
Georgia Southern University

Digital Commons@Georgia Southern

Electronic Theses and Dissertations Graduate Studies, Jack N. Averitt College of

Spring 2013

Using Neural Networks to Provide Local Weather
Forecasts
Andrew Culclasure

Follow this and additional works at: https://digitalcommons.georgiasouthern.edu/etd

 Part of the Computer Sciences Commons, and the Meteorology Commons

Recommended Citation
Culclasure, Andrew, "Using Neural Networks to Provide Local Weather Forecasts" (2013).
Electronic Theses and Dissertations. 32.
https://digitalcommons.georgiasouthern.edu/etd/32

This thesis (open access) is brought to you for free and open access by the Graduate Studies, Jack
N. Averitt College of at Digital Commons@Georgia Southern. It has been accepted for inclusion in
Electronic Theses and Dissertations by an authorized administrator of Digital Commons@Georgia
Southern. For more information, please contact digitalcommons@georgiasouthern.edu.

http://digitalcommons.georgiasouthern.edu/etd
http://digitalcommons.georgiasouthern.edu/etd
https://digitalcommons.georgiasouthern.edu/
https://digitalcommons.georgiasouthern.edu/etd
https://digitalcommons.georgiasouthern.edu/cogs
https://digitalcommons.georgiasouthern.edu/etd?utm_source=digitalcommons.georgiasouthern.edu%2Fetd%2F32&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.georgiasouthern.edu%2Fetd%2F32&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/190?utm_source=digitalcommons.georgiasouthern.edu%2Fetd%2F32&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.georgiasouthern.edu/etd/32?utm_source=digitalcommons.georgiasouthern.edu%2Fetd%2F32&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@georgiasouthern.edu

1

USING NEURAL NETWORKS TO PROVIDE LOCAL WEATHER FORECASTS

by

ANDREW CULCLASURE

(Under the Direction of James Harris)

ABSTRACT

Artificial neural networks (ANNs) have been applied extensively to both regress

and classify weather phenomena. While one of the core strengths of neural networks is

rendering accurate predictions with noisy datasets, there is currently not a significant

amount of research focusing on whether ANNs are capable of producing accurate

forecasts of relevant weather variables from small-scale, imperfect datasets. Also, there is

not a significant amount of research focusing on the forecasting performance of neural

networks applied to weather datasets that have been temporally rolled-up from a base

dataset.

In this paper, a survey of existing research on applying ANNs to weather

prediction is presented. Also, an experiment in which neural networks are used to regress

and classify minimum temperature and maximum gust weather variables is presented.

This experiment used a dataset containing weather variables recorded every 15

minutes over the course of a year by a personal weather collection station in Statesboro,

Georgia. Data cleansing and normalization were applied to this dataset to subsequently

derive three separate datasets representing 1-hour, 6-hour, and 24-hour time intervals.

Three different NN structures were then applied to these datasets in order to generate

minimum temperature regressions at 15-minute, 1-hour, 3-hour, 6-hour, 12-hour, and 24-

hour look-ahead ranges. Maximum gust regressions were also generated for each dataset

2

at 1-hour, 3-hour, 6-hour, 12-hour, and 24-hour look-ahead ranges. Finally, neural

networks were applied to these datasets to classify freezing events and gusty events at 3-

hour, 6-hour, 12-hour, and 24-hour look-ahead ranges.

INDEX WORDS: Artificial neural network, Weather forecasting, Multilayer perceptron,

Resilient propagation training, Particle swarm optimization training, Radial basis

function training, Dataset preprocessing

3

USING NEURAL NETWORKS TO PROVIDE LOCAL WEATHER FORECASTS

by

ANDREW CULCLASURE

B.S., Clemson University, 2005

A Thesis Submitted to the Graduate Faculty of Georgia Southern University in Partial

Fulfillment of the Requirements for the Degree

MASTER OF COMPUTER SCIENCE

STATESBORO, GEORGIA

2013

4

© 2013

ANDREW CULCLASURE

All Rights Reserved

5

USING NEURAL NETWORKS TO PROVIDE LOCAL WEATHER FORECASTS

by

 ANDREW CULCLASURE

 Major Professor: James Harris

 Committee: Wen-Ran Zhang

 Robert Cook

Electronic Version Approved:

MAY 2013

6

ACKNOWLEDGMENTS

First of all, I would like to express my gratitude to Dr. James Harris for inspiring

me at the graduate student orientation in Atlanta to investigate neural network

performance on an extremely localized and somewhat imperfect weather dataset. Also, I

would like to thank Dr. Harris for allowing me the use of a dataset he built from a

personal weather collection station in Statesboro, GA.

Next, I wish to thank Mr. Jeff Heaton, the founder of the Encog neural network

software framework. His well-maintained forums, excellent tutorial materials, and

prompt responses to questions from curious minds all over the world greatly aided my

research.

Finally, I wish to thank Mr. Chris Taylor. Chris was one academic year ahead of

me in the undergraduate computer science program at Clemson University. He has been a

great mentor and friend ever since and has always helped me find ways of applying

common sense approaches to even the most difficult computer science issues. Thank you

for your willingness to help me with a topic that is outside of your comfort zone!

7

TABLE OF CONTENTS

ACKNOWLEDGMENTS ...6

LIST OF TABLES ...10

LIST OF FIGURES ...11

CHAPTER

 1 INTRODUCTION ..12

 Characterization of Current Research ...12

 Practical Applications ...14

 Research Motivations..15

 2 NEURAL NETWORK BASICS ..17

 Neuron Components ..17

 Neural Network Architectures ...19

 Neural Network Training ..20

 Local Minima Entrapment ...23

 Choosing the Network Topology ..24

 3 SURVEY OF NEURAL NETWORK APPLICATION TO WEATHER

FORECASTING ..26

 Goals ..26

 Predictor Variable Selection ..26

 The Weather Process ...27

 Types of Functions Being Approximated ..28

 Applications of Neural Networks in Weather Forecasting29

 Measuring Success in a Neural Network Forecast ..30

 Common Prediction System Measurements ..31

8

 Neural Network Shortcomings ..32

 4 LESSONS LEARNED FROM EXISTING RESEARCH ..34

 Goals ..34

 Data Preprocessing ..34

 Factors that Affect Neural Network Training ...36

 5 THE DATASET COMPONENTS OF THE NEURAL NETWORK EXPERIMENT

..39

 Dataset Description ...39

 Roll-up Dataset Generation ...40

 Forecast Variable Selection ...40

 Look-Ahead Ranges ..41

 Predictor Variable Selection ..42

 Data Preprocessing ..45

 6 APPLYING NEURAL NETWORKS TO THE DATASETS 46

 Software Frameworks ..46

 Test Machine Description ..46

 Basic Process ...46

 Selecting a Neural Network Architecture ..47

 7 EXPERIMENT RESULTS AND DISCUSSION ...50

 Minimum Temperature Prediction ..50

 Maximum Gust Prediction ..54

 Freezing Event Classification ..58

 Gusty Event Classification ..62

 8 CONCLUSION ...66

 Feasibility Assessment ..66

9

 Acknowledgement of Limitations ...67

 Future Work ...68

REFERENCES ..69

10

LIST OF TABLES

Table 1: An example of a 2x2 contingency matrix ...31

Table 2: Predictors used for predictions from the base dataset (15 minute interval) 42

Table 3: Predictors used for predictions from the 1 hour roll-up dataset43

Table 4: Predictors used for predictions from the 6 hour roll-up dataset 43

Table 5: Predictors used for predictions from the 24 hour roll-up dataset 44

Table 6: Neural network configuration details ...48

11

LIST OF FIGURES

Figure 1: The six basic components of the perceptron ...18

Figure 2: A weighted-synapse, feed-forward neural network ..19

Figure 3: Minimum temperature prediction using the RPROP neural network51

Figure 4: Minimum temperature prediction using the PSO neural network52

Figure 5: Minimum temperature prediction using the RBF neural network52

Figure 6: Convergence times for minimum temperature prediction54

Figure 7: Maximum gust prediction using the RPROP neural network56

Figure 8: Maximum gust prediction using the PSO neural network56

Figure 9: Maximum gust prediction using the RBF neural network57

Figure 10: Convergence times for maximum gust prediction ..58

Figure 11: Predicting freezing events using the RPROP neural network60

Figure 12: Predicting freezing events using the PSO neural network60

Figure 13: Predicting freezing events with the RBF neural network61

Figure 14: Convergence times for neural networks predicting freezing events62

Figure 15: Predicting gusty events with the RPROP neural network64

Figure 16: Predicting gusty events with the RBF neural network64

Figure 17: Convergence times for gusty event prediction ..65

12

CHAPTER 1

INTRODUCTION

Characterization of Current Research

Ultimately, this paper aims to both explore current applications of neural

networks to weather variable prediction and also to apply neural networks to a custom

weather dataset. However, before diving into these two tasks, it is beneficial to describe

the underlying, practical goals behind these efforts.

