
Georgia Southern University

Digital Commons@Georgia Southern

Electronic Theses and Dissertations Graduate Studies, Jack N. Averitt College of

Spring 2012

An Analysis of Rigid Image Alignment Computer Vision

Algorithms

Rajeshree R. Joshi

Follow this and additional works at: https://digitalcommons.georgiasouthern.edu/etd

Recommended Citation

Joshi, Rajeshree R., "An Analysis of Rigid Image Alignment Computer Vision Algorithms"

(2012). Electronic Theses and Dissertations. 687.

https://digitalcommons.georgiasouthern.edu/etd/687

This thesis (open access) is brought to you for free and open access by the Graduate Studies, Jack

N. Averitt College of at Digital Commons@Georgia Southern. It has been accepted for inclusion in

Electronic Theses and Dissertations by an authorized administrator of Digital Commons@Georgia

Southern. For more information, please contact digitalcommons@georgiasouthern.edu.

http://digitalcommons.georgiasouthern.edu/etd
http://digitalcommons.georgiasouthern.edu/etd
https://digitalcommons.georgiasouthern.edu/
https://digitalcommons.georgiasouthern.edu/etd
https://digitalcommons.georgiasouthern.edu/cogs
https://digitalcommons.georgiasouthern.edu/etd?utm_source=digitalcommons.georgiasouthern.edu%2Fetd%2F687&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.georgiasouthern.edu/etd/687?utm_source=digitalcommons.georgiasouthern.edu%2Fetd%2F687&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@georgiasouthern.edu

1

AN ANALYSIS OF RIGID IMAGE ALIGNMENT
COMPUTER VISION ALGORITHMS

by

 RAJESHREE JOSHI

(Under the Direction of Robert Cook)

ABSTRACT

Computer vision is a field of computer science that includes methods for

acquiring, processing, and analyzing images. Image registration is one of the methods

used in the computer vision field to transform different sets of data into one coordinate

system to align images. Registration is important in order to be able to compare or

integrate the data obtained from multiple measurements. Rigid image alignment is a type

of image registration technique used to align two two-dimensional images into a common

coordinate system based on two transformation parameters, translation and rotation.

Before any comparative studies can be performed on two images acquired at different

times, it is crucial to align the two images for correct processing later on.

In our research study, we are analyzing the accuracy of registering images using

two rigid image alignment algorithms, namely the Principal Axes algorithm and the Fast

Fourier Transform (FFT) based phase correlation algorithm. The software for registering

images using these two methods is written in MATLAB R2011a. We also compared our

results with alignments achieved for the same images using an existing Statistical

Parametric Mapping (SPM8) package for registration.

2

Image registration algorithms have been used in many applications and

accordingly, algorithms are adopted to suit a particular application. Images used for

registration can be derived from different capturing devices like camera, scanner, satellite

sensors, etc. Our registration software is based on work with images acquired from a

Magnetic Resonance Imaging (MRI) scanner and especially for images taken of a quality

assurance (QA) phantom. A QA phantom is used to test the quality of images acquired by

measuring different QA parameters on images acquired over a period of time. Images

acquired from the MRI scanner at different times are geometrically transformed by

rotation and translation. In practice, the maximum angle by which the phantom will get

rotated at different times due to varying positioning in the scanner will not be greater than

50 degrees and the maximum displacement will always be less than 50 pixels based on

our experience while scanning. By comparing future phantom images with the first image

in the series, we can perform a series of Quality Assurance steps to measure any

degradation in the MRI device. The QA results can then be used to apply inverse

transformations to new customer images to improve their quality. The first step in the

QA process is image registration, which is the topic of this thesis.

To test the implementations, we rotated and translated known images then we

applied the two algorithms and compared the results to the known translation and rotation

values. Our analysis shows that the Principal Axes method could successfully register 17

of the 22 non-aligned test images, the FFT method registered 21 test images successfully

whereas SPM8 with default settings showed correct alignments for only 9 images in our

case study as per our requirement. The Principal Axes algorithm performed better image

3

alignment when the two images were displaced by a larger distance, and the FFT based

algorithm performed better for larger rotation angle differences among images. Hence,

we conclude that our algorithms have the potential for inclusion in the new QA process.

INDEX WORDS: Rigid image alignment, Computer vision algorithms, Image

registration, Principal axes, Fast fourier transform, FFT, Mean square error, MSE.

4

AN ANALYSIS OF RIGID IMAGE ALIGNMENT
COMPUTER VISION ALGORITHMS

by

 RAJESHREE JOSHI

(Under the Direction of Robert Cook)

B.E., Goa Engineering College, India, 1995

M.S., Georgia Southern University, 2012

A Thesis Submitted to the Graduate Faculty of Georgia Southern University in Partial

Fulfillment

of the Requirements for the Degree

MASTER OF COMPUTER SCIENCE

STATESBORO, GEORGIA

2012

5

© 2012

RAJESHREE JOSHI

All Rights Reserved

6

AN ANALYSIS OF RIGID IMAGE ALIGNMENT
COMPUTER VISION ALGORITHMS

by

 RAJESHREE JOSHI

 Major Professor: Robert Cook

 Committee: Lixin Li

 Vladan Jovanovic
 James Harris

 Nathan Yanasak

Electronic Version Approved: May 2012

7

ACKNOWLEDGMENTS

I sincerely express my appreciation to my advisory committee: Dr. Robert Cook,

Dr. Nathan Yanasak, Dr. Lixin Li, Dr. Vladan Jovanovic, and Dr. James Harris.

Special thanks to Dr. Robert Cook for his time, patience, and understanding.

Thanks for your full cooperation during the research work.

Dr. Yanasak, thanks for giving me the opportunity to be part of this research work

in the Core Imaging Facility for Small Animals (CIFSA) at Georgia Health Sciences

University. Also, thanks for letting me use the facility resources for my thesis work.

Thanks to College of Graduate Studies at Georgia Southern University for making

this study possible by funding it through Graduate Research Thesis Grant.

My gratitude goes to Dr. Lixin Li for being very helpful at every step of my

school year. Special thanks to Dr. Jovanovic and Dr. Harris for their valuable

suggestions.

I also take this opportunity to thank Dr. Wen-Ran Zhang and Dr. Wenjia Li for

their cooperation and help during the school year.

The most special thanks go to my husband Dr. Sharad Purohit, my kids Neha and

Raghav, my brother Pramod, my sister Shradha, my parents and my in-laws for their

unconditional support and love through this long process.

8

TABLE OF CONTENTS

ACKNOWLEDGMENTS ...7

LIST OF TABLES ...9

LIST OF FIGURES ...10

CHAPTER

 1 INTRODUCTION ...12

 1.1 Motivation and Scope ...12

 1.2 Related Work ..16

 1.3 Research Plan ..17

 2 IMAGE REGISTRATION TECHNIQUES ..18

 2.1 Introduction ..18

 2.2 Rigid Image Registration ..20

 3 SOFTWARE DESIGN ...23

 3.1 User Interface ...23

 3.2 Input ..25

 3.3 Processing ...27

 3.3 Output ...31

 4 PRINCIPAL AXES METHOD ..32

 4.1 Introduction ..32

 4.2 Algorithm ...35

 4.3 Experimental Results ..38

 4.4 Conclusion ..42

 5 FAST FOURIER TRANSFORM METHOD ...43

 5.1 Introduction ..43

9

 5.2 Algorithm ...45

 5.3 Experimental Results ..48

 5.4 Conclusion ..51

 6 SIMILARITY MEASURES ...52

 6.1 Introduction ..52

 6.2 Analysis Results ...55

 6.3 Conclusion ..57

 7 CONCLUSIONS AND FUTURE WORK ...58

REFERENCES ..60

APPENDICES

 A USER INTERFACE SCRIPT IN MATLAB ...62

 B PRINCIPAL AXES SCRIPT IN MATLAB ..65

 C FAST FOURIER TRANSFORM SCRIPT IN MATLAB72

 D REGISTRATION OUTPUT WINDOWS IN SPM8 ...78

 E REGISTRATION OUTPUT WINDOWS USING PRINCIPAL AXES85

 F REGISTRATION OUTPUT WINDOWS USING FFT ALGORITHM.............107

10

LIST OF TABLES

Table 1: Data file names and the initial rotation and translation values 26

11

LIST OF FIGURES

Figure 1: Experimental Setup ...14

Figure 2: User interface window ...24

Figure 3: Input image ..25

Figure 4: Software Processing Window - Principal Axes Algorithm28

Figure 5: Software Processing Window - FFT Algorithm..30

Figure 6: Output image files ...31

Figure 7: Aligning images by Translation followed by Rotation step for

 Principal Axes algorithm execution ...34

Figure 8: Best performance results from Principal Axes algorithm execution39

Figure 9: Worst performance results from Principal Axes algorithm execution40

Figure 10:Alignment using Principal Axes algorithm in the presence of noise41

Figure 11:Best performance results from FFT algorithm execution49

Figure 12:Worst performance results from FFT algorithm execution50

Figure 13:Alignment using FFT algorithm in the presence of noise50

Figure 14:Similarity Measure MSE computed for image registrations 55

Figure 15:Translation and Rotation Errors computed for Principal Axes Method 56

12

CHAPTER 1

 INTRODUCTION

“Imagination is more important than knowledge. For knowledge is limited, whereas

imagination embraces the entire world, stimulating progress, giving birth to evolution.”

– Albert Einstein

1.1 Motivation and Scope

Vision is the task of “seeing” with understanding. When we see things, our eyes

(sensing device) capture the image, and then pass the information to the brain (an

interpreting device). The brain interprets the information and gives meanings to what we

see. In computer vision, a camera or scanner or any such device serves as a sensing

device, and a computer acts as an interpreting device. Computer vision embeds the core

technology of automated image analysis which is used in many fields. Medical computer

vision or medical image processing is one of the most prominent application fields of

computer vision [12].

The organization of a computer vision system is highly application dependent.

There are, however, typical functions that are found in many computer vision systems

[12]. They are image acquisition, pre-processing, feature-extraction, segmentation, high-

level processing and decision making [12].

