
Georgia Southern University

Digital Commons@Georgia Southern

Electronic Theses and Dissertations Graduate Studies, Jack N. Averitt College of

Spring 2014

Polymorphic Data Modeling
Steven R. Benson

Follow this and additional works at: https://digitalcommons.georgiasouthern.edu/etd

 Part of the Databases and Information Systems Commons

Recommended Citation
Benson, Steven R., "Polymorphic Data Modeling" (2014). Electronic Theses and
Dissertations. 1126.
https://digitalcommons.georgiasouthern.edu/etd/1126

This thesis (open access) is brought to you for free and open access by the Graduate Studies, Jack N.
Averitt College of at Digital Commons@Georgia Southern. It has been accepted for inclusion in
Electronic Theses and Dissertations by an authorized administrator of Digital Commons@Georgia
Southern. For more information, please contact digitalcommons@georgiasouthern.edu.

http://digitalcommons.georgiasouthern.edu/etd
http://digitalcommons.georgiasouthern.edu/etd
https://digitalcommons.georgiasouthern.edu/
https://digitalcommons.georgiasouthern.edu/etd
https://digitalcommons.georgiasouthern.edu/cogs
https://digitalcommons.georgiasouthern.edu/etd?utm_source=digitalcommons.georgiasouthern.edu%2Fetd%2F1126&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/145?utm_source=digitalcommons.georgiasouthern.edu%2Fetd%2F1126&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.georgiasouthern.edu/etd/1126?utm_source=digitalcommons.georgiasouthern.edu%2Fetd%2F1126&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@georgiasouthern.edu

1

POLYMORPHIC DATA MODELING

by

STEVEN BENSON

(Under the Direction of Vladan Jovanovic)

ABSTRACT

There are currently no data modeling standards for modeling NoSQL document store databases. This work

proposes a standard to fill the void. The proposed standard is based on our new data modeling pattern named

The Polymorphic Table Pattern. The pattern embraces the “schemaless” nature of document store NoSQL while

allowing the data modeler to use his or her existing skillsets. The concepts of our proposed modeling have been

demonstrated against MongoDB.

INDEX WORDS: Polymorphism, Data modeling, NoSQL, IDEF1X, MongoDB, Document store

2

POLYMORPHIC DATA MODELING

by

STEVEN BENSON

B.S., Winthrop University, 1998

A Thesis Submitted to the Graduate Faculty of Georgia Southern University in

Partial Fulfillment of the Requirements for the Degree

MASTER OF SCIENCE

STATESBORO, GEORGIA

3

©2014

STEVEN BENSON

All Rights Reserved

4

POLYMORPHIC DATA MODELING

By

STEVEN BENSON

Major Professor: Vladan Jovanovic

 Committee: Lixin Li

 Wenjia Li

Electronic Version Approved:

May, 2014

5

DEDICATION

To my Lord and Savior Jesus Christ, to whom I give all the honor and credit for the Polymorphic Table modeling

pattern. I thank You for entrusting this wonderful discovery to me.

6

ACKNOWLEDGEMENTS

I would like to thank Dr. Vladan Jovanovic for his patience, time, and wisdom for helping through this process. I

have appreciated all the guidance that he has provided over the years. Last but not least, I would like to thank

my family. I would especially like to say thank you to my beautiful and loving wife, who encouraged me to

complete my degree when I felt like giving up. I would also like to thank my two beautiful little girls who have

loved me unconditionally even though our family time was reduced while I was in the master’s program. Daddy

loves you.

7

Table of Contents

ACKNOWLEDGEMENTS………..6

LIST OF TABLES ……….11

LIST OF FIGURES…………………………………………………………………………………...12

CHAPTER 1 ... 14

1.1 Purpose of Study………14

CHAPTER 2 ... 17

2.1 NoSQL Data Modeling ………..17

2.2 Conceptual XML Data Modeling…….17

2.3 E-R Model Based Approaches ………18

2.4 Hierarchical Based Approaches……..20

CHAPTER 3 ... 21

3.1 General …….…21

3.2 Embedding………………………………………………………………………………………………..21

3.2.1 One to One Relationship .. 21

3.2.2 One to Many Relationship ... 22

3.3 References…….23

3.3.1 One to Many Relationships .. 23

3.4 Comparisons to XML Schema Styles………………………………………………………………………………………………………...25

3.4.1 Embedded vs Russian Doll ... 25

3.4.2 References vs Russian Doll ... 26

3.4.3 Embedded vs Salami Slice .. 26

3.4.4 References vs Salami Slice ... 26

3.4.5 Embedded vs Venetian Blind ... 26

3.4.6 References vs Venetian Blind... 26

3.4.7 Embedded vs Garden of Eden.. 26

3.4.8 References vs Garden of Eden ... 27

CHAPTER 4 ... 28

4.1 Overview……….28

4.2 General NoSQL Data Model Requirements………………………………………………………………………………………………28

4.2.1 NoSQL Implementation Agnosticism ... 28

8

4.2.2 Formal Foundations ... 28

4.2.3 Data Description .. 28

4.2.4 Hierarchical Representation .. 28

4.2.5 Graphical Representation .. 29

4.3 Data Modeling Construct Requirements…………………………………………………………………………………………………..29

4.3.1 Entity Identification ... 29

4.3.2 Identifying Property ... 29

4.3.3 Unique Property Constraint ... 29

4.3.4 Required/Optional Property .. 29

4.3.5 Data Type Property .. 29

4.3.6 Complex Objects .. 30

4.3.7 Cardinality .. 30

CHAPTER 5 ... 31

5.1 Overview...31

5.2 New Approach: Polymorphic Pattern Formalization and Explanation……………………………............................32

5.2.1 Polymorphic Table Entity (PTE) .. 32

5.2.2 Polymorphic Table Column (PTC) .. 32

5.2.3 Polymorphic Table Column Simple (PTCS) ... 33

5.2.4 Polymorphic Table Column Value Simple (PTCVS) .. 33

5.2.5 Polymorphic Table Column Complex (PTCC) ... 33

5.2.6 Polymorphic Table Column Attribute (PTCA) .. 34

5.2.7 Polymorphic Table Column Value Complex (PTCVC) ... 34

5.2.8 Polymorphic Table Child Column Bridge (PTCCB) .. 34

5.2.9 Polymorphic Table to Polymorphic Table Bridge (PTB) and Owner Container (OC) 35

5.2.10 Standalone Polymorphic Table Entity (SPTE) ... 35

CHAPTER 6 ... 36

6.1 Relational Model (RM) Example…….36

6.2 RM to Logical Model Transformation – Parent Entity ……………………………………………………………………..36

6.3 RM to Logical Model Transformation – Super-type and Subtype………………………………….............................37

6.4 RM to Logical Model Transformation – PTE’s Dependent Entity……………………………………………………………...39

6.5 RM to Logical Transformation – PTB and OC..40

6.6 Physical Modeling Application………41

6.6.1 Table Renaming ... 41

9

6.6.2 Polymorphic Table Key Specification ... 41

6.6.3 SQL Data Type Specification .. 42

6.6.4 Detailed Primary Key Specification .. 43

6.6.5 Detailed Index Specification .. 43

6.6.6 Referenced Attribute Identification ... 44

CHAPTER 7 ... 45

7.1 Meta-schema Approach Explanation…………………………………………………………………..45

7.1.1 Schema.table.global.columns Collection ... 46

7.1.2 Schema.tables Collection ... 46

7.1.3 Schema.table.containers Collection .. 46

7.1.4 Schema.table.columns.simple Collection .. 47

7.1.5 Schema.table.columns.complex Collection ... 47

CHAPTER 8 ... 49

8.1 Model Requirements Implementation……………………………………………………………………………………………………..49

8.1.1 General NoSQL Data Model Requirements ... 49

8.1.2 Modeling Constructs .. 50

8.2 Meta-Schema Enforced Documents (Experimental Data)…………………………………………………………………………52

8.2.1 PT_Project Document Validation ... 52

8.2.2 PT_ContractChangeOrder Document Validation ... 55

CHAPTER 9 ... 57

9.1 Required Skillset – IDEF1x………..57

9.2 Required Skillset – Data Model Refactoring……………………………………………………………………………………………..58

9.3 Required Skillset – XML……...59

CHAPTER 10 ... 61

Bibliography………..62

APPENDIX A……65

 A.1 Meta-schema Collection – Schema.tables…………………………………………………………………………………………...65

 A.2 Meta-schema Collection – Schema.table.containers…………………………………………………………………………...66

 A.3 Meta-schema Collection – Schema.table.global.columns…………………………………………………………………….68

 A.4 Meta-schema Collection – Schema.table.columns.simple……………………………………………………………………69

 A.5 Meta-schema Collection - table.columns.complex………………………………………………………………………………72

APPENDIX B………..78

 B.1 MongoDB……….78

10

 B.1.1 What is MongoDB? ... 78

 B.1.2 Document Object .. 78

 B.1.3 Collection Object ... 78

 B.1.4 Data Types ... 79

 B.1.5 Indexing ... 79

 B.2 JSON……..79

 B.2.1 What is JSON? ... 79

 B.2.2 JSON Object ... 80

 B.2.3 Value ... 80

 B.2.4 Array .. 81

 B.3 XML Schema Definition Language……81

 B.3.1 What is XML Schema Definition Language? ... 81

 B.3.2 XSD Features .. 82

APPENDIX C……86

 C.1 Mongo Data Import Statements……..86

APPENDIX D………..87

 D.1 Schema.tables……..87

 D.2 Schema.table.global.columns………...88

 D.3 Schema.table.containers……..88

 D.4 Schema.table.columns.simple………..89

 D.5 Schema.table.columns.complex………………………………………………………………………………………………………..108

 D.6 PT_Project……124

 D.7 PT_Drawing……….125

 D.8 PT_ContractChangeOrderMemo……………………………………………………………………………………………………….127

 D.9 SPT_Contractor…………………………………………………………………………………...……………………………………………128

 D.10 PT_ContractChangeOrder…….129

 APPENDIX E………132

11

LIST OF TABLES

Table 1 - Examples of supported SQL data types .. 42

Table 2. Relationships from logical relational model .. 58

Table 3 XSD data types .. 82

Table 4 XSD indicators ... 84

12

LIST OF FIGURES

Figure 1. IDEF1x entity relationship .. 14

Figure 2 NoSQL one to one embedded relationship ... 22

Figure 3. No SQL one to many embedded relationship .. 22

Figure 4. Owner document to be referenced .. 23

Figure 5 – Owner document embedded in Car document .. 24

Figure 6. Car documents referencing owner document ... 25

Figure 7. Polymorphic Table pattern ... 31

Figure 8. Relational Model Exemplar .. 36

Figure 9 – Relational exemplar post refactoring ... 38

Figure 10 Car XML .. 39

Figure 11 – PTE Key specification .. 42

Figure 12 - Index Specification .. 44

Figure 13 – Schema.table.global.columns sample .. 46

Figure 14 – Schema.tables sample .. 46

Figure 15 – Schema.tables.containers sample .. 47

Figure 16 – Schema.table.columns.simple sample ... 47

Figure 17- Schema.table.columns.complex sample .. 48

Figure 18 – PT_Project document ... 52

Figure 19 – PT_Project meta-schema .. 52

Figure 20 – Container document ... 53

Figure 21 – PT_Project PTCS meta-schema ... 54

Figure 22 – PT_ContractChangeOrder document ... 55

Figure 23 – PT_ContractChangeOrder meta-schema .. 55

13

Figure 24 MongoDB document example ... 78

Figure 25 JSON Object example.. 80

Figure 26. JSON Array example ... 81

Figure 27 XML sample document .. 83

Figure 28 XSD sample document ... 83

Figure 29 Logical Model - PT_ContractChangeOrderMemo ... 132

Figure 30 Logical Model – PTCC_Drawing_DrawingIndex ... 133

Figure 31 Logical Model – OC diagram .. 134

The NoSQL database movement’s rise in popularity has created a new frontier for data modeling. The

“schemaless” nature of NoSQL presents new challenges for data modeling. The major data model of the past

two decades is the relational data model

the relational model, data is stored in schema defined tables

store a single value [32]. NoSQL does not follow the relational model’s notion of defined schema. Instead,

NoSQL databases are often described as “schemaless”

does not align with traditional data modeling. A NoSQL data model would provide the data modeler with the

tools to effectively integrate the NoSQL

warehousing environment). The resulting model would serve as a blueprint for the data integration.

Since our work is focused on the analysis of data prior to its storage in a NoSQL database, we will

investigate the viability of using an interim data model (which ca

Eventually, the interim model can be added to metadata (to provide necessary comprehensive data governance)

and systematically translated into NoSQL. We will use IDEF1x standard data modeling notation in this pa

reference entity relationship notation (as it is very close to the relational model). The mapping between IDEF1x

and the relational model is direct entities

relational attribute (table column). Using a contemporary tool such as Erwin for visualization of data models,

the modeler selects an attribute as a primary key

a result, the PK is automatically passed as e

the latter case, additional semantics will need to be captured to specify optional/mandatory status of the FK).

During the transformation of the logical model to the physical model, data types are assigned to each

entity’s attributes. The model can be transformed to DDL statements through an automated process, and the

statements are used to generate the new databas

but fails for the NoSQL document store model. We will use the term

NoSQL databases for the remainder of the paper.

