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ABSTRACT

Risk-Based Indifference Pricing

in Jump Diffusion Markets with Regime-Switching

by

Torben Bielert

The University of Wisconsin-Milwaukee, 2013
Under the Supervision of Advisor Professor Chao Zhu

This paper is concerned with risk indifference pricing of a European type con-

tingent claim in an incomplete market, where the evolution of the price of the

underlying stock is modeled by a regime-switching jump diffusion. The rationale of

using such a model is that it can naturally capture the inherent randomness of a

prototypical stock market by incorporating both small and big jumps of the prices

as well as the qualitative changes of the market. While the model provides a real-

istic description of the real market, it does introduces substantial difficulty in the

analysis. In particular, in contrast with the classical Black-Scholes model, there are

infinitely many equivalent martingale measures and hence the price is not unique in

our incomplete market. In particular, there exists a big gap between the commonly

used sub- and super-hedging prices.

We approach this problem using the framework of risk-indifference pricing. By trans-

forming the pricing problem to an equivalent stochastic game problem, we solve this

problem via the associated Hamilton-Jacobi-Bellman-Issac equations. Consequently
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we obtain a new interval which is smaller than the interval from super- and sub-

hedging.
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Chapter 1

Introduction

1973 counts as the birthyear of the famous Black-Scholes-Model which is still

the current basis for pricing derivatives in our financial economy. The BS-Model is

a simple model with a lot of reasonable and some ”critical” assumptions which lead

inside of this model to unique prices of derivatives and for some derivatives, for exam-

ple European Options, we end up in an analytical price function (Black and Scholes

(1973)).

One well known critical assumption is that the volatility in the Black-Scholes-Model

is constant - in reality this is not the case. There were many research projects about

the volatility of options, e.g. Derman and Kani (1994) or Elliot and Siu (2010). It

turned out that the volatility depends on the current market situation and changes

in the strucuture of the market implicate changes in our volatility. To model the

state of the underlying economy we use a continuous-time Markov chain with a finite

state space. The simplest case would consist of two states, namely bull and bear.
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We include this idea in our model by letting our parameters depend on the Markov

chain. This method is called regime switching. The idea of regime switching was

mentioned for the first time in Hamilton (1989) and since then it is an often used

extension.

Another critical assumption is that the returns are normally distributed which leads

to the fact that the stock price is modeled by a geometric Brownian motion. In real-

ity this is not the case. History has shown that extreme sudden events (called black

swans (Taleb (2001))), for example a natural disasters, a war declaration etc. can

have such a big impact to the stock price. Consequently, we can no longer assume

that the price of the underlying stock is continuous. To this end, jump diffusion

market was introduced as early as Merton (Merton (1976)).

These extensions lead to the jump diffusion markets with regime-switching, which

is the model examined in this paper. In fact this is a model which represents the

reality more in detail, but the most important related question is, if one is able

to derive unique prices of derivatives inside this model. In the basic BS-Model,

one uses a measure change to get inside of a risk-neutral modeled world (Girsanov

(1960)). Then the discounted price process becomes a martingale and thus the price

of the derivative is ”just” its discounted expectation under the risk neutral mea-

sure. This measure is called an Equivalent Martingale Measure. With at least a

Monte-Carlo-Simulation (Boyle et al. (1997)), one can easily derive the price. This

is due to the fact that in the BS-Model we have exactly one risk neutral measure

(Øksendal and Sulem (2007)). Markets with this property are called complete mar-
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kets.

In our case, due to the random jumps and regime switching, we have an incom-

plete market. In jump diffusion markets the existence is, under specified conditions

(Øksendal and Sulem (2007)), given, but in the general case the uniqueness isn’t

clear - it’s even worse, as it is known that there are infinite many such probability

measure.

Thus, the goal is to find an interval for the price. The most obvious approach

is to use super- and subhedging to get the maximum and minimum over all possi-

ble prices as in Kramkov (1996). But in reality this leads to a big interval. The

main goal of this paper is to improve this result and shorten the interval. We will

use risk-indifference pricing to transform the problem of pricing a derivative into

aa stochastic game which we are able to solve with two different methods. In the

first approach we will transform our problem into HJBI equations which solution is

known. In the second one we will use a viscosity solutions approach. Both methods

will lead to the same interval for the price but the assumptions are different. The

so found intverval is smaller or at least of equal size than the interval getting by

super- and subhedging.

For the special case when we assume that we only have jumps of size 0, we still get

the unique price for derivatives that we would get inside of the BS-Model.

The paper is motivated by the recent paper Øksendal and Sulem (2009) which inves-

tigate the risk-indifference pricing for a jump-diffusion market. Our paper extends

the spectrum of application of risk-indifference pricing principle to regime switching

jump-diffusion market.
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The rest of thr thesis is organized as follows: In Chapter 2 we formulate our stock

price and wealth process of the jump diffusion market with regime switching mathe-

matically. Furthermore, we characterize all risk neutral measures in our market and

explain the idea of measure change. In Chapter 3 we give a short introduction to

utility- and risk-indifference pricing in general. In Chapter 4 we explain how to use

risk-indifference pricing in detail for our problem and it shows how we transform

our problem to become solvable for us. The Sections 4.3 and 4.4 include the main

mathematical part of this thesis. We solve our transformed problem with the two

different methods. In Chapter 5 we apply the results from the earlier chapters to

derive an interval for the price by reversing the transformation and we compare it

to the interval derived by super- and subhedging.
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Chapter 2

Formulation

2.1 Market

Let (Ω,F,Ft,P) be a filtered probability space satisfying the usual condition on

which is defined a one-dimensional standard Ft-adapted Brownian motion W and

an Ft-adapted Poisson random measure N on R+ × R0, where R+ = [0,∞) and

R0 = R− {0}. Denote the intensity measure of N by ν(·), which is assumed to be

a σ-finite Lévy measure satisfying

∫
R0

(1 ∧ |y|2)ν(dy) <∞.

Consequently, the compensator Ñ of N is

Ñ(dt, dy) := N(dt, dy) − ν(dy)dt.

Suppose also that on (Ω,F, {F}t ,P) we define a continuous-time Markov chain
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α = {αt, t ≥ 0} with a finite state space M = {1, 2, . . . ,m} and infinitesimal gener-

ator Q = (qij) with initial state i0. Assume throughout the paper that W , N , and

α are independent.

Suppose a market consists of two assets, a bond and a stock. The price of the

bond evolves according to the equation

dBt = r(t, αt)Btdt. (2.1)

This gives the discounting factor

β(t) =
1

B(t)
= exp{−

∫ t

0

r(s, αs)ds}, 0 ≤ t <∞. (2.2)

For simplicity we assume that r(t, αt) ≡ 0. For more details of how to set up the

market with discounting, see Appendix (A). The price of the stock is modeled by

the stochastic differential equation

dSt = µ(t, αt)St−dt+ σ(t, αt)St−dWt + St−

∫
R0

γ(t, αt, z)Ñ(dt, dz). (2.3)

The initial value S(0) of the stock (which is equal to the initial value of the dis-

counted stock) is denoted by s throughout the paper. In (2.1) and (2.3), r(t, i),

µ(t, i), σ(t, i) are constants for each i ∈ M and γ(t, i, z) is a constant in t for a given

i ∈ M. Furthermore, it satisfies 1 + γ(t, i, z) > 0 for all i ∈ M and that

∫
R0

|γ(t, i, z)|2ν(dz) <∞ ∀i ∈ M, ∀t ∈ [0, T ]
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which guarantees that the price of the stock is real-valued and well-defined (see

Appendix (B)). The rationale of modeling the evolution of the price of the stock

through a regime-switching jump diffusion model such as (2.3) is that it can nat-

urally capture the inherent randomness of a prototypical stock market: the Lévy

jumps are well-known to incorporate both small and big jumps (Applebaum (2009),

Cont and Tankov (2004)) while the regime switching mechanisms provide the qual-

itative changes of the market (Mao and Yuan (2006), Yin and Zhu (2010)). In the

stock market, there is day-to-day jitter that causes minor fluctuations as well as big

jumps caused by rare events arising from natural disasters, certain political events,

terrorist atrocities, etc. Therefore the evolution of the price of the stock are usually

not continuous. On the other hand, in the simplest case, the underlying market may

be considered to have two distinct “regimes,” namely bull and bear, which could

reflect the state of the underlying economy, the general mood of investors in the

market, and so on. The volatility and return rates can be quite different in the two

regimes.