To better understand how this research stands apart from existing research, it is

helpful to note some major themes in existing research. First, most documented

experiments have used neural networks to predict weather occurrences in large-scale

settings or environments. For example, neural networks have been used to predict

quantitative rainfall amounts for the Dallas-Ft. Worth area [1]. Second, even in research

focused on employing neural networks to account for local weather differences not

capable of being predicted by large scale weather models, the local differences usually

still apply to larger regions being monitored at several different points. For instance,

neural networks have been used to process output from numerical weather prediction

(NWP) models in order to give more accurate and localized rainfall predictions in four

separate regions in the mid-Atlantic United States [2].

This research seeks to take the concept of localization even further. The goal is to

determine the feasibility of using a rather imperfect dataset obtained from a single

collection unit as input to neural networks in order to obtain regression and classification

predictions for various weather variables of interest.

13

Next, there is sparse research focusing on how temporally summarizing a given

dataset affects neural network performance. Temporal summarization results in datasets

containing a smaller amount of tuples with derived attributes as opposed to the base

dataset, which does not contain derived attributes but contains a larger amount of training

tuples. One of the basic ideas behind neural network training is that the network will

perform better given a large dataset with a variety of examples. One way to understand

this concept is to visualize the analogy of a child learning to classify different animals

[3]. A child learning the difference between animals needs to see many different

examples of animals, and also needs to see the same animal many times for the

classification to “sink in” [3]. However, as several points in the experiment will show

later, training a neural network can be a time-consuming process, particularly when the

underlying function being approximated is very complex.

 What would happen if a large dataset was summarized as a series of smaller

datasets that contain derived attributes based on time intervals? Does a smaller dataset

containing derived attributes from a 24 hour time frame allow neural networks to regress

and classify values as well as a base dataset containing weather measurements recorded

every 15 minutes? Is it possible for a neural networks trained on time-summarized

datasets to still achieve reasonable predictive performance with the added benefit of

having much smaller convergence times? Does the ability to use derived attributes from a

rolled-up dataset provide useful training information that is not present in the base level

dataset? These core questions guided both the survey and the experiment.

14

Practical Applications

 This research is distinguished from existing research primarily through the choice

of datasets. Rather than using large datasets built over decades from a network of

collection stations, a dirty, real-world dataset obtained from a single, commercially

available, solar-powered weather collection station is used. If it can be shown that neural

networks trained from this dataset are capable of predicting even a few useful variables

with reasonable accuracy, then further research into predicting a wider range of

regression and classification variables from the dataset is warranted.

The practical applications of a system that could be built around this model also

make this research worthwhile. First, the experiment uses low-cost or free software and

hardware, which minimizes the production cost of a system built around the neural

network model. Second, let’s assume that experimentation reveals that it is possible to

develop a regression and classification model with strong predictive capabilities from the

source dataset through the use of neural networks. If a collection station is then pre-

positioned in a crop field and allowed to gather data over time, then a neural network can

be trained to predict weather variables of interest for that small geographical point. This

information would be very useful in remote areas, where radio and network connectivity

to existing weather services is limited.

 An end user, such as a farmer, could access this neural network information from

an application interface such as a mobile device and determine extremely localized

estimates for useful weather phenomena such as rainfall, freezing temperatures, wind

levels, etc. It is likely that just knowing if freezing temperatures will occur in a given

15

forecast range would be extremely useful in an agricultural setting. If the experiment

reveals that neural networks running as part of such a low cost implementation can

produce reasonable classifications and regressions of a few common weather variables,

then there would be sufficient reason to research the predictability of additional weather

variables in the dataset.

Research Motivations

There are three main purposes in this paper. First, some background explanation

of neural network basics is provided to set the stage for an in-depth discussion of the

experiment. Next, how neural networks have already been applied to weather forecasting

is reviewed in order to integrate lessons learned from past research into this experiment

when possible. Finally, using a weather dataset from a single station containing

measurements recorded every 15 minutes, additional datasets are generated by rolling up

the attribute values into datasets based on 1-hour, 12-hour, and 24-hour time intervals.

For simplicity, the base dataset is referred to as the 15-minute dataset, the dataset rolled

up into 1-hour time intervals is referred to as the 1-hour dataset, etc.

Using all of these previously described datasets, the experiment determines how

well three different neural network structures perform in predicting numeric minimum

temperature values at 15-minute, 1-hour, 3-hour, 6-hour, 12-hour, and 24-hour look-

ahead ranges. Additionally, it explores how well neural networks numerically predict

maximum gust values at 3-hour, 6-hour, 12-hour, and 24-hour look-ahead ranges. Finally,

16

it evaluates how effectively neural networks can perform classification prediction of

freezing events and gusty events at 6-hour, 12-hour, and 24-hour look-ahead ranges.

17

CHAPTER 2

NEURAL NETWORK BASICS

Neuron Components

The basic computational unit in a neural network is the neuron or perceptron. This

model, which is based upon the neurons that make up the human brain, was first

proposed by Frank Blosenblatt in 1958 at Cornell University [3]. The six basic

components of the neuron are shown in figure 1. While this figure sufficiently illustrates

the purpose of each component, the input and activation function components are

discussed further.

For the purposes of this research, the neuron inputs correspond to the values of

chosen weather predictor variables. To better understand this concept, it actually helps to

distinguish between the different types of neurons. An input layer neuron has the sole

purpose of receiving a single input value. For example, if three predictor variables are

chosen to define the input layer of a neural network, then the input layer will have three

neurons to accept as input the values of the three predictor variables in a given training or

testing tuple.

Hidden layer and output layer neurons can accept an arbitrary number of inputs

depending on the synapse type chosen to interconnect the neurons. The most common

strategy is to employ weighted synapses, which connect every neuron in the source layer

to every neuron in the target layer to form a feed-forward network. For example, in figure

2, neurons in the input layer are connected via synapses to every neuron in the target

layer, which also happens to be the output layer.

18

If you copied this image (or parts of it) off of the Internet, you need a reference

Figure 1. The six basic components of the perceptron. This figure shows the basic

components of the neuron [3].

The activation function component scales the output from a given layer to a useful

value [4]. The desired numerical output for the application tends to drive the choice of

activation function. In this experiment, for instance, since all data, including output

values, is normalized to fall in the range of 0 to 1, an activation function that produces a

value in the range of 0 to 1 is used. This type of activation function is also referred to as a

sigmoidal activation function [5]. There are many different types of activation functions

suited to different purposes. Perceptron activation functions produce hard threshold

values, such as -1, or 1, as indicated in figure 1. Sigmoidal functions, such as Gaussian

19

and tangential functions, offer a range of possible values. Heaton [4] gives in-depth

treatment to the various types of activation functions for the interested reader.

Figure 2. A weighted-synapse, feed-forward neural network [3].

Neural Network Architectures

Since so much research has been devoted to neural networks over the past 40

years, there are abundant resources that explain the nuances of various neural network

architectures. However, it is beneficial to give an overview of two major neural network

structures that were frequently encountered in the survey of existing research and which

were also incorporated into this experiment. Therefore, the feed-forward and radial basis

function neural network structures are examined next.

20

A feed-forward neural network, as explained earlier, consists of an input layer,

one or more hidden layers, and an output layer of neurons. These neurons are

interconnected via weighted synapses. This type of network is probably the most

common neural network structure used in neural network problems [4]. The key point to

remember is that a feed-forward network can support an arbitrary number of hidden

layers, each of which may contain an arbitrary number of neurons.

Radial basis function (RBF) neural networks are specialized forms of feed-

forward networks which only contain a single hidden layer. Each hidden layer neuron

represents an RBF function, such as the Gaussian function, which produces a bell-shaped

curve that characteristically peaks in the center and then drops off sharply to either side.

RBF networks actually learn two different components: the centers and widths of each

hidden layer RBF neuron, and the weights that connect these hidden layer neurons to the

output layer [6]. The RBF centers and widths can actually be learned via unsupervised

training, such as clustering. The weights can then be learned very quickly, which is why

RBF neural networks tend to exhibit very quick learning rates.

Neural Network Training

In order to understand the process of neural network training, it helps to think of a

neural network in terms of a mathematical function. For instance, suppose a neural

network is modeled as ErrewOy),(where y is a vector containing actual outputs from

the network, w is a matrix containing the synapse weights, e is a matrix containing

training information (inputs and expected outputs), O is the activation function, and Err

21

is the error between expected and actual outputs. Neural network training is basically an

optimization problem that seeks to minimize the error value. Ideally, the goal is to

minimize the Err to 0, or as close to 0 as possible, but for most applications with large

datasets, it is more practical to accept a threshold amount of error between actual and

predicted values, such as 1%, in order to reach convergence in a feasible time.

The first form of neural network training to discuss is propagation training.

Backpropagation (BPROP), Manhattan update rule, and resilient or dynamic propagation

(RPROP) are three commonly used propagation training algorithms. Additionally, they

form a class of training algorithms known as gradient descent algorithms, which means

that weights are adjusted in a direction to minimize the error between ideal and actual

outputs.