One problem with current data modeling te

aspect of document store NoSQL databases. The term

CHAPTER 1

INTRODUCTION

1.1 Purpose of Study

vement’s rise in popularity has created a new frontier for data modeling. The

“schemaless” nature of NoSQL presents new challenges for data modeling. The major data model of the past

two decades is the relational data model [32]. The relational data model is built upon Codd’s research

tional model, data is stored in schema defined tables [10]. The columns which define the table

. NoSQL does not follow the relational model’s notion of defined schema. Instead,

NoSQL databases are often described as “schemaless” [32]. The schemaless nature of the NoSQL databases

does not align with traditional data modeling. A NoSQL data model would provide the data modeler with the

NoSQL data with related data from relational database sources (e.g. data

environment). The resulting model would serve as a blueprint for the data integration.

Since our work is focused on the analysis of data prior to its storage in a NoSQL database, we will

investigate the viability of using an interim data model (which can be used later for integration purposes).

Eventually, the interim model can be added to metadata (to provide necessary comprehensive data governance)

and systematically translated into NoSQL. We will use IDEF1x standard data modeling notation in this pa

reference entity relationship notation (as it is very close to the relational model). The mapping between IDEF1x

entities represented as relations (tables). Each attribute

ibute (table column). Using a contemporary tool such as Erwin for visualization of data models,

primary key (PK) and draws IDEF1x relationships to connecting

a result, the PK is automatically passed as either foreign keys (FK) that become part of the PK or simply a FK (in

the latter case, additional semantics will need to be captured to specify optional/mandatory status of the FK).

Figure 1. IDEF1x entity relationship

During the transformation of the logical model to the physical model, data types are assigned to each

entity’s attributes. The model can be transformed to DDL statements through an automated process, and the

statements are used to generate the new database schema. This process works well for the relational model,

but fails for the NoSQL document store model. We will use the term NoSQL to refer to the document store

NoSQL databases for the remainder of the paper.

One problem with current data modeling techniques is that they do not account for the “

of document store NoSQL databases. The term aggregate is defined by Eric Evans

14

vement’s rise in popularity has created a new frontier for data modeling. The

“schemaless” nature of NoSQL presents new challenges for data modeling. The major data model of the past

. The relational data model is built upon Codd’s research [8]. In

. The columns which define the table can only

. NoSQL does not follow the relational model’s notion of defined schema. Instead,

nature of the NoSQL databases

does not align with traditional data modeling. A NoSQL data model would provide the data modeler with the

data with related data from relational database sources (e.g. data

environment). The resulting model would serve as a blueprint for the data integration.

Since our work is focused on the analysis of data prior to its storage in a NoSQL database, we will

n be used later for integration purposes).

Eventually, the interim model can be added to metadata (to provide necessary comprehensive data governance)

and systematically translated into NoSQL. We will use IDEF1x standard data modeling notation in this paper as a

reference entity relationship notation (as it is very close to the relational model). The mapping between IDEF1x

attribute within the entity is a

ibute (table column). Using a contemporary tool such as Erwin for visualization of data models,

(PK) and draws IDEF1x relationships to connecting entities. As

ither foreign keys (FK) that become part of the PK or simply a FK (in

the latter case, additional semantics will need to be captured to specify optional/mandatory status of the FK).

During the transformation of the logical model to the physical model, data types are assigned to each

entity’s attributes. The model can be transformed to DDL statements through an automated process, and the

e schema. This process works well for the relational model,

to refer to the document store

chniques is that they do not account for the “aggregate”

is defined by Eric Evans [14]. An aggregate is

15

a collection of related objects that are treated as one unit [32]. In our case, a NoSQL document is the unit of

work, and each sub-document, key-value array, or key-value pair is a related object. The aggregate notion gives

the NoSQL database the ability to express complex structures that are not possible (or very difficult) to

implement in the relational model. The relational model is confined to storing data inside a limited data

structure otherwise known as a tuple [32]. Although the tuple is capable of storing a set of values, it is unable to

store another tuple. In other words, nesting of records is not possible. Therefore a tuple can represent one and

only one data record. This is completely opposite of the NoSQL document object. The document object is a

flexible structure which allows for nesting of records and storing of non-uniform data [32]. This leads us to our

first question, “How do we model the document object in a data model?”

There are several parts of the document object which will need to be defined such as data type

assignments, primary and alternate key identification, and foreign key identification. All are areas of the data

modeling process that are lacking for NoSQL. We could easily create an IDEF1x entity, and use it to represent

the document container itself. But, that is where the process would end. There must be a way to represent the

key-value arrays, key-value, or subdocuments of the document object. There must also be a way to represent

the aggregate relationship of those components to the document itself. We previously stated that the document

object has the capability to store non-uniform data. In the context of this paper, non-uniform data refers to

data where each record contains a different field set [32]. In the relational model, this can be accomplished

through nullable columns which can lead to sparse tables. Or, the modeler could use generic named columns

(e.g. Column1, column2). The NoSQL document allows the application (or input source) to store whatever fields

it wants to store (without adhering to a defined schema). This behavior is not allowed in the relational model

due the defined schema. The liberty granted by the “schemaless” aspect is not without consequence. The

responsibility of schema awareness is transferred from the database system to the application layer. This shift

in responsibility leads to the creation of implicit schema [32] in the application code. The schema is implicit

because the code behavior (selects, inserts, updates, and deletes) could be used to derive a possible database

schema. This is not a fool-proof method of schema derivation because there could be other applications that

use the database. In this case, the information stored by one application could be different from the

information stored by a previous application. This leads us to another issue that will need to be addressed,

“How do we create an explicit schema for a NoSQL database?” In addition explicit schema declaration, there

must be a way to transform the physical model to a physical implementation. Currently tools (e.g. Erwin), do

not support this transformation for NoSQL.

We are aware that what we are requiring pushes the boundaries of current data modeling. The

concepts that NoSQL bring are in some cases completely new to the data modeler. However, the new concepts

are not foreign to the application developer. For example, a document could be represented as a class in an

object-oriented programming language (e.g. C#). The key-value pair array could be represented as an array of

dictionary key-value pairs. A sub-document could be represented as a class property of type document. As you

can see, the NoSQL concepts seem to map to object-oriented programming languages fairly well. We want to

combine concepts like the aforementioned (from our software engineering experience) with relational data

modeling to produce an innovative, thorough data modeling solution. It is our belief that the emergence of

NoSQL as a viable data storage option warrants the thorough data modeling solution we are proposing.

16

In our quest for a NoSQL data modeling solution, we want to ensure that the skillset of the relational

data modeler is not lost. Although, the responsibility of schema enforcement has been shifted to the

application, the data modeler will continue to be an important factor in the database design. We want a data

modeling solution that will allow the data modeler to continue to use the IDEF1x modeling language in their

current data modeling tool of choice. For our proposal we want our solution to work for the Erwin Data Modeler

software.

The remainder of this paper is organized as follows. In Section 2 we provide a brief overview of some

NoSQL and conceptual XML data modeling research. Our requirements for our NoSQL Data Model are specified

in Section 3. In Section 4 we introduce the Polymorphic Table pattern. We apply the Polymorphic Table to a

real world example in Section 5. In Section 6 we demonstrate the physical implementation of the NoSQL data

model. The validation of our approach is presented in Section 7. A discussion of comparative advantages is

presented in Section 8. Lastly, we present our conclusions in Section 8.

17

CHAPTER 2

STATE OF ART REVIEW

2.1 NoSQL Data Modeling

To the best our knowledge, there are no are standard data modeling practices (in previous literature) for

NoSQL databases. Data modeling, in this context, refers to the representation of a database using a data

modeling tool. We proposed the Aggregate Data Modeling Style [17] in our previous work to address the lack of

NoSQL data modeling standards. In the Aggregate Data Modeling Style, IDEF1x [19, 25] is used to define a

modeling style for NoSQL document store databases. The first step in using the proposed style involves creating

the conceptual data model using traditional data modeling techniques. The conceptual model in this case

includes detailed analysis of all entities, attributes, and relationships (which are necessary to satisfy the

functional requirements). New operators are later introduced to convert the models into their aggregate forms.

The modeling style proposal mandates that specific domain analysis be performed to identify aggregates and

references. The use of traditional data modeling techniques is an idea we wish to embrace in our new solution.

The Aggregate Data Modeling Style’s new operators are also in alignment with our goals to provide clarity when

modeling aggregates.

The Aggregate Data Modeling Style advocates the use of patterns to achieve its end state. Single

dependency modeling patterns, specifically, are used during the creation of the conceptual models. They are

also used as a first step in transforming a traditional relational model [17]. The data models are then reduced by

eliminating relationships through either the copying of reference identifiers or by nesting entities. The concept

of a ROOT operator is proposed to designate an entity as a root entity. Two additional operators are also

proposed, REFI and EMBED. Both operators are used to identify the relationships that will be eliminated during

the relational to aggregate transformation. The REFI operator is used to “cut a network (graph) to trees” [17].

The reference concept (invoked by the REFI operator) pays respect to the referential integrity constraint which is

ordinarily enforced in the relational model through the use of foreign keys [10]. The data integrity that is

offered by the constraint is important to our data modeling solution. The EMBED operator is used to reduce the

size of the model by explicitly nesting the related entities. The nesting of the related entities can be correlated

to parent-child element relationships in an XML document [43].

2.2 Conceptual XML Data Modeling

We next turn our attention to the closely related topic of conceptual XML modeling. XML is currently

used in various areas in technology world. It is used as a common format for data exchange in business to

business systems. It has also been used to create use create database systems. Some researchers have used

XML as a logical database model. Researchers have found ways to store xml in relational databases [24]. Other

researchers have experimented with publishing relational data as XML [35]. Nevasky’s survey of conceptual

XML modeling approaches [26] examines the E-R [5] and hierarchical based modeling approaches. He proposes a

list of requirements for conceptual XML models. The requirements are broken into two groups: general

18

requirements and modeling constructs requirements. Nevasky uses the general requirements to establish the

end-goal of XML conceptual modeling [26]. The modeling construct requirements are used to specify the types

of modeling constructs that the conceptual model should support. The first three general requirements [26]

(independence on XML schema languages, formal foundations, and graphical notation) can be adapted to

provide a foundation for our modeling endeavor. The first requirement specifies that the conceptual model

should not be dependent upon any particular XML schema language. The idea of version agnosticism is relevant

to our NoSQL model. We would like for our model to applicable to any document based NoSQL database. The

second requirement, which mandates that the modeling constructs be formally defined, will be adopted for use

in our research. Lastly, the third requirement specifies the need of a “user-friendly graphical notation” for the

modeling constructs. This requirement specifies a core end-goal that should be included in our research. We

will now focus on our attention on E-R based modeling approaches.

2.3 E-R Model Based Approaches

Badia proposes the Extended E-R Model for modeling XML in [2]. The premise of his research is to

develop an E-R model that can model both structured and semi-structured data [2]. He discovers a minimal set

of E-R extensions though a transformation which converts an XML DTD into an E-R model [2, 26]. The minimal

extension set is composed of two “small steps” that grant E-R models the ability to represent all of the DTD

model’s semantics. The two proposed steps are 1) optional and required attributes and 2) choice attributes.

Badia’s proposal requires that all attributes are marked as either optional or required. The objective is to allow

the data modeler to precisely specify what is required for an instance of an entity. The choice attribute gives an

entity the ability to have one value or another. The attribute can further be categorized as inclusive (an entity

can have a value for all of the pool of possible attributes) and exclusive (an entity can only have a value for one

of the possible attributes). The concept of optional and required attributes will be explored in our modeling

proposal.

The ERX (Entity Relational XML) Model is an “evolution of the Entity Relationship model” [29]. Psaila

introduces the following five principle components to facilitate XML modeling: entities, relationship types,

attributes, hierarchies, and interfaces. The entity represents a complex, but structured concept of an xml

document. The entity concept used by ERX can be applied the document object [6] of a NoSQL document store.

In ERX, each entity is represented by a rectangle with solid lines. An entity can also be instance which is a

particular occurrence of the structured concept in the xml document. ERX distinguishes entities as either strong

or weak. Strong entities are entities which represent primary concepts in the source xml document. This type

of entity is represented using “thin lines”. Weak entities are source xml document concepts that are defined

within the context of another concept [29]. The entities are represented using “thick lines”. The distinction

between strong and weak entities is important to our pursuit of a viable data modeling solution. We could

possibly map the terms to a NoSQL document in the following manner. The root document itself could be

considered as a strong entity, while the embedded sub-document would be considered a weak entity. Other

conceptual modeling research such as the UXS conceptual model [9] does not make the distinction between the

two entity types.

19

Attribute representation is another important concept that ERX addresses. In ERX, the entity’s

attributes usually correspond to the XML tag attributes of a document [29]. The attributes are visually

represented with small circles which contain the attribute’s name (traditional E-R notation). The attribute

symbol is connected to its associated entity by using a solid line [29]. ERX makes use of a solid, black circle to

denote key attributes. ERX enhances the descriptive power of attributes by allowing attribute names to be

associated to qualifiers. The role of the qualifiers is to specify different properties of the attribute such as

required, implied, unique, etc. The attributes are denoted within parentheses adjacent to the attribute’s name.

An attribute can be required (R) or implied (I). The implied qualifier specifies that the attribute is optional. The

unique qualifier is used to identify non-key attributes. The concept is similar to unique keys in the relational

model. Finally, attribute order is specified using the order (O) qualifier [26, 29].

Relationships in ERX are used to describe the manner in which two entities are connected. Each

relationship is visually represented with a rhomb, which is then labeled with the relationship’s name. Cardinality

constraints are also available in the ERX proposal. The format of the constraint is l:u. The constraint specifies

each entity of X in respect to Y. The model also devises a manner in which to represent containment

relationships. This is a stark contrast to the Extended E-R Model that does not provide specific constructs for

modeling hierarchies [26, 29]. In containment relationships, entity X contains instances of entity Y. This similar

to the EMBED concept presented by the Aggregate Modeling Style [17] and the inclusion relationship explained

in [18]. Similar concepts of containment relationships are found in [21, 40]. The containment relationship is

represented with a normal relationship with a dashed arrow connecting to the entity X side of the rhomb. Psaila

instructs the modelers to limit the use of containment relationships by abstracting (as much as possible) the

actual xml document’s structure. It is necessary at this point to review the Whitehead’s containment modeling

work [18].