2.2 Wealth

Let us now consider an agent, with an initial endowment x ≥ 0, who invests

in the two assets of the market. Let Xt be the wealth of the agent at time t.

Suppose π(t) is the number of shares of stocks owns by the agent. Then, under the
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self-financing law, we have

dXt = dXπ
t =π(t)St−µ(t, αt)dt +σ(t, αt)π(t)St−dWt

+ π(t)St−

∫
R0

γ(t, αt, z)Ñ(dt, dz).
(2.4)

One can solve (2.4) to obtain

Xπ(t) =
[
x+

∫ t

0

π(s)Ssµ(s, αs)ds+

∫ t

0

π(s)Ssσ(s, αs)dWs

+

∫ t

0

∫
R0

π(s)Ssγ(s, αs, z)Ñ(ds, dz)
]
.

(2.5)

In this model the wealth process is uniquely defined by π - a given portfolio

process. For a fixed finite time-horizon T > 0 and a fixed initial endowment x, we

say that a wealth process or analog a portfolio process π is admissible on [0, T ], if

Xπ
t ≥ 0 for all t ∈ [0, T ] holds almost surely, π is an Ft-process and furthermore

∫ t

0

π(s)Ss|µ(s, i)|ds+

∫ t

0

π(s)2S2
sσ(s, i)2ds

+

∫ t

0

∫
R0

π(s)2S2
s |γ(s, i, z)|2ν(dz)ds <∞

(2.6)

for all t ∈ [0, T ] and for all i ∈ M holds almost surely. In such a case, we denote

π ∈ A(T, x).



9

2.3 Transformation into Martingales

Let us define two sets of measures U , V . For given Ft-predictable processes

θ0(t) = θ0(t, αt) and θ1(t, z) = θ1(t, αt, z); t ≥ 0, z ∈ R such that

E
[

exp{1

2

∫ T

0

θ20(s)ds+

∫ T

0

∫
R
θ21(s, z))N(ds, dz)}

]
<∞, (2.7)

or that

E
[

exp{1

2

∫ T

0

θ20(s)ds+

∫ T

0

∫
R
((1 + θ1(s, z)) log(1 + θ1(s, z)) − θ1(s, z))ν(dz)ds}

]
(2.8)

is smaller than infinity (Novikov condition), we define the process Zθ(t) = Z(θ0,θ1)(t)

as

Zθ(t) =k exp
(∫ t

0

θ0(s)dW (s) − 1

2

∫ t

0

θ0(s)
2ds+

∫ t

0

∫
R0

log(1 + θ1(s, z))Ñ(ds, dz)

+

∫ t

0

∫
R0

log(1 + θ1(s, z)) − θ1(s, z)ν(dz)ds
)
, ∀t ∈ [0,∞).

(2.9)

Thus we can describe the dynamics of Zθ by:

dZθ(t) = Zθ(t−)
[
θ0(t)dWt +

∫
R0

θ1(t, z)Ñ(dt, dz)
]
, t ∈ [0, T ]

Zθ(0) = k > 0

(2.10)

Next we define the measure Qθ by

dQθ(ω) = Zθ(T )dP(ω) on FT (2.11)
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Now we want to transform our problems into a Markovian framework, we define

the process Y (t) = Y θ,π(t) ∈ R3 as follows:

dY (t) =


dZθ(t)

dS(t)

dXπ(t)

 Y (0) = y =


k

s

x

 . (2.12)

Similarly, we define Ỹ (t) by deleting the third component of the process Y (t). Fur-

thermore we assume that all our coefficients µ(t, αt), σ(t, αt) and γ(t, αt, z) are

Markovian with respect to Ỹ (t) and αt. Thus there exist functions µ̄, σ̄ and γ̄ such

that:

µ(t, αt) = µ̄(αt, Ỹ (t)) σ(t, αt) = σ̄(αt, Ỹ (t)) γ(t, αt, z) = γ̄(αt, Ỹ (t), z)

Let U be the set of all Markovian controls

θ(t, αt, z) = (θ0(t, αt), θ1(t, αt, z)) = (θ̄0(αt, Ỹ (t)), θ̄1(αt, Ỹ (t), z)).

satisfying (2.7) or (2.8) such that

E[Zθ(T )] = Zθ(0) = k > 0. (2.13)

Note that under (2.13) Zθ(t) is a martingale.

Let V defined as follows:

V = {θ ∈ U;V θ(t) = 0 ∀t ∈ [0, T ]} (2.14)
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where the operator V is defined as:

V θ(t) = µ(t, αt) + σ(t, αt)θ0(t, αt) +

∫
R0

γ(t, αt, z)θ1(t, αt, z)ν(dz). (2.15)

We now define the set of measures as follows:

U = {Qθ; θ ∈ U} and V = {Qθ; θ ∈ V}.

Then by the Girsanov Theorem (Girsanov (1960)) we have that all measures Qθ ∈ V

with Zθ(0) = k = 1 are equivalent local martingale measures (EMM for short)

(Øksendal and Sulem (2007)) and thus the process

WQθ(t) = W (t) −
∫ t

0

θ0(s)ds, ∀t ∈ [0,∞) (2.16)

is a Brownian Motion and

ÑQθ(dt, dz) = Ñ(dt, dz) − θ1(t, z)v(dz)dt (2.17)

is the (Ft, Qθ)-compensated Poison random measure of N(., .) on (Ω,F, {F}t ,Qθ).

Now (2.4) and (2.5) can be respectively written as

dXπ
t = Xπ

t dt+ σ(t, αt)π(t)dWQθ
t + π(t)

∫
R0

γ(t, αt, z)ÑQθ(dt, dz), (2.18)

β(t)Xπ(t) = x+

∫ t

0

β(s)π(s)σ(s, αs)dW
Qθ
t (s)

+

∫ t

0

∫
R0

β(s)π(s)γ(s, αs, z)ÑQθ(ds, dz).

(2.19)



12

In this set-up our (discounted) stockprice process and our (discounted) wealth pro-

cess (in the case where it is admissible) are local martingales, see Karatzas (1988)

and Øksendal and Sulem (2007).
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Chapter 3

Utility and Risk Indifference

Pricing in General

In a complete market, there exists for every bounded FT -measuruable claim G

an inital value x ∈ R and a portfolio process π such that: Xπ(T ;x) = G a.s. In this

case the EMM Qθ is unique and thus the price of a contract with payoff G at time

T is: p(G) = EQθ
[G].

