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USING NEURAL NETWORKS TO PROVIDE LOCAL WEATHER FORECASTS 

 

by 

 

ANDREW CULCLASURE  

 

(Under the Direction of James Harris) 

ABSTRACT 

Artificial neural networks (ANNs) have been applied extensively to both regress 

and classify weather phenomena. While one of the core strengths of neural networks is 

rendering accurate predictions with noisy datasets, there is currently not a significant 

amount of research focusing on whether ANNs are capable of producing accurate 

forecasts of relevant weather variables from small-scale, imperfect datasets. Also, there is 

not a significant amount of research focusing on the forecasting performance of neural 

networks applied to weather datasets that have been temporally rolled-up from a base 

dataset.  

In this paper, a survey of existing research on applying ANNs to weather 

prediction is presented. Also, an experiment in which neural networks are used to regress 

and classify minimum temperature and maximum gust weather variables is presented.  

This experiment used a dataset containing weather variables recorded every 15 

minutes over the course of a year by a personal weather collection station in Statesboro, 

Georgia. Data cleansing and normalization were applied to this dataset to subsequently 

derive three separate datasets representing 1-hour, 6-hour, and 24-hour time intervals. 

Three different NN structures were then applied to these datasets in order to generate 

minimum temperature regressions at 15-minute, 1-hour, 3-hour, 6-hour, 12-hour, and 24-

hour look-ahead ranges. Maximum gust regressions were also generated for each dataset 
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at 1-hour, 3-hour, 6-hour, 12-hour, and 24-hour look-ahead ranges. Finally, neural 

networks were applied to these datasets to classify freezing events and gusty events at 3-

hour, 6-hour, 12-hour, and 24-hour look-ahead ranges.  

 

INDEX WORDS: Artificial neural network, Weather forecasting, Multilayer perceptron, 

Resilient propagation training, Particle swarm optimization training, Radial basis 

function training, Dataset preprocessing 
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CHAPTER 1 

 

INTRODUCTION 

Characterization of Current Research 

Ultimately, this paper aims to both explore current applications of neural 

networks to weather variable prediction and also to apply neural networks to a custom 

weather dataset. However, before diving into these two tasks, it is beneficial to describe 

the underlying, practical goals behind these efforts. 

To better understand how this research stands apart from existing research, it is 

helpful to note some major themes in existing research. First, most documented 

experiments have used neural networks to predict weather occurrences in large-scale 

settings or environments. For example, neural networks have been used to predict 

quantitative rainfall amounts for the Dallas-Ft. Worth area [1]. Second, even in research 

focused on employing neural networks to account for local weather differences not 

capable of being predicted by large scale weather models, the local differences usually 

still apply to larger regions being monitored at several different points. For instance, 

neural networks have been used to process output from numerical weather prediction 

(NWP) models in order to give more accurate and localized rainfall predictions in four 

separate regions in the mid-Atlantic United States [2]. 

This research seeks to take the concept of localization even further. The goal is to 

determine the feasibility of using a rather imperfect dataset obtained from a single 

collection unit as input to neural networks in order to obtain regression and classification 

predictions for various weather variables of interest. 
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Next, there is sparse research focusing on how temporally summarizing a given 

dataset affects neural network performance. Temporal summarization results in datasets 

containing a smaller amount of tuples with derived attributes as opposed to the base 

dataset, which does not contain derived attributes but contains a larger amount of training 

tuples. One of the basic ideas behind neural network training is that the network will 

perform better given a large dataset with a variety of examples. One way to understand 

this concept is to visualize the analogy of a child learning to classify different animals 

[3]. A child learning the difference between animals needs to see many different 

examples of animals, and also needs to see the same animal many times for the 

classification to “sink in” [3]. However, as several points in the experiment will show 

later, training a neural network can be a time-consuming process, particularly when the 

underlying function being approximated is very complex. 

 What would happen if a large dataset was summarized as a series of smaller 

datasets that contain derived attributes based on time intervals? Does a smaller dataset 

containing derived attributes from a 24 hour time frame allow neural networks to regress 

and classify values as well as a base dataset containing weather measurements recorded 

every 15 minutes? Is it possible for a neural networks trained on time-summarized 

datasets to still achieve reasonable predictive performance with the added benefit of 

having much smaller convergence times? Does the ability to use derived attributes from a 

rolled-up dataset provide useful training information that is not present in the base level 

dataset? These core questions guided both the survey and the experiment. 
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Practical Applications 

 This research is distinguished from existing research primarily through the choice 

of datasets. Rather than using large datasets built over decades from a network of 

collection stations, a dirty, real-world dataset obtained from a single, commercially 

available, solar-powered weather collection station is used. If it can be shown that neural 

networks trained from this dataset are capable of predicting even a few useful variables 

with reasonable accuracy, then further research into predicting a wider range of 

regression and classification variables from the dataset is warranted. 

The practical applications of a system that could be built around this model also 

make this research worthwhile. First, the experiment uses low-cost or free software and 

hardware, which minimizes the production cost of a system built around the neural 

network model. Second, let’s assume that experimentation reveals that it is possible to 

develop a regression and classification model with strong predictive capabilities from the 

source dataset through the use of neural networks. If a collection station is then pre-

positioned in a crop field and allowed to gather data over time, then a neural network can 

be trained to predict weather variables of interest for that small geographical point. This 

information would be very useful in remote areas, where radio and network connectivity 

to existing weather services is limited. 

 An end user, such as a farmer, could access this neural network information from 

an application interface such as a mobile device and determine extremely localized 

estimates for useful weather phenomena such as rainfall, freezing temperatures, wind 

levels, etc. It is likely that just knowing if freezing temperatures will occur in a given 
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forecast range would be extremely useful in an agricultural setting. If the experiment 

reveals that neural networks running as part of such a low cost implementation can 

produce reasonable classifications and regressions of a few common weather variables, 

then there would be sufficient reason to research the predictability of additional weather 

variables in the dataset. 

 

Research Motivations 

There are three main purposes in this paper. First, some background explanation 

of neural network basics is provided to set the stage for an in-depth discussion of the 

experiment. Next, how neural networks have already been applied to weather forecasting 

is reviewed in order to integrate lessons learned from past research into this experiment 

when possible. Finally, using a weather dataset from a single station containing 

measurements recorded every 15 minutes, additional datasets are generated by rolling up 

the attribute values into datasets based on 1-hour, 12-hour, and 24-hour time intervals. 

For simplicity, the base dataset is referred to as the 15-minute dataset, the dataset rolled 

up into 1-hour time intervals is referred to as the 1-hour dataset, etc.  

Using all of these previously described datasets, the experiment determines how 

well three different neural network structures perform in predicting numeric minimum 

temperature values at 15-minute, 1-hour, 3-hour, 6-hour, 12-hour, and 24-hour look-

ahead ranges. Additionally, it explores how well neural networks numerically predict 

maximum gust values at 3-hour, 6-hour, 12-hour, and 24-hour look-ahead ranges. Finally, 
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it evaluates how effectively neural networks can perform classification prediction of 

freezing events and gusty events at 6-hour, 12-hour, and 24-hour look-ahead ranges. 
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CHAPTER 2 

 

NEURAL NETWORK BASICS 

Neuron Components 

The basic computational unit in a neural network is the neuron or perceptron. This 

model, which is based upon the neurons that make up the human brain, was first 

proposed by Frank Blosenblatt in 1958 at Cornell University [3].  The six basic 

components of the neuron are shown in figure 1. While this figure sufficiently illustrates 

the purpose of each component, the input and activation function components are 

discussed further. 

For the purposes of this research, the neuron inputs correspond to the values of 

chosen weather predictor variables. To better understand this concept, it actually helps to 

distinguish between the different types of neurons. An input layer neuron has the sole 

purpose of receiving a single input value. For example, if three predictor variables are 

chosen to define the input layer of a neural network, then the input layer will have three 

neurons to accept as input the values of the three predictor variables in a given training or 

testing tuple.  