Perhaps the key factor for all these algorithms is the varying level of

configurability they each entail, which highlights one of the weaknesses of using neural

networks to solve problems. Indeed, neural networks are capable of complex learning

tasks but “a certain amount of twiddling is needed to get the network structure right and

to achieve convergence to something close to a global optimum in weight space” [5]. As

discovered during the course of this experiment, this is quite an understatement. In

particular, minimizing the amount of twiddling mitigates the random aspect of neural

network tuning. Unfortunately, the BPROP and MPROP neural networks both have a

random aspect because they require parameters such as learning rate, momentum, and

update amounts to be set [4]. In order to better understand the decision to use RPROP

22

training in this experiment, the major features of each propagation training algorithm are

described.

BPROP is primarily configured through two settings: learning rate and

momentum. The learning rate establishes how much the delta between expected and

actual values should be applied to the weights and thresholds and the momentum

parameter determines how much change from a previous training iteration is applied to

the weight update in a current iteration [4]. Unfortunately, if these parameters are not

chosen wisely, the neural network may have a very difficult time converging on a

solution. Next, the Manhattan update rule propagation training algorithm is discussed.

The Manhattan update rule ignores the magnitude of change in a gradient descent

calculation and focuses on the direction of the change as either positive or negative [4]. In

this case, the user supplies a constant that determines the update amount to apply to each

weight and threshold. Similar to BPROP parameter selection, if this update amount is not

chosen carefully, then the neural network may have a very difficult time converging on

an optimal solution of weight and threshold values.

Finally, the RPROP algorithm is examined. This algorithm is very similar to the

Manhattan update rule in that it is only concerned with the direction of change from a

gradient descent calculation [4]. However, rather than requiring an update amount

parameter to be set ahead of time, the delta amount is dynamically calculated for each

weight and threshold as training occurs [4]. Since this algorithm minimizes the random

aspect present in the BPROP and Manhattan update rule algorithms, it was employed as

23

the propagation training algorithm for this experiment. Next, particle swarm optimization

is discussed as an alternate form of neural network training.

The other form of network training to discuss is particle swarm optimization

(PSO). This algorithm is based on the migratory actions of birds in a flock [7]. The basic

idea is that in a flock of birds looking for food, one bird is located closest to the food. If

that bird then communicates his proximity to the food with the other birds in the flock,

they will swarm towards the area where the bird closest to the food is and will search for

food there.

In terms of neural network optimization, particles are analogous to birds, and

represent different weight space solutions for all weights in the neural network. The idea

is that over time, the particles will flock towards the solution space containing the

particles whose weights contribute most to the error minimization function described

earlier. PSO training might be worthwhile in this experiment because the base dataset

does contain significant data holes present over a discontinuous time range. If a particle is

able to identify the global best early on, then it is possible that convergence times might

be less that those achieved by RPROP training.

Local Minima Entrapment

Local minima entrapment is a danger that is present in many types of optimization

problems. This occurs when an optimizer, such as a neural network training algorithm,

converges on a solution that produces only a locally minimum amount of error, but not

the global or lowest amount of error possible. Being stuck in local minima is usually

24

indicated by an unchanging amount of error over the course of many training epochs.

Next, some local minima avoidance mechanisms are considered.

There are several ways to mitigate the threat of local minima entrapment

discussed in the literature. Genetic algorithms and simulated annealing can be applied to

reduce the threat [8]. Since PSO is closely related to genetic algorithms, it was

incorporated into this experiment. There are even more sophisticated approaches to

avoiding local minima entrapment. A conjugate gradient approach can be used to assign

penalty terms during training that constrains the size of weights to help avoid local

minima entrapment [9]. Finally, many neural network software frameworks also offer

high-level local minima avoidance mechanisms. For instance, Encog, a neural network

framework written in Java, provides a way to specify improvement strategies to

propagation training algorithms [10]. This feature allows a user to specify weights to be

randomized if a certain error threshold is not achieved in a specified number of training

cycles.

Choosing the Network Topology

The final neural network topic to discuss before examining the survey of neural

network application in weather forecasting is choosing the network topology. Before

discussing the issues surrounding hidden layer configuration, it is important to understand

why the hidden layer is so important to the neural network, particularly for a weather

application. When implementing neural networks “with a single, sufficiently large hidden

layer, it is possible to represent any continuous function of the inputs with arbitrary

25

accuracy; with two layers, even discontinuous functions can be represented” [5]. In other

words, hidden layers allow neural network to approximate non-linear functions. The

capability to approximate non-linear functions is very relevant to weather prediction

since the dynamics of meteorology are “inherently nonlinear” [8].

Even with the massive amount of neural network research that has taken place

since the 1940s, there is still a large amount of controversy about the best way to

determine the number of hidden layers and hidden layer neurons. Existing research

suggests the following four options to select hidden layers and hidden layer neurons. The

first and most popular approach is the trial and error method, in which suitable hidden

layers are “determined for each application using the trial and error method” [11].

Second, hidden neural network layers can be evolved through the use of genetic

algorithms [12]. Third, Bayesian modeling can be applied to determine the optimum

neural network structure, but this method is computationally very expensive and

complicated to implement because it entails computing complicated probabilities of large

datasets [13]. Finally, there is an input-output based guideline which suggests that the

number of neurons in a hidden layer should be in the range of]2,2[2/1 mnn where n is

the number of inputs and m is the number of outputs in the neural network [15]. This

experiment used a combination of the first and fourth methods, which is discussed later in

the paper.

26

CHAPTER 3

SURVEY OF NEURAL NETWORK APPLICATION TO WEATHER FORECASTING

Goals

Before detailing the trials and results of this experiment, it is beneficial to present

a survey revealing how neural networks have been applied to weather forecasting. In this

chapter, the relationship of predictor variable selection to a priori domain knowledge is

discussed, the difference between stochastic and deterministic approaches to neural

network modeling is examined, and the functions approximated by neural networks in

previous weather forecasting research are described. Additionally, how and when neural

network forecasts have exceeded other traditional forecasting methods are examined.

Predictor Variable Selection

While most neural network-based weather prediction experiments have been

conducted by meteorologists or weather researchers, there is a large amount of

controversy surrounding the value of a priori knowledge in determining predictor

variables. Some research suggests that there are three approaches to predictor-driven

forecasting that require descending levels of domain knowledge: physical/numerical

modeling of climate, empirical modeling using historical datasets and domain a priori

knowledge to pick suitable predictors, and employing statistical techniques to choose

suitable predictor variables [15]. It seems that most research experimentation adopts one

of the first two approaches. However, in many cases, incorporating a priori weather

knowledge is not feasible because it is very difficult to quantify prior knowledge of

27

weather processes as input to a neural network [16]. Furthermore, since choosing

predictor variables with minimal a priori domain knowledge is one of the core premises

of this experiment, a forward stepwise regression procedure was chosen to select

predictor variables. The strengths and weaknesses of this approach are discussed later in

the experiment.

The Weather Process

 While there is almost universal agreement in the literature that the weather

process is a dynamic and nonlinear phenomenon, there seem to be two schools of thought

for classifying the nature of a prediction made from a given dataset. On the one hand,

there is the belief that if the dataset is sufficiently large, usually spanning many years,

then predictions based off of the dataset are deterministic, meaning that every factor

needed to determine the next state of the forecast variable is present in the dataset and

that a discrete value can be predicted [15]. On the other hand is the belief that given a

smaller dataset and a few wisely chosen predictors, a stochastic prediction can be made

[15]. A stochastic prediction assumes that there are random variables not present in the

dataset which also affect the state of the weather system. In neural network terms, a

stochastic prediction assumes that the underlying function that the neural network is

supposed to approximate is too complex to be approximated [5]. Therefore, a stochastic

prediction computes a probability distribution rather than a discrete value [5]. While it

has been proven that both deterministic and stochastic predictions can be combined in an

ensemble approach [21], a deterministic approach was adopted for this experiment.

28

Types of Functions Being Approximated

As described in chapter 2, the objective of using a neural network is to

approximate an unknown function. For a deterministic neural network, this function is

typically either a classifier, which outputs a hard value such as -1 or 1 to represent some

nominal state, or a regression function, which outputs a numerical value [5]. As described

in the previous section, if the underlying function is too complex to be approximated,

then neural networks can be trained to compute probability distributions [5].

There are experiments in the literature incorporating all three types of function

approximations. In one instance, feed-forward neural networks were used to predict

quantitative rainfall amounts in the 1 to 3 hour look-ahead range in Bangkok, Thailand,

which is equivalent to deterministically approximating a regression function [17]. In

another instance, researchers used a radial basis function neural network to predict rain

and non-rain days, which is equivalent to using the neural network to deterministically

approximate a classification function [18].

Finally, neural networks have been used to compute probabilities of weather

phenomena in stochastic circumstances. For instance, researchers in Argentina employed

a series of neural networks to approximate cumulative distribution functions for the

occurrence of wet and dry spells, which is equivalent to using a neural network to

stochastically calculate probability distribution functions [19]. While it would be

pointless to recount the details of every experiment, it is worthwhile to discuss some of

the active applications of neural networks in the weather forecasting domain and to

discuss how success has been measured in these applications.