13

When multiple images are captured from different viewpoints or at different

times, the images get distorted with respect to each other. Image registration or image

alignment is the process of determining the optimal transformation matrix that results in

the images being in spatial alignment [1].

Various image registration algorithms are designed to suit different applications.

A registration algorithm designed for one application may not work or may work

inefficiently because of the different image formats achieved from different capturing

devices and based on application requirements. Algorithms will also vary based on the

fact that the images to be aligned are from the same object (monomodal) or different. The

images may need to be preprocessed or converted into formats to be supported by the

existing algorithms. Even then, the algorithms may have their own limitations as to how

much displacements or rotation angle differences it can handle for registration. Hence,

existing algorithms need to be adapted based on the type of application it will serve.

Our application demands registering images acquired from a quality-assurance

(QA) phantom using an MRI scanner. The phantom is designed to test the quality of

images acquired from the scanner on a weekly basis over a time span of years. Image

quality can be tested based on different QA parameters measured for the images. Before

this processing can be done, all the acquired images obtained from the scanner using the

same phantom at different times need to be aligned with a reference image to facilitate

correct measurements for QA parameters. The images to be aligned are from the same

phantom but acquired at different times. Figure 1 shows the experimental setup for

acquiring images using the MRI scanner and the QA phantom.

14

Figure 1: Experimental Setup. Left panel shows the Bruker BioSpin 7T MRI scanner used for acquiring

images by placing the QA phantom as shown in the right panel on the scanner bed. The central disk in the

phantom, used for resolution, contrast, and distortion measurements, is shown in the right panel. Bruker

ParaVision 5.1 software is used to instruct the scanner to acquire the images.

The phantom images acquired using the scanner at different times are

geometrically distorted by rotation and translation. This is due to different positioning of

the phantom in the scanner each time. The circular patterns shown in the images need to

be at similar coordinates for all the images for further meaningful processing. The

alignment of images then is crucial in deriving correct QA parameter values to test image

quality and therefore the proper functioning of the scanner. Misalignments will result in

wrong measurements for QA parameters providing us with incorrect results on the scan

quality of images and the functioning of the scanner.

Since the scanner functioning may deteriorate with time in the long run, it is

possible that the images acquired can get distorted with more noise introduced in the

future images. To tackle this problem, we have simulated two of our target images by

introducing Gaussian noise enough to pixelate the images using the ImageJ (NIH, MD)

[14] software.

15

Before designing our registration software, we have used the existing SPM8

software package [13] for our application to align these images. For this, we had to first

convert our raw phantom images to the NIFTI file format required by SPM8 for image

registration. We used ImageJ software for file conversion. We then registered images

using the Realign Tool in SPM8. Default parameter settings were used for realignment as

shown in the screenshot window in APPENDIX D. Of the 22 phantom images to be

aligned with the reference image, SPM8 could correctly register only 9 images in our

study to our satisfaction and requirement.

Considering our application requirements and the limitation of existing software

to suit our needs, we have designed rigid image registration software in MATLAB

R2011a [15]. No image preprocessing is required for using our software. It allows the

user to choose between two algorithms for registering images. The algorithms chosen are

Principal Axes method [1, 3] and FFT based phase correlation method [1, 4, 7, 8, 9, 10]

for their simplicity, applicability and efficiency amongst other rigid image alignment

algorithms.

There are 23 images used in our study. The target images need to be aligned with

the first image in the sequence considered as a reference image. The software displays

each step of transformation to the user during processing. In addition, the software also

displays a commonly used similarity measure, Mean Square Error (MSE) [12]. The total

time taken for image alignment is also shown to the user. The transformed aligned image

is then saved as a raw file with the same name as the target file prefixed with letters ‘PA’

or ‘FR’ based on the algorithm chosen for registration.

16

1.2 Related Work

“Image registration is a vital problem in medical imaging” [5, 6]. In [1] and [2],

“rigid body registration methods are effectively used for registering human brain images

from MRI. It has many potential applications in clinical diagnosis (Diagnosis of cardiac,

retinal, pelvic, renal, abdomen, liver, tissue etc disorders) [6]. Image registration finds its

applications in various fields like remote sensing (multispectral classification),

environmental monitoring, change detection, image mosaicing, weather forecasting,

creating super-resolution images, integrating information into geographic information

systems (GIS), in medicine (combining data from different modalities e.g. computer

tomography (CT) and magnetic resonance imaging (MRI), to obtain more complete

information about the patient, monitoring tumor growth, treatment verification,

comparison of the patient’s data with anatomical atlases, in cartography (map updating)

and in computer vision (target localization, automatic quality control) [6].”

17

1.3 Research Plan

The thesis work involved implementing the following steps:

a. Acquiring multiple QA phantom images on a weekly basis by positioning

the phantom in the MRI scanner. There are a total of 23 images used in our study; the

first one is used as the reference image and the remaining 22 are target images to be

aligned with the reference image. The target images were created in ImageJ by applying

different transformation parameters on the reference image for testing our algorithms.

b. Converting the raw images to NIFTI file format using ImageJ software to

be used for alignment testing using the existing SPM8 package. Use the tool ‘Realign’

with default settings to align the images. Check the alignment with ‘Check Registration’.

c. Designing rigid image registration software in MATLAB R2011a. The

user is given the choice of using either Principal Axes Algorithm or FFT based phase

correlation method for registration.

d. Finding the alignment similarity between the two images by showing the

user the difference between the two images. Commonly used simple similarity measure

Mean Square Error (MSE) is also calculated.

e. Saving the transformed aligned image as a raw image for further

processing by the user.

f. Analyzing the results and comparing the algorithm efficiency using the

similarity measures.

18

CHAPTER 2

IMAGE REGISTRATION TECHNIQUES

“We are what we repeatedly do. Excellence then, is not an act, but a habit.”

- Aristotle

2.1 Introduction

The images need to be geometrically aligned for better observation [6]. This

procedure of mapping points from one image to corresponding points in another image is

called Image Registration. It is a spatial transform [6]. According to [5], [6] and [12], the

image registration algorithms can be classified into following different categories:

a) Intensity-based versus feature-based: Intensity-based methods compare intensity

patterns in images via correlation metrics, while feature-based methods find

correspondence between image features such as points, lines, and contours. Knowing the

correspondence between a number of points in images, a transformation is then

determined to map the target image to the reference image, thereby establishing a point-

by-point correspondence between the reference and target images [11].

b) Transformation Models: Linear transformations include translation, rotation,

scaling, and other affine transforms. Rigid registration is a type of affine transformation.

Non-rigid transformations are capable of locally warping the target image to align with

the reference image [11].

19

c) Spatial vs. frequency domain methods: Spatial methods operate in the image

domain, matching intensity patterns or features in images [12]. Frequency-domain

methods find the transformation parameters for registration of the images in the transform

domain. Applying the Phase correlation method to a pair of images produces a third

image which contains a single peak. The location of this peak corresponds to the relative

translation between the images. The phase correlation method uses the Fast Fourier

Transform to compute the cross-correlation between the two images. The rotation and

scaling differences between two images can be determined by first converting the images

to log-polar coordinates.

d) Single- vs. multi-modality methods: Single-modality methods register images in

the same modality acquired by the same scanner/sensor type, while multi-modality

registration methods register images acquired by different scanner/sensor types. Multi-

modality registration methods are often used in medical imaging as images of a subject

are frequently obtained from different scanners [12].

e) Automatic vs. interactive methods: Registration methods may be classified based

on the level of automation they provide. Manual methods provide tools to align the

images manually. Interactive methods reduce user bias by performing certain key

operations automatically while still relying on the user to guide the registration. Semi-

automatic methods perform more of the registration steps automatically but depend on

the user to verify the correctness of a registration. Automatic methods do not allow any

user interaction and perform all registration steps automatically [12].

20

2.2 Rigid Image Registration

Rigid body registration is one of the simplest forms of image registration.

Whenever several images of the same subject have been acquired, it is very useful to

have them all aligned properly. Advantages of aligning images include allowing images

to be averaged in order to increase signal to noise, or to subtract one image from another

to emphasize differences between the images. Rigid registration is normally used for

registering images of the same subject that have been collected at different times. Even if

images were acquired during the same scanning session, it is possible that the subject

may have moved slightly between image acquisitions due to different positioning each

time [2].

In simple terms, image registration involves estimating a mapping between a pair

of images. One image is assumed to remain stationary (the reference image), whereas the

other (the target image) is spatially transformed to match it. In order to transform the

target to match the reference, it is necessary to determine a mapping from each pixel

position in the reference to a corresponding position in the target. The target is then re-

sampled at the new positions [2]. The mapping is like a function of a set of estimated

transformation parameters. A rigid-body transformation in two dimensions is defined by

two parameters, translation and rotation [2]. The translation is defined each along the x-

axis and the y-axis.

According to [1], general steps involved in Rigid Image registration methods are

a. The Feature Space: Before registering two images, we need to decide what

is it that needs to be registered. The type of algorithm chosen will depend

21

on the features chosen. The features chosen can be pixel intensities, edges,

contours, surface volume, etc.

b. The Search Space: To align two images, we need to define a

transformation. If f(x) and g(x) are two real-valued functions for the two

images to be aligned then we need to find the transformation T(x) such

that f(x) = g(T(x)) for all x. The simple rigid-body transformation is used

for translation and rotation, affine transformation can be chosen to account

for scaling too, and for non-linear, non-uniform deformations, non-rigid

transformation can be used. Rigid and affine transformations are global,

ie. applied to the whole image whereas non-rigid transformation can be

localized to sub-regions of images.

c. The Search Strategy: Once a transformation say, T0(x) is chosen, we have

to figure out a strategy based on results of applying T0(x) to choose the

next transformation. Some ways include linear programming methods,

relaxation techniques, or energy or cost minimization methods.

d. The Similarity Metric: We need to quantify the differences between the

geometrically transformed image and the reference image to measure how

well f(x) compares with g(T(x)). Using mean square error or correlation is

the key.