The intent of the research [18] is to describe containment relationships and containment data models,

and apply the concepts to model link servers and hyperbase systems [7]. However, the containment concepts

are applicable to developing a NoSQL data modeling solution. The containment model proposes that an

aggregation of data items should not be modeled by using attributes to represent its properties and contents

[18]. Instead, Whitehead proposes the use of entities to represent the properties and contents. The entities are

related to the parent entity (container) through the use of an inclusion relationship. In an inclusion relationship,

the child entities are physically included in the container (parent entity). This is similar in principle to the concept

embedding [17] and inclusion [29]. The containment modeling work also provisions for the representation of

referential relationships. The notion of referential relationships is also used in the graph-semantic based

conceptual modeling approached proposed in the GOOSSDM [33] proposal.

The abstract container properties that are established in container modeling may be of significant use in

NoSQL data modeling. The abstract properties are containment, membership, and ordering. The containment

property indicates how many containers (parents) can hold the entity. This property could possibly be

incorporated in to our solution to help address hierarchies in the NoSQL document object. Membership, the

second abstract property, represents the number of times a container can hold a given entity [18]. The

property’s concept is similar to the occurrence indicators [37] used in the XSD specification. The manner in

20

which to denote the occurrences of attributes and sub-documents in the parent NoSQL document may be an

area of interest in our solution.

The last E-R model based model that will be examined is the ERex [22] model (proposed by Mani).

Mani’s proposal endeavors to incorporate XML features such as union and recursive types that a largely missing

from UML [30] and ORM [3] based modeling. He extends the E-R model by adding a new structural specification

and two new constraint specifications. The new structural specification is called categories. Its purpose is to

categorize entity types in the model. Category relationship types (a type of binary relationship that bears

similarity to the E-R model’s IS-A relationship type) are used to model the entity types [22, 26]. The new

relationship type allows the categorized entity type to be null or empty. The coverage constraints are described

as either exclusive coverage or total coverage. The coverage constraints will not be a part of our proposal;

therefore an extended discussion of the constraints will be omitted. Lastly, Mani provisions his modeling

proposal with the ability to specify the ordering of entities. The concept of ordering is lacking in the ERX [29]

modeling proposal. This ordering capability is accomplished with the ordering constraint [22]. This notion of

ordering is also a part of the Whitehead’s Containment Modeling work [18].

2.4 Hierarchical Based Approaches

The E-R model extensions, such as proposed in [2, 22, 29], allows for conceptual schemata to be

expressed using a graph structure [26]. This graph-like represent does not fully capture XML’s ability to express

relationship types. XML Schema [37] uses the concepts of referencing and nesting to express XML relationship

types.

 Hierarchies are also addressed in ERX. The hierarchy is modeled similar to a generalization in UML [38].

Ground rules are established for the hierarchy representation. First, only the super-entity can specify key

attributes. Second, all the super-entity’s attributes are inherited by its children (or sub-entities). We will take a

different approach. Our approach should allow for key specifications for sub-entities as well.

21

CHAPTER 3

A NOSQL MODELING STYLE

3.1 General

A document store NoSQL database has flexible schema. This is differs than that of a relational database

in which schema must be established before it can be used. NoSQL data modelers must take into consideration

the way in which the application(s) will use (query, insert, update, delete) in addition to the structure of the data

itself [23]. These aforementioned considerations affect the how data relationships will be represented in the

data model. Currently, there are two conventions for modeling the data relationships: embedding and

references.

3.2 Embedding

Embedding documents is a NoSQL practice in which all the related data for an entity is stored in a single

document [23]. The stored data in this case is denormalized. NoSQL databases can benefit from

denormalization (similarly as in the case of relational databases). Atomic writes is one advantage of using the

embedded approach. Data can be inserted or updated during a single operation, as opposed to multiple

operations that would be necessary in a normalized data model [23]. Data locality is another benefit of

document embedding [11, 23]. In the case of embedding, all the data is stored together on the same disk which

results in faster data reads. Denormalization also has its share of NoSQL concerns. Documents sizes are

governed by the NoSQL database system . Embedded document could grow rather quickly and reach the preset

maximum size limit. An additional side effect is an issue with data consistency. If one of the embedded

documents needs to updated, then all documents that contain the embedded document must be updated [11,

23].

3.2.1 One to One Relationship

Consider the following scenario that maps students to their phone numbers. In the one to one

relationship (as it applies to this scenario), a student has at most one phone number. This relationship is

demonstrated below.

Figure 2 NoSQL one to one embedded relationship

3.2.2 One to Many Relationship

Suppose that that there was a requirements change that allows students to have more than one phone

number. How would the one to many relationship be represented in the document? Particularly in JSON based

documents (e.g. MongoDB), multi-valued

relationship is pictured below.

Figure 3. No SQL one to many embedded relationship

relationship

Suppose that that there was a requirements change that allows students to have more than one phone

relationship be represented in the document? Particularly in JSON based

valued columns are store their values in an array. The

many embedded relationship

22

Suppose that that there was a requirements change that allows students to have more than one phone

relationship be represented in the document? Particularly in JSON based

are store their values in an array. The one to many

References in NoSQL are similar to foreign keys in the relational model. The references store the data

relationships by using links that allow navigation to one document from another. The primary key (identifier)

often used to as this link. The use of the referen

modeling approach. Although a normalized approach may be a desired approach in data modeling, it can create

performance issues for NoSQL. Document store NoSQL database systems do not have native joi

which is present in relational databases management systems. The desired join operations have to be created

by the application layer through the use of additional queries. Another performance concern is the locality of

the documents that are being referenced. The referenced documents could be located on a different hard drive

disk which could result in a longer seek

The use of references also brings a set of advantages for the physical implementation. The NoSQL

database systems enforce a maximum size limit

[11, 12]. The replacement of embedded documents with references can reduce the size of the overall

document. References also reduce the amount of updates that would be necessary if the referenced documents

were actually embedded. In the reference scenario, there would be an update to the referenced instead

document only.

3.3.1 One to Many Relationships

Consider the following scenario which maps car owners to their cars. Suppose we decided to embed the

car owner document inside the car document. This would lead to the following documents:

Figure 4. Owner document to be referenced

3.3 References

in NoSQL are similar to foreign keys in the relational model. The references store the data

relationships by using links that allow navigation to one document from another. The primary key (identifier)

often used to as this link. The use of the references closely corresponds to a normalized

modeling approach. Although a normalized approach may be a desired approach in data modeling, it can create

performance issues for NoSQL. Document store NoSQL database systems do not have native joi

which is present in relational databases management systems. The desired join operations have to be created

by the application layer through the use of additional queries. Another performance concern is the locality of

are being referenced. The referenced documents could be located on a different hard drive

 time [11, 12].

The use of references also brings a set of advantages for the physical implementation. The NoSQL

database systems enforce a maximum size limit for documents (e.g. Mongo enforces a 16MB maximum size)

. The replacement of embedded documents with references can reduce the size of the overall

document. References also reduce the amount of updates that would be necessary if the referenced documents

he reference scenario, there would be an update to the referenced instead

Consider the following scenario which maps car owners to their cars. Suppose we decided to embed the

car document. This would lead to the following documents:

23

in NoSQL are similar to foreign keys in the relational model. The references store the data

relationships by using links that allow navigation to one document from another. The primary key (identifier)

normalized relational data

modeling approach. Although a normalized approach may be a desired approach in data modeling, it can create

performance issues for NoSQL. Document store NoSQL database systems do not have native join functionality,

which is present in relational databases management systems. The desired join operations have to be created

by the application layer through the use of additional queries. Another performance concern is the locality of

are being referenced. The referenced documents could be located on a different hard drive

The use of references also brings a set of advantages for the physical implementation. The NoSQL

Mongo enforces a 16MB maximum size)

. The replacement of embedded documents with references can reduce the size of the overall

document. References also reduce the amount of updates that would be necessary if the referenced documents

he reference scenario, there would be an update to the referenced instead

Consider the following scenario which maps car owners to their cars. Suppose we decided to embed the

car document. This would lead to the following documents:

Figure 5 – Owner document embedded in Car document

Any update to the owner information would requir

approach embeds the _id of the owner in lieu of the owner document itself. Therefore any updates to the

owner document would only affect the owner document itself. We have adapted the previous sce

references. The resulting documents are shown below.

Owner document embedded in Car document

Any update to the owner information would require that both car documents be updated. A referenced based

approach embeds the _id of the owner in lieu of the owner document itself. Therefore any updates to the

owner document would only affect the owner document itself. We have adapted the previous sce

references. The resulting documents are shown below.

24

e that both car documents be updated. A referenced based

approach embeds the _id of the owner in lieu of the owner document itself. Therefore any updates to the

owner document would only affect the owner document itself. We have adapted the previous scenario to use

Figure 6. Car documents referencing owner document

3.4 Comparisons to XML Schema Styles

XML Schema can be classified (but not limited to) into the following des

Salami Slice, Venetian Blind, and Garden of Eden

styles with the aforementioned XML Schema design patterns.

3.4.1 Embedded vs Russian Doll

The embedded document modeling style is very similar to the

pattern, there is only one global element. Only the root node can be defined in the global namespace. All other

elements are local to the root node [15]

parallel the embedded document features. In order to make our contrast we will consider the document itself to

document

3.4 Comparisons to XML Schema Styles

XML Schema can be classified (but not limited to) into the following design patterns:

Garden of Eden [15]. We will now contrast the each of the document modeling

styles with the aforementioned XML Schema design patterns.

document modeling style is very similar to the Russian Doll. In the

pattern, there is only one global element. Only the root node can be defined in the global namespace. All other

[15]. This means that the local elements are not reusable. These features

parallel the embedded document features. In order to make our contrast we will consider the document itself to

25

ign patterns: Russian Doll,

contrast the each of the document modeling

. In the Russian Doll design

pattern, there is only one global element. Only the root node can be defined in the global namespace. All other

. This means that the local elements are not reusable. These features

parallel the embedded document features. In order to make our contrast we will consider the document itself to

26

be the global element. Each embedded document thereafter would be local. The embedded document

behaves the same as the local element in the fact it cannot be reused.

3.4.2 References vs Russian Doll

The references document modeling style differs from the Russian Doll design. In the references, the

referenced document is not local to the global parent document.

3.4.3 Embedded vs Salami Slice

In the Salami Slice design pattern, all elements are global. The resulting xml document contains all

reusable elements [15]. Reuse an embedded document is not possible in the embedded modeling style.

Therefore, the embedded modeling style is unlike the Salami Slice design pattern.

3.4.4 References vs Salami Slice

The references document modeling style is similar to the Salami Slice pattern. The referenced document

is a global document whose key identifier is stored in the parent document. The parent document is also global

document. However there is a difference between the references style and the Salami Slice. The parent

document can contain types that are not declared globally (which conflicts with Salami’s “global” nature).

3.4.5 Embedded vs Venetian Blind

The Venetian Blind design pattern is an extension of the Russian Doll pattern. There is only one global

element in the Venetian Blind pattern. It differs from the Russian Doll pattern in the fact that all types are

defined globally [15]. Only parent document in the embedded modeling style is global, and all complex types

(embedded documents) are “defined” locally. Therefore, the embedded modeling style is unlike the Venetian

Blind pattern.

3.4.6 References vs Venetian Blind

The references document modeling style differs from the Venetian Blind pattern in the fact that types

are not required to be global (a choice of the data modeler). The referenced document itself could be

considered as a global type, but the remaining “elements” of the parent document could local. Therefore the

references style is different from the Venetian Blind pattern.

3.4.7 Embedded vs Garden of Eden

The Garden of Eden design pattern combines the Salami Slice and Venetian Blind design patterns. The

pattern combination results in a pattern where all types and elements are defined in the global namespace [15].

This is contrary to the embedded document modeling style in the fact that neither the parent document’s types

(subdocuments) nor “elements” are global.

27

3.4.8 References vs Garden of Eden

The references document modeling style is not similar to the Garden of Eden design pattern. Given its

previous determined differences between both the Salami Slice and Venetian Blind, it can be logically that

references document is not similar to the Garden of Eden design pattern.

28

CHAPTER 4

NOSQL DATA MODEL REQUIREMENTS

4.1 Overview

In this section, we will present our requirements for creating data models for NoSQL document stores.

The requirements are separated into the following categories: general NoSQL data model requirements and

NoSQL data modeling construct requirements. The general data model requirements category will contain a

brief explanation of core concepts that we wish to address in our NOSQL data modeling effort. The NoSQL data

modeling construct requirements category will contain explain the types of modeling constructs that will be

supported by the NoSQL data model.

4.2 General NoSQL Data Model Requirements

4.2.1 NoSQL Implementation Agnosticism

The data model will not be dependent upon a particular vendor’s NoSQL database implementation.

There should be no special concessions or favoritism granted towards a particular document store. The created

model should be completely applicable to any variety of the document store model whose primary document

object is based on JSON [13] or XML [43].

4.2.2 Formal Foundations

We will base our formal foundations requirement on Necasky’s requirement [26]. The modeling

constructs should be specified in such a way as to allow for model comparisons. The construct specification

should also describe operations on the model’s structures.