29

Applications of Neural Networks in Weather Forecasting

Research illustrates that there is a wide variety of weather forecasting application

using neural networks. While it is contrary to the aim of this paper to give an in-depth

treatment to every experiment, it is useful to give the reader a brief summary of some

practical application areas encountered in the survey of neural network-driven weather

forecasting.

First, many experiments have used neural networks to predict quantitative rainfall

amounts at various locations and look-ahead ranges. For instance, researchers in Thailand

were able to obtain highly accurate forecasts using feed-forward neural networks to

predict quantitative rainfall amounts in the one to three hour look-ahead range in order to

predict possible flooding dangers [17]. Additionally, neural networks have been used in

research to generate probabilities of precipitation and quantitative precipitation forecasts

using data from the Eta atmospheric model and upper air soundings [1]. As shown next,

neural networks have also been used to predict other less common weather phenomena.

Neural networks have also been used to predict weather phenomena besides the

traditional forecast values, such as probability/amount of rainfall, wind speed, barometric

pressure, etc. They have been used very successfully to predict tornadoes [8].

Additionally, researchers in Australia successfully used a neural network to identify fog

at various forecast ranges ranging from 3 hours to 18 hours around Canberra International

Airport [18]. Hopefully, this survey provides the reader with an idea of the depth and

variety of neural network-based weather forecasting. The following section discusses the

various ways in which success is measured in research.

30

Measuring Success in a Neural Network Forecast

For the most part, a neural network experiment is deemed successful by the

degree to which it exceeds the predictive capabilities of alternate forecasting systems,

such as linear or logistic regression systems. For example, in an experiment seeking to

enhance local precipitation forecasting unable to be predicted by a large scale numerical

weather prediction (NWP) model, both traditional, linear-based model output statistics

(MOS) and neural network prediction systems were applied to the NWP output [2].

Comparison of prediction performance revealed that the neural network performed very

well compared to the linear model for predicting moderate to high precipitation amounts

[2]. Additionally, research revealed that neural networks outperformed logistic

regression, discriminant analysis, and rule-based prediction systems in the classification

of tornado events [8].

In many cases, various neural network structures are compared to each other to

find the optimum neural network configuration for a given forecasting problem. For

example, RBF neural networks exhibited superior prediction performance to BPROP

neural networks in classifying rain and non-rain days [18]. Similarly ensemble-based

neural networks combining the outputs of neural network subcomponents have been

shown to outperform each individual neural network subcomponent in the prediction of

wind-speed, temperature, and humidity [21]. The following section presents common

measurements for objectively identifying predictor performance.

31

Common Prediction System Measurements

It is appropriate to mention some common measurements used in forecasting

applications, both from a numeric standpoint and a classification standpoint. The basic

idea is to compare the predicted outputs to the actual outputs. In the previous regression

examples cited, RMSE or root mean square error is commonly used to indicate a

forecasting system’s predictive skill when dealing with numeric prediction. RMSE is

defined as
n

apap
RMSE nn

22

11)()(

 where p is the predicted value, a is

the actual value, and n is the total number of predictions [6]. An RMSE value close to 0

indicates higher predictive skill whereas an RMSE value close to 1 indicates poor

predictive skill. While there is a bevy of numeric error measures in the literature, it turns

out that in most situations, “the best numeric prediction method is still the best no matter

which error measure is used” [6].

 Classifier systems also have a wealth of quality measurement metrics. These

quality measurements differ from regression quality measurements in that they must

provide some sense of both properly classified and misclassified outcomes. These skill

scores are usually derived from a 2x2 contingency table, sometimes referred to as a

confusion matrix, such as that listed in table 1 below.

Table 1.

An example of a 2x2 contingency matrix

 Event observed Event not observed

Event Predicted a b

Event Not Predicted c d

32

While it is unnecessary to examine every possible skill score that can be derived

from this table, the survey revealed that the Heidke Skill Score (HSS) is commonly used

to measure classification ability. In terms of the components shown in table 1, the HSS is

defined as:

HSS scores indicate the forecast skill of a prediction system in comparison to a

completely random forecast. A perfect forecasting system has an HSS of 1, whereas a

completely unskilled forecasting system has an HSS of 0 [22]. As applied to neural

network performance, the HSS indicates the amount of improvement a neural-network

based classification system exhibits over a random classification system that knows

absolutely nothing about the training data used by the neural network. This skill score is

valuable because it provides an intuitive method to measure the success of neural

networks by. Additionally, the HSS score is valuable because it makes use of every

component of the contingency table. Now that some objective measurement techniques

have been discussed, it is appropriate to acknowledge circumstances where neural

networks are not a forecasting panacea.

Neural Network Shortcomings

It is only fair to acknowledge some instances where neural network forecasts did

not perform better than alternative forecasting systems. For example, while existing

research found that neural networks offered significant improvements in predicting

)])(())([(

)(2

dbbadcca

bcadx

33

moderate to high precipitation amounts when being used to post process output from a

numerical weather prediction model, it also found that error measurements were slightly

worse for neural networks than for traditional linear based regression models [2].

Furthermore, additional research revealed that for very large datasets, linear regression

can often outperform neural networks in the prediction of precipitation amounts from

numerical weather model data [23]. These instances reveal that neural networks can be a

very useful tool in predicting various weather variables, but that they should not exclude

the consideration of other possibilities. Next, some critical lessons learned from this

survey are discussed.

34

CHAPTER 4

LESSONS LEARNED FROM EXISTING RESEARCH

Goals

Perhaps the most important reason to survey existing research is to garner lessons

learned that can be applied to current and future research efforts. In this chapter, key

lessons learned from existing research regarding data preprocessing and neural network

training are discussed.

Data Preprocessing

 Data preprocessing is a common step in many disciplines, including data mining,

data warehousing, and optimization problems. As this section explains, data

preprocessing also plays a very important role in neural networking. First, data

normalization is examined. Data normalizing is the process of scaling data “to fall within

a smaller range, such as -1.0 to 1.0, or 0.0 to 1.0” [24]. The central idea behind data

normalization is to remove the dependence on measurement units, which is directly

relevant to weather forecasting since predictor variables are measured using a wide

variety of units (miles per hour, degrees Fahrenheit, inches of Mercury, etc.). Data

normalization has direct implications to neural network performance. In fact,

“normalizing the input values for each attribute measured in the training tuples will help

speed up the learning phase” [24]. Furthermore, it is important to normalize neural

network training data in order to prevent weights from being overly adjusted due to the

35

possible large magnitudes of measured predictor variable values [23]. Next, the issue of

dealing with missing values in training data is explored.

 Real world data is usually never perfect. It is often noisy and is missing values.

Data mining research has produced several methods of dealing with such dirty data,

including interpolation of missing values, binning, clustering for outlier analysis, etc [24].

In the context of neural network-based weather prediction systems however, research has

established that removing training tuples with missing values is usually the wisest

approach. The forecasting skill of a neural network trained using replacement values for

missing values is at the mercy of the quality of the estimated values [16]. In other words,

if the estimated values are highly inaccurate, then the predictive capability of a neural

network trained with this data will suffer. Furthermore, by comparing neural networks

trained using tuples with estimated values and neural networks trained using only

complete data, researchers found that there was no significant benefit to using estimated

values in training tuples [16]. Next, the issue of class size distributions in classification

problems is explored.

 As discussed earlier, neural networks are often used to perform classification of

variables. The distribution of classes in the training dataset is an important factor that can

ultimately affect neural network classifier performance. When dealing with severely

disparate class distributions, research has shown that oversampling, or increasing the

number of positive classes in an imbalanced dataset, can significantly improve

classification accuracy more so than removing negative samples (undersampling) or

leaving the training dataset unchanged [25]. Now that significant data preprocessing

36

issues have been examined, factors that significantly affect neural network training are

examined next.

Factors that Affect Neural Network Training

 Training is perhaps the most important aspect of neural networking since it

ultimately determines how the neural network will perform. In terms of weather

forecasting, the literature suggests that selecting appropriate training intervals, dealing

with inter-seasonal and intra-seasonal variability in datasets, and implementing a

validation scheme are key factors to consider in neural network training. All of these

issues are addressed in the following paragraphs.

 The selection of training or update intervals is highly application and dataset

specific. For example, when using neural networks to post-process output from higher-

scale NWP models, research suggests that there are two basic approaches: adaptive and

non-adaptive [23]. Comparison of both approaches revealed that when dealing with a

large dataset containing more than 5 years of measurements, the non-adaptive approach

in which neural network retraining is not performed often works very well [23].

However, when analyzing a smaller dataset, the analysis revealed that an adaptive

approach in which the neural network is trained frequently to mirror the changes in the

NWP model produced accurate localized precipitation forecast results [23].

Unfortunately, there is no clear-cut solution for how often a network should be

retrained since the physical processes that drive weather vary so much from region to

region and since dataset sizes can vary so much. This experiment adopts a sensible

37

approach that takes the size of the dataset into account. Furthermore, this experiment is

based on the concept that a neural network trained from a small dataset can be re-trained

more frequently than a neural network trained from a significantly larger dataset.