Hidden layer and output layer neurons can accept an arbitrary number of inputs 

depending on the synapse type chosen to interconnect the neurons. The most common 

strategy is to employ weighted synapses, which connect every neuron in the source layer 

to every neuron in the target layer to form a feed-forward network. For example, in figure 

2, neurons in the input layer are connected via synapses to every neuron in the target 

layer, which also happens to be the output layer. 
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Figure 1. The six basic components of the perceptron. This figure shows the basic 

components of the neuron [3]. 

The activation function component scales the output from a given layer to a useful 

value [4]. The desired numerical output for the application tends to drive the choice of 

activation function. In this experiment, for instance, since all data, including output 

values, is normalized to fall in the range of 0 to 1, an activation function that produces a 

value in the range of 0 to 1 is used. This type of activation function is also referred to as a 

sigmoidal activation function [5]. There are many different types of activation functions 

suited to different purposes. Perceptron activation functions produce hard threshold 

values, such as -1, or 1, as indicated in figure 1. Sigmoidal functions, such as Gaussian 
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and tangential functions, offer a range of possible values. Heaton [4] gives in-depth 

treatment to the various types of activation functions for the interested reader. 

 

 
Figure 2. A weighted-synapse, feed-forward neural network [3]. 

Neural Network Architectures 

Since so much research has been devoted to neural networks over the past 40 

years, there are abundant resources that explain the nuances of various neural network 

architectures. However, it is beneficial to give an overview of two major neural network 

structures that were frequently encountered in the survey of existing research and which 

were also incorporated into this experiment. Therefore, the feed-forward and radial basis 

function neural network structures are examined next. 
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A feed-forward neural network, as explained earlier, consists of an input layer, 

one or more hidden layers, and an output layer of neurons. These neurons are 

interconnected via weighted synapses. This type of network is probably the most 

common neural network structure used in neural network problems [4]. The key point to 

remember is that a feed-forward network can support an arbitrary number of hidden 

layers, each of which may contain an arbitrary number of neurons.  

Radial basis function (RBF) neural networks are specialized forms of feed-

forward networks which only contain a single hidden layer. Each hidden layer neuron 

represents an RBF function, such as the Gaussian function, which produces a bell-shaped 

curve that characteristically peaks in the center and then drops off sharply to either side. 

RBF networks actually learn two different components: the centers and widths of each 

hidden layer RBF neuron, and the weights that connect these hidden layer neurons to the 

output layer [6]. The RBF centers and widths can actually be learned via unsupervised 

training, such as clustering. The weights can then be learned very quickly, which is why 

RBF neural networks tend to exhibit very quick learning rates. 

 

 

Neural Network Training 

In order to understand the process of neural network training, it helps to think of a 

neural network in terms of a mathematical function. For instance, suppose a neural 

network is modeled as ErrewOy  ),( where y is a vector containing actual outputs from 

the network, w is a matrix containing the synapse weights, e is a matrix containing 

training information (inputs and expected outputs), O is the activation function, and Err 
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is the error between expected and actual outputs. Neural network training is basically an 

optimization problem that seeks to minimize the error value. Ideally, the goal is to 

minimize the Err to 0, or as close to 0 as possible, but for most applications with large 

datasets, it is more practical to accept a threshold amount of error between actual and 

predicted values, such as 1%, in order to reach convergence in a feasible time.  

The first form of neural network training to discuss is propagation training. 

Backpropagation (BPROP), Manhattan update rule, and resilient or dynamic propagation 

(RPROP) are three commonly used propagation training algorithms. Additionally, they 

form a class of training algorithms known as gradient descent algorithms, which means 

that weights are adjusted in a direction to minimize the error between ideal and actual 

outputs.  

Perhaps the key factor for all these algorithms is the varying level of 

configurability they each entail, which highlights one of the weaknesses of using neural 

networks to solve problems. Indeed, neural networks are capable of complex learning 

tasks but “a certain amount of twiddling is needed to get the network structure right and 

to achieve convergence to something close to a global optimum in weight space” [5]. As 

discovered during the course of this experiment, this is quite an understatement. In 

particular, minimizing the amount of twiddling mitigates the random aspect of neural 

network tuning. Unfortunately, the BPROP and MPROP neural networks both have a 

random aspect because they require parameters such as learning rate, momentum, and 

update amounts to be set [4]. In order to better understand the decision to use RPROP 
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training in this experiment, the major features of each propagation training algorithm are 

described. 

BPROP is primarily configured through two settings: learning rate and 

momentum. The learning rate establishes how much the delta between expected and 

actual values should be applied to the weights and thresholds and the momentum 

parameter determines how much change from a previous training iteration is applied to 

the weight update in a current iteration [4]. Unfortunately, if these parameters are not 

chosen wisely, the neural network may have a very difficult time converging on a 

solution. Next, the Manhattan update rule propagation training algorithm is discussed. 

The Manhattan update rule ignores the magnitude of change in a gradient descent 

calculation and focuses on the direction of the change as either positive or negative [4]. In 

this case, the user supplies a constant that determines the update amount to apply to each 

weight and threshold. Similar to BPROP parameter selection, if this update amount is not 

chosen carefully, then the neural network may have a very difficult time converging on 

an optimal solution of weight and threshold values. 

Finally, the RPROP algorithm is examined. This algorithm is very similar to the 

Manhattan update rule in that it is only concerned with the direction of change from a 

gradient descent calculation [4]. However, rather than requiring an update amount 

parameter to be set ahead of time, the delta amount is dynamically calculated for each 

weight and threshold as training occurs [4]. Since this algorithm minimizes the random 

aspect present in the BPROP and Manhattan update rule algorithms, it was employed as 
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the propagation training algorithm for this experiment. Next, particle swarm optimization 

is discussed as an alternate form of neural network training. 

The other form of network training to discuss is particle swarm optimization 

(PSO). This algorithm is based on the migratory actions of birds in a flock [7]. The basic 

idea is that in a flock of birds looking for food, one bird is located closest to the food. If 

that bird then communicates his proximity to the food with the other birds in the flock, 

they will swarm towards the area where the bird closest to the food is and will search for 

food there.  

In terms of neural network optimization, particles are analogous to birds, and 

represent different weight space solutions for all weights in the neural network. The idea 

is that over time, the particles will flock towards the solution space containing the 

particles whose weights contribute most to the error minimization function described 

earlier. PSO training might be worthwhile in this experiment because the base dataset 

does contain significant data holes present over a discontinuous time range. If a particle is 

able to identify the global best early on, then it is possible that convergence times might 

be less that those achieved by RPROP training. 

 

Local Minima Entrapment 

Local minima entrapment is a danger that is present in many types of optimization 

problems. This occurs when an optimizer, such as a neural network training algorithm, 

converges on a solution that produces only a locally minimum amount of error, but not 

the global or lowest amount of error possible. Being stuck in local minima is usually 
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indicated by an unchanging amount of error over the course of many training epochs. 

Next, some local minima avoidance mechanisms are considered. 

There are several ways to mitigate the threat of local minima entrapment 

discussed in the literature. Genetic algorithms and simulated annealing can be applied to 

reduce the threat [8]. Since PSO is closely related to genetic algorithms, it was 

incorporated into this experiment. There are even more sophisticated approaches to 

avoiding local minima entrapment. A conjugate gradient approach can be used to assign 

penalty terms during training that constrains the size of weights to help avoid local 

minima entrapment [9]. Finally, many neural network software frameworks also offer 

high-level local minima avoidance mechanisms. For instance, Encog, a neural network 

framework written in Java, provides a way to specify improvement strategies to 

propagation training algorithms [10]. This feature allows a user to specify weights to be 

randomized if a certain error threshold is not achieved in a specified number of training 

cycles.  