Rigid-body transformations consist of only rotation and translation [2]. They are a

subset of the more general affine transformations. If a point x is to be translated by q

units, then the transformation is simply written as: y = x + q [2]. In two dimensions, a

22

rotation is described by a single angle [2]. Consider a point at co-ordinate (x1; y1) on a

two dimensional plane. A rotation of this point to new co-ordinates (x2; y2), by radians

around the origin, can be generated by the transformation [2]:

x2 = cos(θ)x1 + sin(θ)y1 and

y2 = -sin(θ)x1 + cos(θ)y1…………………………………………….eq.(1)

Image registration thus involves estimating a set of parameters describing a

spatial transformation that best matches the two images. The similarity of the registration

is based on a cost function, which is maximized or minimized using some optimization

algorithm [2]. This is called cost optimization.

23

CHAPTER 3

SOFTWARE DESIGN

“As a rule, software systems do not work well until they have been used, and have

failed repeatedly, in real applications.”

- Dave Parnas

3.1 User Interface

MATLAB is a high-level technical computing language [15]. It provides an

interactive environment for algorithm development, data visualization, data analysis, and

numeric computation [15]. MATLAB R2011a can solve technical computing problems

faster than the traditional programming languages, such as C, C++, and Fortran [15].

MATLAB has been used in a wide range of applications, including signal and image

processing, communications, control design, test and measurement, financial modeling

and analysis, and computational biology [15].

We have designed our software in MATLAB R2011a language. The user

interface shows the QA phantom image on its main page. The left panel lets the user

choose the algorithm for registration. The user is then prompted to select the raw type

reference file and the target file. Our program supports alignment of two same size

images as required by our application. The user is asked to enter the width of the image.

The height is considered equal to the width of the image.

24

The software then invokes the necessary registration algorithm based on the

user’s choice. The right panel displays every step of transformation in the form of

images. Finally, the similarity measure Mean Square Error (MSE) along with total

execution time of the algorithm are displayed. Translation and rotation errors are also

displayed after executing the Principal Axes algorithm.

The user can then continue registering images using the same algorithm or choose

other algorithms for alignment. The user has the advantage of testing the image alignment

with both algorithms and choosing the one which gives the best results. Figure 2 shows

the initial user interface windows.

Figure 2: User interface windows. Top-left window shows the main window. Top-right window prompts

user for selecting the reference file. Bottom-left window prompts user for choosing a target file. Bottom-

right window asks user to input the image size.

25

3.2 Input

 For registering two images, the user is required to choose two files. The first file

is called the reference file to which the misaligned or target file will be aligned to. The

file format supported is the raw binary format. The images derived from the QA phantom

are unsigned 16-bit images in big-endian format. The file size is 384x384 ie. the images

are square images. Each image is made up of three slices, collectively representing the

volume of the phantom. The first slice shows only the boundary of the phantom. Second

slice shows the varying intensity circular patterns from the phantom disk. And the third

slice shows a circular disk with no patterns. Figure 3 shows the complete phantom image.

Figure 3: Input Image. Leftmost image is shows the first slice of QA phantom. Middle image shows the

circular hole patterns in the second slice of the phantom disk. The rightmost image shows the third slice in

the image.

 The target images are transformed using ImageJ to provide varying displacements

and rotations in images for testing our algorithms. The Rotate and Translate tools help

perform these transformations on the target files. Gaussian noise is introduced in two of

the target images to pixelate them to test for noise sensitivity of our algorithms. The

Noise-Add Specific Noise tool in ImageJ was used to introduce Gaussian noise of 500 and

1000 standard deviation in target files target10n and target25n respectively.

26

The data files and their initial transformations are chosen based on practical

applicability. The dataset is categorized into three based on the transformation values.

The first category of dataset has files with lower values of transformations ie. with

images rotated by smaller angles ranging from 0 to 25 degrees with 5 degree incremental

steps compared to the reference image. The second category of dataset has files

transformed between 50 degrees to 90 degress and the third dataset has transformation

values greater than 90 degrees. The files with transformations other than those mentioned

in the given dataset are also tested with our registration algorithms. The translation values

are chosen to lie between 0 to 50 pixels as per our practical requirements. Table 1 shows

the file names and their initial transformation parameters.

Table 1: Data file names and the initial rotation and translation values

27

3.3 Processing

The software processes the images for registration based on the algorithm chosen.

Every step of transformation is then displayed to the user in the right panel of the

interface window. Figure 4 shows the processing window after executing the Principal

Axes algorithm. The images displayed are explained as below:

1. The first image shows the reference image.

2. Second image is the target image.

3. Third image shows the initial alignment difference between the two

images. The reference image is shown in red and the target image in blue.

4. The fourth image shows the features selected for the reference image for

alignment.

5. The fifth image shows the features selected for the target image for

alignment.

6. The sixth image is the rotated features of target image for alignment.

7. The seventh image is the rotated target image.

8. The eighth image is translated features of target image for alignment.

9. The ninth window is the transformed or aligned target image.

10. The tenth window shows the difference between the reference image and

the aligned target image. If the alignment is correct, the image difference shows

up as white and the regions of image that couldn’t be aligned show up in the

respective red or blue color for misalignment.

28

11. Finally, the program displays the similarity measure MSE values.

Translation error and rotation error measure are also displayed. Algorithm

execution speed is shown in seconds.

Figure 4: Software Processing Window - Principal Axes Algorithm. The figure shows each processing step

after executing the Principal Axes Algorithm.

29

Figure 5 shows the processing window after executing the FFT algorithm. The following

is the explanation for each image displayed.

1. The first subplot shows the reference image.

2. Second subplot is the target image.

3. Third subplot shows the initial alignment difference between the two

images. The reference image is shown in red and the target image in blue.

4. The fourth and fifth subplots show the frequency domains of reference and

target images respectively.

5. The sixth and seventh subplots show the frequency domains of reference

and target images respectively represented in log-polar coordinate system.

6. Eighth image is the rotated version of the target image.

7. Ninth image is the translated target image.

8. Tenth window shows the difference between the reference image and the

aligned target image. If the alignment is correct, the image difference shows up as

white and the regions of image that couldn’t be aligned show up in the respective

red or blue color for misalignment.

9. Finally, the program displays the similarity measure MSE values.

Algorithm execution speed is shown in seconds.

30

Figure 5: Software Processing Window – FFT Algorithm. The figure shows each processing step after

executing FFT Algorithm.

31

3.4 Output

 The aligned or the transformed target image is then saved in the ‘raw’ file format as

the input files. Based on the algorithm chosen by the user for registration, the output file

name is prefixed with either “PA” or “FR” for using the Principal Axes algorithm or the

FFT method respectively. The output file name is kept same as target file name except for

the prefix attached as above. The size and format of the output file is kept same as the

input target file for any further processing. Examples of two of the output files are as

shown in Figure 6 below.

Figure 6: Output image files. Top panel shows the output file PAtarget5.raw and the bottom panel shows

FRtarget10.raw file. The leftmost image is the first image slice, middle image is the second image slice and

the rightmost image is the third image slice.

32

CHAPTER 4

PRINCIPAL AXES METHOD

“Discontent is the first necessity of progress.”

- Thomas A. Edison

4.1 Introduction

Principal Axes method is a spatial, feature-based monomodal rigid image

registration method for aligning two images. The Principal Axes algorithm acts upon the

features of the images, such as edges, corners, or circular patterns as its feature space.

The search space consists of global translations and rotations. The search strategy is

finding the closed formed solution based on the eigenvalue decomposition of a certain

covariance matrix [1]. The similarity metric is the variance of the projection of the

feature’s location vector onto the principal axis [1].

The principal axes are the orthogonal axes about which the moments of inertia are

minimized. If two objects are identical except for a translation and a rotation, then they

can be registered by coinciding their principal axes [6]. The algorithm is suitable for

registering images shaped like an ellipse or ellipsoid. For purposes of image registration,

the critical features of an ellipse are its center of mass, and principal orientations, i.e.,

major and minor axes [1]. The principal axes algorithm is easy to implement, and

efficient but it does have the shortcoming that it is sensitive to missing data, if any.

33

Two images can be aligned using the Principal Axes method by first detecting

crucial features of the image and then working on them to align the two images. The

features selected for the phantom images are the circular patterns in the image. And the

features are detected using thresholding technique. A cutoff intensity value is calculated

and all the pixels with lesser value than the cutoff intensity are made zeros in the image.

Next, find the centers of mass of the two images. The rotation angle is calculated

by eigenvalue decomposition of the covariance matrices and then finding the angle the

maximum eigenvector makes with the horizontal x-axis for each image [1]. The

difference in the two angles is the angle by which the target image needs to be reverse

rotated about its center for aligning with the reference image.

Next, compute the center of mass of the rotated target image. Find the difference

in the two centroids and translate the rotated target image to get the final transformed

image.

We have also tested implementing the Principal Axes method with translation as

the first step in transformation and rotation being the second step as suggested in the

literature. For our application, the success rate we achieved by first rotating the target

image and then translating the rotated image to get the final transformed image is higher

than implementing it vice-versa (see Appendix E). And hence, we have chosen to rotate

the target image first and then translate it to get good alignment. Figure 7 shows the

alignment results of implementing translation followed by rotation step in transformation.

The comparative results for the same target files by implementing rotation followed by

translation step in transformation can be seen in Appendix E.

34

Figure 7: Aligning images by Translation followed by Rotation step for Principal Axes algorithm

execution. The top left processing window shows alignment for target15 image. The top right processing

window shows alignment for target25 image. The bottom left processing window shows alignment for

target50 image. The bottom right processing window shows alignment for target90 image.

35

4.2 Algorithm

Steps involved for Principal Axes based Registration algorithm:

Let I1 and I2 denote the reference image and the target image respectively.

i) Perform feature detection by thresholding the images to only detect the

circular patterns on the phantom image.

a) Find the maximum intensity values in both images.

b) Plot a histogram of these intensities into 10 bins.

c) Look for the intensity for second highest number of pixels in the bins.

The highest number of pixels belong to the image background and

second highest to the patterns in the image.

d) Avoid any background pixels by fixing the cutoff for feature selection

to one tenth of the number in the earlier step.

e) Set all the pixel intensities below this cutoff value to be zeros in both

images. Let I1F and I2F be the two images with features selected. Use

these two images for further processing.

f) Calculate the centers of both the images with features.

ii) Calculate rotation parameter.

a) Calculate the center of mass or centroid (X’, Y’) for I1F and I2F using

the formulae X’ = ∑x, y x * I(x, y) / ∑x, y I(x, y) and

 Y’ = ∑x, y y * I(x, y) / ∑x, y I(x, y)

 where I(x, y) is the intensity at location (x, y).