 Next, some research-based approaches to dealing with inter-seasonal and intra-

seasonal variability in datasets are discussed. The easiest solution for dealing with inter-

seasonal variability is creating a separate neural network for each season [21]. However,

this solution is only appropriate for larger datasets that contain multiple seasons of

training data. Intra-seasonal variability is also relatively easy to deal with in neural

network training. One approach involves randomizing the order of training input to the

neural network. Feeding training data to network this way removes intra-seasonal

variability, removes any correlation that may exist between consecutively presented

inputs and outputs, and perhaps most importantly, mitigates the risk that old data will not

be validated correctly with newer test data [16]. Next, how and why a general validation

scheme should be implemented in neural network training is considered.

 General validation is the final issue covered before describing this experiment.

General validation refers to a collection of techniques for dividing a dataset into training

and test tuples [5]. While the ideal validation of neural network’s predictive capacity

comes from generating forecasts on real-world data that is not part of the training dataset,

this is not always a possibility. General validation techniques are the next best means of

estimating neural network performance. Cross validation, which involves dividing a

dataset up into a specified number of folds that each contain training and testing data,

allows for the development of a neural network that is optimized for predicting non-

38

training tuples [23]. Now that significant lessons learned from the survey of existing

research have been discussed, the details of this experiment are examined next.

39

CHAPTER 5

THE DATASET COMPONENTS OF THE NEURAL NETWORK EXPERIMENT

Dataset Description

The base dataset used for this experiment contains 15,893 weather records

collected from December 21
st
, 2011 to January 9

th
, 2013 via a personal weather collection

station at 15 minute intervals. Each tuple contains measurements for the following 14

variables: observation date, indoor humidity, indoor temperature, outdoor humidity,

outdoor temperature, absolute pressure, wind, gust, wind direction, relative pressure, dew

point, wind chill, wind level, and gust level. While there are certainly much richer

datasets available from meteorological databases, this dataset was intentionally chosen

because it is imperfect. The specific reasons for using this dataset in the experiment are

explained next.

There are many reasons for choosing an imperfect dataset. First, the dataset

provides an opportunity to see how neural networks handle datasets with large date gaps.

For instance, there is a large gap in collected data from October 12
th

 2012 to December

29
th

, 2012. Second, the dataset pertains to a geographic location of interest (Statesboro,

Georgia). Finally, the dataset contains many tuples (506 to be exact) with null values.

Even high end weather collection systems occasionally fail to collect measurements due

to power outages, failed sensors, etc. Since it is useful to assess how neural networks

would perform over periods of time in real environments where measurements may

occasionally be flawed, this dataset is considered valuable.

40

Prior to generating roll-up datasets, the dataset was cleansed using Python scripts

in order to standardize date/time formats. After this phase was complete, the dataset was

loaded into a MySQL database in order to capitalize on its rich set of date and time

functions to produce the 1-hour, 6-hour, and 24-hour datasets.

Roll-up Dataset Generation

Before the time-summarized datasets are described, it is helpful to clarify the

concept of rolling up as it pertains to this experiment. The traditional data warehousing

concept of roll-up usually refers to data aggregation from a lower granularity to a higher

granularity [24]. In this experiment, temporally rolling up the base dataset allows for the

generation of derived attributes not available in the base dataset that can be used as neural

network inputs. For example, a 24-hour roll-up contains a minimum temperature attribute

which indicates the minimum temperature observed over the past 24 hours. This

information is not available in any tuple in the base 15-minute interval dataset. A

complete listing of derived attributes used at each roll-up level is shown in table 3.

MySQL date and time functions were applied to the base dataset described above to

generate 1-hour, 6-hour, and 24-hour datasets containing 3991, 672, and 173 tuples,

respectively.

Forecast Variable Selection

Following roll-up dataset generation, regressed values were generated for

minimum temperature and maximum gust predictions. Additionally, positive/negative

41

classifications were generated for freezing events and gusty events, since these

phenomena are often predicted in mainstream weather forecasts. In this experiment, a

positive freezing event is defined as an occurrence of a minimum temperature less than or

equal to 32 degrees Fahrenheit in a given look-ahead period. Also, a positive gusty event

is defined as an occurrence of maximum gusts greater than or equal to 10 miles-per-hour

in a given look-ahead period. From a meteorological standpoint, maximum observed

gusts of 10 miles-per-hour may not really constitute gusty conditions, but defining the

threshold as such helps to maintain a somewhat reasonable class distribution of gusty to

non-gusty events over the various look-ahead ranges in each dataset.

In this experiment, quantitative precipitation forecasts and rain/non-rain event

classifications were not generated for several reasons. First, the original dataset does not

contain enough rain events to allow a neural network to train effectively. Second, rainfall

is traditionally a very difficult weather phenomenon to predict, even with rich datasets

that span decades [20].

Look-Ahead Ranges

Following roll-up dataset generation and forecast variable selection, a series of

forecast datasets for each forecast variable at various look-ahead ranges was generated.

For minimum temperature regression, datasets were generated for 15-minute, 1-hour, 3-

hour, 6-hour, 12-hour, and 24-hour look-ahead ranges. Maximum gust regression datasets

were generated for 1-hour, 3-hour, 6-hour, 12-hour, and 24-hour look-ahead ranges. For

42

classifying freezing events and classifying gusty events, datasets were generated for 3-

hour, 6-hour, 12-hour, and 24-hour look-ahead ranges.

Predictor Variable Selection

In this experiment, each forecast is treated as its own separate neural network

problem, much like an approach suggested in research [9]. Rather than using one constant

set of predictors for each look-ahead range, a forward stepwise-regression procedure was

employed at each look-ahead range in order to select predictor variables. To perform this

regression procedure, the R statistical programming language was used [26]. The

predictors chosen by step-wise regression for each forecast in the 15-minute, 1-hour, 6-

hour, and 24-hour datasets are shown in tables 2, 3, 4, and 5 respectively.

Table 2.

Predictors used for predictions from the base dataset (15 minute interval)

Possible predictor variables are: month (20), day (21), indoor humidity (22), indoor temperature (23),

outdoor humidity (24), outdoor temperature (25), absolute pressure (26), wind (27), gust (28), wind

direction (29), relative pressure (30), dew point (31), wind chill (32), wind level (33), gust level (34)

Look-ahead 15 minutes 1 hour 3 hours 6 hours 12 hours 24 hours

Minimum

temperature

prediction &

Freeze event

prediction

21,23,25,29 21,22,23,24,

25,27,28,29,

30,31,32,34

21,22,23,24,

25,27,28,30,

31,32,33

22,23,24,25,

27,28,29,30,

31,32,33

20,21,22,23

,24,26,27,

28,29,30,31

,32,33,34

20,22,23,

24,25,26,

28,29,30,

31,32,33,

34

Maximum

gust

prediction &

Gusty event

prediction

NA 20,21,22,23,

25,26,27,28,

29,30,31,32,

33,34

20,21,23,24,

25,26,27,28,

30,31,33,34

20,21,23,24,

25,26,27,28,

29,30,33,34

20,21,22,23

,25,26,27,

28,29,30,

31,34

20,21,22,

23,24,26,

27,28,29,

30,31,32

43

Table 3.

Predictors used for predictions from the 1 hour roll-up dataset

Possible predictor variables are: month (1), day(2), average indoor humidity (3), average indoor

temperature (4), average outdoor humidity (5), average outdoor temperature (6), minimum outdoor

temperature (7), maximum outdoor temperature (8), average absolute pressure (9), average wind (10),

minimum wind (11), maximum wind (12), average wind direction (13), average gust (14), minimum gust

(15), maximum gust (16), average relative pressure (17), average dew point (18), average wind chill (19),

average wind level (20), average gust level (21)

Look-ahead 15 minutes 1 hour 3 hours 6 hours 12 hours 24 hours

Minimum

temperature

prediction &

Freeze event

prediction

5,6,7,8,9,18,

21

3,5,7,9,14,18 3,5,6,7,8,9,

10,11,14,19,

20

1,2,3,4,5,6,7,

8,10,11,13,

17,18,19,20

1,2,3,4,5,6,

7,10,11,15,

17,18,19,20

,21

1,2,3,5,6,7

,9,10,11,

12,15,18,

19,20,21

Maximum

gust

prediction &

Gusty event

prediction

NA 5,6,7,11,14,

16,17,18,19,

20,21

4,5,6,8,9,13,

14,16,17,18,

20,21

1,2,4,5,6,8,9,

13,14,16,17,

18,20,21

1,2,3,4,5,9,

13,15,16,17

,19

1,2,3,4,5,6

,9,13,15,

16,17,18

Table 4.