 

Choosing the Network Topology 

The final neural network topic to discuss before examining the survey of neural 

network application in weather forecasting is choosing the network topology. Before 

discussing the issues surrounding hidden layer configuration, it is important to understand 

why the hidden layer is so important to the neural network, particularly for a weather 

application. When implementing neural networks “with a single, sufficiently large hidden 

layer, it is possible to represent any continuous function of the inputs with arbitrary 
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accuracy; with two layers, even discontinuous functions can be represented” [5]. In other 

words, hidden layers allow neural network to approximate non-linear functions. The 

capability to approximate non-linear functions is very relevant to weather prediction 

since the dynamics of meteorology are “inherently nonlinear” [8]. 

Even with the massive amount of neural network research that has taken place 

since the 1940s, there is still a large amount of controversy about the best way to 

determine the number of hidden layers and hidden layer neurons. Existing research 

suggests the following four options to select hidden layers and hidden layer neurons. The 

first and most popular approach is the trial and error method, in which suitable hidden 

layers are “determined for each application using the trial and error method” [11]. 

Second, hidden neural network layers can be evolved through the use of genetic 

algorithms [12]. Third, Bayesian modeling can be applied to determine the optimum 

neural network structure, but this method is computationally very expensive and 

complicated to implement because it entails computing complicated probabilities of large 

datasets [13]. Finally, there is an input-output based guideline which suggests that the 

number of neurons in a hidden layer should be in the range of ]2,2[ 2/1 mnn  where n is 

the number of inputs and m is the number of outputs in the neural network [15]. This 

experiment used a combination of the first and fourth methods, which is discussed later in 

the paper. 
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CHAPTER 3 

 

SURVEY OF NEURAL NETWORK APPLICATION TO WEATHER FORECASTING 

Goals 

Before detailing the trials and results of this experiment, it is beneficial to present 

a survey revealing how neural networks have been applied to weather forecasting. In this 

chapter, the relationship of predictor variable selection to a priori domain knowledge is 

discussed, the difference between stochastic and deterministic approaches to neural 

network modeling is examined, and the functions approximated by neural networks in 

previous weather forecasting research are described. Additionally, how and when neural 

network forecasts have exceeded other traditional forecasting methods are examined. 

 

Predictor Variable Selection 

While most neural network-based weather prediction experiments have been 

conducted by meteorologists or weather researchers, there is a large amount of 

controversy surrounding the value of a priori knowledge in determining predictor 

variables. Some research suggests that there are three approaches to predictor-driven 

forecasting that require descending levels of domain knowledge: physical/numerical 

modeling of climate, empirical modeling using historical datasets and domain a priori 

knowledge to pick suitable predictors, and employing statistical techniques to choose 

suitable predictor variables [15]. It seems that most research experimentation adopts one 

of the first two approaches. However, in many cases, incorporating a priori weather 

knowledge is not feasible because it is very difficult to quantify prior knowledge of 
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weather processes as input to a neural network [16]. Furthermore, since choosing 

predictor variables with minimal a priori domain knowledge is one of the core premises 

of this experiment, a forward stepwise regression procedure was chosen to select 

predictor variables. The strengths and weaknesses of this approach are discussed later in 

the experiment. 

 

The Weather Process 

 While there is almost universal agreement in the literature that the weather 

process is a dynamic and nonlinear phenomenon, there seem to be two schools of thought 

for classifying the nature of a prediction made from a given dataset. On the one hand, 

there is the belief that if the dataset is sufficiently large, usually spanning many years, 

then predictions based off of the dataset are deterministic, meaning that every factor 

needed to determine the next state of the forecast variable is present in the dataset and 

that a discrete value can be predicted [15]. On the other hand is the belief that given a 

smaller dataset and a few wisely chosen predictors, a stochastic prediction can be made 

[15]. A stochastic prediction assumes that there are random variables not present in the 

dataset which also affect the state of the weather system. In neural network terms, a 

stochastic prediction assumes that the underlying function that the neural network is 

supposed to approximate is too complex to be approximated [5]. Therefore, a stochastic 

prediction computes a probability distribution rather than a discrete value [5]. While it 

has been proven that both deterministic and stochastic predictions can be combined in an 

ensemble approach [21], a deterministic approach was adopted for this experiment. 



   

28 

 

Types of Functions Being Approximated 

As described in chapter 2, the objective of using a neural network is to 

approximate an unknown function. For a deterministic neural network, this function is 

typically either a classifier, which outputs a hard value such as -1 or 1 to represent some 

nominal state, or a regression function, which outputs a numerical value [5]. As described 

in the previous section, if the underlying function is too complex to be approximated, 

then neural networks can be trained to compute probability distributions [5].  

There are experiments in the literature incorporating all three types of function 

approximations. In one instance, feed-forward neural networks were used to predict 

quantitative rainfall amounts in the 1 to 3 hour look-ahead range in Bangkok, Thailand, 

which is equivalent to deterministically approximating a regression function [17]. In 

another instance, researchers used a radial basis function neural network to predict rain 

and non-rain days, which is equivalent to using the neural network to deterministically 

approximate a classification function [18].  

Finally, neural networks have been used to compute probabilities of weather 

phenomena in stochastic circumstances. For instance, researchers in Argentina employed 

a series of neural networks to approximate cumulative distribution functions for the 

occurrence of wet and dry spells, which is equivalent to using a neural network to 

stochastically calculate probability distribution functions [19]. While it would be 

pointless to recount the details of every experiment, it is worthwhile to discuss some of 

the active applications of neural networks in the weather forecasting domain and to 

discuss how success has been measured in these applications. 
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Applications of Neural Networks in Weather Forecasting 

Research illustrates that there is a wide variety of weather forecasting application 

using neural networks. While it is contrary to the aim of this paper to give an in-depth 

treatment to every experiment, it is useful to give the reader a brief summary of some 

practical application areas encountered in the survey of neural network-driven weather 

forecasting.  

First, many experiments have used neural networks to predict quantitative rainfall 

amounts at various locations and look-ahead ranges. For instance, researchers in Thailand 

were able to obtain highly accurate forecasts using feed-forward neural networks to 

predict quantitative rainfall amounts in the one to three hour look-ahead range in order to 

predict possible flooding dangers [17]. Additionally, neural networks have been used in 

research to generate probabilities of precipitation and quantitative precipitation forecasts 

using data from the Eta atmospheric model and upper air soundings [1]. As shown next, 

neural networks have also been used to predict other less common weather phenomena.  

Neural networks have also been used to predict weather phenomena besides the 

traditional forecast values, such as probability/amount of rainfall, wind speed, barometric 

pressure, etc. They have been used very successfully to predict tornadoes [8]. 

Additionally, researchers in Australia successfully used a neural network to identify fog 

at various forecast ranges ranging from 3 hours to 18 hours around Canberra International 

Airport [18]. Hopefully, this survey provides the reader with an idea of the depth and 

variety of neural network-based weather forecasting. The following section discusses the 

various ways in which success is measured in research. 
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Measuring Success in a Neural Network Forecast 

For the most part, a neural network experiment is deemed successful by the 

degree to which it exceeds the predictive capabilities of alternate forecasting systems, 

such as linear or logistic regression systems. For example, in an experiment seeking to 

enhance local precipitation forecasting unable to be predicted by a large scale numerical 

weather prediction (NWP) model, both traditional, linear-based model output statistics 

(MOS) and neural network prediction systems were applied to the NWP output [2]. 

Comparison of prediction performance revealed that the neural network performed very 

well compared to the linear model for predicting moderate to high precipitation amounts 

[2]. Additionally, research revealed that neural networks outperformed logistic 

regression, discriminant analysis, and rule-based prediction systems in the classification 

of tornado events [8]. 