36

b) Find the difference between the centroids of target image and the

reference image.

 c) Find the eigenvectors of the reference image and target image via an

eigenvalue decomposition of the covariance matrices. Covariance matrix

C can be written as

C = (c11 c12

 c21 c22),

where c11 = ∑x, y (x - X’)2 * I(x, y),

 c22 = ∑x, y (y - Y’)
2
 * I(x, y),

 c12 = ∑x, y (x - X’) * (y - Y’) * I(x, y) and

 c21 = c12.

The eigenvectors of C corresponding to the largest and smallest

eigenvalues indicate the direction of the major and minor axes of the

eclipse, respectively.

 d) For each image, determine the angle angl, the maximum eigenvector

makes with the horizontal x-axis using the formula

 angl = atan2(V(2,1),V(1,1))*180/pi

 where V is the maximum eigenvector column [cos(angl); sin(angl)].

 e) Find the difference between the two angles, θ.

 f) If θ <= -90.0 and θ > -180.0 then θ = θ + 180.0 else

 if θ <= 180.0 then θ = θ + 360.0

37

This is the rotation angle in degrees by which the target image needs to be

reverse rotated about its center.

iii) Perform Rotation transformation on target image.

a) Construct the rotation matrix as

 R = [cos(-θ) sin(-θ); -sin(-θ) cos(-θ)];

b) Multiply the rotation matrix with the (x, y) coordinates of the target

image to get the new rotated image coordinates, also adjusting for the

centers.

c) Construct the rotated image by matching the coordinates in the rotated

matrix with those in the target image.

iii) Calculate translation parameters along x-axis and y-axis.

a) Find the center of mass of rotated target image.

b) Calculate the difference in locations of the two centroids. This is the

displacement by which the target image needs to be shifted to align.

iv) Perform translation transformation.

a) Align the centers of mass of the two images by adding the

displacements to the original points in the rotated target image.

b) Construct the translated target image by matching the coordinates in

the translated image with those in the rotated image from previous

step. This is the final transformed aligned target image.

38

4.3 Experimental Results

 Twenty-two of the target images are tested for alignment with the first image in

the sequence acquired from the QA phantom, here referred to as the reference image. The

Principal Axes algorithm successfully registered seventeen target images with minimal

translation and rotation errors.

 The algorithm successfully registered the following target files:

target, target0, target00, target5, target10, target15, target20, target25, target50, target90,

target_5, target_10, target_15, target_20, target_25, target_50, target_90.

The algorithm failed to align files target150, target180, and target_180. These

images are the ones which are misaligned by very large angles (greater than 90 degrees)

compared to reference image. In addition, the algorithm also failed to align the noisy

images target10n and target25n. This shows the method’s sensitivity to presence of noise

in images during registration process.

The output screenshots for all the above files are shown in APPENDIX E. Figures

8 and 9 show the best and worst performance results respectively. Figure 10 shows the

algorithm’s performance in the presence of noise in images.

39

 Reference Image Target00 Image PATarget00 Image

 Reference Image Target25 Image PATarget25 Image

 Reference Image Target_50 Image PATarget_50 Image

Figure 8: Best performance results from Principal Axes algorithm execution. The leftmost image shows the

reference image. Middle image is the original misaligned target image. The rightmost image is the

transformed target image.

40

 Reference Image Target150 Image PATarget150 Image

 Reference Image Target_180 Image PATarget_180 Image

Figure 9: Worst performance results from Principal Axes algorithm execution. The leftmost image shows

the reference image. Middle image is the original misaligned target image. The rightmost image is the

transformed target image.

41

 Reference Image Target10n Image PATarget10n Image

 Reference Image Target25n Image PATarget25n Image

Figure 10: Alignment using Principal Axes algorithm in the presence of noise. The leftmost image shows

the reference image. Middle image is the target image with a Gaussian noise added to the image. The

rightmost image is the transformed target image.

42

4.4 Conclusion

The registration trend shows that the algorithm is successful in registering images

displaced by smaller to larger distance and rotated up to 90 degrees with respect to the

reference image. But the algorithm performs poorly when the two images differ by large

rotation angle of greater than 90 degrees.

In the worst case, prior reorienting the target image with respect to the reference

image using ImageJ and then using it as input will take care of the limitation of our

algorithm.

 The algorithm is sensitive to presence of noise in target images and does not align

the images as well as compared to in the absence of noise.

43

CHAPTER 5

 FAST FOURIER TRANSFORM METHOD

“Always bear in mind that your own resolution to succeed is more important than any

other.”

- Abraham Lincoln

 5.1 Introduction

The Fourier Transform is an important image processing tool used for

representing an image into its sine and cosine components [16]. The output of the

transformation represents the image in the Fourier or frequency domain, while the input

image is its spatial domain equivalent [16]. Each point in the frequency domain

represents a particular frequency contained in the spatial domain image.

The Fast Fourier Transform (FFT) based registration is a frequency-domain type

automatic rigid registration method. The feature space it uses consists of all the pixels in

the image, and its search space covers all global translations and rotations [1]. The search

strategy is the closed form Fourier-based method, and the similarity metric is correlation,

and its variants, e.g., phase only correlation [1].

The log-polar transformation is a nonlinear and non-uniform sampling of the

spatial domain [9]. Nonlinearity is because of polar mapping, while non-uniform

sampling is the result of logarithmic scaling [9].

44

Consider the log-polar (log r, θ) coordinate system, where r is the angle denoting

radial distance from the center (xc, yc). Any (x, y) point can be represented in polar

coordinates (r, θ) [9] as

r = log (√(x - xc)
2 + (y - yc)

2)

θ = tan
-1

((y – yc) / (x – xc))

The Fourier–Mellin registration method is based on the principle of phase

correlation and the properties of Fourier analysis [9]. The phase correlation finds the

translation between two images. The Fourier–Mellin transform extends phase correlation

to handle images transformed by both translation and rotation [9].

The FFT-based automatic registration method relies on the Fourier shift theorem

which guarantees that the phase of a specially defined “ratio” is equal to the phase

difference between the images [7]. The Fourier-Mellin transform [7] has been

implemented in our algorithm to register images that are misaligned due to translation

and rotation. A Fourier transform is applied to images to recover translation [9]. Then a

log-polar transformation is applied to the magnitude spectrum and the rotation angle is

recovered by using phase correlation in the log-polar space [9]. By operating on the

magnitude spectrum of an image, the translational differences between the images are

avoided since the magnitude spectrum of an image and its translated counterpart are

identical and only their phase spectrum are different [9]. The log-polar transformation

causes rotation to be manifested as translation, whereby phase correlation can be applied

to recover the rotation angle between the pair of input images [9].

45

5.2 Algorithm

Steps involved for Fourier Transform based Correlation Registration algorithm:

Let I1 and I2 are the reference and target images respectively.

 i) Calculate rotation parameter.

a) Apply FFT function to images I1 and I2, resulting in F1 and F2.

b) Transform the Cartesian coordinate system points (x, y) into log-

polar coordinates (log (p), θ) using formulae

Log (p) = log (sqrt(x
2
 + y

2
)) and

θ = atan(y/x).

c) Find the new intensity values at the corresponding log-polar

coordinates using bilinear interpolation.

d) Apply FFT to log-polar images I1 and I2, resulting in Flp1 and

Flp2.

e) Compute the ratio

 R1 = (Flp1 * conj(Flp2)) / (abs(Flp1 * conj(Flp2)))

where conj is the complex conjugate and abs is the absolute value. The

ratio defines the cross-power spectrum. ie the phase difference between

the two images.

f) Compute the inverse FFT of R1 as IR1.

g) Find the location loc in log-polar coordinates for maximum value

of abs (IR1).

h) Calculate the corresponding point (xo, yo) from loc.

46

xo = mod (loc, cols);

yo = loc / rows;

Rotation angle θ in radians is the y-displacement in the log-polar

coordinate.

ii) Perform rotation transformation on the target image.

a) Construct the rotation matrix as

 R = [cos(-θ) sin(-θ); -sin(-θ) cos(-θ)];

b) Multiply the rotation matrix with the (x, y) coordinates of the target

image to get the new rotated image coordinates, also adjusting for the

centers.

c) Construct the rotated image I3 by matching the coordinates in the

rotated matrix with those in the target image.

iii) Calculate translation parameters along x-axis and y-axis.

 a) Apply FFT function to image I3, resulting in F3.

b) Compute the ratio

 R1 = (F1 * conj(F3)) / (abs(F1 * conj(F3))) .

c) Compute the inverse FFT of R1 as IR1.

d) Find the location loc for maximum value of abs(IR1).

e) Find the translation point (xo, yo) using formulae

xo = mod (loc, cols);

yo = loc / rows;

47

iv) Perform translation transformation on rotated target image.

a) Align image I3 by adding the displacements to the original points in

the rotated target image.

b) Construct the translated target image by matching the coordinates in

the translated image with those in the rotated image from previous

step. This is the final transformed aligned target image.

48

5.3 Experimental Results

Twenty-two of the target images are tested for alignment with the first image in

the sequence acquired from the QA phantom, here referred to as the reference image. The

Fast Fourier Transform algorithm successfully registered twenty-one target images with

minimal translation and rotation errors between the two images.

The algorithm successfully registered the following target files:

target, target0, target5, target10, target15, target20, target25, target50, target90,

target150, target180, target_5, target_10, target_15, target_20, target_25, target_50,

target_90, target_180, target10n, target25n.

The algorithm successfully registered target images target10n and target25n in the

presence of noise showing its insensitivity to the presence of noise in images during

registration process.

 The algorithm failed to align image target00 which was largely displaced.

The output screenshots for all the above target files are shown in APPENDIX F.

Figures 11 and 12 show the best and worst performance results respectively. Figure 13

shows the result of registering the noisy images.