Predictors used for predictions from the 6 hour roll-up dataset

Possible predictor variables are: month (1), day(2), average indoor humidity (3), average indoor

temperature (4), average outdoor humidity (5), average outdoor temperature (6), minimum outdoor

temperature (7), maximum outdoor temperature (8), average absolute pressure (9), average wind (10),

minimum wind (11), maximum wind (12), average wind direction (13), average gust (14), minimum gust

(15), maximum gust (16), average relative pressure (17), average dew point (18), average wind chill (19),

average wind level (20), average gust level (21)

Look-ahead 15 minutes 1 hour 3 hours 6 hours 12 hours 24 hours

Minimum

temperature

prediction &

Freeze event

prediction

4,5,6,7,8,10,

11,12,15,19

3,4,5,6,7,8,

15,19,20

5,7,8,15,16,

21

5,7,8,15,21 2,3,7,11,18,

21

2,3,7,8,9,

10,12,14,

18,20

Maximum

gust

prediction &

Gusty event

prediction

NA 4,10,11,16,

20,21

4,5,8,10,13,

16,17,18,20,

21

4,5,9,11,12,

13,15,16,17

3,4,9,12,13,

15,16,17

2,5,6,9,12,

13,15,16,

17

44

Table 5.

Predictors used for predictions from the 24 hour roll-up dataset

Possible predictor variables are: month (1), day(2), average indoor humidity (3), average indoor

temperature (4), average outdoor humidity (5), average outdoor temperature (6), minimum outdoor

temperature (7), maximum outdoor temperature (8), average absolute pressure (9), average wind (10),

minimum wind (11), maximum wind (12), average wind direction (13), average gust (14), minimum gust

(15), maximum gust (16), average relative pressure (17), average dew point (18), average wind chill (19),

average wind level (20), average gust level (21)

Look-ahead 15 minutes 1 hour 3 hours 6 hours 12 hours 24 hours

Minimum

temperature

prediction &

Freeze event

prediction

7,10,14 2,3,7,9,11,15

,16

2,3,7,8,9,11,

15,16

2,3,7,9,11,15

,16,19

2,4,7,9,11,

16,19

7,9,11,15,

16,19

Maximum

gust

prediction &

Gusty event

prediction

NA 2,12,15,16 11,15,16 11,12,16 2,7,16 4,16,17

Forward stepwise-regression is a statistical procedure that is used to identify

suitable predictor variables. Beginning with a predictor variable that has the highest

correlation to the forecast variable, it steps forward and tests combinations of other

predictor variables and chooses the set of predictors that explains the greatest variance in

the forecast variable [2]. In the absence of a priori meteorological knowledge about what

predictors are best suited for a given forecast variable, stepwise regression is a sensible

approach to selecting predictor variables. However, there are some limitations that should

be noted. The stepwise-regression procedure is linear in nature and is intended to choose

predictors suitable for a linear regression model. It is possible that this procedure can fail

to capture the complex, non-linear nature of weather phenomena [9].

45

Data Preprocessing

After predictor variables were identified, datasets were generated for each look-

ahead range in each roll-up level using MySQL database queries. For the reasons

described in chapter 4, each dataset was min-max normalized.

46

CHAPTER 6

APPLYING NEURAL NETWORKS TO THE DATASETS

Software Frameworks

This experiment incorporated two Java software frameworks to implement neural

networks. RPROP and PSO neural networks were implemented using the Encog neural

network framework [10]. RBF neural networks were implemented using the Weka

(Waikato Environment for Knowledge Analysis) framework [27]. All Java source code

was compiled and executed using Java Standard Runtime Environment 1.7 update 15.

Test Machine Description

 Dataset generation, data preprocessing, neural network training, and testing were

all performed on an HP Pavilion dv6 Notebook with eight gigabytes of RAM and four

2.30GHz Intel Core i5 processors. The 64-bit edition of Linux Mint 14 operating system

was used as the main testing platform in order to capitalize on rich shell scripting

functionality, which aided tremendously in automating much of the neural network

testing.

Basic Process

The basic steps taken to apply a neural network to a given forecasting problem are

as follows:

1. Export the dataset as a comma separated value (CSV) file from MySQL.

47

2. Divide the dataset into 10 separate folds, each containing a training and

test-data set (10-Fold Cross Validation).

3. For each fold, train the neural network using the training dataset.

4. Using the trained neural network and the test dataset in each fold, generate

regressions if predicting minimum temperature or maximum gust

numerical values. If predicting freezing events or gusty events, generate

classifications.

5. If performing a regression, average the RMSE from each validation fold.

If performing a classification, average the HSS from each validation fold.

Selecting a Neural Network Architecture

As mentioned earlier in chapter 2, there are myriad ways to determine the number

of hidden neurons. In this experiment, a specific forecast from a specific dataset is

viewed as a distinct neural network problem. For instance, across all datasets, a distinct

set of neural networks was trained to predict minimum temperature at the 1-hour look-

ahead range, while a different distinct set of neural networks was trained to predict

minimum temperature at the 3-hour look-ahead range. This process was repeated for each

look-ahead forecast in every dataset. The combination of partitioning each forecast

problem into a set of neural network problems and performing 10-fold cross validation

for each neural network in each set made it unfeasible to adopt a trial and error method to

determine the optimum number of hidden layers and hidden layer neurons. The trial and

error method seems more appropriate for fine-tuning a neural network used for a specific

48

forecasting problem, such as determining the optimum neural network structure for

predicting maximum gust values at the 12-hour look-ahead range from the 1-hour dataset.

In order to generate a variety of neural network topologies, this experiment used

an approach based off the number of inputs and outputs in the given forecasting problem.

An existing strategy suggests that the number of hidden layer neurons should be in the

range]2,2[2/1 mnn , where n is the number of input neurons and m is the number of

output neurons [14]. This suggestion formed the basis for topology generation in this

experiment. Table 6 describes the neural network topology scheme that was applied to

each forecasting problem and configuration details about each type of neural network

used in this experiment.

Table 6.

Neural network configuration details.

 Each topology is in the form i-h-o, where i is the number of input neurons, h is the

number of hidden neurons, and o is the number of output neurons.

oi 2max
2

max
mid

i

 Topology 1 Topology 2 Topology 3 Topology 4 Topology 5

 i-i-o i-mid/2-o i-mid-o i-max-o i-i/2-o

Improvement

Strategies

(RPROP)

0.01,0.06,51

0.01,0.2,53

0.01,0.06,51

0.01,0.2,53

0.01,0.06,51

0.01,0.2,53

0.01,0.06,51

0.01,0.2,53

0.01,0.06,51

0.01,0.2,53

Number of

particles (PSO)
20 20 20 20 20

RBF Function Gaussian Gaussian Gaussian Gaussian Gaussian

For minimum temperature prediction using RPROP networks, we used an improvement strategy of 0.01,

0.06, 5. For the remaining three variables, we used an improvement strategy of 0.01, 0.2, 5. The

improvement strategy is an Encog local minima avoidance feature [10]. The first number represents the

target error rate. The second number represents the reset threshold. The final number represents the

number of cycles. If the neural network does not produce an error rate below the threshold in the specified

number of cycles, then the weights and biases are reset to random values.

49

Unfortunately, it was necessary to stray from the network topology scheme in

some cases. For instance, when using RPROP and PSO neural networks to perform

classification of gusty events on large datasets, such as the 1-hour and 15-minute

datasets, it was necessary to sidestep the general scheme described in table 6 and increase

the number of hidden layer neurons dramatically in order to reach any convergence at all.

This possible over parameterization may have skewed the test results and the assessment

of RPROP and PSO network performance in classifying gusty events with large datasets.

Finally, it is necessary to describe the reasons for not expanding past one layer of

hidden neurons for RPROP and PSO neural networks (RBF neural networks only have

one hidden layer). During initial testing of RPROP and PSO neural networks using two

hidden layers, extremely high convergence times were observed across all forecasting

problems with no marked improvement in RMSE or HSS scores. In order to collect as

much information as possible from a variety of look-ahead ranges and time-summarized

datasets, it was necessary to abandon testing with two hidden layers.

50

CHAPTER 7

EXPERIMENT RESULTS AND DISCUSSION

Minimum Temperature Prediction

Shown below in figures 3, 4, and 5 are the results of applying RPROP, PSO, and

RBF neural networks on the experimental datasets to determine minimum temperature

predictions over specified look-ahead ranges. Each figure shows the performance of a

given neural network type across various datasets as measured by RMSE values

calculated at the 15-minute, 1-hour, 3-hour, 6-hour, 12-hour, and 24-hour look-ahead

ranges.

A RMSE prediction threshold line is drawn at 0.1, although this value was

arbitrarily chosen. What is considered “good” as an RMSE value can vary from

application to application depending on what is acceptable to end users and there is no

universally agreed upon meteorological standard. For this experiment, an average

difference of 10% between the squared differences of predicted and observed values is

acceptable. Any points that fall above this threshold line represent poor forecasts and any

points that fall below this threshold represent feasible forecasts.

In addition to plotting the actual RMSE values calculated at each look-ahead

range, lines of best fit are shown for these RMSE values to indicate the performance

characteristics of each dataset (15-minute, 1-hour, 6-hour, and 24-hour) as look-ahead

ranges increase. Intuitively, RMSE values are expected to increase as forecast ranges

increase, so sensible trend lines should exhibit positive slopes. Also, the point where a

given line of best fit intersects with the prediction threshold line reveals the extent to

51

which a neural network is generating feasible forecasts for a given dataset. The rightmost

intersection represents the dataset whose neural networks produce the most feasible

forecasts (the most dots under the prediction threshold line).