In many cases, various neural network structures are compared to each other to 

find the optimum neural network configuration for a given forecasting problem. For 

example, RBF neural networks exhibited superior prediction performance to BPROP 

neural networks in classifying rain and non-rain days [18]. Similarly ensemble-based 

neural networks combining the outputs of neural network subcomponents have been 

shown to outperform each individual neural network subcomponent in the prediction of 

wind-speed, temperature, and humidity [21]. The following section presents common 

measurements for objectively identifying predictor performance. 
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Common Prediction System Measurements 

It is appropriate to mention some common measurements used in forecasting 

applications, both from a numeric standpoint and a classification standpoint. The basic 

idea is to compare the predicted outputs to the actual outputs. In the previous regression 

examples cited, RMSE or root mean square error is commonly used to indicate a 

forecasting system’s predictive skill when dealing with numeric prediction. RMSE is 

defined as 
n

apap
RMSE nn

22

11 )()( 



 where p is the predicted value, a is 

the actual value, and n is the total number of predictions [6]. An RMSE value close to 0 

indicates higher predictive skill whereas an RMSE value close to 1 indicates poor 

predictive skill. While there is a bevy of numeric error measures in the literature, it turns 

out that in most situations, “the best numeric prediction method is still the best no matter 

which error measure is used” [6]. 

 Classifier systems also have a wealth of quality measurement metrics. These 

quality measurements differ from regression quality measurements in that they must 

provide some sense of both properly classified and misclassified outcomes. These skill 

scores are usually derived from a 2x2 contingency table, sometimes referred to as a 

confusion matrix, such as that listed in table 1 below.  

 

 

Table 1. 

 
An example of a 2x2 contingency matrix 

 

 

 

  

 Event observed Event not observed 

Event Predicted a b 

Event Not Predicted c d 
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While it is unnecessary to examine every possible skill score that can be derived 

from this table, the survey revealed that the Heidke Skill Score (HSS) is commonly used 

to measure classification ability. In terms of the components shown in table 1, the HSS is 

defined as: 

 

  

 

HSS scores indicate the forecast skill of a prediction system in comparison to a 

completely random forecast. A perfect forecasting system has an HSS of 1, whereas a 

completely unskilled forecasting system has an HSS of 0 [22]. As applied to neural 

network performance, the HSS indicates the amount of improvement a neural-network 

based classification system exhibits over a random classification system that knows 

absolutely nothing about the training data used by the neural network. This skill score is 

valuable because it provides an intuitive method to measure the success of neural 

networks by. Additionally, the HSS score is valuable because it makes use of every 

component of the contingency table. Now that some objective measurement techniques 

have been discussed, it is appropriate to acknowledge circumstances where neural 

networks are not a forecasting panacea. 

 

Neural Network Shortcomings 

It is only fair to acknowledge some instances where neural network forecasts did 

not perform better than alternative forecasting systems. For example, while existing 

research found that neural networks offered significant improvements in predicting 
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moderate to high precipitation amounts when being used to post process output from a 

numerical weather prediction model, it also found that error measurements were slightly 

worse for neural networks than for traditional linear based regression models [2]. 

Furthermore, additional research revealed that for very large datasets, linear regression 

can often outperform neural networks in the prediction of precipitation amounts from 

numerical weather model data [23]. These instances reveal that neural networks can be a 

very useful tool in predicting various weather variables, but that they should not exclude 

the consideration of other possibilities. Next, some critical lessons learned from this 

survey are discussed. 
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CHAPTER 4 

 

LESSONS LEARNED FROM EXISTING RESEARCH 

Goals 

Perhaps the most important reason to survey existing research is to garner lessons 

learned that can be applied to current and future research efforts. In this chapter, key 

lessons learned from existing research regarding data preprocessing and neural network 

training are discussed. 

 

Data Preprocessing  

 Data preprocessing is a common step in many disciplines, including data mining, 

data warehousing, and optimization problems. As this section explains, data 

preprocessing also plays a very important role in neural networking. First, data 

normalization is examined. Data normalizing is the process of scaling data “to fall within 

a smaller range, such as -1.0 to 1.0, or 0.0 to 1.0” [24]. The central idea behind data 

normalization is to remove the dependence on measurement units, which is directly 

relevant to weather forecasting since predictor variables are measured using a wide 

variety of units (miles per hour, degrees Fahrenheit, inches of Mercury, etc.). Data 

normalization has direct implications to neural network performance. In fact, 

“normalizing the input values for each attribute measured in the training tuples will help 

speed up the learning phase” [24]. Furthermore, it is important to normalize neural 

network training data in order to prevent weights from being overly adjusted due to the 
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possible large magnitudes of measured predictor variable values [23]. Next, the issue of 

dealing with missing values in training data is explored. 

 Real world data is usually never perfect. It is often noisy and is missing values. 

Data mining research has produced several methods of dealing with such dirty data, 

including interpolation of missing values, binning, clustering for outlier analysis, etc [24]. 

In the context of neural network-based weather prediction systems however, research has 

established that removing training tuples with missing values is usually the wisest 

approach. The forecasting skill of a neural network trained using replacement values for 

missing values is at the mercy of the quality of the estimated values [16]. In other words, 

if the estimated values are highly inaccurate, then the predictive capability of a neural 

network trained with this data will suffer. Furthermore, by comparing neural networks 

trained using tuples with estimated values and neural networks trained using only 

complete data, researchers found that there was no significant benefit to using estimated 

values in training tuples [16]. Next, the issue of class size distributions in classification 

problems is explored. 

 As discussed earlier, neural networks are often used to perform classification of 

variables. The distribution of classes in the training dataset is an important factor that can 

ultimately affect neural network classifier performance. When dealing with severely 

disparate class distributions, research has shown that oversampling, or increasing the 

number of positive classes in an imbalanced dataset, can significantly improve 

classification accuracy more so than removing negative samples (undersampling) or 

leaving the training dataset unchanged [25]. Now that significant data preprocessing 
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issues have been examined, factors that significantly affect neural network training are 

examined next. 

 

Factors that Affect Neural Network Training 

 Training is perhaps the most important aspect of neural networking since it 

ultimately determines how the neural network will perform. In terms of weather 

forecasting, the literature suggests that selecting appropriate training intervals, dealing 

with inter-seasonal and intra-seasonal variability in datasets, and implementing a 

validation scheme are key factors to consider in neural network training. All of these 

issues are addressed in the following paragraphs. 

 The selection of training or update intervals is highly application and dataset 

specific. For example, when using neural networks to post-process output from higher-

scale NWP models, research suggests that there are two basic approaches: adaptive and 

non-adaptive [23]. Comparison of both approaches revealed that when dealing with a 

large dataset containing more than 5 years of measurements, the non-adaptive approach 

in which neural network retraining is not performed often works very well [23]. 

However, when analyzing a smaller dataset, the analysis revealed that an adaptive 

approach in which the neural network is trained frequently to mirror the changes in the 

NWP model produced accurate localized precipitation forecast results [23]. 

Unfortunately, there is no clear-cut solution for how often a network should be 

retrained since the physical processes that drive weather vary so much from region to 

region and since dataset sizes can vary so much. This experiment adopts a sensible 
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approach that takes the size of the dataset into account. Furthermore, this experiment is 

based on the concept that a neural network trained from a small dataset can be re-trained 

more frequently than a neural network trained from a significantly larger dataset. 

 Next, some research-based approaches to dealing with inter-seasonal and intra-

seasonal variability in datasets are discussed. The easiest solution for dealing with inter-

seasonal variability is creating a separate neural network for each season [21]. However, 

this solution is only appropriate for larger datasets that contain multiple seasons of 

training data. Intra-seasonal variability is also relatively easy to deal with in neural 

network training. One approach involves randomizing the order of training input to the 

neural network. Feeding training data to network this way removes intra-seasonal 

variability, removes any correlation that may exist between consecutively presented 

inputs and outputs, and perhaps most importantly, mitigates the risk that old data will not 

be validated correctly with newer test data [16]. Next, how and why a general validation 

scheme should be implemented in neural network training is considered. 