4.2.3 Data Description

The data model should provide base SQL data types [10] for all atomic attribute values. The model will

create constructs for the identification of primary, unique, and foreign keys. The model should also support the

notion of irregular or semi-structured data.

4.2.4 Hierarchical Representation

The data model should provide constructs to represent the hierarchical nature of NoSQL data. The

constructs should allow for the nesting of both complex and simple types.

29

4.2.5 Graphical Representation

The data model should provide a standard set of guidelines for the visual representation of the entities,

attributes, and all other constructs. The guidelines should be provided in such a manner as to allow for the

creation of consistent data models. The data model shall use colors to make distinctions between different

entity types [16].

4.3 Data Modeling Construct Requirements

4.3.1 Entity Identification

The data model should provide a mechanism to identify an instance of an entity. The mechanism should

allow for particular entity naming conventions. The mechanism should allow the use of alphanumeric

sequences. For example, an entity could be named “ABC” or “ABC123”.

4.3.2 Identifying Property

The data model should provide a manner in which to specify the unique identifier or “primary” key for

each modeled entity. The specification should be clear and concise. The model should also allow for multi-part

unique identifiers.

4.3.3 Unique Property Constraint

The data model should provide a mechanism to uniquely identify an embedded entity within the scope

of the parent entity. This concept is similar to the unique key constraint in relational data modeling [10], but is

local in scope to the parent entity.

4.3.4 Required/Optional Property

The data model should provide constructs to address the polymorphic nature of the NoSQL documents.

The constructs should provide the model with the ability to notate entities and attributes as required or optional

attributes. This construct will empower the model to represent the flexibility of data storage options in the

document object.

4.3.5 Data Type Property

The ability to express data types for attributes must be available in the model. The constructs must be

very specific in detail such that intended data type is accurately represented. At a minimum, the constructs

must support a subset of basic SQL data types [10]. The data types are necessary for the possible future

exportation of the NoSQL data to a relational database.

30

4.3.6 Complex Objects

The data model must allow for the creation of complex objects. The complex types must be composed

of simple and/or other complex objects. The complex object is necessary for the complete expression of the

document object.

4.3.7 Cardinality

The data model should provide constructs to define the minimum and maximum number of object

instances that can participate in a relationship. At the very least, the constructs should be provided for the

following relationship types: 1:1 and 1:M. The data model may take liberty and imply a 1:1 relationship by

omitting the construct from the model.

POLYMORPHIC TABLE (P

The inspiration for the Polymorphic Table

science concept of polymorphism and the concept of

the third pillar of object-oriented programming

polumorphos. Polumorphus contains two roots,

shape or form. The combination of the two roots gives the mean

[27]. Cardelli and Wegner refined the work of Stratchey, who informally distinguished parametric polymorphism

from ad-hoc polymorphism, by introducing a new form type of polymorphism referred to as

polymorphism [4]. Inclusion polymorphism

Wegner, subtyping is an instance of inclusion of polymorphic inclusion. They deemed subtyping useful for

representing sub-ranges of ordered types, but also for complex types

object-oriented principles, it also applies to database design.

A model is an abstraction of a system in which certain details are deliberately omitted

relational schema [8], two forms of abstraction are supported. Smith and Smith refer to the abstraction types as

aggregation and generalization. Aggregation

objects is regarded as a higher object

world of Domain-Driven design. Eric Evans defines an

treated as a unit for the specific purpose of data changes

boundary. The root is a single entity located within the aggregate. The

aggregate [14]. Evans gives assigns the following properties to an aggregate. 1)

CHAPTER 5

POLYMORPHIC TABLE (PT) PATTERN

5.1 Overview

Polymorphic Table Pattern (PT Pattern), Figure 7, comes from the computer

and the concept of aggregation. Polymorphism is sometimes referred to as

oriented programming [20]. Polymorphism is derived from the Greek word,

contains two roots, Polus and Morphe. Polus means many, and

shape or form. The combination of the two roots gives the meanings “many-shaped” or “having many forms”

lli and Wegner refined the work of Stratchey, who informally distinguished parametric polymorphism

hoc polymorphism, by introducing a new form type of polymorphism referred to as

Inclusion polymorphism is used to model subtypes and inheritance. According to Cardelli and

Wegner, subtyping is an instance of inclusion of polymorphic inclusion. They deemed subtyping useful for

ranges of ordered types, but also for complex types [4]. Even though polymorphism

oriented principles, it also applies to database design.

is an abstraction of a system in which certain details are deliberately omitted

straction are supported. Smith and Smith refer to the abstraction types as

Aggregation refers to the instance in which the relationship between two

objects is regarded as a higher object [36]. The previous definition coincides with the aggregate notio

Driven design. Eric Evans defines an aggregate as a cluster of associated objects that are

treated as a unit for the specific purpose of data changes [14]. Each aggregate consists of

is a single entity located within the aggregate. The boundary defines the composition of the

. Evans gives assigns the following properties to an aggregate. 1) The root

Figure 7. Polymorphic Table pattern

31

, comes from the computer

is sometimes referred to as

is derived from the Greek word,

means many, and Morphe means

shaped” or “having many forms”

lli and Wegner refined the work of Stratchey, who informally distinguished parametric polymorphism

hoc polymorphism, by introducing a new form type of polymorphism referred to as inclusion

is used to model subtypes and inheritance. According to Cardelli and

Wegner, subtyping is an instance of inclusion of polymorphic inclusion. They deemed subtyping useful for

. Even though polymorphism applies to

is an abstraction of a system in which certain details are deliberately omitted [36]. In Codd’s

straction are supported. Smith and Smith refer to the abstraction types as

refers to the instance in which the relationship between two

. The previous definition coincides with the aggregate notion in the

as a cluster of associated objects that are

consists of a root and a

defines the composition of the

 is the only component

32

of the aggregate that can referenced by an outside object. 2) The remaining entities have local identities. 3) An

aggregate can hold the reference to the root of other aggregates [39].

Generalization can be defined as “an abstraction which enables a class of individual objects to be

thought of generically as a single named object” [36]. Smith and Smith deemed that generalizations were

important for “conceptualizing the real world.” The researchers also recognized the importance of a database

schema to have the ability to represent generalizations. In data modeling, the concept of generalization is

associated with super-classes and subclasses [10]. During the generalization process, the differences between

entities are minimized by identifying shared characteristics. The shared characteristics will compose the

superclass. The original entities are now subclasses due to the non-shared characteristics that are present in

each entity. Generalization has an important role in the PT Pattern (Figure 7).

5.2 New Approach: Polymorphic Pattern Formalization and Explanation

5.2.1 Polymorphic Table Entity (PTE)

The foundational entity of the PT Pattern is the Polymorphic Table entity (PTE). It is a wrapper for the

“table column” entities. The PTE is represented as an independent entity with green background (Figure 7).

Although PTEs are primarily used to model subtypes or generalization categories that are present in traditional

relational models, they can also be used to model the “root” entity (comparable to an xml parent node).

The PTE is a compact entity consisting of three attributes. The composite primary key is composed of

two attributes, tableID and recordID. The tableID attribute uniquely distinguishes the polymorphic table from

other polymorphic tables in the data model. The recordID attribute has dual purpose. The attribute visually

correlates the PTE to its various related objects. The attribute is also intended to be an internal identifier that

associates the PTE to a specific data record. The third attribute, tablename, holds the name of the polymorphic

table (ie. Blog, PT.Blogs). The PTE is a header for a collection object. The entity, because of its designation as a

header, cannot be a dependent entity. This rule is necessary in order for the model to support an embedded

style [17] or reference style. It was earlier stated that the PTE was a wrapper for the “table columns”. The table

column entities are called Polymorphic Table Columns (PTCs).

5.2.2 Polymorphic Table Column (PTC)

The Polymorphic Table Column (PTC) contains metadata for the model and is similar to a table column

definition in a relational data model. It is a child of the PTE. It is modeled as a super-type containing three

attibutes:

• polymorphicTableColumnName

• tableID

33

• recordID

The polymorphicTableColumnName stores the name of the column entity. The name is unique only within the

scope of the PTE. The tableID and recordID attributes are inherited from the PTE. The generalization of the PTC

is a complete generalization resulting in the formation of two subtypes: Polymorphic Table Column Simple

(PTCS) and Polymorphic Table Column Complex (PTCC).

5.2.3 Polymorphic Table Column Simple (PTCS)

The unique challenge of the aggregate-oriented nature [32] of document store NoSQL database

necessitated the subtypes PTCS and PTCC. The PTCS is modeled by a dependent entity with a red background.

The entity is used to represent a simple column. In the scope of the PT Pattern, a simple column is a column that

contains only a single primitive value (ie. boolean, numeric, date, string, etc.). There are some data type

exceptions such as binary data (in the case of MongoDB). The PTCS entity uses the dataType attribute to store

the column’s datatype. If the column references a column in a Standalone Polymorphic Table entity (discussed

later in the paper), then the referencedTableID attribute stores the referenced table’s ID. The

referencedPolymorphicTableColumName will store the Standalone Polymorphic Table entity’s column name.

This concept is similar to a foreign key in a relational model. The aforementioned attributes can be omitted

from the model if the column is not a foreign key. An examination of the PTCS reveals that there is place for to

store the actual data value.

5.2.4 Polymorphic Table Column Value Simple (PTCVS)

The PTCVS is a child of the PTCS. It is represented by a dependent entity with a gray background whose

primary key is entirely inherited from the PTCS. The only additional attribute in the entity is the value attribute.

The value attribute is used to store the column value for a specific record identified by the recordID attribute.

The data type of the value is determined by the parent PTCS.

5.2.5 Polymorphic Table Column Complex (PTCC)

The PTCC is represented by a dependent entity with a blue background. The PTCC entity is similar to the

PTCS in that its primary key is entirely inherited from the PTC entity. But, this is where the similarity ends. The

PTCC is distinguished from the PTCS in the fact that it provides a mechanism to establish an aggregate hierarchy.

This is accomplished by using a recursive pattern to model the hierarchy. The hierarchy is constructed by

populating polymorphicParentColumn attribute. It is important to note that the relationship is a nullable, non-

identifying relationship. The nullable relationship allows the PTCC to be created without a hierarchy. The use of

the polymorphicParentColumn attribute creates a 1:1 relationship between the parent and child columns. In

order to create a 1:M relationship, the PolymorphicTableChildColumnBridge (PTCCB) must be used. The PTCCB

will be discussed later in greater detail.

34

5.2.6 Polymorphic Table Column Attribute (PTCA)

A comparison of the PTCC and PTCS entities reveals that the PTCC has no dataType attribute. Why is

there no datatype attribute? The complex column concept needs to be revisited, and the following scenario

must be examined in order to answer the question. Suppose fictitious Company A maintains customer

addresses in a system. The existing business rules mandate that system must capture the following address

information: street address, city, state, and postal code. It is clear that each data component of the address will

have its own value and possibly different data types. In order to model the address, the PT model must be able

to represent each data type of each component (column) of the address. The PTCA entity is introduced to

facilitate the modeling of the data types of a complex column.

The PTCA is represented by a dependent child entity with an orange background. Its primary key is a composite

key composed of the parent PTCC’s primary key in addition to the attributeName attribute. The attributeName

attribute is used to store the name of a column that composes the PTCC and is unique to the scope of the PTCC.

The PTCA’s dataType stores the expected data type of the column value. The PTCA reinforces the concept of

aggregation by allowing the PTCC to be represented by one or more PTCAs. If the column references a column

in another PTE then the referencedTableID attribute stores the referenced table’s ID. The

referencedPolymorphicTableColum-Name will store the PTE’s column name. This concept is similar to a foreign

key in a relational model. The aforementioned attributes can be omitted from the model if the column is not a

foreign key.

5.2.7 Polymorphic Table Column Value Complex (PTCVC)

The PTCVC entity is used to store the column value of a PTCA entity. It is represented by a dependent

entity with yellow background. The PTCVC is a child of the PTCA entity. Like the PTCVS, its primary key is

entirely inherited from the parent entity.

5.2.8 Polymorphic Table Child Column Bridge (PTCCB)

Aggregate-oriented modeling scenarios can occur where the one parent entity limitation of the PTCC

prevents the modeling of certain complex columns. The column types of a PTCC’s children fall into two

categories: homogeneous and heterogeneous. If the column types are homogenous then all of the columns will

be represented either as PTCS or PTCC, not both. Heterogeneous columns types are represented as either PTCS

or PTCC. This is most noticeable when attempting to model a complex column that is composed of existing

complex columns. The parent-child relationship in this case is aggregation (in the context UML) because the

child’s lifetime is not dependent upon the parent’s. This relationship is different from the relationship that is

modeled by the PTCC. The parent-child relationship in the PTCC describes a composition. In a composition, the

child entity’s lifetime is the same as the parent entity’s lifetime. A new entity must be introduced to meet the

challenge of the modeling the aggregate column relationship.

35

The PTCCB is used to model the aggregate relationship of the complex column. It is a flexible entity that

supports an unlimited number of child columns. The PTCCB is represented by a dependent entity with a dark

blue background. Its primary key is a composite key consisting of the primary keys of the parent PTCC and the

polymorphicChildColumn. The polymorphicChildColumn attribute contains the name of the column that helps to

form the PTCC. A careful look at the PT pattern shows that a polymorphicChildColumn can be either a PTCC or a

PTCS.

5.2.9 Polymorphic Table to Polymorphic Table Bridge (PTB) and Owner Container (OC)

The flexibility of the PT pattern allows for the aggregation of Polymorphic Table entities. Since the

Polymorphic Table entities are independent, it is a true aggregation as opposed to composition. In order to

represent the aggregation, two new structures must be introduced. The Polymorphic Table to Polymorphic

Table Bridge (PTB) entity and the OwnerContainer (OC) entity. Both are represented as dependent entities with

a white background.