In incomplete markets, there are infinitely many EMM’s Qθ. Thus it is not clear

which one to use for pricing the claim. Since V is infinite in our model we have

infinitely many EMM’s. Thus our market is incomplete. In general we can find an
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upper and lower bound for the price of our claim by super-/subhedging:

pup(G) = inf {x; there exist π ∈ A(T, x) such that Xπ(T ) ≥ G a.s.}

= sup
Q∈V

EQ[G],

plow(G) = sup {x; there exist π ∈ A(T, x) such that Xπ(T ) ≤ G a.s.}

= inf
Q∈V

EQ[G].

Usually plow and pup are quite different.

One way to shorten this gap is to use the utility indifference principle for pricing.

For this end, we need to choose a particular utility function U : R → R ∪ {−∞}.

If a person is short in a contract, he receives an inital payment p for the contract.

Thus the maximal expected utility for the seller is:

VG(x+ p) = sup
π∈A(T,x+p)

E[U(Xπ(T ; x+ p) −G)], (3.1)

where x is the seller’s wealth before the contract is being made. Without the contract

the seller’s maximal expected utiliy is:

V0(x) = sup
π∈A(T,x)

E[U(Xπ(T ;x))]. (3.2)

The (seller’s) utility indifference price p = putility is then defined as the value of

the initial payment that makes the seller utility indifferent to whether to sell the
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contract or not. Thus p is the solution of:

VG(x+ p) = V0(x). (3.3)

To find p we need to solve two stochastic control problems. A good introduction to

utility function and some basic properties as well as some appliactions can be found

in Henderson and Hobson (2009). There are several papers which cover this ap-

proach including: Musiela and Zariphopoulou (2004) or Benth and Meyer-Brandis

(2005).

Another way of solving our pricing problem is via risk indifference pricing. In

this case we substitute our utility function by a convex risk measure.

Definition 3.0.1. A mapping ρ : F → R ,where F is the set of FT -measurable

random variables, is called a convex risk measure if it is

(i) convex: ρ(λX + (1 − λ)Y ) ≤ λρ(X) + (1 − λ)ρ(Y ) for any X,Y ∈ F and

λ ∈ [0, 1],

(ii) monotone: ρ(X) ≥ ρ(Y ) if X ≤ Y and X, Y ∈ F,

(iii) translation invariant: ρ(X +m) = ρ(X) −m for m ∈ R and X ∈ F.

A convex risk measure ρ is called coherent if in addition it is a positive homogeneous

function, that is, ρ(λX) = λρ(X) for any X ∈ F and λ ∈ [0, 1].

An example for a coherent risk measure is the Conditional Value-at-Risk (CVAR).

More information about CVAR can be found in Chi and Tan (2010)).
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Now we can set up equations in the same way as we did for utility indifference

pricing:

ΦG(x+ p) = inf
π∈A(T,x+p)

ρ(Xπ(T ;x+ p) −G) (3.4)

and

Φ0(x) = inf
π∈A(T,x)

ρ(Xπ(T ;x)). (3.5)

The (seller’s) risk indifference price p = prisk of the claim G, which has to be an

element of F, is defined as the price such that the seller is risk indifferent to whether

sell or not. Thus p is the solution of:

ΦG(x+ p) = Φ0(x). (3.6)

This will lead us to two different prices: a price pSrisk for the seller and a price

pBrisk for the buyer. We will prove that the following inequality is always true:

plow ≤ pBrisk ≤ pSrisk ≤ pup.



17

Chapter 4

Risk Indifference Pricing in Detail

4.1 Formulation of the Problem

In this Chapter we will minimize our risk which comes from our negative wealth

process −Xπ by choosing π. The main idea follows a paper Øksendal and Sulem

(2009), where they prove a similar result for a jump diffusion market, but without

regime switching.

To find a risk indifference price, we will use the following theorem:

Theorem 4.1.1. (Föllmer and Schied (2002); Elliot and Siu (2010)) A map ρ :

F → R is a convex risk measure if and only if there exists a family U of probability

measures Q ≪ P on FT and a convex ”penalty function” ξ : U → R0 ∪ {+∞}

with infQ∈U ξ(Q) = 0 such that

ρ(F ) = sup
Q∈U

{EQ[−F ] − ξ(Q)} F ∈ F. (4.1)

Thanks to this theorem, choosing a risk measure ρ is equivalent to choosing the
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family U of measures and the penalty function ξ. ρ becomes a coherent risk measure

if we choose ξ = 0, see Artzner et al. (1999) and Delbaen (2000). For a given family

U and for a given penalty function ξ using this theorem our Problems (3.4) and

(3.5) become:

ΦG(x+ p) = inf
π∈A(T,x+p)

[
sup
Q∈U

{EQ[−Xπ(T ;x+ p) +G] − ξ(Q)}
]
, (4.2)

Φ0(x) = inf
π∈A(T,x)

[
sup
Q∈U

{EQ[−Xπ(T ; x)] − ξ(Q)}
]
. (4.3)

For our purposes we will assume that the ξ has the form:

ξ(Qθ) =E
[ ∫ T

0

∫
R0

λ(t, αt, θ0(t, αt, Ỹ (t)), θ1(t, αt, Ỹ (t), z), Ỹ (t), z)ν(dz)dt

+ h(αT , Ỹ (T ))
] (4.4)

for some convex functions λ ∈ C1(R1 ×M×R4 ×R0), h ∈ C1(M×R2) such that

E
[ ∫ T

0

∫
R0

|λ(t, αt, θ0(t, αt, Ỹ (t), θ1(t, αt, Ỹ (t), z), Ỹ (t), z)|ν(dz)dt

+ |h(αT , Ỹ (T ))|
]
<∞.

for all (θ, π) ∈ U× A (T, x). Moreover, we assume that the claim G is of the form:

G = g(S(T )).
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for some g : R → R such that

EQθ
[|g(S(T ))|] <∞ ∀θ ∈ L.

Using this notation and our Markovian setting, we can rewrite Problem (3.4) as

follows:

Problem 1. Find ΦG(t, i, y) and (θ∗, π∗) ∈ U × A (T, x + p) (called an optimal

triple) such that

ΦG(t, i, y) := inf
π∈A (T,x)

(
sup
θ∈U

Jθ,π(t, i, y)
)

= Jθ∗,π∗
(t, i, y), (4.5)

where

Jθ,π(t, i, y) =Et,i,y
[
−

∫ T

t

Λ(θ(u, αu, Ỹ (u)))du− h(αT , Ỹ (T ))

+ Zθ(T )g(S(T )) − Zθ(T )Xπ(T )
] (4.6)

and

Λ(θ) = Λ(θ(t, i, ỹ)) =

∫
R0

λ(t, i, θ0(t, i, ỹ), θ1(t, i, ỹ, z), ỹ, z)ν(dz) (4.7)

where ỹ = (k, s), ∀i ∈ M. If we consider the case without investing in the claim G,

we get:

Problem 2. Find Φ0(t, i, y) and (θ∗, π∗) ∈ U × A (T, x) (called an optimal triple)

such that

Φ0(t, i, y) := inf
π∈A (T,x)

(
sup
θ∈U

Jθ,π
0 (t, i, y)

)
= Jθ∗,π∗

0 (t, i, y), (4.8)
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where

Jθ,π
0 (t, i, y) =Et,i,y

[
−
∫ T

t

Λ(θ(u, αu, Ỹ (u)))du− h(αT , Ỹ (T )) − Zθ(T )Xπ(T )
]
.

(4.9)

Beside these problems, we will treat related stochastic control problems:

ΨG(t, i, ỹ) = sup
Q∈V

{EQ[G] − ξ(Q)}.

and

Ψ0(t, i, ỹ) = sup
Q∈V

{−ξ(Q)}.