 General validation is the final issue covered before describing this experiment. 

General validation refers to a collection of techniques for dividing a dataset into training 

and test tuples [5]. While the ideal validation of neural network’s predictive capacity 

comes from generating forecasts on real-world data that is not part of the training dataset, 

this is not always a possibility. General validation techniques are the next best means of 

estimating neural network performance. Cross validation, which involves dividing a 

dataset up into a specified number of folds that each contain training and testing data, 

allows for the development of a neural network that is optimized for predicting non-
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training tuples [23].  Now that significant lessons learned from the survey of existing 

research have been discussed, the details of this experiment are examined next. 
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CHAPTER 5 

 

THE DATASET COMPONENTS OF THE NEURAL NETWORK EXPERIMENT 

Dataset Description 

The base dataset used for this experiment contains 15,893 weather records 

collected from December 21
st
, 2011 to January 9

th
, 2013 via a personal weather collection 

station at 15 minute intervals. Each tuple contains measurements for the following 14 

variables: observation date, indoor humidity, indoor temperature, outdoor humidity, 

outdoor temperature, absolute pressure, wind, gust, wind direction, relative pressure, dew 

point, wind chill, wind level, and gust level. While there are certainly much richer 

datasets available from meteorological databases, this dataset was intentionally chosen 

because it is imperfect. The specific reasons for using this dataset in the experiment are 

explained next. 

There are many reasons for choosing an imperfect dataset. First, the dataset 

provides an opportunity to see how neural networks handle datasets with large date gaps. 

For instance, there is a large gap in collected data from October 12
th

 2012 to December 

29
th

, 2012. Second, the dataset pertains to a geographic location of interest (Statesboro, 

Georgia). Finally, the dataset contains many tuples (506 to be exact) with null values. 

Even high end weather collection systems occasionally fail to collect measurements due 

to power outages, failed sensors, etc. Since it is useful to assess how neural networks 

would perform over periods of time in real environments where measurements may 

occasionally be flawed, this dataset is considered valuable. 
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Prior to generating roll-up datasets, the dataset was cleansed using Python scripts 

in order to standardize date/time formats. After this phase was complete, the dataset was 

loaded into a MySQL database in order to capitalize on its rich set of date and time 

functions to produce the 1-hour, 6-hour, and 24-hour datasets. 

 

Roll-up Dataset Generation 

Before the time-summarized datasets are described, it is helpful to clarify the 

concept of rolling up as it pertains to this experiment. The traditional data warehousing 

concept of roll-up usually refers to data aggregation from a lower granularity to a higher 

granularity [24]. In this experiment, temporally rolling up the base dataset allows for the 

generation of derived attributes not available in the base dataset that can be used as neural 

network inputs. For example, a 24-hour roll-up contains a minimum temperature attribute 

which indicates the minimum temperature observed over the past 24 hours. This 

information is not available in any tuple in the base 15-minute interval dataset. A 

complete listing of derived attributes used at each roll-up level is shown in table 3. 

MySQL date and time functions were applied to the base dataset described above to 

generate 1-hour, 6-hour, and 24-hour datasets containing 3991, 672, and 173 tuples, 

respectively.  

 

Forecast Variable Selection 

Following roll-up dataset generation, regressed values were generated for 

minimum temperature and maximum gust predictions. Additionally, positive/negative 
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classifications were generated for freezing events and gusty events, since these 

phenomena are often predicted in mainstream weather forecasts. In this experiment, a 

positive freezing event is defined as an occurrence of a minimum temperature less than or 

equal to 32 degrees Fahrenheit in a given look-ahead period. Also, a positive gusty event 

is defined as an occurrence of maximum gusts greater than or equal to 10 miles-per-hour 

in a given look-ahead period. From a meteorological standpoint, maximum observed 

gusts of 10 miles-per-hour may not really constitute gusty conditions, but defining the 

threshold as such helps to maintain a somewhat reasonable class distribution of gusty to 

non-gusty events over the various look-ahead ranges in each dataset. 

In this experiment, quantitative precipitation forecasts and rain/non-rain event 

classifications were not generated for several reasons. First, the original dataset does not 

contain enough rain events to allow a neural network to train effectively. Second, rainfall 

is traditionally a very difficult weather phenomenon to predict, even with rich datasets 

that span decades [20]. 

 

Look-Ahead Ranges 

Following roll-up dataset generation and forecast variable selection, a series of 

forecast datasets for each forecast variable at various look-ahead ranges was generated. 

For minimum temperature regression, datasets were generated for 15-minute, 1-hour, 3-

hour, 6-hour, 12-hour, and 24-hour look-ahead ranges. Maximum gust regression datasets 

were generated for 1-hour, 3-hour, 6-hour, 12-hour, and 24-hour look-ahead ranges. For 
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classifying freezing events and classifying gusty events, datasets were generated for 3-

hour, 6-hour, 12-hour, and 24-hour look-ahead ranges.  

 

Predictor Variable Selection 

In this experiment, each forecast is treated as its own separate neural network 

problem, much like an approach suggested in research [9]. Rather than using one constant 

set of predictors for each look-ahead range, a forward stepwise-regression procedure was 

employed at each look-ahead range in order to select predictor variables. To perform this 

regression procedure, the R statistical programming language was used [26]. The 

predictors chosen by step-wise regression for each forecast in the 15-minute, 1-hour, 6-

hour, and 24-hour datasets are shown in tables 2, 3, 4, and 5 respectively. 

 

 

Table 2. 

 
Predictors used for predictions from the base dataset (15 minute interval) 

Possible predictor variables are: month (20), day (21), indoor humidity (22), indoor temperature (23), 

outdoor humidity (24), outdoor temperature (25), absolute pressure (26), wind (27), gust (28), wind 

direction (29), relative pressure (30), dew point (31), wind chill (32), wind level (33), gust level (34) 

Look-ahead 15 minutes 1 hour  3 hours 6 hours  12 hours 24 hours 

Minimum 

temperature 

prediction & 

Freeze event 

prediction 

21,23,25,29 21,22,23,24,

25,27,28,29,

30,31,32,34 

21,22,23,24,

25,27,28,30,

31,32,33 

22,23,24,25,

27,28,29,30,

31,32,33 

20,21,22,23

,24,26,27, 

28,29,30,31

,32,33,34 

20,22,23, 

24,25,26, 

28,29,30, 

31,32,33, 

34 

Maximum 

gust 

prediction & 

Gusty event 

prediction 

NA 20,21,22,23,

25,26,27,28,

29,30,31,32,

33,34 

20,21,23,24,

25,26,27,28,

30,31,33,34 

20,21,23,24,

25,26,27,28,

29,30,33,34 

20,21,22,23

,25,26,27, 

28,29,30, 

31,34 

20,21,22, 

23,24,26, 

27,28,29, 

30,31,32 
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Table 3. 

 
Predictors used for predictions from the 1 hour roll-up dataset 

Possible predictor variables are: month (1), day(2), average indoor humidity (3), average indoor 

temperature (4), average outdoor humidity (5), average outdoor temperature (6), minimum outdoor 

temperature (7), maximum outdoor temperature (8), average absolute pressure (9), average wind (10), 

minimum wind (11), maximum wind (12), average wind direction (13), average gust (14), minimum gust 

(15), maximum gust (16), average relative pressure (17), average dew point (18), average wind chill (19), 

average wind level (20), average gust level (21) 

Look-ahead 15 minutes 1 hour  3 hours 6 hours  12 hours 24 hours 

Minimum 

temperature 

prediction & 

Freeze event 

prediction 

5,6,7,8,9,18, 

21 

3,5,7,9,14,18 3,5,6,7,8,9, 

10,11,14,19,

20 

1,2,3,4,5,6,7,

8,10,11,13, 

17,18,19,20 

1,2,3,4,5,6,

7,10,11,15,

17,18,19,20

,21 

1,2,3,5,6,7

,9,10,11, 

12,15,18, 

19,20,21 

Maximum 

gust 

prediction & 

Gusty event 

prediction 

NA 5,6,7,11,14, 

16,17,18,19,

20,21 

4,5,6,8,9,13,

14,16,17,18,

20,21 

1,2,4,5,6,8,9,

13,14,16,17,

18,20,21 

1,2,3,4,5,9,

13,15,16,17

,19 

1,2,3,4,5,6

,9,13,15, 

16,17,18 

 

 

 

Table 4. 