Figure 3. Minimum temperature prediction using the RPROP neural network.

52

Figure 4. Minimum temperature prediction using the PSO neural network.

Figure 5. Minimum temperature prediction using the RBF neural network.

53

Figures 3 and 4 illustrate that RPROP and PSO networks generate very strong

forecasts at nearly all look-ahead ranges using most datasets. Also, in figures 3 and 4, the

intersection of the 15-minute interval line of best fit with the prediction threshold line

occurs at a point further right than any other intersection. This indicates that the RPROP

and PSO neural networks perform better on the base 15-minute interval datasets than on

the rolled-up datasets as look-ahead range increases. This forecast performance is likely

due to the larger number of training tuples available in the 15-minute interval datasets

than in the rolled-up datasets. The presence of both positively and negatively sloped lines

of best fit in figure 5 reveals that the RBF neural network performed erratically on these

datasets. Figure 5 also shows a large amount of scatter of RMSE values, which indicates

poor overall forecasting performance for the RBF neural networks. In conclusion,

RPROP and PSO neural networks can produce feasible minimum temperature regressions

at all look-ahead ranges using any dataset.

In addition to measuring forecast accuracy, convergence times were measured for

neural networks trained on each dataset. Figure 6 shows the convergence time

performance of all neural networks using the largest dataset (the 15-minute dataset). Most

neural networks converged in similar time up the 6-hour look-ahead. Although RBF

neural networks did not perform as well as RPROP and PSO networks in regressing

minimum temperature values, they exhibited the optimum line of best fit for convergence

times, particularly after the 12-hour look-ahead range. Next, the experimental results of

neural network performance on forecasting maximum gust values are discussed.

54

Figure 6. Convergence times for minimum temperature prediction.

Maximum Gust Prediction

Shown below in figures 7, 8, and 9 are the results of applying RPROP, PSO, and

RBF neural networks on the experimental datasets to determine maximum gust

predictions over the specified look-ahead ranges. The relatively larger number of RMSE

values above the prediction threshold line indicates that maximum gust prediction

functions are tougher for neural networks to approximate than minimum temperature

functions.

While RPROP and RBF networks were able to reach convergence at all look-

ahead ranges, PSO proved unable to converge past the 12-hour look-ahead range. It is

possible that PSO is not well-suited to approximating the function that models maximum

55

gusts past this look-ahead range, which highlights the importance of testing a variety of

neural networks in a given forecasting problem. Figure 9 reveals that RBF networks did

not perform as well as RPROP networks, particularly at and above the 3-hour look-ahead

range. It is interesting to note that the 24-hour roll-up provided very low RMSE values up

to the 12-hour look-ahead range for the RPROP network. Perhaps the maximum gust

dataset is well-suited for time summarization at the 24-hour level. Finally, figure 7

corroborates earlier observations in that it shows the line of best fit for the 15-minute

dataset intersecting at the rightmost point on the threshold prediction line. This

intersection location indicates that using the larger dataset yields more accurate RMSE

values as look-ahead range increases. In conclusion, these figures illustrate that the

RPROP neural network is the optimum choice and yields feasible maximum gust

predictions at the 1-6 hour look-ahead range.

56

Figure 7. Maximum gust prediction using the RPROP neural network.

Figure 8. Maximum gust prediction using the PSO neural network.

57

Figure 9. Maximum gust prediction using the RBF neural network.

Figure 10, shown below, depicts the convergence times and respective lines of

best fit per neural network type on the 15-minute dataset. The extreme increase in

convergence time for the RPROP algorithm reinforces the earlier observation that the

maximum gust function becomes extremely difficult to approximate at the 6-hour look-

ahead range. Again, the RBF network exhibited the fastest convergence times across all

look-ahead ranges by a significant margin, although it performed worse in terms of

prediction accuracy as shown in figure 9. Next the ability of neural networks to classify

freezing events using the defined datasets is analyzed.

58

Figure 10. Convergence times for maximum gust prediction.

Freezing Event Classification

As mentioned in chapter 3, a skill score gives a more reliable understanding of the

predictive capabilities of a classification system than a numeric error measure. An

arbitrary HSS prediction threshold of 0.70 is drawn in each figure to illustrate the point

below which forecasts are deemed poor. Intuitively, an HSS score of 0.70 means that the

forecasts from the experiment’s neural-network based system represent a 70%

improvement over forecasts generated at random by a system that knows nothing about

the experimental data.

Shown below in figures 11, 12, and 13 are the results of applying RPROP, PSO,

and RBF neural networks on the experimental classification datasets to determine

59

freezing events. A positive freezing event indicates that a minimum temperature equal or

less than 32 degrees Fahrenheit was observed in the specified look-ahead range. The

presence of both positively and negatively sloped lines of best fit in the RPROP and PSO

models immediately calls into question their effectiveness at classifying freezing

temperatures. Intuitively, HSS scores are expected to decrease as the look-ahead range

increases, so it does not make sense for a line of best fit of HSS scores to have a positive

slope. Additionally, both the RPROP and PSO networks exhibit a high amount of scatter

for plotted HSS values above and below the prediction threshold line, which indicates

that they may have difficulty in approximating the function that classifies events as

freezing or not freezing.

While RPROP and PSO neural networks did not perform remarkably well in

classifying freezing events, the RBF neural network exhibited sensible characteristics.

For most roll-up levels, the HSS values decrease as the look-ahead range decreases,

which makes sense. Additionally, the RBF neural network’s line of best fit for the 15-

minute dataset has the smallest negative slope, which indicates that it will have the

rightmost intersection with the prediction threshold line. In conclusion, RBF neural

networks trained using the 15-minute dataset render feasible forecasts across all look-

ahead ranges.

60

Figure 11. Predicting freezing events using the RPROP neural network.

Figure 12. Predicting freezing events using the PSO neural network.

61

Figure 13. Predicting freezing events with the RBF neural network.

Figure 14 illustrates the convergence times observed when using neural networks

to classify positive and negative freezing events from the 15-minute dataset, which

contains the largest amount of tuples. This figure shows that after the 6-hour look-ahead

range, PSO convergence times increased almost exponentially, which indicates that PSO

neural networks may not be suitable for classifying freezing events. In contrast, RPROP

and RBF neural networks both exhibited relatively small-sloped lines of best fit across all

look-ahead ranges. Although RPROP exhibited lower convergence times than RBF, RBF

significantly outperformed RPROP in classifying freezing events, so for the experimental

dataset, RBF is the optimum neural network for classifying freezing events.

62

Figure 14. Convergence times for neural networks predicting freezing events.

Gusty Event Classification

In addition to classifying freezing events, this experiment tested how effectively

neural networks can classify gusty events. Again, a gusty event is considered to be

positive for a maximum gust of 10 miles-per-hour occurring in a given forecast range and

negative otherwise. This proved to be the toughest test. Unfortunately, PSO networks

were unable to converge on any dataset, so they are omitted here.

As figure 15 reveals, the RPROP network failed to reach convergence on the base

15-minute dataset. Additionally, the presence of positively and negatively sloped lines of

best fit indicates that RPROP networks may not be suitable for approximating the gusty

classification function. Also, the 1-hour dataset, which offers the most training data after

the 15-minute data set, exhibits a positively sloped line of best fit which does not make

63

sense. How is the HSS actually getting better as time goes on? One possibility is that the

RPROP networks have been over-parameterized in an attempt to reach a convergence. In

turn, this could have caused the RPROP networks to overfit the training data, which may

have artificially caused HSS values to increase with look-ahead ranges. However,

previous analysis of classifying freezing events depicted that RPROP neural networks did

not perform as well as RBF neural networks. Unfortunately, this experiment did not

produce any conclusive evidence of RPROP and PSO performance in classifying gusty

events.

Whereas the RPROP neural network performed rather indeterminably in the

classification of gusty events, the RBF neural network performed much more stably.

Figure 16 reveals that except for the 1-hour dataset’s line of best fit, the lines of best fit

exhibited negative slopes to indicate decreasing HSS values over increased look-ahead

ranges, which is intuitively sound. However, the RBF neural network did generate a

majority of HSS values under the prediction threshold limit. Using the 15-minute dataset

as a guide, the RBF neural network prediction system only generates HSS scores between

0.5 and 0.6. While the 24-hour dataset did produce HSS values above the prediction

threshold line at the 6-hour and 12-hour look-ahead ranges, it is likely that this level of

roll-up did not provide enough training information to the neural network. In conclusion,

these observations illustrate that gusty events cannot be feasibly predicted using RBF

networks. However, it is worth noting that RBF neural networks exhibited remarkably

better convergence times across all look-ahead ranges than RPROP neural networks, as

indicated in figure 17.

64

Figure 15. Predicting gusty events with the RPROP neural network.

Figure 16. Predicting gusty events with the RBF neural network.

65

Figure 17. Convergence times for gusty event prediction.