These can we rewrite with our Markovian setting as:

Problem 3. Find ΨG(t, i, ỹ) and θ∗ ∈ V such that

ΨG(t, i, ỹ) := sup
θ∈V

Iθ(t, i, ỹ) = Iθ
∗
(t, i, ỹ),

where

Iθ(t, i, ỹ) = Et,i,ỹ
[
−

∫ T

t

Λ(θ(u, αu, Ỹ (u)))du− h(αT , Ỹ (T )) + Zθ(T )g(S(T ))
]

and

Problem 4. Find Ψ0(t, i, ỹ) and θ∗ ∈ V such that

Ψ0(t, i, ỹ) := sup
θ∈V

Iθ0 (t, i, ỹ) = Iθ
∗

0 (t, i, ỹ),
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where

Iθ0 (t, i, ỹ) = Et,i,ỹ
[
−

∫ T

t

Λ(θ(u, αu, Ỹ (u)))du− h(αT , Ỹ (T ))
]
.

Note that:

Jθ,π(t, i, y) = Iθ(t, i, ỹ) − Et,i,y[Zθ(T )Xπ(T )].

4.2 Generators for our Markovian Processes

For given (θ, π) ∈ U× A (T, x) the process Y θ,π(t) is Markovian with generator

Aθ,π given by

Aθ,πϕ(t, i, y) =
∂ϕ

∂t
+ µs

∂ϕ

∂s
+ sµπ

∂ϕ

∂x
+

1

2
θ20k

2∂
2ϕ

∂k2
+

1

2
σ2s2

∂2ϕ

∂s2

+
1

2
s2σ2π2∂

2ϕ

∂x2
+ θ0σks

∂2ϕ

∂k∂s
+ θ0πσks

∂2ϕ

∂k∂x
+ πσ2s2

∂2ϕ

∂s∂x

+

∫
R0

{ϕ(t, i, k + kθ1, s+ sγ, x+ sπγ) − ϕ(t, i, k, s, x) − kθ1
∂ϕ

∂k

− sγ
∂ϕ

∂s
− sπγ

∂ϕ

∂x
}ν(dz) +

m∑
j=1

qij[ϕ(t, j, y) − ϕ(t, i, y)]

(4.10)

for all ϕ = ϕ(t, i, k, s, x) ∈ C1,2([0, T ]×M×R3
+). Note that µ = µ(i, y), σ = σ(i, y),

etc.

As before we consider now the process Ỹ θ(t) by deleting the third component of
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Y (t). Its generator is given by

Aθψ(t, i, ỹ) =
∂ψ

∂t
+ µs

∂ψ

∂s
+

1

2
θ20k

2∂
2ψ

∂k2
+

1

2
σ2s2

∂2ψ

∂s2
+ θ0σks

∂2ψ

∂k∂s

+

∫
R0

{ψ(t, i, k + kθ1, s+ sγ) − ψ(t, i, k, s) − kθ1
∂ψ

∂k
− sγ

∂ψ

∂s
}ν(dz)

+
m∑
j=1

qij[ψ(t, j, ỹ) − ψ(t, i, ỹ)]

(4.11)

for all ψ = ψ(t, i, k, s) ∈ C1,2([0, T ] ×M× R2
+). From this we obtain the following

simple result:

Lemma 4.2.1. Let ψ ∈ C1,2([0, T ] ×M× R2
+) and define

ϕ(t, i, k, s, x) := ψ(t, i, k, s) − kx.

Then, with ỹ = (k, s) as before,

Aθ,πϕ(t, i, y) =Aθψ(t, i, ỹ) − ksπ(i, ỹ)
[
µ(i, ỹ) + θ0(t, i, ỹ)σ(i, ỹ)

+

∫
R0

θ1(t, i, ỹ, z)γ(i, ỹ, z)ν(dz)
]
.

Proof. From (4.10) and (4.11) we obtain:

Aθ,πψ(t, i, ỹ) = Aθψ(t, i, ỹ).

Thus it only remains to compute:
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Aθ,π(kx) =sµπk + sθ0πσk

+

∫
R0

{(k + kθ1)(x+ sxπγ) − kx− kθ1x− sπγk}ν(dz)

+
m∑
j=1

qij[kx− kx]

= skπ
[
µ+ θ0σ +

∫
R0

θ1γν(dz)
]
.

From now on, we put  L = (0, T ) ×M× R3
+ and  ̃L = (0, T ) ×M× R2

+ (called

the solvency region).

Lemma 4.2.2. Let ψ and ϕ be as in Lemma (4.2.1). We put Θ = {(θ0, θ1); θ0 ∈ R

and θ1 is a function from R0 to R}. Suppose that for all π ∈ R, (t, i, k, s) ∈  ̃L there

exists a maximum point θ̂ = θ̂(π) of the function

θ → Aθψ − Λ(θ) − ksπV θ; θ ∈ Θ

and that π → θ̂(π) is a C1- function. Moreover, suppose the map

π → Aθ̂(π)ψ − Λ(θ̂(π)) − ksπV θ̂(π); π ∈ R

has a minimum point π̃ ∈ R. Define

θopt := θ̂(π̂).
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Then

V θopt = 0

and

inf
π

(sup
θ
{Aθ,πϕ− Λ(θ)}) = Aθoptψ − Λ(θopt) = sup

θ:V θ=0
{Aθψ − Λ(θ)}.

Proof. The first-order condition for a maximum point θ̂ = θ̂(π) for our given map

for fixed t, i, k, s and π is

∇θ(A
θψ − Λ(θ) − ksπV θ)θ=θ̂ = 0,

where ∇θ = ( ∂
∂θ0
, ∂
∂θ1

) denotes the gradient operator. For the minimum point π̂ of

our given map, by the chain rule, we get:

∇θ(A
θψ − Λ(θ) − ksπV θ)θ=θ̂(π̂)

(dθ̂(π)

dπ

)
π=π̂

− ksV θ̂(π̂) = 0.

Hence we can conclude that

V θ̂(π̂) = 0.

Therefore, θopt statisfies the constraint V θopt = 0. Thus:

inf
π

(sup
θ
{Aθψ − Λ(θ) − ksπV θ})

= inf
π

(Aθ̂(π)ψ − Λ(θ̂(π)) − ksπV θ̂(π))

= Aθoptψ − Λ(θopt) ≤ sup
θ:V θ=0

{Aθψ − Λ(θ)}.
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On the other hand, we always have

inf
π

(sup
θ
{Aθψ − Λ(θ) − ksπV θ})

≥ inf
π

( sup
θ:V θ=0

{Aθψ − Λ(θ) − ksπV θ})

= sup
θ:V θ=0

{Aθψ − Λ(θ)}.

Combining the two results we get our claim.

4.3 Related HJBI equations

Since our Problem 1 is related to a well known class of stochastic differential

games, we can apply Theorem 3.2 in Mataramvura and Øksendal (2008) to get the

following theorem:

Theorem 4.3.1 (HJBI equations). Suppose ϕ ∈ C1,2( L) ∩ C(  ̃L) and (θ̂, π̂) ∈ U ×

A (T, x) satisfy the following conditions:

(i) Aθ,π̂ϕ(t, i, y) − Λ(θ(t, i, ỹ)) ≤ 0 ∀θ ∈ Θ, (t, i, y) ∈  L.

(ii) Aθ̂,πϕ(t, i, y) − Λ(θ̂(t, i, ỹ)) ≥ 0 ∀π ∈ R, (t, i, y) ∈  L.