 
Predictors used for predictions from the 6 hour roll-up dataset 

Possible predictor variables are: month (1), day(2), average indoor humidity (3), average indoor 

temperature (4), average outdoor humidity (5), average outdoor temperature (6), minimum outdoor 

temperature (7), maximum outdoor temperature (8), average absolute pressure (9), average wind (10), 

minimum wind (11), maximum wind (12), average wind direction (13), average gust (14), minimum gust 

(15), maximum gust (16), average relative pressure (17), average dew point (18), average wind chill (19), 

average wind level (20), average gust level (21) 

Look-ahead 15 minutes 1 hour  3 hours 6 hours  12 hours 24 hours 

Minimum 

temperature 

prediction & 

Freeze event 

prediction 

4,5,6,7,8,10, 

11,12,15,19 

3,4,5,6,7,8, 

15,19,20 

5,7,8,15,16, 

21 

5,7,8,15,21 2,3,7,11,18,

21 

2,3,7,8,9, 

10,12,14, 

18,20 

Maximum 

gust 

prediction & 

Gusty event 

prediction 

NA 4,10,11,16, 

20,21 

4,5,8,10,13, 

16,17,18,20,

21 

4,5,9,11,12, 

13,15,16,17 

3,4,9,12,13,

15,16,17 

2,5,6,9,12,

13,15,16, 

17 
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Table 5. 

 
Predictors used for predictions from the 24 hour roll-up dataset 

Possible predictor variables are: month (1), day(2), average indoor humidity (3), average indoor 

temperature (4), average outdoor humidity (5), average outdoor temperature (6), minimum outdoor 

temperature (7), maximum outdoor temperature (8), average absolute pressure (9), average wind (10), 

minimum wind (11), maximum wind (12), average wind direction (13), average gust (14), minimum gust 

(15), maximum gust (16), average relative pressure (17), average dew point (18), average wind chill (19), 

average wind level (20), average gust level (21) 

Look-ahead 15 minutes 1 hour  3 hours 6 hours  12 hours 24 hours 

Minimum 

temperature 

prediction & 

Freeze event 

prediction 

7,10,14 2,3,7,9,11,15

,16 

2,3,7,8,9,11,

15,16 

2,3,7,9,11,15

,16,19 

2,4,7,9,11, 

16,19 

7,9,11,15,

16,19 

Maximum 

gust 

prediction & 

Gusty event 

prediction 

NA 2,12,15,16 11,15,16 11,12,16 2,7,16 4,16,17 

 

 

Forward stepwise-regression is a statistical procedure that is used to identify 

suitable predictor variables. Beginning with a predictor variable that has the highest 

correlation to the forecast variable, it steps forward and tests combinations of other 

predictor variables and chooses the set of predictors that explains the greatest variance in 

the forecast variable [2]. In the absence of a priori meteorological knowledge about what 

predictors are best suited for a given forecast variable, stepwise regression is a sensible 

approach to selecting predictor variables. However, there are some limitations that should 

be noted. The stepwise-regression procedure is linear in nature and is intended to choose 

predictors suitable for a linear regression model. It is possible that this procedure can fail 

to capture the complex, non-linear nature of weather phenomena [9]. 
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Data Preprocessing 

After predictor variables were identified, datasets were generated for each look-

ahead range in each roll-up level using MySQL database queries. For the reasons 

described in chapter 4, each dataset was min-max normalized. 
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CHAPTER 6 

 

APPLYING NEURAL NETWORKS TO THE DATASETS 

Software Frameworks 

This experiment incorporated two Java software frameworks to implement neural 

networks. RPROP and PSO neural networks were implemented using the Encog neural 

network framework [10]. RBF neural networks were implemented using the Weka 

(Waikato Environment for Knowledge Analysis) framework [27]. All Java source code 

was compiled and executed using Java Standard Runtime Environment 1.7 update 15. 

 

Test Machine Description 

 Dataset generation, data preprocessing, neural network training, and testing were 

all performed on an HP Pavilion dv6 Notebook with eight gigabytes of RAM and four 

2.30GHz Intel Core i5 processors. The 64-bit edition of Linux Mint 14 operating system 

was used as the main testing platform in order to capitalize on rich shell scripting 

functionality, which aided tremendously in automating much of the neural network 

testing. 

 

Basic Process 

The basic steps taken to apply a neural network to a given forecasting problem are 

as follows: 

1. Export the dataset as a comma separated value (CSV) file from MySQL. 
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2. Divide the dataset into 10 separate folds, each containing a training and 

test-data set (10-Fold Cross Validation). 

3. For each fold, train the neural network using the training dataset. 

4. Using the trained neural network and the test dataset in each fold, generate 

regressions if predicting minimum temperature or maximum gust 

numerical values. If predicting freezing events or gusty events, generate 

classifications. 

5. If performing a regression, average the RMSE from each validation fold. 

If performing a classification, average the HSS from each validation fold. 

 

Selecting a Neural Network Architecture 

As mentioned earlier in chapter 2, there are myriad ways to determine the number 

of hidden neurons. In this experiment, a specific forecast from a specific dataset is 

viewed as a distinct neural network problem. For instance, across all datasets, a distinct 

set of neural networks was trained to predict minimum temperature at the 1-hour look-

ahead range, while a different distinct set of neural networks was trained to predict 

minimum temperature at the 3-hour look-ahead range. This process was repeated for each 

look-ahead forecast in every dataset. The combination of partitioning each forecast 

problem into a set of neural network problems and performing 10-fold cross validation 

for each neural network in each set made it unfeasible to adopt a trial and error method to 

determine the optimum number of hidden layers and hidden layer neurons. The trial and 

error method seems more appropriate for fine-tuning a neural network used for a specific 
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forecasting problem, such as determining the optimum neural network structure for 

predicting maximum gust values at the 12-hour look-ahead range from the 1-hour dataset. 

In order to generate a variety of neural network topologies, this experiment used 

an approach based off the number of inputs and outputs in the given forecasting problem. 

An existing strategy suggests that the number of hidden layer neurons should be in the 

range ]2,2[ 2/1 mnn  , where n is the number of input neurons and m is the number of 

output neurons [14]. This suggestion formed the basis for topology generation in this 

experiment. Table 6 describes the neural network topology scheme that was applied to 

each forecasting problem and configuration details about each type of neural network 

used in this experiment. 

 

 

Table 6. 

 
Neural network configuration details. 

 Each topology is in the form i-h-o, where i is the number of input neurons, h is the 

number of hidden neurons, and o is the number of output neurons. 

 

oi  2max
2

max
mid




i
 

 Topology 1 Topology 2 Topology 3 Topology 4 Topology 5 

 i-i-o i-mid/2-o i-mid-o i-max-o i-i/2-o 

Improvement 

Strategies 

(RPROP) 

0.01,0.06,51 

0.01,0.2,53 

 

0.01,0.06,51 

0.01,0.2,53 

 

0.01,0.06,51 

0.01,0.2,53 

 

0.01,0.06,51 

0.01,0.2,53 

 

0.01,0.06,51 

0.01,0.2,53 

 

Number of 

particles (PSO) 
20 20 20 20 20 

RBF Function Gaussian Gaussian Gaussian Gaussian Gaussian 

For minimum temperature prediction using RPROP networks, we used an improvement strategy of 0.01, 

0.06, 5. For the remaining three variables, we used an improvement strategy of 0.01, 0.2, 5. The 

improvement strategy is an Encog local minima avoidance feature [10]. The first number represents the 

target error rate. The second number represents the reset threshold. The final number represents the 

number of cycles. If the neural network does not produce an error rate below the threshold in the specified 

number of cycles, then the weights and biases are reset to random values. 
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Unfortunately, it was necessary to stray from the network topology scheme in 

some cases. For instance, when using RPROP and PSO neural networks to perform 

classification of gusty events on large datasets, such as the 1-hour and 15-minute 

datasets, it was necessary to sidestep the general scheme described in table 6 and increase 

the number of hidden layer neurons dramatically in order to reach any convergence at all. 