49

 Reference image Target_50 image FRTarget_50 image

 Reference image Target90 image FRTarget90 image

 Reference image Target150 image FRTarget150 image

Figure 11: Best performance results from FFT algorithm execution. The leftmost image shows the

reference image. Middle image is the original misaligned target image. The rightmost image is the

transformed target image.

50

 Reference Image Target00 Image FRTarget00 Image

Figure 12: Worst performance results from FFT algorithm execution. The leftmost image shows the

reference image. Middle image is the original misaligned target image. The rightmost image is the

transformed target image.

 Reference Image Target10n Image FRTarget10n Image

 Reference Image Target25n Image FRTarget25n Image

Figure 13: Alignment using FFT algorithm in the presence of noise. The leftmost image shows the

reference image. Middle image is the target image with a Gaussian noise added to the image. The rightmost

image is the transformed target image in the presence of noise.

51

5.4 Conclusion

The registrations achieved by using the FFT algorithm show that the algorithm

successfully aligns images rotated by any angle difference up to 180 degrees. The

algorithm performed poorly when the two images are displaced by more than 25 pixels

with no rotation difference between the two images.

In the worst case, reorienting the target image with respect to the reference image

either by translation or rotation using ImageJ and then using it as input will take care of

the limitation of our algorithm.

The algorithm is not sensitive to presence of noise in target images and

successfully aligns the images as well as compared to in the absence of noise.

52

CHAPTER 6

 SIMILARITY MEASURES

“A computer would deserve to be called intelligent if it could deceive a human into

believing that it was human.”

- Alan Turing

 6.1 Introduction

 Image similarities are broadly used in medical imaging. An image similarity

measure quantifies the degree of similarity between intensity patterns in two images [11]

[12]. The choice of an image similarity measure depends on the modality of the images

to be registered.

Common examples of image similarity measures include cross-correlation,

mutual information, sum of squared intensity differences, sum of absolute differences,

mean square error and ratio image uniformity [11]. Mutual information and normalized

mutual information are the most popular image similarity measures for registration of

multimodality images [12]. Cross-correlation, sum of squared intensity differences, sum

of absolute differences, mean square error and ratio image uniformity are commonly used

for registration of images in the same modality [11].

We have used the popular error metrics method Mean Square Error (MSE) for

measuring similarity between the reference image and the transformed target image. The

53

MSE is the cumulative squared error between the transformed image and the reference

image. The mathematical formula for measuring MSE is

MSE = 1/MN * ∑ M
 y=1∑

 N
 x=1[I(x, y) – I’(x, y)]

2

where I(x, y) is the reference image, I'(x, y) is the transformed image, and M,N are the

dimensions of the images. A lower value for MSE means lower similarity error and

higher similarity between the two images.

 For the Principal Axes method, we have also measured translation and rotation

differences between the reference image and the transformed target image to get the

translation error and the rotation angle error. This gives us a realistic picture of alignment

mismatch extent as can also be validated by looking at the difference between the images.

Translation error between the reference image and the transformed image is measured by

finding the centroids of both the images and finding its difference. An exact alignment

should have both centroid locations at the same coordinates. Similarly, rotation angle

error is calculated by finding the maximum eigenvectors of each image and calculating

the angle it makes with the horizontal x-axis. The difference in the angles is the rotation

angle error.

 Measuring the translation and rotation errors for confirming the accuracy of

alignment by using FFT method is computationally expensive as it requires additional

computation of six Fast Fourier Transforms. Hence, MSE is used for measuring the

similarity.

 The difference between the reference image and the transformed image is shown

to the user by subtracting the two images and displaying the difference image in the

54

processing window. A perfect alignment results in difference image shown in gray scale

and any misalignments if exist are shown either in red or blue color in the image. This

gives us a realistic picture of alignment mismatch extent as can be validated by looking at

the difference image.

55

6.2 Analysis Results

MSE values showed a value of zero for exact alignment between images for the

Principal Axes method. For similar alignments achieved, the MSE values ranged

approximately from 1.5e4 to 2.0e6 and for misalignments, the MSE values approximated

in the range of 5.9e6 to 6.4e6.

For the FFT method, the MSE values ranged approximately from 1.1e3 to 9.9e5

and for misalignments, the MSE values are shown to be higher in the approximate range

of 1.3e6 to 2.5e6.

Figure 14 shows the similarity measure distribution for each target image

registered using both methods.

Figure 14: Similarity Measure MSE computed for image registrations. Left panel shows MSE distribution

for using the Principal Axes method. Right panel shows MSE distribution for using the FFT method.

Translation and rotation errors are calculated for registering images using the

Principal Axes method. Figure 15 shows their distribution for each target image.

Translation errors measured along x-axis and y-axis are less than 1 pixel for all the

successful registrations and rotation angle error is less than 1.5 degrees.

56

Figure 15: Translation and Rotation Errors computed for Principal Axes method. Top panels show

translation error distribution along x-axis and y-axis. Bottom panel shows rotation angle error distribution.

57

6.3 Conclusion

Based on the Mean Square Error similarity measure analysis, the FFT method

performed better in aligning the phantom images with MSE values ten times lesser than

those for the Principal Axes method showing more similarity between the reference

image and the transformed target image for successful registrations.

Unlike the Principal Axes method, the FFT method successfully registered the

two images in the presence of noise.

Translation and rotation errors calculated for all successful registrations using the

Principal Axes method give minimum errors of up to 1 pixel and 1.5 degrees respectively

showing better similarities achieved in all the alignments.

The Principal Axes method successfully registered 17 of the 22 non-aligned test

images, the FFT method registered 21 test images whereas using the ‘Realign’ tool in the

existing SPM8 package with default settings showed correct alignments for only 9

images as per our requirement. Please refer to Appendices D, E and F for registration

screenshots captured for registering images using SPM8, Principal Axes algorithm, and

the FFT algorithm respectively.

58

CHAPTER 7

 CONCLUSIONS AND FUTURE WORK

“A conclusion is the place where you got tired of thinking.

- Martin Fischer

QA application in MRI field requires registering images acquired from the

phantom from time to time before the QA parameters can be measured to test the image

quality and hence the proper functioning of the scanner. In practice, the images will be

transformed no more than 50 pixels and 50 degrees angle with respect to the first image

in the series. Based on our results, we conclude that the image registration software

developed by us suits our application based on our requirements.

The Principal Axes method is successful in aligning images which are displaced

by smaller to larger distance (tested up to 50 pixels) and rotated up to 90 degrees with

respect to the reference image. This method is simple, faster and computationally

inexpensive.

The FFT method successfully performs alignment of images which are rotated by

an angle between 0 to 180 degrees with respect to the reference image. Registration using

FFT method requires computing six Fast Fourier Transforms for both images. Hence this

method is computationally expensive but very efficient.

The user can use any of the two algorithms to perform the image alignment

process and choose the results with a better alignment. Also, if any algorithm gives

59

coarse similarity between the images after registration, then the user may realign this

output image using the other algorithm to get better alignment results.

Once the phantom images are aligned using our software, the future work in our

QA process involves using these aligned images to measure and compute different QA

parameters such as Signal to Noise Ratio, Contrast to Noise Ratio, Ghosting Fraction,

Resolution, Magnetic Homogeneity and so on. The comparative study of these QA

parameters for the images acquired over time will help us in knowing how these

parameters vary with time for each image thus giving us an idea about how image quality

is getting affected over time. A comparative study of the image quality will also allow us

to see if the change is due to malfunctioning of the scanner magnet.

60

REFERENCES

1. Peter J. Kostelec and Senthil Periaswamy, Image Registration for MRI, Modern Signal

Processing, MSRI Publications, Volume 46, 2003.

2. J. Ashburner and K. Friston, Rigid body registration, The Wellcome Dept. of Imaging

Neuroscience, 12 Queen Square, London WC1N 3BG, UK.

3. N. M. Alpert, J. F. Bradshaw, D. Kennedy, and J. A. Correia, The Principal Axes

Transformation - A Method for Image Registration, J NucIMed 1990;31:1717-1722.

4. Robin Kramer, Automatic MRI Image Registration Using Phase Correlation,

Department of Computer Science, University of Wisconsin, Madison, United States.

5. B. Antoine Maintz , Max A. Viergever, An Overview of Medical Image Registration

Methods, Symposium of the Belgian Hospital Physicists Association, 1996.

6. Medha V. Wyawahare, Dr. Pradeep M. Patil, and Hemant K. Abhyankar, Image

Registration Techniques: An overview, International Journal of Signal Processing, Image

Processing and Pattern Recognition, Vol. 2, No.3, September 2009.

7. Hongjie Xie, Nigel Hicks, George R. Keller, Haitao Huang, Vladik Kreinovich, An

IDL/ENVI Implementation of the FFT Based Algorithm for Automatic Image

Registration, Computers and Geosciences, 2003, Vol. 29, No. 8, pp. 1045-1055.

8. B. Srinivasa Reddy and B. N. Chatterji, An FFT-Based Technique for Translation,

Rotation, and Scale-Invariant Image Registration, Proc. of IEEE Transactions On Image

Processing, Vol. 5, No. 8, August 1996.

61

9. George Wolberg, Siavash Zokai, Robust Image Registration Using Log-Polar

Transform, Proc. of IEEE Intl. Conf. on Image Processing, Sep. 2000.

10. Cynthia Rodriguez, Understanding FFT- based algorithm to calculate image

displacements with IDL programming language, University of Texas at San Antonio,

2007.

11. A. Ardeshir Goshtasby. 2-D and 3-D Image Registration for Medical, Remote

Sensing, and Industrial Applications, Wiley Press, 2005.

12. http://en.wikipedia.org/wiki/

13. Friston KJ, Holmes AP, Worsley KJ, Poline JP, Frith CD, Frackowiak RSJ. Statistical

parametric maps in functional imaging: a general linear approach. Human Brain

Mapping. 1994; 2(4):189–210.

14. Abràmoff, M.D., Magalhães, P.J. and Ram, S.J. Image Processing with ImageJ.

Biophotonics International, 11(7):36—42, 2004.