(iii) Aθ̂,π̂ϕ(t, i, y) − Λ(θ̂(t, i, ỹ)) = 0 ∀(t, i, y) ∈  L.

(iv) ϕ(T, i, k, s, x) = kg(s) − h(i, k, s) − kx ∀(k, i, s, x) ∈ R+ ×M× R2
+.

(v) The family {ϕ(τ, ατ , Y
θ,π(τ))}τ∈T is uniformly integrable for all (θ, π) ∈ U ×

A (T, x), where T is the set of all Ft-stopping times τ ≤ T .
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Then

ϕ(t, i, y) = ΦG(t, i, y) = inf
π∈A (T,x)

(
sup
θ∈U

Jθ,π(t, i, y)
)

= sup
θ∈U

(
inf

π∈A (T,x)
Jθ,π(t, i, y)

)
= sup

θ∈U
Jθ,π̂(t, i, y) = inf

π∈A (T,x)
J θ̂,π(t, i, y) = J θ̂,π̂(t, i, y); ∀(t, i, y) ∈  L.

(4.12)

Proof. Choose (θ, π) ∈ U×A (T, x). Then by the Dynkin formula (Øksendal and Sulem

(2007)) for jump diffusion processes we have:

Et,i,y[ϕ(τ, ατ , Y (τ
(N)
L ))] = ϕ(t, i, y) + Et,i,y

[ ∫ τL(N)

0

Aθ,πϕ(t, αt, Y (t))dt
]

(4.13)

where Y (t) = Y θ,π(t) and

τ
(N)
L = T ∧ inf{t > 0 : |Y (t)| ≥ N}, N = 1, 2, ...

(I) If we apply (4.13) to θ, π̂ and use 1. for all y = Y (t), we get

Et,i,y[ϕ(τ, ατ , Y (τ
(N)
L ))] ≥ ϕ(t, i, y) − Et,i,y

[ ∫ τ
(N)
L

0

Λ(θ(t, αt, Ỹ (t)))dt
]

or

ϕ(t, i, y) ≤ Et,i,y
[ ∫ τ

(N)
L

0

Λ(θ(t, αt, Ỹ (t)))dt+ ϕ(τ, ατ , Y (τ
(N)
L ))

]
.

By letting N → ∞ and using (iv.) and (v.) we obtain

ϕ(t, i, y) ≤ Jθ,π̂(t, i, y). (4.14)
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Since this holds for all θ ∈ U we deduce that

ϕ(t, i, y) ≤ inf
θ∈U

Jθ,π̂(t, i, y). (4.15)

Hence

ϕ(t, i, y) ≤ sup
π∈A (T,x)

(
inf
θ∈U

Jθ,π(t, i, y)
)

= Φ(t, i, y). (4.16)

(II) Now we apply (4.13) to θ̂, π with π ∈ A (T, x) and use (ii.) for all y = Y (t).

Then we get

Et,i,y[ϕ(τ, ατ , Y (τ
(N)
L ))] ≤ ϕ(t, i, y) − Et,i,y

[ ∫ τ
(N)
L

t

Λ(θ̂(t, αt, Ỹ (t)))dt
]

or

ϕ(t, i, y) ≥ Et,i,y
[ ∫ τ

(N)
L

0

Λ(θ̃(t, αt, Ỹ (t)))dt+ ϕ(τ, ατ , Y (τ
(N)
L ))

]
.

Letting N → ∞ and using (iv.) and (v.) we obtain

ϕ(t, i, y) ≥ J θ̂,π(t, i, y) ≥ inf
θ∈U

Jθ,π(t, i, y). (4.17)

Since this hold for all π ∈ A (T, x) we deduce that

ϕ(t, i, y) ≥ sup
π∈A (T,x)

(
inf
θ∈U

Jθ,π(t, i, y)
)

= Φ(t, i, y). (4.18)

(III) Finally, we apply (4.13) to θ̂, π̂ and proceed as above. Thus will give us:

ϕ(t, i, y) = J θ̂,π̂(t, i, y). (4.19)
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Combining (4.16), (4.18) and (4.19) we get

Φ(t, i, y) ≤ ϕ(t, i, y) = J θ̂,π̂(t, i, y) ≤ Φ(t, i, y). (4.20)

Combining (4.17) and (4.14) we get:

inf
θ∈U

( sup
π∈A (T,x)

Jθ,π(t, i, y)) ≤ sup
π∈A (T,x)

J θ̂,π(t, i, y) ≤ ϕ(t, i, y) ≤ inf
θ∈U

Jθ,π̂(t, i, y)

≤ sup
π∈A (T,x)

(inf
θ∈U

Jθ,π(t, i, y)) = Φ(t, i, y).

(4.21)

But on the other hand, we always have

sup
π∈A (T,x)

(inf
θ∈U

Jθ,π(t, i, y)) ≤ inf
θ∈U

( sup
π∈A (T,x)

Jθ,π(t, i, y)),

together with the others inequalities we get our final claim.

From this we obtain the following theorem:

Theorem 4.3.2. Suppose the value function ΨG(t, i, ỹ) for Problem 3 satisfies the

conditions of Lemma (4.2.2). Then the value function for Problem 1 is

ΦG(t, i, y) = ΨG(t, i, ỹ) − kx

and there exists an optimal θopt ∈ V for Problem 3 such that for all π ∈ A (T, x) the

pair

(θ∗, π∗) = (θopt, π)

is an optimal pair for Problem 1.
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Proof. By the HJBI equation for Problem 3 we know that ∀t ∈ (0, T ):

sup
θ:V θ=0

{AθΨG(t, i, ỹ) − Λ(θ(t, i, ỹ))} = Aθopt(t,i,ỹ)ΨG(t, i, ỹ) − Λ(θopt(t, i, ỹ)) = 0

(4.22)

with terminal value

ΨG(t, i, ỹ) = ΨG(t, i, k, s) = kg(s) − h(i, k, s). (4.23)

Define

ϕ(t, i, y) = ΨG(t, i, ỹ) − kx ∀(t, i, y) ∈  L. (4.24)

We will show that ϕ satisfies all conditions of Theorem (4.3.1) and hence is the value

function of Problem 1. Then by Lemma (4.2.1) we have

Aθ,πϕ(t, i, y) − Λ(θ) = AθΨG(t, i, ỹ) − Λ(θ) − ksπV θ.

where V θ = V θ(t, i, ỹ) is defined in (2.15). Therefore, condition (i.) - (iii.) of

Theorem (4.3.1) get the form

(i) AθΨG(t, i, k, s) − Λ(θ) − ksπ̂V θ(t, i, k, s) ≤ 0 ∀θ ∈ R2,

(ii) Aθ̃ΨG(t, i, k, s) − Λ(θ̂) − ksπV θ̂(t, i, k, s) ≥ 0 ∀π ∈ R,

(iii) Aθ̃ΨG(t, i, k, s) − Λ(θ̂) − ksπ̂V θ̂(t, i, k, s) = 0 ∀(t, i, k, s) ∈  ̃L.

Choose π̂ and θopt = θ̂(π̂) as in Lemma (4.2.2). Combining (4.22) with Lemma
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(4.2.2) we get

AθΨG − Λ(θ) − ksπ̂V θ ≤ sup
θ
{AθΨG − Λ(θ) − ksπ̂V θ}

= Aθ̂(π̂)ΨG − Λ(θ̂(π̂)) − ksπ̂V θ̂(π̂) = sup
θ:V θ=0

{AθΨG − Λ(θ)} = 0,

which proves (i.). Moreover, since V θopt = 0, we get by (4.22)

AθoptΨG − Λ(θopt) − ksπV θopt = AθoptΨG − Λ(θopt) = 0 ∀π ∈ R,

which proves (ii.) and (iii.). Finally, we have to check that (iv.) holds: By (4.24)

and (4.23) we have

ϕ(T, i, k, s, x) = ΨG(T, i, k, s) − kx = kg(s) − h(i, s, x) − kx.