This possible over parameterization may have skewed the test results and the assessment 

of RPROP and PSO network performance in classifying gusty events with large datasets. 

Finally, it is necessary to describe the reasons for not expanding past one layer of 

hidden neurons for RPROP and PSO neural networks (RBF neural networks only have 

one hidden layer). During initial testing of RPROP and PSO neural networks using two 

hidden layers, extremely high convergence times were observed across all forecasting 

problems with no marked improvement in RMSE or HSS scores. In order to collect as 

much information as possible from a variety of look-ahead ranges and time-summarized 

datasets, it was necessary to abandon testing with two hidden layers. 
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CHAPTER 7 

 

EXPERIMENT RESULTS AND DISCUSSION 

Minimum Temperature Prediction 

Shown below in figures 3, 4, and 5 are the results of applying RPROP, PSO, and 

RBF neural networks on the experimental datasets to determine minimum temperature 

predictions over specified look-ahead ranges. Each figure shows the performance of a 

given neural network type across various datasets as measured by RMSE values 

calculated at the 15-minute, 1-hour, 3-hour, 6-hour, 12-hour, and 24-hour look-ahead 

ranges. 

A RMSE prediction threshold line is drawn at 0.1, although this value was 

arbitrarily chosen. What is considered “good” as an RMSE value can vary from 

application to application depending on what is acceptable to end users and there is no 

universally agreed upon meteorological standard. For this experiment, an average 

difference of 10% between the squared differences of predicted and observed values is 

acceptable. Any points that fall above this threshold line represent poor forecasts and any 

points that fall below this threshold represent feasible forecasts. 

In addition to plotting the actual RMSE values calculated at each look-ahead 

range, lines of best fit are shown for these RMSE values to indicate the performance 

characteristics of each dataset (15-minute, 1-hour, 6-hour, and 24-hour) as look-ahead 

ranges increase. Intuitively, RMSE values are expected to increase as forecast ranges 

increase, so sensible trend lines should exhibit positive slopes. Also, the point where a 

given line of best fit intersects with the prediction threshold line reveals the extent to 
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which a neural network is generating feasible forecasts for a given dataset. The rightmost 

intersection represents the dataset whose neural networks produce the most feasible 

forecasts (the most dots under the prediction threshold line). 

 

 

 
 

Figure 3. Minimum temperature prediction using the RPROP neural network. 
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Figure 4. Minimum temperature prediction using the PSO neural network. 

 

 

 
Figure 5. Minimum temperature prediction using the RBF neural network. 
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Figures 3 and 4 illustrate that RPROP and PSO networks generate very strong 

forecasts at nearly all look-ahead ranges using most datasets. Also, in figures 3 and 4, the 

intersection of the 15-minute interval line of best fit with the prediction threshold line 

occurs at a point further right than any other intersection. This indicates that the RPROP 

and PSO neural networks perform better on the base 15-minute interval datasets than on 

the rolled-up datasets as look-ahead range increases. This forecast performance is likely 

due to the larger number of training tuples available in the 15-minute interval datasets 

than in the rolled-up datasets. The presence of both positively and negatively sloped lines 

of best fit in figure 5 reveals that the RBF neural network performed erratically on these 

datasets. Figure 5 also shows a large amount of scatter of RMSE values, which indicates 

poor overall forecasting performance for the RBF neural networks. In conclusion, 

RPROP and PSO neural networks can produce feasible minimum temperature regressions 

at all look-ahead ranges using any dataset. 

In addition to measuring forecast accuracy, convergence times were measured for 

neural networks trained on each dataset. Figure 6 shows the convergence time 

performance of all neural networks using the largest dataset (the 15-minute dataset). Most 

neural networks converged in similar time up the 6-hour look-ahead. Although RBF 

neural networks did not perform as well as RPROP and PSO networks in regressing 

minimum temperature values, they exhibited the optimum line of best fit for convergence 

times, particularly after the 12-hour look-ahead range. Next, the experimental results of 

neural network performance on forecasting maximum gust values are discussed. 
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Figure 6. Convergence times for minimum temperature prediction. 

 

Maximum Gust Prediction 

Shown below in figures 7, 8, and 9 are the results of applying RPROP, PSO, and 

RBF neural networks on the experimental datasets to determine maximum gust 

predictions over the specified look-ahead ranges. The relatively larger number of RMSE 

values above the prediction threshold line indicates that maximum gust prediction 

functions are tougher for neural networks to approximate than minimum temperature 

functions.  

While RPROP and RBF networks were able to reach convergence at all look-

ahead ranges, PSO proved unable to converge past the 12-hour look-ahead range. It is 

possible that PSO is not well-suited to approximating the function that models maximum 
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gusts past this look-ahead range, which highlights the importance of testing a variety of 

neural networks in a given forecasting problem. Figure 9 reveals that RBF networks did 

not perform as well as RPROP networks, particularly at and above the 3-hour look-ahead 

range. It is interesting to note that the 24-hour roll-up provided very low RMSE values up 

to the 12-hour look-ahead range for the RPROP network. Perhaps the maximum gust 

dataset is well-suited for time summarization at the 24-hour level. Finally, figure 7 

corroborates earlier observations in that it shows the line of best fit for the 15-minute 

dataset intersecting at the rightmost point on the threshold prediction line. This 

intersection location indicates that using the larger dataset yields more accurate RMSE 

values as look-ahead range increases. In conclusion, these figures illustrate that the 

RPROP neural network is the optimum choice and yields feasible maximum gust 

predictions at the 1-6 hour look-ahead range. 
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Figure 7. Maximum gust prediction using the RPROP neural network. 

 

 

 
Figure 8. Maximum gust prediction using the PSO neural network. 
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Figure 9. Maximum gust prediction using the RBF neural network. 

 

 

Figure 10, shown below, depicts the convergence times and respective lines of 

best fit per neural network type on the 15-minute dataset. The extreme increase in 

convergence time for the RPROP algorithm reinforces the earlier observation that the 

maximum gust function becomes extremely difficult to approximate at the 6-hour look-

ahead range. Again, the RBF network exhibited the fastest convergence times across all 

look-ahead ranges by a significant margin, although it performed worse in terms of 

prediction accuracy as shown in figure 9. Next the ability of neural networks to classify 

freezing events using the defined datasets is analyzed. 
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Figure 10. Convergence times for maximum gust prediction. 

 

 

Freezing Event Classification 

As mentioned in chapter 3, a skill score gives a more reliable understanding of the 

predictive capabilities of a classification system than a numeric error measure. An 

arbitrary HSS prediction threshold of 0.70 is drawn in each figure to illustrate the point 

below which forecasts are deemed poor. Intuitively, an HSS score of 0.70 means that the 

forecasts from the experiment’s neural-network based system represent a 70% 

improvement over forecasts generated at random by a system that knows nothing about 

the experimental data. 

Shown below in figures 11, 12, and 13 are the results of applying RPROP, PSO, 

and RBF neural networks on the experimental classification datasets to determine 
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freezing events. A positive freezing event indicates that a minimum temperature equal or 

less than 32 degrees Fahrenheit was observed in the specified look-ahead range. The 

presence of both positively and negatively sloped lines of best fit in the RPROP and PSO 

models immediately calls into question their effectiveness at classifying freezing 

temperatures. Intuitively, HSS scores are expected to decrease as the look-ahead range 

increases, so it does not make sense for a line of best fit of HSS scores to have a positive 

slope. Additionally, both the RPROP and PSO networks exhibit a high amount of scatter 

for plotted HSS values above and below the prediction threshold line, which indicates 

that they may have difficulty in approximating the function that classifies events as 

freezing or not freezing. 