The OC entity is a dependent entity whose parent is a PTE. The primary purpose of the entity is to

create a logical grouping or hierarchy. Similar container or containment concepts have been researched in [18,

33, 40] The OC’s composite primary key consists of the following attributes: ownerContainerName, tableID, and

recordID. The ownerContainerName attribute stores the name of the aggregation. The tableID and recordID

attributes are inherited from the parent entity. The OC entity contains an additional, nullable attribute named

parentOwnerContainer. The attribute allows for the creation of a container hierarchy. The OC entity

participates in the PTB entity.

5.2.10 Standalone Polymorphic Table Entity (SPTE)

It is necessary to introduce the SPTE before proceeding with the application of the PT pattern. The SPTE

is a special type of PTE. It has the same characteristics as a PTE, but it also has usage restrictions. The SPTE

cannot participate in relationships with OCs. Lastly, the SPTE cannot participate in relationships with a PTB. The

purpose of the SPTE is to model standalone entities such as lookups. The SPTE usage scenario will be explored

later in the paper.

MODELING APPLICATION

6.1 Relational Model (RM) Example

The Colorado Department of Transportation’s project change process has been selected for the real

world use case. The following relational model (Figure 8

guidelines obtained from the department’s official website (

several documents in this use case. Each document is classified as one of the following: contract change order,

contract change order memo, or drawing.

6.2 RM to Logical Model Transformation

The transformation of the relational model begins with the identification of parent entities. Entities

must meet the following two requirements to be designated as parent entities. The first requirement is that

entity is independent. The entities that m

requirement is that the entity participates in an identifying relationship. The only entity that meets the second

requirement is the Project entity. Therefore,

disassembled into the following entities:

The creation of the PTE begins with its naming. The naming convention for the entity is the name of the

parent entity prefixed with PT_. The name of t

population is the next activity. The PTE’s primary key attribute names (tableID and recordID) are retained from

the PT Pattern (for the sake of simplicity). The tableName attribute is replaced by t

parent entity. In this particular case, tableName becomes project.

CHAPTER 6

MODELING APPLICATION WITH THE POLYMORPHIC TABLE PATTERN BY EXA

6.1 Relational Model (RM) Example

Department of Transportation’s project change process has been selected for the real

owing relational model (Figure 8) has been derived from project templates and

guidelines obtained from the department’s official website (http://www.coloradodot.info

several documents in this use case. Each document is classified as one of the following: contract change order,

contract change order memo, or drawing.

RM to Logical Model Transformation – Parent Entity

The transformation of the relational model begins with the identification of parent entities. Entities

must meet the following two requirements to be designated as parent entities. The first requirement is that

entity is independent. The entities that meet the initial requirement are Project and Contractor

requirement is that the entity participates in an identifying relationship. The only entity that meets the second

entity. Therefore, Project becomes a parent entity. The parent entity must now be

disassembled into the following entities: PTE, PTCS, and PTCVS.

begins with its naming. The naming convention for the entity is the name of the

parent entity prefixed with PT_. The name of the PT entity becomes PT_Project. The entity’s attribute

population is the next activity. The PTE’s primary key attribute names (tableID and recordID) are retained from

the PT Pattern (for the sake of simplicity). The tableName attribute is replaced by the camel

parent entity. In this particular case, tableName becomes project.

Figure 8. Relational Model Exemplar

36

TABLE PATTERN BY EXAMPLE

Department of Transportation’s project change process has been selected for the real-

) has been derived from project templates and

http://www.coloradodot.info). A project contains

several documents in this use case. Each document is classified as one of the following: contract change order,

The transformation of the relational model begins with the identification of parent entities. Entities

must meet the following two requirements to be designated as parent entities. The first requirement is that

Contractor. The second

requirement is that the entity participates in an identifying relationship. The only entity that meets the second

ntity. The parent entity must now be

begins with its naming. The naming convention for the entity is the name of the

he PT entity becomes PT_Project. The entity’s attribute

population is the next activity. The PTE’s primary key attribute names (tableID and recordID) are retained from

he camel-cased name of the

37

The original attributes of the relational model’s Project entity must now be modeled. This is

accomplished by transforming each attribute into a PTCS entity. The process begins by creating the PTCS as a

dependent of the PT_Project entity. Part of the PTCS’s composite key is inherited from the PT_Project as a result

of the dependent relationship. The naming convention for the entity is the

PTCS_originalParentEntityName_attribute. The resulting name for the new PTCS entity is

PTCS_Project_ProjectCode.

Next, the projectCode attribute is selected from the original Project entity and becomes the part of the

primary key of the PTCS entity. A careful review of the PTCS entity reveals that a datatype attribute exists. For

this exercise, projectCode will be of type string. The data modeler may now wonder, “How are primary keys

specified in the PT pattern?” The primary key is specified with a textbox containing the phrase, Primary Key,

positioned above the relationship. Since projectCode is not a “foreign key” the referencedTableID and

referenced-PolymorphicTableColumnName do not appear in the PTCS entity.

The projectCode attribute has now been declared, and now a PTCVS must be modeled. The naming

convention of the entity is PTCVS_originalParentEntityName_attribute. The PTCVS’s resulting name is

PTCVS_Project_ProjectCode. The entity’s primary key is entirely inherited from its parent PTCS. The remaining

attribute is the value attribute, which is populated with a placeholder by the same name.

The previous transformation steps are repeated for each remaining attribute of the original Project

entity. Next the dependent, super-type Document entity and its corresponding subtypes will be modeled in the

style of the PT pattern.

6.3 RM to Logical Model Transformation – Super-type and Subtype

In this section, the Document entity and its related subtypes will be transformed into PTEs. The

relational model (Figure 8) shows the Document entity as a dependent entity. The dependent relationship of the

entity and its parent presents a conflict with the independent nature of the PTE. The conflict is resolved by

refactoring the Document entity. The refactoring is accomplished by demoting the projectCode and projectNo

attributes (from the Project entity). The refactoring causes the relationship between the Project and Document

entities to become a non-identifying relationship. The Document entity becomes independent due to the non-

identifying relationship. At this time it is important to note that the demoted attributes will participate in a

unique constraint during physical modeling. The refactored Document entity is depicted in Figure 9.

The data modeler may be tempted at this point to model the Document entity by following the same

prescribed steps performed in the Project to PT_Project transformation. To follow the same steps would be

erroneous because of the manner in which the PT pattern handles super-types and subtypes. In the PT pattern,

the super-type will not actually be modeled. Instead, the super-type and its subtypes will be involved two more

rounds of structural refactoring. A structural refactoring process based on the Move Column refactoring

technique [1] is used in the second round. All non-key attributes will be moved to the subtypes. In this

particular example, the documentName, and filePath attributes of the Document entity are moved to each

subtype. The final refactoring implements adapted versions of the Merge Table and Drop Table structural

refactoring techniques [1]. The Document

refactoring. The Document entity is then dropped from the model. The former subtypes are promoted to

“normal” entity status and participate in non

the Project entity will later participate in a unique constraint in the physical model. The final result of the

refactoring is pictured in Figure 9.

The former subtypes will now be transformed into

The established PTE naming convention yields the following names:

• PT_ContractChangeOrder

• PT_ContractChangeOrderMemo

• PT_Drawing.

The attributes for each new PTE will now be populated. Each

recordID) are retained from the PT pattern. The

the corresponding parent entities. The process for modeling each original entity’s attributes is same remains the

same as prescribed earlier.

Figure 9 – Relational exemplar post refactoring

Document entity is merged with its subtypes during the final round of

entity is then dropped from the model. The former subtypes are promoted to

ity status and participate in non-identifying relationships with the Project entity. The foreign key to

entity will later participate in a unique constraint in the physical model. The final result of the

he former subtypes will now be transformed into PTEs. The creation of each PTE

naming convention yields the following names:

PT_ContractChangeOrderMemo

will now be populated. Each PTE’s primary key attribute names (

) are retained from the PT pattern. The tableName attributes are replaced by the camel

e process for modeling each original entity’s attributes is same remains the

Relational exemplar post refactoring

38

entity is merged with its subtypes during the final round of

entity is then dropped from the model. The former subtypes are promoted to

entity. The foreign key to

entity will later participate in a unique constraint in the physical model. The final result of the

PTE begins with its name.

’s primary key attribute names (tableID and

attributes are replaced by the camel-cased names of

e process for modeling each original entity’s attributes is same remains the

39

6.4 RM to Logical Model Transformation – PTE’s Dependent Entity

Although the PTEs have modeled, the relational model transformation is not yet complete. There are

still remaining entities to be modeled. The remaining entities can be classified into two categories: dependent

and independent. The transformation of the dependent entities will be addressed first. In order to model the

dependent entities, the concept of embedding [1] will be implemented. Embedding will be used to nest a

dependent entity within its parent entity. It is similar in concept to the nesting of nodes within an xml

document. For example, a car may be modeled by an XML document (Figure 10). A review of the document

reveals the vin and features nodes are embedded with the car parent node. The PT pattern performs a similar

style of modeling through of the use of the Embeds operator [17] and the PTCC entity.

Figure 10 Car XML

A review of the relational model (Figure 9) shows that the Drawing and ContractChangeOrder entities

have dependent entities. The Drawing entity and its dependent entities are arbitrarily selected to be modeled

first. The Drawing entity has the following dependents:

• RevisionHistory

• DrawingSignoff

• DrawingIndex

A dependent entity’s PTCC transformation begins with naming of the newly created PTCC entity. The

established PTCC naming convention yields the following names (derived from the dependent entities):

• PTCC_Drawing_RevisionHistory

• PTCC_Drawing_DrawingSignoff

• PTCC_Drawing_DrawingIndex

Next, the PTCC’s attributes are populated. The polymorphic-TableColumnName attribute is replaced by the

camel-cased name of the attribute from the original dependent entity. The remaining part of the primary key

40

attribute (tableID and recordID) is retained from the PT Pattern and inherited from the parent PTE. Lastly, the

EMBEDS operator is placed on each relation between the PTE and the PTCC.

At this point in the modeling effort, the newly modeled Drawing PTCCs only represent the “shell” of the

polymorphic columns. The remaining attributes of each PTCC must now be modeled. This is accomplished by

implementing PTCA entities. Each PTCA will represent an attribute from the corresponding dependent entity in

the relational model. The DrawingSignoff will now be transformed using the following steps. Attribute selection

is the first step in the transformation process. Each attribute is selected in turn, and a PTCA is created for each.

For example, a new PTCA is created for the phase attribute (from the DrawingSignoff entity in the relational

model). The naming convention for the PTCA entity is PTCA_originalParentEntityName_attribute. The resulting

name for the phase attribute is PTCA_Drawing_Phase. Next, the camel-cased phase attribute is created in the

newly named PTCA. The attribute becomes first half of the composited primary key. The remaining half of the

primary key is inherited from the parent PTCC entity. The PTCA is not complete until the data type of the

attribute is placed in the entity. In this case, phase is will be represented by the string data type. Lastly, the

relationship between the PTCA and PTCC will be notated with the Primary Key indicator if the attribute is a

primary key.

The phase attribute is now modeled, and PTCVC entity must be created. The name of the entity is

derived in a two-step process. First, the parent PTCC’s name is copied, and the PTCC prefix is replaced with

PTCA. Second, the name is appended with _attribute. The resulting name for the phase attribute is

PTCVC_Drawing_DrawingSignoff_Phase. The entity’s primary key is entirely inherited from its PTCC parent. The

remaining attribute is the value attribute, which is populated with a placeholder by the same name. The process

is repeated for each attribute in the DrawingSignoff entity. The DrawingIndex and RevisionHistory PTCCs are

modeled in similar fashion.

The ContractChangeOrder entity is also modeled in a similar fashion to the Drawing entity, but with an

exception. A careful review of the model reveals that the PTCS_ ContractChangeOrder_ContractorID entity

contains values for the attributes referencedTableID and referencedPolymorphic-TableColumnName. The

attributes are populated due to the ContractChangeOrder entity’s involvement in a non-identifying relationship

with the Contractor entity. The Contractor entity behaves as a lookup entity in this scenario, and is modeled

accordingly as a SPTE. The naming convention for the SPTE is SPT_originalEntityName. The resulting entity

name is SPT_Contractor. The referencedTableID attribute is populated with name of the SPT, SPT_Contract. The

referencedPolymorphicTableColumnName attribute is populated with SPT_Contract column name that will be

referenced. The format SPT.columnName for the contractorID result in the following attribute name,

SPT_Contract.contractorID. The format was selected to avoid name collisions in the entity.

6.5 RM to Logical Transformation – PTB and OC

The PT pattern gives the modeler the ability to represent hierarchies with relative ease. In the relational

model example that we are transforming, a project can be associated with multiple types of documents

(ContractChangeOrder, Drawing, and ContractChangeOrderMemo). The hierarchical representation is

41

accomplished using the following steps. First, the OC is created and named using the following naming

convention, OC_containerName. The resulting entity name is OC_Documents. The containerName attribute is

replaced with the camel-cased name of the container. In this scenario, documents becomes the container

name. The parentOwnerContainer attribute is removed from the entity because the OC_Documents entity is not

a child of another OC. The OC entity is now ready to be associated with parent PT entity, PT_Project, using an

identifying relationship. Next, the PTB entity needs to be created.

The PTB creation begins the child PT selection. The Project-ContractChangeOrderMemo relationship will

be modeled for demonstration. The naming convention for the PTB is PTB_containerName_parentPT_childPT.