We conclude that ϕ, θ̂(π̂) and π̂ satisfy all the requirement of Theorem (4.3.1). Then

ϕ(t, i, k, s, x) = ΦG(t, i, k, s, x) = ΨG(t, i, k, s) − kx.

Moreover, θ∗ := θ̂(π̂) and π∗ := π̂ constitute an optimal pair. Now let π ∈ A (T, x)

be arbitrary. Note that:

Et,i,y[Zθ∗(T )Xπ(T )] = Et,i,y[Zθ̂(T )Xπ(T )] = kEt,i,y
1
k
Qθopt

[Xπ(T )] = kx,

since 1
k
Qθopt is an equivalent martingale measure. Therefore, going back to the



31

definition of ΨG, we then have (4.5) - (4.7) with Y ∗ = Y θ∗,π∗
, Y = Y θopt,π:

ΦG(t, i, y) = inf
π∈A (T,x)

(
sup
θ∈U

Jθ,π(t, i, y)
)

= J θ̂(π̂),π̂(t, i, y)

= Et,i,y
[
−
∫ T

t

Λ(θ̂(s, αs, Ỹ
∗(s)))ds+ Zθ∗(T )g(S(T ))

− h(αT , Zθ∗(T ), S(T )) − Zθ∗(T )Xπ∗
(T )

]
= Et,i,y

[
−
∫ T

t

Λ(θ̂(s, αs, Ỹ (s)))ds+ Zθopt(T )g(S(T ))

− h(αT , Zθopt(T ), S(T ))
]
− kx = J θ̂(π̂),π(t, i, y).

We conclude that for all π ∈ A (T, x) the pair

(θ∗, π) = (θopt, π) ∈ V× A (T, x)

is optimal for Problem 1, as claimed.

4.4 Viscosity Solutions

We will use now a different approach to get the same result but in this case

with weaker conditions, since the condition of Lemma (4.2.2) are very strong. The

following definition is based on Barles and Imbert (2008). For further information

see also Jakobsen and Karlsen (2006) and Crandall et al. (1992).

Definition 4.4.1 (Viscosity solutions). Let C denote the set of functions u :  ̃L → R

with at most linear growth.

• An upper semi continuous function u ∈ C is a viscosity subsolution of the
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HJBI equation for Problem 3, i.e.,

sup
θ:V θ=0

{Aθu− Λ(θ)} = 0 in  ̃L (4.25)

u(T, i, ỹ) = kg(s) − h(i, ỹ), (4.26)

if u satisfies (4.26) and for any ϕ ∈ C2(R ×M× R2) ∩ C and (t0, i0, ỹ0) ∈  ̃L

such that ϕ ≥ u everywhere on  ̃L and ϕ(t0, i0, ỹ0) = u(t0, i0, ỹ0), we have

sup
θ:V θ=0

{Aθϕ− Λ(θ)}(t0, i0, ỹ0) ≥ 0.

• An lower semi continuous function u ∈ C is a viscosity supersolution of the

HJBI equation for Problem 3, if u satisfies (4.26) and for any ϕ ∈ C2(R ×

M × R2) ∩ C and (t0, i0, ỹ0) ∈  ̃L such that ϕ ≤ u everywhere on  ̃L and

ϕ(t0, i0, ỹ0) = u(t0, i0, ỹ0), we have

sup
θ:V θ=0

{Aθϕ− Λ(θ)}(t0, i0, ỹ0) ≤ 0.

• A continous function u ∈ C is a viscosity solution of the HJBI equation for

Problem 3, if u is both a viscosity subsolution and a viscosity supersolution of

(4.25) and (4.26).

Similar, we define the expression viscosity (sub-/super) solutions u of the HJBI

equation

inf
π∈A (T,x)

(
sup
θ∈Θ

{Aθ,πu− Λ(θ)}
)

= 0 in  L (4.27)

u(T, i, y) = kg(s) − h(i, ỹ) − kx (4.28)
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for Problem 1. We say that a function u ∈ C(R×M×R2)∩C satisfies the dynamic

programming principle if

u(t0, i0, ỹ0) ≥ Et0,i0,ỹ0
[
u(τ, ατ , Ỹ

θ(τ)) −
∫ τ

0

Λ(θ(s))ds
]

(4.29)

for all bounded stopping time τ , all θ ∈ Θ and all (t0, i0, ỹ0) ∈ R × M × R2.

For getting general conditions that the dynamic programming principle holds, see

Ishikawa (2004) and Bouchard and Touzi (2011).

Theorem 4.4.2. Under the dynamic programming principle the following state-

ments are true:

• Suppose u is a viscosity subsolution of the HJBI equation (4.25) and (4.26) of

Problem 3. Then

w(t, i, y) := u(t, i, ỹ) − kx

is a viscosity subsolution of the HJBI equation of Problem 1.

• Suppose u satisfies (4.29) and (4.28). Then

w(t, i, y) := u(t, i, ỹ) − kx

is a viscosity supersolution of the HJBI equation for Problem 1.

• Suppose u satisfies (4.29) and u is a viscosity solution of the HJBI equation

of Problem 3. Then

w(t, i, y) := u(t, i, ỹ) − kx
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is a viscosity solution of the HJBI equation of Problem 1.

Proof. It suffices to prove the first two parts. Then the third part follows immedi-

ately.

Proof of the first part: Suppose u is a viscosity subsolution of (4.25). We want to

prove that

w(t, i, y) := u(t, i, ỹ) − kx

is a viscosity subsolution of (4.27). To this end, suppose ϕ ∈ C2 ∩ C, ϕ ≥ w and

ϕ(t0, i0, y0) = w(t0, i0, y0) at some point (t0, i0, y0) ∈  L. Put

Ψ(t, i, y) := ϕ(t, i, y) + kx; (t, i, y) ∈  L.

Then

Ψ ∈ C2 ∩ C,Ψ ≥ ϕ and Ψ(t0, i0, y0) = u(t0, i0, y0).

Therefore, since u is a viscosity subsolution of HJBI, we have:

sup
θ:V θ=0

{AθΨ − Λ(θ)}(t0, i0, y0) ≥ 0.

But then, by Lemma (4.2.1),

inf
π

(
sup
θ
{Aθ,πϕ− Λ(θ)}

)
= inf

π

(
sup
θ
{Aθϕ− Λ(θ) + k0s0πV θ}

)
≥ inf

π

(
sup

θ:V θ=0
{Aθϕ− Λ(θ) + k0s0πV θ}

)
= sup

θ:V θ=0
{AθΨ − Λ(θ)} ≥ 0 at (t0, i0, y0).

This proves w is a subsolution of HJBI.
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Proof of the second part: Suppose u satisfies (4.29). We want to prove that

w(t, i0, y) := u(t, i0, ỹ) − kx

is a viscosity supersolution of (4.27). To this end, suppose ϕ ∈ C2 ∩ C, ϕ ≤ w and

ϕ(t0, i0, y0) = w(t0, i0, y0) at some point (t0, i0, y0) ∈  L. Put

Ψ(t, i, y) := ϕ(t, i, y) + kx; (t, i, y) ∈  L.