66

CHAPTER 8

CONCLUSION

Feasibility Assessment

This paper examines the effectiveness of using neural networks to forecast

weather variables, both in existing research and with an experimental dataset. First, it

presents a survey of existing literature to examine how neural networks have been used to

generate both regression and classification forecasts. From this survey, a body of

important lessons learned have been identified and discussed, such as the importance of

normalizing data, methods of dealing with imperfect training data, and approaches to

selecting predictor variables.

Following the survey of neural network research, three neural network

architectures are applied to experimental datasets in order to forecast minimum

temperature values, maximum gust values, freezing event classifications, and gusty event

classifications. This experiment revealed that RPROP and PSO neural networks can

predict minimum temperature values very effectively up to 24 hours out regardless of the

base dataset used. It also illustrated that RPROP and RBF neural networks can generate

reasonable forecasts of maximum gust values in the 3 to 6 hour range. Next, it showed

that RBF neural networks can be applied to our dataset to classify freezing events with

great accuracy up to 24 hours out, whereas RPROP and PSO neural networks did not

perform well in this task. Additionally, the experiment explains that while RBF neural

networks exhibited the most reasonable behavior when classifying gusty events, they

were not able to generate forecasts with HSS scores above 0.6 for even the closest of

67

look-ahead ranges. In most cases, particularly when acting as a classifier, RBF neural

networks converged significantly faster than their RPROP and PSO counterparts. In

conclusion, the results of the experiment show sufficient reason to investigate the

predictability of other weather variables present in the base dataset using neural

networks.

In nearly all forecasts generated, using the 15-minute dataset generally produced

more accurate results than using rolled-up datasets. For rolled-up datasets, the derived

attributes in the training tuples were not able to compensate for the loss of available

training tuples. This observation mirrors the general idea of neural networking that the

more examples of training data a neural network processes, the more successful it will be

in regressing or classifying variables.

Acknowledgement of Limitations

While the results of the experiment are well-founded, it is appropriate to

acknowledge several shortcomings. First, the predictive models built from the neural

networks were not used to forecast actual weather, but instead validated using 10-fold

cross validation. While cross-validation is a powerful and statistically proven verification

method, it is not as good an indicator of predictive performance as real-world validation

is. Next, the convergence times required for RPROP and PSO networks were severely

underestimated, particularly as roll-up levels decreased and datasets became larger. In

particular, extremely high convergence times were observed when using RPROP and

PSO networks to classify positive and negative gusty events. To compensate, the number

68

of hidden layer neurons was increased dramatically, which may have over-parameterized

these particular neural networks. Ultimately, this means that the assessment of RPROP

and PSO performance in classifying gusty events may be skewed.

Future Work

There are many possibilities to expand this experiment into future work.

Examining the effect of incorporating a distributed computing architecture on

convergence times and forecast accuracy is one such avenue. Additionally, it would be

worthwhile to train neural networks from a more recent dataset and subsequently use

them as real-world forecasting system in order to determine their forecasting capabilities.

Next, it would be useful to examine how reducing the number of predictor variables

would affect neural network performance and convergence times by applying basic set

theory to the predictor variables listed in tables 2, 3, 4, and 5. In other words, for a given

forecast problem, predictor variables that are common to a given temporal roll-up across

all look-ahead ranges could be used, or predictor variables that are common to a given

look-ahead range across all temporal roll-ups could be used. Finally, it would be

worthwhile to assess the predictability of additional variables in the dataset, from both a

regression and classification standpoint.

69

REFERENCES

[1] T. Hall, H.E. Brooks, and C.A. Doswell III, “Precipitation forecasting using a

neural network,” Weather and Forecasting, vol. 14, no. 3, pp. 338-345, Jun. 1999.

[2] R.J. Kugliowski and A.P. Barros, “Localized precipitation forecasts from a

numerical weather prediction model using artificial neural networks,” Weather and

Forecasting, vol. 13, no. 4, pp. 1194-1204, Dec. 1998.

[3] J. Harris, “Neural Networks,” class powerpoint slides for CSCI 7130, Computer

Science Department, Georgia Southern University, Dec. 2011.

[4] J. Heaton, Introduction to Encog 2.5: Revision 3-November 2010, Heaton Research,

Inc., 2010.

[5] S. Russell and P. Norvig, Artificial Intelligence: A Modern Approach, Third

Edition, Prentice Hall, 2010.

[6] I.H. Witten and E. Frank, Data Mining: Practical Machine Learning Tools and

Techniques, Second Edition, Morgan Kaufmann Publishers, 2005.

[7] J. Kennedy and R.C. Eberhart, “Particle swarm optimization,” in Proceedings of the

IEEE International Conference on Neural Networks, 1995, vol. 4, pp. 1942-1948.

[8] C. Marzban and G.J. Stumpf, “A neural network for tornado prediction based on

Doppler radar-derived attributes,” Journal of Applied Meteorology, vol. 35, no. 5,

pp. 617-626, May 1996.

70

[9] K. Koizumi, “An objective method to modify numerical model forecasts with newly

given weather data using an artificial neural network,” Weather and Forecasting,

vol. 14, no. 1, pp. 109-118, Feb. 1999.

[10] “Encog Machine Learning Framework,” Internet:

http://www.heatonresearch.com/encog, [Mar. 24, 2013].

[11] H.M. Abdul-Kader, “Neural networks training based on differential evolution

algorithm compared with other architectures for weather forecasting,” International

Journal of Computer Science and Network Security, vol. 9, no. 3, pp. 92-99, 2009.

[12] X. Hu, “PSO Tutorial,” Internet: http://www.swarmintelligence.org/tutorials.php,

[Mar. 24, 2013].

[13] B. Cheng and D.M. Titterington, “Neural networks: a review from a statistical

perspective,” Statistical Science, vol. 9, no. 1, pp. 2-54, Feb. 1994.

[14] D. Fletcher and E. Goss, “Forecasting with neural networks: an application using

bankruptcy data”, Information & Management, vol. 24, no. 3, pp. 159-167, Mar.

1993.

[15] H.D. Navone and H.D. Ceccatto, “Predicting Indian monsoon rainfall: a neural

network approach,” Climate Dynamics, vol. 10, pp. 305-312, 1994.

[16] D. Fabbian, R. De Dear, and S. Lellyett, “Application or neural network forecasts to

predict fog at Canberra International Airport,” Weather and Forecasting, vol. 22,

no. 2, pp. 372-381, Apr. 2007.

71

[17] N.Q. Hung, M.S. Babel, S. Weesakul, and N.K. Tripathi, “An artificial neural

network model for forecasting in Bangkok, Thailand,” Hydrology and Earth System

Sciences, vol. 13, no. 8, pp. 1413-1425, Aug. 2009.

[18] T. Santhanam and A.C. Subhajini, “An efficient weather forecasting system using

radial basis function neural network,” Journal of Computer Science, vol. 7, no. 7,

pp. 962-966, Jun. 2011.

[19] J-P Boulanger, F. Martinez, and E.C. Segura, “Neural network based daily

precipitation generator (nngen-p),” Climate Dynamics, vol. 28, pp. 307-324, Sep.

2006.

[20] H. Yuan, X. Gao, S.L. Mullen, S. Sorooshian, J. Du, and H-M. H. Juang,

“Calibration of probabilistic quantitative precipitation forecasts with an artificial

neural network,” Weather and Forecasting, vol. 22, no. 6, pp. 1287-1303, Dec.

2007.

[21] I. Maqsood, M.R. Khan, and A. Abraham, “An ensemble of neural networks for

weather forecasting,” Neural Computing and Applications, vol. 13, no. 2, pp. 112-

122, Jun. 2004.

[22] “Heidke Skill Score (HSS),” Internet:

http://www.eumetcal.org/resources/ukmeteocal/verification/www/english/msg/ver_

categ_forec/uos3/uos3_ko1.htm, [Mar. 24, 2013].

[23] Yuval and W.W. Hsieh, “An adaptive nonlinear mos scheme for precipitation

forecasts using neural networks,” Weather Forecasting, vol. 18, no. 2, pp. 303-310,

Apr. 2003.

72

[24] J. Han, M. Kamber, and J. Pei, Data Mining: Concepts and Techniques, Third

Edition, Morgan Kaufmann Publishers, 2012.

[25] M.A. Mazurowski, P.A. Habas, J.M. Zurada, J.Y. Lo, J.A. Baker, and G.D.

Tourassi, “Training neural network classifiers for medical decision making: the

effects of imbalanced datasets on classification performance,” in Neural Networks:

Advances in Neural Networks Research, International Joint Conference on Neural

Networks 2007 , vol. 21, no 2-3, pp. 427-436, 2008.

[26] “The R Project for Statistical Computing,” Internet: http://www.r-project.org/,

[Mar. 24, 2013].

[27] “Weka 3: Data Mining Software in Java,” Internet:

http://www.cs.waikato.ac.nz/ml/weka/index.html, [Mar. 24, 2013].

	Using Neural Networks to Provide Local Weather Forecasts
	Recommended Citation

	tmp.1374263468.pdf.InhPT