15. The MathWorks, Inc., MA, USA.

16. http://homepages.inf.ed.ac.uk/rbf/HIPR2/fourier.htm

62

APPENDIX A

USER INTERFACE SCRIPT IN MATLAB

% Script to design a GUI interface for image registration

function IMAGE_REGISTER(~,~)

 clc;
 clear all;
 close all;

 scrsz = get(0,'ScreenSize');
 h = figure('Name','Rigid Image Registration','NumberTitle','off',...
 'OuterPosition',[scrsz(1) scrsz(2) scrsz(3)
 scrsz(4)],'Resize','Off');
 set(h,'Color',[0 0 0]);
 clf(1);

 hp = uipanel('Parent',h,'BorderType','etchedin',...
 'BackgroundColor','black',...
 'Position',[.01 .02 .2 0.96]);
 hsp = uipanel('Parent',h,'BorderType','etchedin',...
 'BackgroundColor','black',...
 'Position',[.22 .02 .77 0.96]);
 uicontrol('Style','text',...
 'Position',[25 650 180 20],...
 'String','Choose the Registration Method');
 uicontrol('Style', 'popup',...
 'String', 'Principal Axes|Fast Fourier Transform',...
 'Position', [25 620 180 20],...
 'Callback', {@getFiles});
 uicontrol('Style', 'pushbutton',...
 'String', 'Exit',...
 'Position', [60 25 100 20],...
 'Callback', 'exit');
 ah = axes('Parent',h,'Position',[.23 .024 .75 .95],'Visible','Off');
 colordef black;
 cla;

 img=imread('f:/Qa_thesis/reference.jpg');
 image(img,'Clipping','On')
 set(gca,'xtick',[],'ytick',[]);

end

%**

63

% function to let user choose the files and image size
function getFiles(hObj,event)

 cla;
 ah = axes('Position',[.23 .024 .75 .95],'Visible','Off');
 colordef black;
 img=imread('f:/Qa_thesis/reference.jpg');
 image(img,'Clipping','On')
 set(gca,'xtick',[],'ytick',[]);

 val=get(hObj,'Value')

 [f1,pth,filter]=uigetfile({'*.raw'},'Choose the reference image');
 [f2,pth,filter]=uigetfile({'*.raw'},'Choose the target image to
 register');
 ref_file=[pth f1];
 target_file=[pth f2];

 uicontrol('Style','text',...
 'Position',[25 520 180 40],...
 'String','Enter the image size (must be a square image)');

 eb=uicontrol('Style', 'edit',...
 'Position', [40 480 140 20],...
 'String', 'Enter width of image');
 uicontrol(eb);

 uicontrol('Style', 'pushbutton',...
 'String', 'Done',...
 'Position', [60 450 100 20],...
 'Callback',{@register,ref_file,target_file,val});

%**

% function to open files and call registration algorithms
function register(hObj,event,ref_file,target_file,val)

 val1=get(hObj,'Value')
 if val1==1
 dd=get(eb,'String')
 end

 dim1=str2num(dd);
 dim2=dim1;
 dim=[dim1 dim2 3];

 % read the raw QA_phantom reference and target image files
 fqa = fopen(ref_file,'r');
 ref = reshape(fread(fqa,'uint16','b'),dim);
 fclose(fqa);
 fqa = fopen(target_file,'r');
 target = reshape(fread(fqa,'uint16','b'),dim);
 fclose(fqa);

64

 rf=ref(:,:,2);
 tg=target(:,:,2);

 subplot(3,4,1.6);
 imagesc(rf');
 set(gca,'xtick',[],'ytick',[]);
 title('Reference Image');

 subplot(3,4,2.5);
 imagesc(tg');
 set(gca,'xtick',[],'ytick',[]);
 title('Target Image');

 % Subtract images to show initial difference, aligned regions show
 % in grayscale
 image_diff(:,:,1) = (rf-min(rf(:)))/ ...
 (max(rf(:))-min(rf(:)));
 image_diff(:,:,3) = (tg-min(tg(:)))/ ...
 (max(tg(:))-min(tg(:)));
 image_diff(:,:,2) = (image_diff(:,:,1)+image_diff(:,:,3))/2.0;

 image_diff=permute(image_diff,[2 1 3]);

 subplot(3,4,3.4);
 imagesc(image_diff);
 set(gca,'xtick',[],'ytick',[]);
 title('Reference-Target Image');

%**
% CHOOSE ALGORITHM
 if(val==1)
 aligned = Principal_Axes_Algorithm(ref,target,dim);
 elseif(val==2)
 aligned = Fourier_Transform_Algorithm(ref,target,dim);
 end

%**
% WRITE THE ALIGNED FILE
 % Write the aligned file to a raw file with the same name as target
 % file and prefixed with 'FR' for using FFT algorithm and with 'PA'
 % for using Principal Axes algorithm
 if val == 1
 fout = [pth 'PA' f2];
 else
 fout = [pth 'FR' f2];
 end
 fid = fopen(fout,'w');
 fwrite(fid,aligned,'uint16','b');
 fclose(fid);
 end
end
%**

65

APPENDIX B

PRINCIPAL AXES SCRIPT IN MATLAB

% Script to realign images using Principal Axes Algorithm
% MATLAB function comments are taken from MATLAB documentation

function target = Principal_Axes_Algorithm(ref,target,dim)
 t=cputime
 % FEATURE DETECTION FOR REFERENCE IMAGE
 % Define a minimum threshold to detect features
 rf2=ref(:,:,2);
 tg2=target(:,:,2);

 jnk=rf2;
 maxb=max(jnk(:));
 n=hist(jnk(:),[0:maxb/10:maxb]);
 phtm_imax=find(n==max(n(2:length(n))));
 cutoff=n(phtm_imax)*1/10;
 jnk2=zeros([dim(1) dim(2)]);
 idx=find(jnk(:)<cutoff);

 % Make zero all the pixel intensities lesser than the cutoff
 rf=rf2;
 rf(idx)=0;

 idy=1:dim(1)*dim(2);
 yidx=fix((idy-1)/dim(1))+1;
 xidx=idy-(yidx-1)*dim(1);

 % Find center of mass for reference image
 ref_center=[sum(xidx(:).*rf(:))/sum(rf(:)) ...
 sum(yidx(:).*rf(:))/sum(rf(:))]

 subplot(3,4,4.3);
 imagesc(rf',[0 8000]);
 set(gca,'xtick',[],'ytick',[]);
 title('Features-Reference Image');

 % FEATURE DETECTION FOR TARGET IMAGE
 % Define a minimum threshold to detect features
 jnk=tg2;
 maxb=max(jnk(:));
 n=hist(jnk(:),[0:maxb/10:maxb]);
 phtm_imax=find(n==max(n(2:length(n))));
 cutoff=n(phtm_imax)*1/10;
 jnk2=zeros([dim(1) dim(2)]);
 idx=find(jnk(:)<cutoff);

66

 % Make zero all the pixel intensities lesser than the cutoff
 tg=tg2;
 tg(idx)=0;

 idy=1:dim(1)*dim(2);
 yidx=fix((idy-1)/dim(1))+1;
 xidx=idy-(yidx-1)*dim(1);

 % Find center of mass for target image
 target_center=[sum(xidx(:).*tg(:))/sum(tg(:)) ...
 sum(yidx(:).*tg(:))/sum(tg(:))]

 subplot(3,4,5.6);
 imagesc(tg',[0 8000]);
 set(gca,'xtick',[],'ytick',[]);
 title('Features-Target Image');

%***
 % Form the covariance matrix ref_C
 c11=0;
 c12=0;
 c21=0;
 c22=0;
 for i = 1:dim(1)
 for j = 1:dim(2)
 c11 = c11 + (i - ref_center(1)) ^ 2 * rf(i,j);
 c22 = c22 + (j - ref_center(2)) ^ 2 * rf(i,j);
 c12 = c12 + (i - ref_center(1)) * (j - ref_center(2)) *
 rf(i,j);
 end
 end
 c21 = c12;
 ref_C = [c11 c12; c21 c22];

 % Find the largest eigen values and the eigen vectors for
 % covariance matrix A
 % V is the modal matrix composed of eigenvectors
 % L is the diagonal matrix with eigenvalues on its diagonal
 [ref_V,ref_L]= eigs(ref_C);

 % find ref_theta, the angle between the eigenvector and the x-axis
 % for reference image,
 % first column of ref_V=[cos(theta);sin(theta)]
 ref_theta = atan2(ref_V(2,1),ref_V(1,1))*180/pi;

 % Form the covariance matrix target_C
 c11=0;
 c12=0;
 c21=0;
 c22=0;
 k=1;
 t_xy=ones(dim(1)*dim(2),2);

67

 for i = 1:dim(1)
 for j = 1:dim(2)
 c11 = c11 + (i - target_center(1)) ^ 2 * tg(i,j);
 c22 = c22 + (j - target_center(2)) ^ 2 * tg(i,j);
 c12 = c12 + (i - target_center(1)) * (j - target_center(2))
 * tg(i,j);
 t_xy(k,1)=j;
 t_xy(k,2)=i;
 k=k+1;
 end
 end
 c21 = c12;
 target_C = [c11 c12; c21 c22];

 % Find the largest eigen values and the eigen vectors for
 % covariance matrix A
 % V is the modal matrix composed of eigenvectors
 % L is the diagonal matrix with eigenvalues on its diagonal
 [target_V,target_L]= eigs(target_C);

 % find target_theta, the angle between the eigenvector and the x-
 % axis for
 % target image. %first column of target_V=[cos(theta);sin(theta)]
 target_theta = atan2(target_V(2,1),target_V(1,1))*180/pi;

 % find difference in angles in degrees
 angl=target_theta-ref_theta
 if angl <= -90.0 && angl > -180.0
 angl=angl+180.0;
 elseif angl <= 180.0
 angl=angl+360.0;
 end

% Find the difference between the rotation angles for both images in
% radians
rot_theta = angl*pi/180.0;

%**
 % TRANSFORMATION

 % Rotation matrix
 R = [cos(-rot_theta) sin(-rot_theta);-sin(-rot_theta) cos(-
 rot_theta)];

 RR = ones(dim(1)*dim(2),2);
 temp = ones(2,1);