Then

Ψ ≤ u and Ψ(t0, i0, y0) = u(t0, i0, y0).

Therefore, since u satisfies (4.29), we have:

Ψ(t0, i0, ỹ0) = u(t0, i0, ỹ0) ≥ Et0,i0,ỹ0
[
u(τ, ατ , Ỹ

θ(τ)) −
∫ τ

0

Λ(θ)ds
]

≥ Et0,i0,ỹ0
[
Ψ(τ, ατ , Ỹ

θ(τ)) −
∫ τ

0

Λ(θ)ds
]
.

By the Dynkin formula we have:

Et0,i0,ỹ0 [Ψ(τ, ατ , Ỹ
θ(τ))] = Ψ(t0, i0, ỹ0) + Et0,i0,ỹ0

[ ∫ τ

0

AθΨ(s, αs, Ỹ
θ(s))ds

]
.

Combining these two inequalities we get:

Et0,i0,ỹ0
[ ∫ τ

0

{AθΨ(s, αs, Ỹ
θ(s)) − Λ(θ))}ds

]
≤ 0.
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Since this holds for all bounded stopping time τ , we conclude that

AθΨ − Λ(θ) ≤ 0 at (t0, i0, ỹ0) ∀θ ∈ Θ.

Hence

sup
θ
{AθΨ − Λ(θ)} ≤ 0 at (t0, i0, ỹ0).

Therefore

inf
π

(
sup
θ
{AθΨ − Λ(θ) − k0s0πV θ}

)
≤ 0 at (t0, i0, ỹ0).

This proves thath w is a supersolution of HJBI, and hence completes the proof of

the second part.

Using this theorem we can now state the following viscosity solution version:

Theorem 4.4.3. As before let ΦG(t, i, y) = ΦG(t, i, k, s, x) and ΨG(t, i, ỹ) =

ΨG(t, i, k, s) be the value functions of Problem 1 and Problem 3. Suppose that

ΦG(t, i, k, s, x) is the unique viscosity solution of the HJBI equation for Problem

1. Then

ΦG(t, i, k, s, x) = ΨG(t, i, k, s) − kx. (4.30)

Proof. By Pham (1998) Theorem 3.1 we know that ΨG(t, i, k, s) is a viscosity so-

lution of the HJBI equation for Problem 3. Moreover, ΨG(t, i, k, s) satisfies the

dynamic programming principle. Hence by our previous Theorem we get that

u(t, i, k, s, x) := ΨG(t, i, k, s) − kx.
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is a viscosity solution of the HJBI equation for Problem 1. By uniqueness we get

our claim.

Sufficient conditions for the uniqueness of the viscosity solutionof the HJBI equa-

tion are given by Jakobsen and Karlsen (2006) and Pham (1998).
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Chapter 5

Conclusion

We now apply Theorems (4.3.2) and (4.4.3) to find the risk indifference price

p = prisk given in our introduction, given as the solution p of the equation:

ΦG(t, i, k, s, x+ p) = Φ0(t, i, k, s, x)

where ΦG is the solution of Problem 1. By both Theorems this equation becomes:

ΨG(t, i, k, s) − k(x+ p) = Ψ0(t, i, k, s) − kx,

which has the solution

p = prisk = k−1(ΨG(t, i, k, s) − Ψ0(t, i, k, s)).

In particular, when we choose k = 1 (This makes the measures Qθ ∈ V into a

probability measures), we get:



39

Theorem 5.0.4 (Risk indifference pricing theorem - seller’s price). Suppose that

either the conditions of Theorem (4.3.2) or Theorem (4.4.3) hold. Then the seller’s

risk indifference price of G, psellerrisk (G), is given by

psellerrisk (G) = sup
Qθ∈V

{EQθ
[G] − ξ(Qθ)} − sup

Qθ∈V
{−ξ(Qθ)},

where V is the set of equivalent martingale measures defined in chapter (2.3).

Note that:

psellerrisk (G) ≤ sup
Qθ∈V

EQθ
[G] + sup

Qθ∈V
{−ξ(Qθ)} − sup

Qθ∈V
{−ξ(Qθ)} ≤ sup

Qθ∈V
EQθ

[G] = pup(G),

with equality only if ξ(Qθ) = 0 for all Qθ. Similarly, we get:

Theorem 5.0.5 (Risk indifference pricing theorem - buyers’s price). Suppose that

either the conditions of Theorem (4.3.2) or Theorem (4.4.3) hold. Then the seller’s

risk indifference price of G, pbuyerrisk (G), is given by

pbuyerrisk (G) = inf
Qθ∈V

{EQθ
[G] + ξ(Qθ)} − inf

Qθ∈V
{ξ(Qθ)},

where V is again the set of equivalent martingale measures defined in Chapter (2.3).

Note again that:

pbuyerrisk (G) ≥ inf
Qθ∈V

EQθ
[G] = plow(G),

with equality only if ξ(Qθ) = 0 for all Qθ.

If we combine this two inequalities, we obtain the following chain of inequalities
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Corollary 5.0.6. We have:

plow(G) ≤ pbuyerrisk (G) ≤ psellerrisk (G) ≤ pup(G).

Proof. It remains to prove the second inequality, namely that:

inf
Qθ∈V

{EQθ
[G] + ξ(Qθ)} − inf

Qθ∈V
{ξ(Qθ)} ≤ sup

Qθ∈V
{EQθ

[G] − ξ(Qθ)} + inf
Qθ∈V

{ξ(Qθ)}.

(5.1)

We know

sup
Qθ∈V

{EQθ
[G] − ξ(Qθ)} − inf

Qθ∈V
{EQθ

[G] + ξ(Qθ)}

≥ sup
Qθ∈V

{EQθ
[G] − ξ(Qθ) − (EQθ

[G] + ξ(Qθ))}

= sup
Qθ∈V

{−2ξ(Qθ)} = −2 inf
Qθ∈V

ξ(Qθ),

(5.2)

from which (5.1) follows.

From (5.2) we deduce the following:

Corollary 5.0.7. If

argmax
Qθ∈V

{EQθ
[G] − ξ(Qθ)} ∩ argmin

Qθ∈V
{EQθ

[G] + ξ(Qθ)} ̸= ∅, (5.3)

then

psellerrisk (G) = pbuyerrisk (G).

Note that (5.3) holds trivially if V consists of just one measure, which is the

case if the market is complete. Thus our results agree to the well known results for

uniqueness of the price in complete markets.
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Chapter 6

Future Directions

We have found an alternative way to price derivatives in jump-diffusion markets

with regime switching by using risk-indifference pricing. It turned out that the so

found interval is more accurate than the interval that we get by using super- and

subhedging. To use our approach the market needs either to satisfy the assump-

tions from Lemma (4.2.2) or that the viscosity solution for Problem (1) has a unique

solution. Mainly inside the jump-diffusion market with regime switching it is not

clear when the uniqueness is satisfied. Sufficient conditions for the uniqueness of

the viscosity solution of the HJBI equation inside the jump-diffusion market with-

out regime switching are given by Jakobsen and Karlsen (2006) and Pham (1998).

These results could give some ideas and/or approaches to develop a result for the

uniqueness with regime switching.

The quality of our approach depends extremely on the choice for the penalty func-

tion ξ. So far it is just a theoretical result which shows that the interval between the

risk-indifference price for the buyer and the seller lies inside of the interval between
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the prices established by super- and subhedging. It is not verified that the intervals

are different. For example if we choose the penalty function to be a constant we will

get always the same interval with both methods.