The PTB entity’s name becomes PTB_Documents_Project_ContractChangeOrderMemo. Identifying relationships

are used to establish the PTB entity as a child of both the OC_Documents and PT_Project entities. The

PT_Drawing and PT_ContractChangeOrder entities are associated with the OC_Documents entity using the PTB

creation steps.

6.6 Physical Modeling Application

The derivation of the physical model from the previously established logical model is relatively trivial.

The physical model differs from its logical counterpart in the following areas:

• Table renaming

• Polymorphic Table key specification

• SQL data type specification

• Detailed primary key specification

• Index identification

• Referenced attribute identification

6.6.1 Table Renaming

The PT entity contains the tableName attribute. The attribute is populated with the camel-cased name

of the PT entity during the logical modeling process. The attribute value is replaced with the name of the PT

entity during the physical model transformation.

6.6.2 Polymorphic Table Key Specification

The data types for PT entity’s composite primary key needs to be specified. But, before this can take

place there is an attribute must be renamed. The recordID is renamed to _id. This renaming is used to

emphasize the fact that the document

identify documents (records) within a collection (table). After the renaming, a rectangle annotation with a

yellow background is created for each field of the key. The annotation’s text is

DT: dataType. The resulting annotations for the

• KEY: tableID, DT: VARCHAR(100)

• KEY: _id, DT: VARCHAR(100)

The annotations are placed either on the top or the left

annotations.

Figure 11 – PTE Key specification

6.6.3 SQL Data Type Specification

Each attribute with in the physical model must be assigned a general SQL Data Type. The data type is

notated with a rectangle annotation with the following format,

the parental side of relationship. The data type is declared using the standard SQL data type declarations.

Table 1 - Examples of supported SQL data types

Data Type Physical Model

Annotation

CHARACTER(n) DT: CHARACTER(n)

CHAR(n) DT: CHAR(n)

emphasize the fact that the document store database (MongoBD in this context) uses the

identify documents (records) within a collection (table). After the renaming, a rectangle annotation with a

yellow background is created for each field of the key. The annotation’s text is of the format

. The resulting annotations for the PT’s are:

KEY: tableID, DT: VARCHAR(100)

The annotations are placed either on the top or the left-side of the PT entity. Figure 11 shows an example

Each attribute with in the physical model must be assigned a general SQL Data Type. The data type is

with the following format, DT: dataType. The annotation is positioned on

the parental side of relationship. The data type is declared using the standard SQL data type declarations.

Examples of supported SQL data types

Physical Model

Annotation

DT: CHARACTER(n)

DT: CHAR(n)

42

store database (MongoBD in this context) uses the _id to uniquely

identify documents (records) within a collection (table). After the renaming, a rectangle annotation with a

of the format KEY: fieldName,

shows an example of the

Each attribute with in the physical model must be assigned a general SQL Data Type. The data type is

The annotation is positioned on

the parental side of relationship. The data type is declared using the standard SQL data type declarations.

43

VARCHAR(n) DT: VARCHAR(n)

INTEGER DT: INTEGER

DECIMAL(p,s) DT: DECIMAL(p,s)

NUMERIC(p,s) DT: NUMERIC(p,s)

DATE DT: DATE

TIMESTAMP DT: TIMESTAMP

6.6.4 Detailed Primary Key Specification

The manner in which the physical model specifies primary keys differs from the logical model. In the

logical model, the primary keys are simply labeled with Primary Key inside a rectangular annotation. Each key of

a composite primary key is labeled with the annotation. The annotation is positioned on the “child side” of

relationship. The physical model enhances the primary key notation by changing the annotation to a circle and

using the following the notation format, PK: n.n. The n.n format is very useful for composite primary key

annotations (Figure 11). For example, a composite primary key field would have the annotations PK 1.1 and PK

1.2.

6.6.5 Detailed Index Specification

The physical model uses circular annotations to denote indexes. There are three types of indexes

denoted in this manner: primary key, unique, and index. Primary key indexes are covered in the previous

section. Unique indices are labeled with the format UK: n.n. The “ordinary” indices are labeled with the format

IDX: n.n (Figure 12). Each annotation is positioned on the “child side” of relationship.

44

Figure 12 - Index Specification

6.6.6 Referenced Attribute Identification

Referenced attributes are similar to foreign keys in the relational model. In the PT pattern, the

referenced key is a key that references a “record” in a SPT entity. This attribute is specified using a circular

annotation. The annotation is positioned on the “child side” of relationship. The annotation’s text uses the

following format, REF n.n.

45

CHAPTER 7

PHYSICAL SOFTWARE IMPLEMENTATION PATTERN META-SCHEMA

7.1 Meta-schema Approach Explanation

The MongoDB database system stores its document in BSON (Binary JSON) format [23]. JSON is a

human readable, flexible data interchange format. It is built upon two structures: key-value pair and ordered list

of values. JSON supports the following value data types: string, number, boolean, object, and array. There are

no mechanisms to specify required key-value pairs, arrays, or objects. The lack of the aforementioned

mechanisms presents a problem for our MongoDB implementation. We decided to implement the following

XML Schema language inspired constructs to address our issues.

• Element specification

Our approach introduces the required attribute to mandate the appearance of the columns that were

represented by either Polymorphic Table Column Simple or Polymorphic Table Column Complex entities.

The required attribute is also used to specify required parent column relationships and child table

relationships.

• Child element specification

• Occurrence indicators

The minOccurrences and maxOccurrences are implemented in our model to specify the number of

occurrences of element in our document.

• Data type specification

Our meta-schema will implement the constructs in a special series of MongoDB collections. We have

organized our meta-schema into the following collections:

• schema.tables

• schema.table.global.columns

• schema.table.columns.simple

• schema.tables.columns.complex

• schema.tables.containers

There are a set of based key-value pairs that required for document in each collection. The required key-value

pairs are _id and _idDataType. The _id key is a MongoDB key [13] which stores the unique (primary) key for the

document in the collection. The _id can be any data type. Its data type is explicitly declared by the _idDataType

key. Each collection is explained in the following sections. Also, detailed descriptions of the attributes meta

schema attributes are available in Appendix A.

7.1.1 Schema.table.global.columns Collection

The schema.table.global.columns

applied to any Polymorphic Table Enity

any data type. If the modeler wished to restrict the data type for each

would be declared in this collection. The restriction would apply to any PTE in the

whose useGlobalColumns key equal true.

Figure 13 – Schema.table.global.columns sample

7.1.2 Schema.tables Collection

The schema.tables collection contains the meta

collection for our meta-schema approach. An example document is shown in below.

Figure 14 – Schema.tables sample

7.1.3 Schema.table.containers Collection

The schema.table.containers collect

hierarchies that are present in the logical model (represented with

is shown below.

key. Each collection is explained in the following sections. Also, detailed descriptions of the attributes meta

schema attributes are available in Appendix A.

Schema.table.global.columns Collection

schema.table.global.columns collection contains the metadata for common “columns” that can be

Polymorphic Table Enity (PTE) in the data model. For example, the MongoDB

any data type. If the modeler wished to restrict the data type for each PTE’s _id, then the column and its type

would be declared in this collection. The restriction would apply to any PTE in the schema.tables

key equal true.

Schema.table.global.columns sample

collection contains the meta-schema for each PTE in the data model. It is the primary

schema approach. An example document is shown in below.

Schema.table.containers Collection

collection contains the meta-schema which facilitates the

hierarchies that are present in the logical model (represented with PTB and OC entities). An example document

46

key. Each collection is explained in the following sections. Also, detailed descriptions of the attributes meta-

collection contains the metadata for common “columns” that can be

) in the data model. For example, the MongoDB _id key can be of

, then the column and its type

schema.tables collection

in the data model. It is the primary

schema which facilitates the PTE aggregate

entities). An example document

Figure 15 – Schema.tables.containers sample

7.1.4 Schema.table.columns.simple Collection

The schema.table.columns.simple

and its related PTCVS entity. An example document is shown below.

Figure 16 – Schema.table.columns.simple sample

7.1.5 Schema.table.columns.complex Collection

The schema.table.columns.complex

entity and its related PTCVC entity. An example is shown below.

Schema.table.columns.simple Collection

schema.table.columns.simple collection contains meta-schema which represents the

entity. An example document is shown below.

chema.table.columns.simple sample

Schema.table.columns.complex Collection

schema.table.columns.complex collection contains the meta-schema which represents the

entity. An example is shown below.

47

schema which represents the PTCS entity

schema which represents the PTCC

Figure 17- Schema.table.columns.complex sample

Schema.table.columns.complex sample

48

49

CHAPTER 8

VALIDATION OF THE APPROACH

8.1 Model Requirements Implementation

Earlier in our paper specified data modeling requirements which we deemed necessary for a successful

implementation of a NoSQL modeling solution. The requirements were separated into two categories: general

NoSQL data model requirements and data modeling constructs. The following section discusses how our

modeling effort met the data modeling requirements.

8.1.1 General NoSQL Data Model Requirements

• NoSQL Document Store Implementation Agnosticism

Our modeling technique did not cater to any particular document store NoSQL database

implementation. We avoided the potential implementation-specific data type specification issues by

allowing the dataType attribute of both the Polymorphic Table Column Attribute (PTCA) and Polymorphic

Table Column Simple (PTCS) to be a string value. This allows the data modeler to specify any data type

that is necessary to properly express the intended value in the model.

• Formal Foundations

The Polymorphic Table pattern established a set of standard entities, rules for entity creation

and identification, and relationship.

• Data Description

The physical model introduced rectangle data type annotations that were used to specify the

base SQL types that represent the data stored in the PTCA, PTCS, and PTE entities. Circular annotations

were used to specify primary, unique, and reference keys. The model supported irregular and semi-

structured data with the introduction of required meta-schema attribute in the physical model.

• Hierarchical Representation

The Polymorphic Table pattern introduced a number of different constructs to satisfy the

hierarchical representation requirement. The EMBEDS annotation was introduced to specify the nesting

of the Polymorphic Table Column Attribute entity within the Polymorphic Table Column Complex entity.

The Owner Container entity was created to implement Polymorphic Table entity hierarchies.

• Graphical Representation

50

IDEF1x standard entities were used as the base for our entities and relationships. We

distinguished many of our entities from one another through the use of background color. Relationship

lines were not enhanced. Instead, we added annotations to denote embeds and reference relationships.

Annotations were also used to graphically represent primary keys, unique keys, data types.

8.1.2 Modeling Constructs

• Entity Identification

Our proposal inherited base entity identification constructs from IDEF1x. We created the

following nomenclature to enhance entity identification and distinguish entities from the normal IDEF1x

entities.

o PTE, PT_<entity name>

o SPTE, SPT_<entity name>

o PTCS, PTCS_<parent entity>_<attribute>

o PTCC, PTCC_<parent entity>_<column>

o PTCA, PTCA_<parent entity>_<column>_<attribute>

o PTCVS, PTCVS_<parent PTE>_<attribute>

o PTCVC, PTCVC_<parent PTE>_<column>

o PTB, PTB_<parent PTE>_<child PTE>

o OC, OC_<container name>

• Identifying Property

Circular annotations containing the text PK n.n, were used to identify primary keys in the model.

The circular annotations were placed on the child side of the relationship. Multi-part primary keys were

allowed in the modeled. They were identified by populated the n.n with the appropriate integer values.

For example, primary key with two values would have the following annotations: PK 1.1 and PK 1.2.

• Unique Property Constraint

Circular annotations containing the text UK, were placed on the relationship lines between the

PTCC child and the parent PTE of the physical model. The circular annotations were placed on the child

side of the relationship.

• Required/Optional Property

51

Square annotations containing R (required) and O (optional) were used to specify whether or

not a Polymorphic Table Column (simple or complex) or an attribute of a Polymorphic Table Column

Complex entity are required. The notations were placed on the relationship line between the parent and

child entities.

• Data Type Property

Rectangular annotations containing specific SQL data type specifications were used in our

model. The size (when applicable), and precision (when applicable) are notated within the rectangle

annotation.

• Complex Objects

The data model provided the following entities for the construction of complex objects:

o Polymorphic Table Entity

o Polymorphic Table Column Simple

o Polymorphic Table Column Complex

o Polymorphic Table Column Attribute

o Polymorphic Table Column Value Simple

o Polymorphic Table Column Value Complex

o Polymorphic Table To Polymorphic Table Bridge

o Owner Container

For example, a Polymorphic Table Column Complex entity employs the Polymorphic Table Column

Attribute and Polymorphic Table Column Value Complex entities to represent a sub-document.

• Cardinality

The data model inherited the IDEF1x cardinality constructs. Unless otherwise notated the relationships

are implied to be zero, one, or many.

8.2 Meta-Schema Enforced Documents (Experimental Data)

8.2.1 PT_Project Document Validation

We have proven, in the previous section, that our data model specifications were met. However we

have addressed the end result of a meta

algorithms for performing the validation. This is area of future resea

manually created, meta-schema enforced documents.

We created a PT_Project document (Figure 1

schema shown in Figure 18, Figure 19, and Figure 21

Figure 18 – PT_Project document

• schema.tables

Figure 19 – PT_Project meta-schema

The document passes this validation step because it meets the following the requirements:

Schema Enforced Documents (Experimental Data)

previous section, that our data model specifications were met. However we

have addressed the end result of a meta-schema enforced document. It is important that we will not proposed

algorithms for performing the validation. This is area of future research. But, what we do present is a series of

schema enforced documents.

document (Figure 11) and manually validated it against the followin

and Figure 21.

