6= ip
aj
j . Since ai ≤ (n + 1)bi, we have a | xn. However, bi + 1 ≤ dai

n
e, and

so nbi +n ≤ ndai
n
e < ai +n. This shows nbi < ai, so a does not divide xn. This shows

that I is not n-semi-absorbing.

Example. Let p ∈ R be an irreducible element and let I = Rp4. Since I is

not a radical ideal, I is not 1-semi-absorbing. Since d4
2
e = 2 = d4

3
e, the preceding

proposition shows that I is 2-semi-absorbing. However, d4
3
e = 2 > 1 = d4

4
e, the

preceding proposition implies that I is not 3-semi-absorbing. For n ≥ 4, the preceding

proposition shows that I is n-semi-absorbing. In fact, for n ≥ 4, we see that I is n-

absorbing.

Theorem 5(b) below shows that, although I is 2-semi-absorbing, I cannot be

the intersection of any collection of 2-absorbing ideals. This provides a stark contrast

with the fact that any radical (i.e., 1-semi-absorbing) ideal is the intersection of prime

ideals (1-absorbing ideals).
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Theorem 16. (a) Any intersection of n-semi-absorbing ideals is an n-semi-

absorbing ideal.

(b) Any intersection of n-absorbing ideals is m-semi-absorbing for all m ≥ n.

Proof. The proof is easy.

6 Further Research

In their paper on n-absorbing ideals of commutative rings [1], Anderson and Badawi

conjecture that if I is an n-absorbing ideal of R then it is a strongly n-absorbing

ideal of R for any positive integer n. This has yet to be shown and is left as an

open question. However, the authors do present some nice results that follow if this

statement can be proved. In a paper by Darani and Puczylowski [4], the authors

prove this statement in the case that R/I has no additive torsion. It is also an

open question whether n-absorbing primary ideals are strongly n-absorbing primary

ideals of R. Further research in this area might also include investigating analogs of

n-absorbing ideals in noncommutative rings.
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