 % Apply rotation parameters on original coordinates in t_xy in
 % center
 for i = 1 :dim(1)*dim(2)
 tt=t_xy(i,:);

68

 tt(1)=tt(1)-target_center(1);
 tt(2)=tt(2)-target_center(2);
 temp = R * tt';
 temp(1)=temp(1)+target_center(1);
 temp(2)=temp(2)+target_center(2);
 RR(i,:) = temp';
 end

 RR = reshape(RR,[dim(1) dim(2) 2]);
 RR = round(RR); % RR has the rotated target image coordinates
 aligned_data1 = zeros(dim(1),dim(2),3);
 ad1=zeros(dim(1),dim(2));

 % construct the rotated image
 for i=1:dim(1)
 for j=1:dim(2)
 if(RR(i,j,1)>0 & RR(i,j,1)<dim(1)+1 & RR(i,j,2)>0 &
 RR(i,j,2)<dim(2)+1)
 ad1(i,j) = tg(RR(i,j,1),RR(i,j,2));
 aligned_data1(i,j,1) =
 target(RR(i,j,1),RR(i,j,2),1);
 aligned_data1(i,j,2) =
 target(RR(i,j,1),RR(i,j,2),2);
 aligned_data1(i,j,3) =
 target(RR(i,j,1),RR(i,j,2),3);
 end
 end
 end
 target=aligned_data1;
 tg=ad1;

 subplot(3,4,6.5);
 imagesc(tg');
 set(gca,'xtick',[],'ytick',[]);
 title('Rotated Features-Target Image');

 subplot(3,4,7.4);
 imagesc(target(:,:,2)');
 set(gca,'xtick',[],'ytick',[]);
 title('Rotated Target Image');

 % ***
 % Find centroid, or center of mass of rotated target image
 target_center=[sum(xidx(:).*tg(:))/sum(tg(:)) ...
 sum(yidx(:).*tg(:))/sum(tg(:))]

 Tr=[-ref_center(1)+target_center(1)
 -ref_center(2)+target_center(2)]

69

 % TRANSLATE
 % Align the centroid of target image to that of reference image
 % by translation. Add displacement values to original points.
 aligned_data1=zeros(dim(1),dim(2),3);
 ad1=zeros(dim(1),dim(2));

 for i=1:dim(1)
 for j=1:dim(2)
 xdis=fix(i+Tr(1));
 ydis=fix(j+Tr(2));
 if(xdis>0 & xdis<dim(1)+1 & ydis>0 & ydis<dim(1)+1)
 ad1(i,j)=tg(xdis,ydis);
 aligned_data1(i,j,1)=target(xdis,ydis,1);
 aligned_data1(i,j,2)=target(xdis,ydis,2);
 aligned_data1(i,j,3)=target(xdis,ydis,3);
 end
 end
 end
 target=aligned_data1;
 tg=ad1;

 subplot(3,4,8.3);
 imagesc(tg');
 set(gca,'xtick',[],'ytick',[]);
 title('Translated Features-Target Image');

 subplot(3,4,9.6);
 imagesc(target(:,:,2)');
 set(gca,'xtick',[],'ytick',[]);
 title('Transformed Target Image');

 e=cputime-t % Total Execution time for algorithm

%***ERRORS***********************

% TRANSLATION AND ROTATION ERROR CALCULATION
% Find centroid, or center of mass target image
 target_center=[sum(xidx(:).*tg(:))/sum(tg(:)) ...
 sum(yidx(:).*tg(:))/sum(tg(:))]

 % Translation Error
 Tr=[-ref_center(1) + target_center(1)
 -ref_center(2) + target_center(2)]

 % Form the covariance matrix target_C
 c11=0;
 c12=0;
 c21=0;
 c22=0;
 k=1;
 t_xy=ones(dim(1)*dim(2),2);

70

 for i = 1:dim(1)
 for j = 1:dim(2)
 c11 = c11 + (i - target_center(1)) ^ 2 * tg(i,j);
 c22 = c22 + (j - target_center(2)) ^ 2 * tg(i,j);
 c12 = c12 + (i - target_center(1)) * (j - target_center(2))
 * tg(i,j);
 t_xy(k,1)=j;
 t_xy(k,2)=i;
 k=k+1;
 end
 end
 c21 = c12;
 target_C = [c11 c12; c21 c22];

 % Find the largest eigen values and the eigen vectors for
 % covariance matrix A
 [target_V,target_L]= eigs(target_C);

 % find target_theta, the angle between the eigenvector and the x-
 % axis for
 % target image. %first column of target_V=[cos(theta);sin(theta)]
 target_theta = atan2(target_V(2,1),target_V(1,1))*180/pi;

 % Rotation Error
 angl=target_theta-ref_theta

%**

 % Find the similarity between the two aligned images by subtracting
 % reference image from aligned image and display the difference
 tg2=target(:,:,2);

 image_diff(:,:,1) = (rf2-min(rf2(:)))/ ...
 (max(rf2(:))-min(rf2(:)));
 image_diff(:,:,3) = (tg2-min(tg2(:)))/ ...
 (max(tg2(:))-min(tg2(:)));
 image_diff(:,:,2) = (image_diff(:,:,1)+image_diff(:,:,3))/2.0;

 image_diff=permute(image_diff,[2 1 3]);

 subplot(3,4,10.5);
 imagesc(image_diff);
 set(gca,'xtick',[],'ytick',[]);
 title('Reference-Transformed Image');

% ***

71

 % Find similarity measure between images by Mean Square Error (MSE)
 % method

 ad=0;
 for i = 1:dim(1)
 for j = 1:dim(2)
 ad= ad+ abs(rf2(i,j)-tg2(i,j))^2;
 end
 end

 MSE_err = ad / (dim(1)*dim(2))

% ***

 % Display error parameters and execution time
 subplot(3,4,11.4);
 set(gca,'xtick',[],'ytick',[]);
 text(.1,.65,['Translation Error =
 (',num2str(Tr(1)),',',num2str(Tr(2)),') pixels'],'FontSize',10);
 text(.1,.5,['Rotation Angle Error = ',num2str(angl),'
 degrees'],'FontSize',10);
 text(.1,.35,['MSE Error = ',num2str(MSE_err)],'FontSize',10);
 text(.1,.2,['Execution Time = ',num2str(e),' secs'],'FontSize',10);

end
% ***

72

APPENDIX C

FAST FOURIER TRANSFORM SCRIPT IN MATLAB

% Script to realign images using Fast Fourier Transform based
% correlation Algorithm
% MATLAB function comments are taken from MATLAB documentation

function target = Fourier_Transform_Algorithm(ref,target,dim)
 t=cputime
 % CALCULATE ANGLE OF ROTATION

 % Find Fast Fourier Transform function for each image
 % Y = fft2(X) returns the two-dimensional discrete Fourier
 % transform (DFT)
 % of X, computed with a fast Fourier transform (FFT) algorithm.
 % The result Y is the same size as X.
 % Y = fftshift(X) rearranges the outputs of fft, fft2, and fftn by
 % moving the zero-frequency component to the center of the array.
 % It is useful for visualizing a Fourier transform with the zero-
 % frequency component in the middle of the spectrum.

 F_ref = fftshift(fft2(ref(:,:,2)));
 F_target = fftshift(fft2(target(:,:,2)));

 subplot(3,4,4.3);
 imagesc(log(abs(F_ref)));
 set(gca,'xtick',[],'ytick',[]);
 title('FFT(Reference)');

 subplot(3,4,5.6);
 imagesc(log(abs(F_target)));
 set(gca,'xtick',[],'ytick',[]);
 title('FFT(Target)');

 % convert polar coordinates to cartesian coordinates
 fsize=size(ref);
 width=fsize(2);
 height=fsize(1);
 largest_dim=max(fsize);
 max_radius=sqrt(sum((fsize(1:2)/2).^2));
 scale_factor=1.0;
 npts_per_dim=scale_factor*largest_dim;
 r_range=logspace(0,log10(max_radius),npts_per_dim);
 th_range=linspace(-pi,pi,npts_per_dim);
 fill_with=0;
 interp_method='linear';
 [TH,R]=meshgrid(th_range,r_range);
 [x,y]=pol2cart(TH,R);

73

 % Use bilinear interpolation to interpolate image intensities from
 % cartesian coordinate system to those in logpolar coordinate
 % system
 % ZI = interp2(X,Y,Z,XI,YI) returns matrix ZI containing elements
 % corresponding to the elements of XI and YI and determined by
 % interpolation
 % within the two-dimensional function specified by matrices X, Y,
 % and Z.
 % X and Y must be monotonic, and have the same format ("plaid") as
 % if they
 % were produced by meshgrid. Matrices X and Y specify the points at
 % which
 % the data Z is given. Out of range values are returned as NaNs.
 % XI and YI can be matrices, in which case interp2 returns the
 % values of Z
 % corresponding to the points (XI(i,j),YI(i,j)).
 % Alternatively, you can pass in the row and column vectors xi and
 % yi,
 % respectively. In this case, interp2 interprets these vectors as
 % if you
 % issued the command meshgrid(xi,yi).
 % ZI = interp2(Z,XI,YI) assumes that X = 1:n and Y = 1:m, where
 %[m,n] = size(Z).

ref_interp=interp2(double(ref(:,:,2)),x+width/2,y+height/2,interp_metho
 d,fill_with);

target_interp=interp2(double(target(:,:,2)),x+width/2,y+height/2,interp
_method,fill_with);

 % Find FFT values for images in logpolar coordinate system
 F_ref_polar = fftshift(fft2(ref_interp));
 F_target_polar = fftshift(fft2(target_interp));

 subplot(3,4,6.5);
 imagesc(log(abs(F_ref_polar)));
 set(gca,'xtick',[],'ytick',[]);
 title('FFT(Reference) in Log-Polar');

 subplot(3,4,7.4);
 imagesc(log(abs(F_target_polar)));
 set(gca,'xtick',[],'ytick',[]);
 title('FFT(Target) in Log-Polar');

 % Find ratio to define cross-power spectrum of two images (Phase
 % Correlation).
 % Phase of the cross-power spectrum is equal to the phase
 % difference between the images.
 rati = (F_ref_polar .* conj(F_target_polar)) ./ (abs(F_ref_polar .*
 conj(F_target_polar)));