The document passes this validation step because it meets the following the requirements:

52

previous section, that our data model specifications were met. However we

schema enforced document. It is important that we will not proposed

rch. But, what we do present is a series of

) and manually validated it against the following meta-

The document passes this validation step because it meets the following the requirements:

o The _id key value meets the data type specification of varchar(100). The data type was specified

in the schema.table.global.columns collection.

o The tableName key value is populated with an existing tableName that is specified in the

schema.tables collection

• schema.table.containers

Figure 20 – Container document

The PT_Project document’s

specified in the containers meta

required attribute). The document passes this validation step because it meets the following

requirements:

o The OC_Document is the _id of an existing container

o The PT_Project document’s tableID value matches the OC_Document’s parentTableID val

This signifies that the containter actually belongs to the PT_Project documents.

o The childTables key has at least one

meta-schema).

• schema.table.columns.simple

key value meets the data type specification of varchar(100). The data type was specified

in the schema.table.global.columns collection.

key value is populated with an existing tableName that is specified in the

schema.tables collection

document’s OC_Document key is the _id of a container document that is

specified in the containers meta-schema collection. The container is optional (as indi

attribute). The document passes this validation step because it meets the following

The OC_Document is the _id of an existing container

The PT_Project document’s tableID value matches the OC_Document’s parentTableID val

This signifies that the containter actually belongs to the PT_Project documents.

key has at least one childTable key-value pair (as specified by the

53

key value meets the data type specification of varchar(100). The data type was specified

key value is populated with an existing tableName that is specified in the

of a container document that is

schema collection. The container is optional (as indicated by its

attribute). The document passes this validation step because it meets the following

The PT_Project document’s tableID value matches the OC_Document’s parentTableID value.

This signifies that the containter actually belongs to the PT_Project documents.

value pair (as specified by the OC_Document

All of the PT_Project document

columns will be validated against the schema.table.columns.simple meta

PT_Project. The document passes validation at this step for the following reasons:

o The PTCS_Project_ProjectCode

the requirement column data type constraint of

fulfills the required designation.

o The PTCS_Project_ProjectNo

the requirement column data type constraint of

fulfills the required designation.

Figure 21 – PT_Project PTCS meta-schema

All of the PT_Project documents “columns” are based on PTCS entities. Therefore all of its

columns will be validated against the schema.table.columns.simple meta-schema for tableID =

. The document passes validation at this step for the following reasons:

ojectCode key of the PT_Project document has the value

the requirement column data type constraint of VARCHAR(4). The inclusion of the key also

designation.

PTCS_Project_ProjectNo key of the PT_Project document has the value

the requirement column data type constraint of VARCHAR(4). The inclusion of the key also

designation.

54

s “columns” are based on PTCS entities. Therefore all of its

schema for tableID =

. The document passes validation at this step for the following reasons:

key of the PT_Project document has the value PRJ1 which meets

. The inclusion of the key also

s the value 0001 which meets

. The inclusion of the key also

8.2.2 PT_ContractChangeOrder Document Validation

We created a PT_ContractChangeOrder

following meta-schema:

Figure 22 – PT_ContractChangeOrder document

• schema.tables

Figure 23 – PT_ContractChangeOrder meta-schema

Document Validation

PT_ContractChangeOrder document (Figure 16) and manually validated it against the

PT_ContractChangeOrder document

schema

55

document (Figure 16) and manually validated it against the

56

The document passes this validation step because it meets the following the requirements:

o The _id key value meets the data type specification of varchar(100). The data type was specified

in the schema.table.global.columns collection.

o The tableName key value is populated with an existing tableName that is specified in the

schema.tables collection

• schema.table.columns.simple

The document passes validation against this schema collection for the following reasons:

o Each required PTCS column in the PT_ContractChangeOrder document is present and populated

according the column meta-schema.

o Each PTCS column value’s data type is the same as that which is specified in the meta-schema.

• schema.table.columns.complex

The document passes validation against this schema collection as well for the following reasons:

o Each of the complex columns in the document met the minimum occurrence indicator. The

columns did not exceed the max occurrence indicator.

o Each child document of the complex column contained a unique key value. For example, there

is only one lineItemIdentifier with the value LINEITEM-1.

57

CHAPTER 9

COMPARATIVE ADVANTAGES

9.1 Required Skillset – IDEF1x

The preservation and application of the relational data modeler’s current skillset is one of our goals for

the Polymorphic Table Modeling pattern. We selected the IDEF1X modeling language because it is recognized as

a standard in relational data modeling. Other features of IDEF1X’s which influenced our decisions are:

• IDEF1x is a coherent language [25]

• IDEF1x is well-tested and proven [25]

• IDEF1x is automatable [25]

Our application of the Polymorphic Table Modeling pattern begins with the creation of a logical

relational model (created with the IDEF1x modeling language). This is a necessary step in order to prepare the

stage for the transition from RM to NoSQL data modeling. The transformation of the data requirements into the

relational model allows the data modeler to freely model the requirements in a familiar fashion. At this point in

the data modeling process we do not place any restrictions on the way the data is to be modeled. This approach

of first modeling the relational model allows the data modeler to focus on entity identification. The entity

identification process is crucial to our modeling proposal as each entity will later become either a Polymorphic

Table Entity (standard or standalone) or Polymorphic Table Column (simple or complex). Our resulting entities

represented the following objects types:

• project

• contract change order

• contract change order memo

• drawing

• drawing index

• drawing signoff

• revision history

• contractor

• authorization

58

• line item

Each entity was represented in our model with the IDEF1x default entity representation. We observed

that IDEF1x’s generalization concept could be applied to the contract change order, contract change order

memo, and drawing entities. This resulted in the abstraction of the common properties to a new super-type

entity named document. We proceeded to make the generalization complete and subsequently converted

contract change order, change order memo, and drawing to sub-types of the document super-type. Next, we

turned our attention to relationship identification. Non-identifying and identifying relationships were identified

and modeled according to the IDEF1x specification. The following relationships were identified:

Table 2. Relationships from logical relational model

Parent Entity Child Entity Relationship Type

Project contract change order identifying

Project contract change order memo identifying

Project drawing identifying

Drawing drawing signoff identifying

Drawing drawing index identifying

Drawing revision history identifying

Contractor contract change order non-identifying

Contract Change Order line item identifying

Once the relationships were modeled we began our detailed attribute identification and modeling. The

attribute identification process commenced with task of identifying primary keys each entity. The primary keys

were specified and modeled in each entity using the IDEF1x standard notation. The remaining non-key attributes

were identified and then populated in their corresponding entities. The resulting logical relational model is

pictured in Figure 3. The use of IDEF1x to create the logical model provides validity to statement we made

concerns the reuse of the data modeler’s existing skillset.

9.2 Required Skillset – Data Model Refactoring

Data model refactoring is based on the concept of database refactoring which was introduced by Scott

Ambler [1]. Database refactoring is described as “a simple change to a database schema that improves its

design while retaining both its behavioral and informational semantics” [1]. Data model refactoring simply

59

applies database refactoring techniques to the logical model instead of the physical database. We found that

our initial relational model required refactoring in order to be in the proper condition for the Polymorphic Table

pattern to be applied. The discovery was made during our attempt to transform the document super-type and

its subtypes to the appropriate Polymorphic Table pattern structures. We wanted to represent each subtype

(contract change order, contract change order memo, and drawing) as a Polymorphic Table Entity (PTE), but

each subtype failed the criteria for eligibility. The pre-condition for becoming a PTE entity is that the relational

model entity must be an independent entity. We applied a series of structural refactoring processes [1] based

on the Move Column, Merge Table, and Drop Table refactoring techniques to address the violation. We were

successful, and the former sub-types met the pre-condition for becoming PTEs.

The refactoring skillset may not be in the data modeler’s tool belt, but it is needed. We would not have

been able to complete our model transformation without refactoring. The need for refactoring has been an

unintended, but welcomed side-effect of our modeling proposal.

9.3 Required Skillset – XML

XML is a new skill that is necessary for our NoSQL modeling solution. We primarily selected XML as a

desired skillset for two specific reasons. The first reason is its ability to represent semi-structured data. The

second reason is because of its ability to use hierarchical containment to express a data hierarchy. The NoSQL

document object is hierarchical, and a vehicle is needed to properly model the data which it can contain. We

therefore employ XML for our data modeling purposes. The employment of XML provides a two-fold advantage.

XML first serves a bridge to applying the Polymorphic Table pattern. Secondly, the inclusion of XML helps

transition the data modeler’s manner of thinking to be “hierarchy centric.” The shift in perspective may or may

not be acquired quickly. Therefore, patience and an adequate learning time frame are required. Data modelers

that are accustomed to using XML may find its application to be quite trivial. The end result of the XML

application process is an established hierarchy that represents the intended structure of the NoSQL document.

We practiced the approach by converting our initial relational model (pre-refactoring) to XML. The

conversion started with the selection of root node candidates. The following rule was used in the selection

process: A root node candidate is a relational entity that 1) participates as a parent in an identifying relationship

2) is not a child entity. The rule-based selection approach yielded the project entity as a root node candidate.

We created a new XML document and added the name of the project entity as the root tag. This resulted in the

creation of single node, <project/>. Next, the entity’s parent-child relationships were navigated to further build

the hierarchy. We decided to take advantage of containment relationship aspect of XML and introduce the

document super-type as a container for all of its subtypes (contract change order, change order memo, and

drawing). The name of the document was pluralized to indicate the type of contents that would be stored, and

the node was added to the <project/> node. The names of each of the project’s children were appended to the

new <documents/> node as child nodes. Recursion was used on each child entity to add their children to the

XML document. We deliberately did not model attributes because our objective to create a hierarchical

representation of our relational model. The XML document gave us our hierarchical view of our relational

model, thus proving the need for the XML skill.

60

XSD (Xml Schema Definition) is a secondary skill the adopter of the Polymorphic Table pattern will find

useful. Although it is not required, we strongly recommend that the data modeler acquires at the minimum, a

familiarity. We used our knowledge of XSD to create the metadata for our physical implementation. We found

that our meta-schema implementation shares characteristics of the Salami Slice [15] and Russian Doll [15] XML

Schema design patterns. In embedding modeling style, the parent document can be considered to be the global

element. Each embedded document would therefore be a local element. These aforementioned features

parallel the characteristics of the Russian Doll design pattern. The references document modeling style is similar

to the Salami Slice pattern. The referenced SPTE entity can be considered to be a global document. The parent

document is also a global entity. But this is where the similarity ends, due to the fact that the parent document

can contain types that are not declared globally.

The concepts of data typing, restrictions, and occurrence indicators were adopted to assist in the

creation of the metadata. We mapped the cardinality of the relationship to our modified occurrence indicators

(minOccurrences and maxOccurrences) for the Polymorphic Table Column Complex (PTCC). We also employed

the concept of a required element in our metadata. This gave us the flexibility to specify whether or not an

element needs to be present in a NoSQL document object.

Although we adopted some concepts and constructs from XML modeling, we discovered that the

Polymorphic Table pattern presents distinct advantages over canonical XML modeling. Particularly, the

Polymorphic Table pattern allows for a rich, graphical expression of hierarchical structures without the loss of

data typing. Our pattern allows for primary key, alternate key, and index specification, which is not possible in

XML Modeling. Finally, our pattern allows the data modeler to transition from the logical model to physical

model with relative ease.

61

CHAPTER 10

 CONCLUSION

We have presented the PT pattern as a solution to NoSQL data modeling issue for document store

variety. Our polymorphic pattern addresses the issue of how to model a NoSQL document store database. The

pattern takes into consideration the “schemaless” nature of the NoSQL database which allows for polymorphic

schemas to be stored together in the same collection (table). It approaches the schemaless aspect by creating

constructs and rules to govern the data modeling process such that a uniform data model is produced that is

able to describe the complex hierarchies that are often in non-uniform data. Our contribution preserves the

NoSQL schemaless quality, but offers the role of schema enforcement to the application layer.

In this work we presented a new methodology for data analysis and modeling for NoSQL database which

preserves the interim work product Idef1x for future use. We are aware that PT pattern may appear to be

daunting, and that there will be a learning curve which involves changing the way the data modeler approaches

modeling data. Our new methodology seeks to easy this transition by utilizing the data modeling skillsets from

relational database environments as well as XML schema environments.

We are actively pursuing the eventual automation of the entire data modeling process using

contemporary case tools like Erwin. Directions for future work include a) defining code generation procedures

for document store NoSQL DB engines and b) creating a NoSQL schema validator for the document store variety.

62

BIBLIOGRAPHY

[1] Ambler, S.W. and Sadalage, P.J. 2006. Refactoring Databases Evolutionary Database Design. Addison-Wesley.

[2] Badia, a. 2002. Conceptual modeling for semistructured data. Proceedings of the Third International Conference on

Web Information Systems Engineering (Workshops), 2002. (2002), 170–177.

[3] Bird, L. et al. 2000. Object role modelling and XML-Schema. ER’00 Proceedings of the 19th international conference

on Conceptual modeling. (2000), 309–322.

[4] Cardelli, L. and Wegner, P. 1985. On understanding types, data abstraction, and polymorphism. ACM Computing

Surveys.

[5] Chen, P. 1976. The Entity-Relationship Unified View of Data Model-Toward a. ACM Transactions on Database

Systems. 1, 1 (1976), 9–36.

[6] Chodorow, K. 2013. MongoDB The Definitive Guide. O’Reilly Media, Inc.

[7] Clifton, C. et al. 1995. HyperFile: A data and query model for documents. The VLDB Journal. 4, 1 (Jan. 1995), 45–86.

[8] Codd, E.F. 1983. A relational model of data for large shared data banks. Communications of the ACM. 26, 1 (Jan.

1983), 64–69.