While RPROP and PSO neural networks did not perform remarkably well in 

classifying freezing events, the RBF neural network exhibited sensible characteristics. 

For most roll-up levels, the HSS values decrease as the look-ahead range decreases, 

which makes sense. Additionally, the RBF neural network’s line of best fit for the 15-

minute dataset has the smallest negative slope, which indicates that it will have the 

rightmost intersection with the prediction threshold line. In conclusion, RBF neural 

networks trained using the 15-minute dataset render feasible forecasts across all look-

ahead ranges. 
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Figure 11. Predicting freezing events using the RPROP neural network. 

 

 

 
Figure 12. Predicting freezing events using the PSO neural network. 
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Figure 13. Predicting freezing events with the RBF neural network. 

 

Figure 14 illustrates the convergence times observed when using neural networks 

to classify positive and negative freezing events from the 15-minute dataset, which 

contains the largest amount of tuples. This figure shows that after the 6-hour look-ahead 

range, PSO convergence times increased almost exponentially, which indicates that PSO 

neural networks may not be suitable for classifying freezing events. In contrast, RPROP 

and RBF neural networks both exhibited relatively small-sloped lines of best fit across all 

look-ahead ranges. Although RPROP exhibited lower convergence times than RBF, RBF 

significantly outperformed RPROP in classifying freezing events, so for the experimental 

dataset, RBF is the optimum neural network for classifying freezing events. 
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Figure 14. Convergence times for neural networks predicting freezing events. 

 

Gusty Event Classification 

In addition to classifying freezing events, this experiment tested how effectively 

neural networks can classify gusty events. Again, a gusty event is considered to be 

positive for a maximum gust of 10 miles-per-hour occurring in a given forecast range and 

negative otherwise. This proved to be the toughest test. Unfortunately, PSO networks 

were unable to converge on any dataset, so they are omitted here.   

As figure 15 reveals, the RPROP network failed to reach convergence on the base 

15-minute dataset. Additionally, the presence of positively and negatively sloped lines of 

best fit indicates that RPROP networks may not be suitable for approximating the gusty 

classification function. Also, the 1-hour dataset, which offers the most training data after 

the 15-minute data set, exhibits a positively sloped line of best fit which does not make 
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sense. How is the HSS actually getting better as time goes on? One possibility is that the 

RPROP networks have been over-parameterized in an attempt to reach a convergence. In 

turn, this could have caused the RPROP networks to overfit the training data, which may 

have artificially caused HSS values to increase with look-ahead ranges. However, 

previous analysis of classifying freezing events depicted that RPROP neural networks did 

not perform as well as RBF neural networks. Unfortunately, this experiment did not 

produce any conclusive evidence of RPROP and PSO performance in classifying gusty 

events. 

Whereas the RPROP neural network performed rather indeterminably in the 

classification of gusty events, the RBF neural network performed much more stably. 

Figure 16 reveals that except for the 1-hour dataset’s line of best fit, the lines of best fit 

exhibited negative slopes to indicate decreasing HSS values over increased look-ahead 

ranges, which is intuitively sound. However, the RBF neural network did generate a 

majority of HSS values under the prediction threshold limit. Using the 15-minute dataset 

as a guide, the RBF neural network prediction system only generates HSS scores between 

0.5 and 0.6. While the 24-hour dataset did produce HSS values above the prediction 

threshold line at the 6-hour and 12-hour look-ahead ranges, it is likely that this level of 

roll-up did not provide enough training information to the neural network. In conclusion, 

these observations illustrate that gusty events cannot be feasibly predicted using RBF 

networks. However, it is worth noting that RBF neural networks exhibited remarkably 

better convergence times across all look-ahead ranges than RPROP neural networks, as 

indicated in figure 17. 
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Figure 15. Predicting gusty events with the RPROP neural network. 

 

 

 
Figure 16. Predicting gusty events with the RBF neural network. 
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Figure 17. Convergence times for gusty event prediction. 
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CHAPTER 8 

 

CONCLUSION 

Feasibility Assessment 

This paper examines the effectiveness of using neural networks to forecast 

weather variables, both in existing research and with an experimental dataset. First, it 

presents a survey of existing literature to examine how neural networks have been used to 

generate both regression and classification forecasts. From this survey, a body of 

important lessons learned have been identified and discussed, such as the importance of 

normalizing data, methods of dealing with imperfect training data, and approaches to 

selecting predictor variables. 

Following the survey of neural network research, three neural network 

architectures are applied to experimental datasets in order to forecast minimum 

temperature values, maximum gust values, freezing event classifications, and gusty event 

classifications. This experiment revealed that RPROP and PSO neural networks can 

predict minimum temperature values very effectively up to 24 hours out regardless of the 

base dataset used. It also illustrated that RPROP and RBF neural networks can generate 

reasonable forecasts of maximum gust values in the 3 to 6 hour range. Next, it showed 

that RBF neural networks can be applied to our dataset to classify freezing events with 

great accuracy up to 24 hours out, whereas RPROP and PSO neural networks did not 

perform well in this task. Additionally, the experiment explains that while RBF neural 

networks exhibited the most reasonable behavior when classifying gusty events, they 

were not able to generate forecasts with HSS scores above 0.6 for even the closest of 
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look-ahead ranges. In most cases, particularly when acting as a classifier, RBF neural 

networks converged significantly faster than their RPROP and PSO counterparts. In 

conclusion, the results of the experiment show sufficient reason to investigate the 

predictability of other weather variables present in the base dataset using neural 

networks. 

In nearly all forecasts generated, using the 15-minute dataset generally produced 

more accurate results than using rolled-up datasets. For rolled-up datasets, the derived 

attributes in the training tuples were not able to compensate for the loss of available 

training tuples. This observation mirrors the general idea of neural networking that the 

more examples of training data a neural network processes, the more successful it will be 

in regressing or classifying variables. 

 

Acknowledgement of Limitations 

While the results of the experiment are well-founded, it is appropriate to 

acknowledge several shortcomings. First, the predictive models built from the neural 

networks were not used to forecast actual weather, but instead validated using 10-fold 

cross validation. While cross-validation is a powerful and statistically proven verification 

method, it is not as good an indicator of predictive performance as real-world validation 

is. Next, the convergence times required for RPROP and PSO networks were severely 

underestimated, particularly as roll-up levels decreased and datasets became larger. In 

particular, extremely high convergence times were observed when using RPROP and 

PSO networks to classify positive and negative gusty events. To compensate, the number 
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of hidden layer neurons was increased dramatically, which may have over-parameterized 

these particular neural networks. Ultimately, this means that the assessment of RPROP 

and PSO performance in classifying gusty events may be skewed. 

 

Future Work 

There are many possibilities to expand this experiment into future work. 

Examining the effect of incorporating a distributed computing architecture on 

convergence times and forecast accuracy is one such avenue. Additionally, it would be 

worthwhile to train neural networks from a more recent dataset and subsequently use 

them as real-world forecasting system in order to determine their forecasting capabilities. 

Next, it would be useful to examine how reducing the number of predictor variables 

would affect neural network performance and convergence times by applying basic set 

theory to the predictor variables listed in tables 2, 3, 4, and 5. In other words, for a given 

forecast problem, predictor variables that are common to a given temporal roll-up across 

all look-ahead ranges could be used, or predictor variables that are common to a given 

look-ahead range across all temporal roll-ups could be used. Finally, it would be 

worthwhile to assess the predictability of additional variables in the dataset, from both a 

regression and classification standpoint. 
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