74

 % Call inverse FFT on the representation in the frequency domain.
 % Y = ifft2(X) returns the two-dimensional inverse discrete Fourier
 % transform (DFT) of X, computed with a fast Fourier transform
 % (FFT)
 % algorithm. The result Y is the same size as X.
 % ifft2 tests X to see whether it is conjugate symmetric.
 % If so, the computation is faster and the output is real.
 % An M-by-N matrix X is conjugate symmetric if
 % X(i,j)=conj(X(mod(M-i+1, M) + 1, mod(N-j+1, N) + 1)) for each
 % element of X.
 % This returns a function that is an impulse with approximate zeros
 % everywhere except at the displacement.
 inv_ratio = fftshift(ifft2(rati));

 % Call max function to get max value and its position in the array.
 % The position is used to find the angle of rotation between the
 % two images.
 [max_val,loc] = max(abs(inv_ratio(:)));
 x_coord = fix(mod(loc,dim(1)))
 y_coord = fix(loc / dim(2))
 if x_coord==0 x_coord=1; end
 if y_coord==0 y_coord=1; end

 y_th=TH(x_coord,y_coord) % angular displacement in radians

 % find rotation angle
 angl_r = y_th; % angle in radians

%**
 % ROTATE
 t_xy=ones(dim(1)*dim(2),2);
 k=1;
 for i = 1:dim(1)
 for j = 1:dim(2)
 t_xy(k)=j;
 t_xy(k,2)=i;
 k=k+1;
 end
 end

 RR = ones(dim(1)*dim(2),2);
 temp = ones(2,1);

 % Reverse Rotate the target image about its center by angl_r
 R = [cos(-angl_r) sin(-angl_r);-sin(-angl_r) cos(-angl_r)];

 % Apply rotation parameters on original coordinates in t_xy in
 % center
 for i = 1 :dim(1)*dim(2)
 temp = ((R * (t_xy(i,:)-dim(1)/2)')+dim(1)/2);
 RR(i,:) = temp';
 end

75

 RR = reshape(RR,[dim(1) dim(2) 2]);
 RR = round(RR); % RR has the rotated target image coordinates

 aligned_data1 = zeros(dim(1),dim(2),3);
 for i=1:dim(1)
 for j=1:dim(2)
 if(RR(i,j,1)>0 & RR(i,j,1)<dim(1)+1 & RR(i,j,2)>0 &
 RR(i,j,2)<dim(2)+1)
 aligned_data1(i,j,1) = target(RR(i,j,1),RR(i,j,2),1);
 aligned_data1(i,j,2) = target(RR(i,j,1),RR(i,j,2),2);
 aligned_data1(i,j,3) = target(RR(i,j,1),RR(i,j,2),3);
 end
 end
 end

 target=aligned_data1;

 subplot(3,4,8.3);
 imagesc(target(:,:,2)');
 set(gca,'xtick',[],'ytick',[]);
 title('Rotated Target Image');

%**
 % CALCULATE DISPLACEMENT

 % Find Fast Fourier Transform function for each image
 F_target = fftshift(fft2(target(:,:,2)));

 % Find ratio to define cross-power spectrum of two images (Phase
 % Correlation).
 % Phase of the cross-power spectrum is equal to the phase
 % difference between the images.
 rati = (F_ref .* conj(F_target)) ./ (abs(F_ref .* conj(F_target)));

 % Call inverse FFT on the representation in the frequency domain.
 % This returns a function that is an impulse with approximate zeros
 % everywhere except at the displacement.
 inv_ratio = ifft2(rati);

 % Call max function to get max value and its position in the array.
 % This value is the translation between the two images.
 % Use MOD and DIVIDE to get the x and y coordinates of the
 % displacement position.
 [max_val,loc] = max(abs(inv_ratio(:)));
 x_coord = mod(loc,dim(1));
 y_coord = loc / dim(2);
 Tx = x_coord;
 Ty = y_coord;

 if (x_coord < (dim(1) / 2))
 Tx = -(Tx-1);
 else
 Tx = dim(1) -(Tx-1);

76

 end
 if (y_coord < (dim(2) / 2))
 Ty = -(Ty-1);
 else
 Ty = dim(2) - (Ty-1);
 end

%**
 %TRANSLATE
 % Align the two images by adding displacement values
 aligned_data2=zeros(dim(1),dim(2),3);
 for i=1:dim(1)
 for j=1:dim(2)
 xdis=fix(i+Tx);
 ydis=fix(j+Ty);
 if(xdis>0 & xdis<dim(1)+1 & ydis>0 & ydis<dim(1)+1)
 aligned_data2(i,j,1)=target(xdis,ydis,1);
 aligned_data2(i,j,2)=target(xdis,ydis,2);
 aligned_data2(i,j,3)=target(xdis,ydis,3);
 end
 end
 end
 target=aligned_data2;

 subplot(3,4,9.6);
 imagesc(target(:,:,2)');
 set(gca,'xtick',[],'ytick',[]);
 title('Translated Target Image');

 e=cputime-t

% *********************SIMILARITY MEASURES****************************

 % Find the similarity between the two aligned images by subtracting
 % reference image from aligned image and display the difference
 rf=ref(:,:,2);
 tg=target(:,:,2);
 image_diff(:,:,1) = (rf-min(rf(:)))/ ...
 (max(rf(:))-min(rf(:)));
 image_diff(:,:,3) = (tg-min(tg(:)))/ ...
 (max(tg(:))-min(tg(:)));
 image_diff(:,:,2) = (image_diff(:,:,1)+image_diff(:,:,3))/2.0;

 image_diff=permute(image_diff,[2 1 3]);

 subplot(3,4,10.5);
 imagesc(image_diff);
 set(gca,'xtick',[],'ytick',[]);
 title('Reference-Transformed Image');

%**

77

% Find similarity measure between images by Mean Square Error (MSE)
% method

 ad=0;
 for i = 1:dim(1)
 for j = 1:dim(2)
 ad= ad+ abs(ref(i,j,2)-target(i,j,2))^2;
 end
 end

 MSE_err = ad / (dim(1)*dim(2))

%**

 % Display error parameter and execution time
 subplot(3,4,11.4);
 set(gca,'xtick',[],'ytick',[]);
 text(.1,.35,['MSE Error = ',num2str(MSE_err)],'FontSize',10);
 text(.1,.2,['Execution Time = ',num2str(e),' secs'],'FontSize',10);

%**
end

78

APPENDIX D

REGISTRATION OUTPUT WINDOWS IN SPM8

SPM8 Main Window

79

SPM8-Realign Tool Window

80

SPM8-Check Reg Tool Window

81

 Registration Windows

82

83

84

Error aligning target50.raw file with 50 degree rotation angle difference

85

APPENDIX E

REGISTRATION OUTPUT WINDOWS USING PRINCIPAL AXES

ALGORITHM

Target.raw : Translation = (0, 0) Rotation=0

86

Target0.raw : Translation = (15,-10) Rotation=0

87

Target00.raw : Translation = (50,-25) Rotation=0

88

Target5.raw : Translation = (5, 5) Rotation=5

89

Target10.raw : Translation = (0, 5) Rotation=10

90

Target15.raw : Translation = (15, 10) Rotation=15

91

Target20.raw : Translation = (10, 20) Rotation=20

92

Target25.raw : Translation = (-20, 20) Rotation=25

93

Target50.raw : Translation = (25,-25) Rotation=50

94

Target90.raw : Translation = (5, 10) Rotation=90

95

Target150.raw : Translation = (0,0) Rotation=150

96

Target180.raw : Translation = (0,0) Rotation=180

97

Target_5.raw : Translation = (-5,-5) Rotation=-5

98

Target_10.raw: Translation = (0, 5) Rotation=-10

99

Target_15.raw : Translation = (15, 10) Rotation=-15

100

Target_20.raw : Translation = (-5, 5) Rotation=-20

101

Target_25.raw : Translation = (10, 10) Rotation=-25

102

Target_50.raw : Translation = (10, 10) Rotation=-50

103

Target_90.raw : Translation = (5, 10) Rotation=-90

104

Target_180.raw : Translation = (0, 0) Rotation=-180

105

Target10n.raw : Translation = (0, 5) Rotation=10 Noise=500 std. dev.

106

Target25n.raw : Translation = (-20, 20) Rotation=25 Noise=1000 std.dev.

107

APPENDIX F

REGISTRATION OUTPUT WINDOWS USING FFT ALGORITHM

Target.raw : Translation = (0, 0) Rotation=0

108

Target0.raw : Translation = (15,-10) Rotation=0

109

Target00.raw : Translation = (50,-25) Rotation=0

110

Target5.raw : Translation = (5,5) Rotation=5

111

Target10.raw : Translation = (0,5) Rotation=10

112

Target15.raw : Translation = (15,10) Rotation=15

113

Target20.raw : Translation = (10,20) Rotation=20

114

Target25.raw : Translation = (-20,20) Rotation=25

115

Target50.raw : Translation = (25,-25) Rotation=50

116

Target90.raw : Translation = (5,10) Rotation=90

117

Target150.raw : Translation = (0,0) Rotation=150

118

Target180.raw : Translation = (0,0) Rotation=180

119

Target_5.raw : Translation = (-5,-5) Rotation=-5

120

Target_10.raw : Translation = (0,5)

Rotation=10

121

Target_15.raw : Translation = (15,10) Rotation=-15

122

Target_20.raw : Translation = (-5,5) Rotation=-20

123

Target_25.raw : Translation = (10,10) Rotation=-25

124

Target_50.raw : Translation = (10,10) Rotation=-50

125

Target_90.raw : Translation = (5,10) Rotation=-90

126

Target_180.raw : Translation = (0,0) Rotation=-180

127

Target10n.raw : Translation = (0, 5) Rotation=10 Noise=500 std. dev.

128

Target25n.raw : Translation = (-20, 20) Rotation=25 Noise=1000 std.dev.

	An Analysis of Rigid Image Alignment Computer Vision Algorithms
	Recommended Citation

	/var/tmp/StampPDF/O8icD4TRot/tmp.1375238605.pdf.tc0o6