Besides this it is possible that for different claims different penalty functions are

optimal. Especially, if we take the point of view as an practitioner, we want to min-

imize the interval for the price of a derivative as best as possible to get closer to the

”‘real”’ price. A detailed research study for several penalty functions for different

common used derivatives is necessary to establish a better understanding of the role

of ξ for the price interval.
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Appendix A

Market Set Up including

Discounting

In this work we assume that r(t, αt) ≡ 0. For setting up the market in the

general case we neet to model the discounted stock price S̄t = β(t)S(t). For this we

have the dynamics:

dS̄t = β(t)[dSt − r(t, αt)S(t)dt]

= [µ(t, αt) − r(t, αt)]S̄t−dt+ σ(t, αt)S̄t−dWt

+ S̄t−

∫
R0

γ(t, αt, z)Ñ(dt, dz)

= µ̂(t, αt)S̄t−dt+ σ(t, αt)S̄t−dWt + S̄t−

∫
R0

γ(t, αt, z)Ñ(dt, dz),

(A.1)
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where we set µ̂(t, αt) = µ(t, αt)− r(t, αt) for simplicity. The dynamics of the wealth

process are given by

dXt = dXπ
t = (r(t, αt)X

π
t + π(t)St−[µ(t, αt) − r(t, αt)]) dt

+ σ(t, αt)π(t)St−dWt + π(t)St−

∫
R0

γ(t, αt, z)Ñ(dt, dz).
(A.2)

One can solve (A.2) to obtain

Xπ(t) =B(t)
[
x+

∫ t

0

β(s)π(s)Ss(µ(s, αs) − r(s, αs))ds

+

∫ t

0

β(s)π(s)Ssσ(s, αs)dWs

+

∫ t

0

∫
R0

β(s)π(s)Ssγ(s, αs, z)Ñ(ds, dz)
]
.

(A.3)

Furhtermore, one is interested in the discountted wealth process:

dX̄π
t = β(t)[dXπ

t − r(t, αt)X
π
t dt]

= β(t)
[
π(t)St−[µ(t, αt) − r(t, αt)]dt+ σ(t, αt)π(t)St−dWt

+ π(t)St−

∫
R0

γ(t, αt, z)Ñ(dt, dz) − dCt

]
= π(t)S̄t−µ̂(t, αt)dt+ σ(t, αt)π(t)S̄t−dWt

+ π(t)S̄t−

∫
R0

γ(t, αt, z)Ñ(dt, dz).

(A.4)

One can solve (A.4) to obtain

X̄π(t) =x+

∫ t

0

π(s)S̄s(µ(s, αs) − r(s, αs))ds+

∫ t

0

π(s)S̄sσ(s, αs)dWs

+

∫ t

0

∫
R0

π(s)S̄sγ(s, αs, z)Ñ(ds, dz).

(A.5)
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In this model the wealth process and the discounted wealth process are uniquely

defined by π - a given portfolio process. For a fixed finite time-horizon T > 0 and

a fixed initial endowment x, we say that a (discounted) wealth process or analog a

portfolio process π is admissible on [0, T ], if Xπ
t ≥ 0 for all t ∈ [0, T ] holds almost

surely, π is an Ft-process and furthermore

∫ t

0

β(s, i)πsSs|µ(s, i) − r(s, i)|ds+

∫ t

0

β(s, i)2π2
sS

2
sσ(s, i)2ds

+

∫ t

0

∫
R0

β(s, i)2π2
sS

2
s |γ(s, i, z)|2ν(dz)ds <∞

(A.6)

for all t ∈ [0, T ] and for all i ∈ M holds almost surely. In such a case, we denote

π ∈ A(T, x).
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Appendix B

Condition on the Given Jump

Function

To verify that our stock price process is real valued and well-defined, we use Ito’s

formula in one dimension for Lévy-processes under the condtition of R = ∞. For

the function f(t, x, i) = ln(x) we obtain:

f(t, S(t), αt)

= f(0, X0, α0) +

∫ t

0

(µ(αt) −
1

2
σ(αt)

2)dt+

∫ t

0

σ(αs)dWs

+

∫ t

0

∫
R0

(ln(1 + γ(s, z, αs)) − γ(s, z, αs))ν(dz)ds+

∫ t

0

∫
R0

ln(1 + γ(s, z, αs))Ñ(ds, dz)

= f(0, X0, α0) +

∫ t

0

Lf(s, S(s), αs)ds+M f
1 (t) +M f

2 (t)

(B.1)



51

where:

Lf(s, S(s), αs) = µ(αs) −
1

2
σ(αs)

2) +

∫
R0

(ln(1 + γ(s, z, αs)) − γ(s, z, αs))ν(dz)

M f
1 (t) =

∫ t

0

σ(αs)dWs and

M f
2 (t) =

∫ t

0

∫
R0

ln(1 + γ(s, z, αs))Ñ(ds, dz).

(B.2)

At first we want to verify that Lf(s, S(s), αs) is well-defined. For this, note that by

Taylor expansion we have

ln(1 + γ(s, z, αs)) − γ(s, z, αs) = γ(s, z, αs) +
1

2

1

(1 + ω · γ(s, z, αs))
γ(s, z, αs)

2

− γ(s, z, αs)

=
1

2

γ(s, z, αs)
2

(1 + ω · γ(s, z, αs))
where ω ∈ [0, 1].

(B.3)

For satisfying the well-defined condition we need two assumptions:

Assumption A1. ∃ δ > 0 such that γ(s, z, i) > −1 + δ ∀z ∈ R0, i ∈M

Assumption A2.
∫
R0

|γ(s, z, i)2|ν(dz) <∞ ∀i ∈M

Under this assumptions we have:

1 + ω · γ(s, z, i) > 1 + ω · (−1 + δ) ≥ min(1, δ) > 0 (B.4)

Hence,

|ln(1 + γ(s, z, i)) − γ(s, z, i)| ≤ 1

2 · min(1, δ)2
|γ(s, z, i)|2. (B.5)
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Since µ(i) and σ(i) are well-defined for all i ∈M and under our assumptions

∫
R0

|ln(1 + γ(s, z, αs)) − γ(s, z, αs)|ν(dz) <∞. (B.6)

Thus the whole operator Lf(s, S(s), αs) is well-defined.

It remains to show that M f
1 (t) and M f

2 (t) are martingales. It is clear that the first

expression is a martingale so we only have to consider the second one.

By virtue of Øksendal and Sulem (2007) we have to show that

E
[ ∫ t

0

∫
R0

|ln(1 + γ(s, z, αs))|2Ñ(ds, dz)
]
<∞. (B.7)

Using the Meanvalue-Theorem gives us ln(1 +γ(s, z, i))− ln(1) = 1
1+θ·γ(s,z,i)γ(s, z, i)

and by the same arguments as before there exists a δ > 0 sucht that the expression

is smaller or equal than min(1, δ) · γ(s, z, i) for ervery i ∈M . Thus we have:

E
[ ∫ t

0

∫
R0

|ln(1 + γ(s, z, αs))|2Ñ(ds, dz)
]

< min(1, δ)2 · E
∫ t

0

∫
R0

|γ(s, z, αs)|2ν(dz)ds

<
∑
i∈M

min(1, δ)2 · E
∫ t

0

∫
R0

|γ(s, z, i)|2ν(dz)ds <∞ with AssumptionA2.

(B.8)

Thus we have shown that M f
2 (t) is a martingale and espacially well-defined. This

completes the proof that the process f(t, S(t), αt) is well-defined and therefore S(t).
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