[9] Combi, C. and Oliboni, B. 2006. Conceptual modeling of XML data. Proceedings of the 2006 ACM symposium on

Applied computing - SAC ’06. (2006), 467–473.

[10] Connolly, T. and Begg, C. 2010. Database Systems : a practical approach to design, implementation, and

management. Addison-Wesley.

[11] Copeland, R. 2013. MongoDB Appplied Design Patterns. O’Reilly Media, Inc.

[12] Data Models - MongoDB Manual 2.4.9: http://docs.mongodb.org/manual/data-modeling/. Accessed: 2014-03-26.

[13] Ecma formal publications: http://www.ecma-international.org/publications/files/ECMA-ST/ECMA-404.pdf. Accessed:

2014-03-10.

[14] Evans, E. 2004. Domain-Driven Design: Tackling Complexity in the Heart of Software. Domain-Driven Design:

Tackling Complexity in the Heart of Software. Addison-Wesley. 529.

[15] Introducing Design Patterns in XML Schemas: http://www.oracle.com/technetwork/java/design-patterns-142138.html.

Accessed: 2014-03-27.

[16] Jagadish, H. V et al. 2004. Colorful XML. Proceedings of the 2004 ACM SIGMOD international conference on

Management of data - SIGMOD ’04 (New York, New York, USA, 2004), 251–262.

63

[17] Jovanovic, V. and Benson, S. 2013. AGGREGATE DATA MODELING STYLE. SAIS 2013 Proceedings. (2013), 70–

75.

[18] Jr, E.W. 2002. Uniform comparison of data models using containment modeling. Proceedings of the thirteenth ACM

conference on …. (2002), 182–191.

[19] Kusiak, A. et al. 1997. Data modelling with IDEF1x. International Journal of Computer Integrated Manufacturing. 10, 6

(Jan. 1997), 470–486.

[20] Liberty, J. 2003. Programming Visual Basic.Net. Programming Visual Basic.NET. O’Reilly Media, Inc. 74–75.

[21] Lósio, B.F. et al. 2003. Conceptual modeling of XML schemas. Proceedings of the fifth ACM international workshop on

Web information and data management - WIDM ’03 (New York, New York, USA, 2003), 102 – 105.

[22] Mani, M. 2004. EReX: a conceptual model for XML. Proceedings of the Second International XML Database

Symposium. (2004), 128–142.

[23] MongoDB: http://www.mongodb.org/. Accessed: 2014-03-27.

[24] Murthy, R. and Banerjee, S. 2003. Xml schemas in Oracle XML DB. Proceedings of the 29th international conference

on Very large databases. 29, (2003), 1009–1018.

[25] National Institute of Standards and Technology 1993. Federal Information Processing Standards Publication 184.

[26] Necaský, M. 2006. Conceptual modeling for XML: A survey. Proceedings of the Dateso 2006 Annual International

Workshop on DAtabases, Texts, Specifications and Objects. 176, (2006), 1–54.

[27] Parsons, D. 2001. Object Oriented Programming with C++. Cengage Learning EMEA.

[28] Primitive XML Data Types: http://msdn.microsoft.com/en-us/library/ms256220(v=vs.110).aspx. Accessed: 2014-03-28.

[29] Psaila, G. 1999. ERX: a data model for collections of XML documents. Proceedings 1999 Workshop on Knowledge

and Data Engineering Exchange (KDEX’99) (Cat. No.PR00453) (1999), 99–104.

[30] Routledge, N. 2002. UML and XML Schema. ADC ’02 Proceedings of the 13th Australasian database conference. 5,

(2002), 157–166.

[31] Roy, J. and Ramanujan, A. 2001. XML schema language: taking XML to the next level. IT Professional. 3, 2 (2001),

37–40.

[32] Sadalage, P.J. and Fowler, M. 2013. NoSQL Distilled A Brief Guide to the Emerging World of Polygot Persistence.

Addison-Wesley.

[33] Sarkar, A. 2011. Conceptual Level Design of Semi-structured Database System: Graph-semantic Based Approach.

International Journal of Advanced Computer Science and Applications. 2, 10 (2011), 112–121.

[34] Schema - W3C: http://www.w3.org/standards/xml/schema. Accessed: 2014-03-28.

64

[35] Shanmugasundaram, J. and Shekita, E. 2001. Efficiently publishing relational data as XML documents. Proceedings of

the 26th International Conference on Very Large Databases. 10, 2-3 (2001), 133–154.

[36] Smith, J.M. and Smith, D.C.P. 1977. Database abstractions: aggregation and generalization. ACM Transactions on

Database Systems. 2, 2 (Jun. 1977), 105–133.

[37] Understanding XML Schema: http://msdn.microsoft.com/en-us/library/aa468557.aspx. Accessed: 2014-03-05.

[38] Unified Modeling Language (UML): www.uml.org. Accessed: 2014-03-25.

[39] Vernon, V. 2013. Implementing Domain-Driven Design. Addison-Wesley.

[40] Vollmar, G. 2001. Towards XML metamodel patterns for XML data modeling. 12th International Workshop on

Database and Expert Systems Applications. (2001), 71–75.

[41] W3C XML Schema Definition Language (XSD) 1.1 Part 1: Structures: http://www.w3.org/TR/xmlschema11-1/.

Accessed: 2014-03-28.

[42] XML Schema Tutorial: .

[43] XML Technology: http://www.w3.org/standards/xml/. Accessed: 2014-03-10.

65

APPENDIX A

META-SCHEMA COLLECTION

A.1 Meta-schema Collection – Schema.tables

The schema.tables collection contains the metadata for each PTE in the data model. The following metadata

information is stored in each document in the collection.

Attribute - _id

The _id attribute is a MongoDB key which stores the unique (primary) key for the document in the collection.

The _id can be any data type. Its data type is explicitly specified by the _idDataType attribute.

Attribute - _idDataType

The _idDataType attribute stores the data type of the _id key. The data type must be an element in the

domain of common SQL data types. The data type is stored as a single string that includes the size and precision

(if applicable). For example, a variable character string of size 100 is represented as “VARCHAR(100).”

Attribute – tableID

The tableID attribute stores the name or identifier of the polymorphic table that is being represented. The

tableName can be any data type. Its data type is explicitly specified by the tableNameDataType attribute.

Attribute – useGlobalColumns

The useGlobalColumns attribute stores a boolean value which indicates whether the PTE document will

implement the columns from the schema.table.global.columns collection.

66

A.2 Meta-schema Collection – Schema.table.containers

The schema.table.containers collection contains the metadata which facilitates the PTE aggregate hierarchies

that are present in the logical model (represented with PTB and OC entities). The following metadata

information is stored in each document in the collection.

Attribute - _id

The _id attribute is a MongoDB key which stores the unique (primary) key for the document in the collection.

The _id can be any data type. Its data type is explicitly specified by the _idDataType attribute.

Attribute - _idDataType

The _idDataType attribute stores the data type of the _id key. The data type must be an element in the

domain of common SQL data types. The data type is stored as a single string that includes the size and precision

(if applicable). For example, a variable character string of size 100 is represented as “VARCHAR(100).”

Attribute – containerID

The containerID attribute stores the name or identifier of the OC entity that is being represented. The value of

the containerID will inserted as a key in the PTE document. The data type is explicitly specified by the

containerIDDataType attribute.

Attribute – containerIDDataType

The containerIDDataType attribute stores the data type of the containerIDDataType attribute. The data type

must be an element in the domain of common SQL data types. The data type is stored as a single string that

includes the size and precision (if applicable). For example, a variable character string of size 100 is represented

as “VARCHAR(100).”

Attribute – parentContainerID

The parentContainerID stores name of the key that will appear in the PTE document. The actual

parentContainerID will be set as the key’s value in the parent PTE as well. The parentColumnID can be any data

type. Its data type is explicitly specified by the parentColumnIDDataType attribute.

Attribute – parentIDDataType

67

The parentIDDataType attribute stores the data type of the parentIDDataType attribute. The data type must be

an element in the domain of common SQL data types. The data type is stored as a single string that includes the

size and precision (if applicable).

Attribute – parentContainerRequired

The parentContainerRequired attribute stores a boolean value which indicates whether the column is required

to make the schema valid. If required equal false, then all of the container column information may be omitted

from the PTE document.

Attribute – parentTableID

The parentTableID stores the _id field of the parent PTE document (located in the schema.tables collection).

Attribute – parentTableIDDataType

The parentTableIDDataType attribute stores the data type of the parentTableIDIDDataType attribute. The data

type must be an element in the domain of common SQL data types. The data type is stored as a single string that

includes the size and precision (if applicable).

Attribute – required

The required attribute stores a boolean value which indicates whether the column is required to make the

schema valid. If required equal false, then the column does not have to be included in the document.

Attribute – childTables

The childTables attribute is a key that is used to establish the child-parent PTE document relationships which are

present in the PTB entities of the logical model. The key name will actually be inserted into the PTE document as

a key. The newly formed childTables key (in the PTE document) can be assigned an array of embedded

documents containing childTableID keys. The childTable attribute contains the following key-value pairs:

required, minOccurrences, maxOccurrences, childTableID, and childTableIDDataType.

Attribute - parentContainerRequired

68

The parentContainerRequired attribute stores a boolean value which indicates whether the column is required

to make the schema valid. If required equal false, then all of the container column information may be omitted

from the PTE document.

Attribute – childTables, Embedded Key - required

The required attribute determines whether childTablesColumn key is required to make the OC schema valid. If

the value is set to false, then the key does not have to be present.

Attribute – childTables, Embedded Key - maxOccurrences

The maxOccurrences attribute establishes the allowed maximum number of child table embedded documents

within the childTables attribute. The possible values are 1 to infinity. Infinity is notated by the phrase

“UNBOUNDED.”

Attribute – childTables, Embedded Key - minOccurrences

The minOccurrences attribute establishes the required minimum number of child table embedded documents

within the childTables attribute. The possible values are 0 to infinity. Infinity is notated by the phrase

“UNBOUNDED.”

Attribute – childTables, Embedded Key - childTableID

The childTableID stores a placeholder name in lieu of the name of the child PTCC entity. The placeholder

becomes a key in the embedded document within the PTE document’s childTables attribute. The actual ¬child

PTEs _id will be assigned to the key inside the PTE document.

Attribute – childTables - Embedded Key - childTableIDDataType

The childTableIDDataType attribute stores the data type of the childTableID attribute. The data type must be an

element in the domain of common SQL data types. The data type is stored as a single string that includes the

size and precision (if applicable).

A.3 Meta-schema Collection – Schema.table.global.columns

The schema.table.global.columns collection contains the metadata for common “columns” that can be applied

to any Polymorphic Table Enity (PTE) in the data model. For example, the MongoDB _id key can be of any data

69

type. If the modeler wished to restrict the data type for each PTE’s ¬_id, the column and its type would be

declared in this collection. The restriction would apply to any PTE in the schema.tables collection whose

useGlobalColumns key equal true. The metadata stored in the schema.table.global.columns is described in the

following sections.

Attribute – globalColumnName

The globalColumnName attribute stores name (or identifier) of the “common” column. The attribute data type

can any database supported data type. However, its data type is explicitly specified by the

globalColumnNameDataType attribute.

Attribute - globalColumnNameDataType

The globalColumnNameDataType attribute stores the data type of the globalColumnName attribute. The data

type must be an element in the domain of common SQL data types. The data type is stored as a single string that

includes the size and precision (if applicable). For example, a variable character string of size 100 is represented

as “VARCHAR(100).”

A.4 Meta-schema Collection – Schema.table.columns.simple

The schema.table.columns.simple collection contains the combined metadata for each PTCS entity and its

corresponding PTCVS entity in the data model. The following metadata information is stored in each document

in the collection.

Attribute - _id

The _id attribute is a MongoDB key which stores the unique (primary) key for the document in the collection.

The _id can be any data type. Its data type is explicitly specified by the _idDataType attribute.

Attribute - _idDataType

The _idDataType attribute stores the data type of the _id key. The data type must be an element in the

domain of common SQL data types. The data type is stored as a single string that includes the size and precision

(if applicable). For example, a variable character string of size 100 is represented as “VARCHAR(100).”

70

Attribute – tableID

The tableID attribute stores the name or identifier of the polymorphic table that is being represented. The

tableID can be any data type. Its data type is explicitly specified by the tableIDDataType attribute.

Attribute - tableIDDataType

The tableIDDataType attribute stores the data type of the tableID attribute. The data type must be an element

in the domain of common SQL data types. The data type is stored as a single string that includes the size and

precision (if applicable). For example, a variable character string of size 100 is represented as “VARCHAR(100).”

Attribute – columnName

The columnName attribute stores the name or identifier the PTCS entity. The columnName can be any data

type. Its data type is explicitly specified by the columnNameDataType attribute.

Attribute – columnNameDataType

The columnNameDataType attribute stores the data type of the columnName attribute. The data type must be

an element in the domain of common SQL data types. The data type is stored as a single string that includes the

size and precision (if applicable). For example, a variable character string of size 100 is represented as

“VARCHAR(100).”

Attribute – columnValueDataType

The columnValueDataType attribute stores the data type of the value of the PTCVS entity. The data type must

be an element in the domain of common SQL data types. The data type is stored as a single string that includes

the size and precision (if applicable). For example, a variable character string of size 100 is represented as

“VARCHAR(100).”

Attribute – required

The required attribute stores a boolean value which indicates whether the column is required to make the

schema valid. If required equal false, then the column does not have to be included in the document. The

functionality provides the ability to have nullable fields without having to store nulls. The required attribute also

shows the polymorphic model’s strength, by allowing documents with varying fields to compose the same table.

71

Attribute - referencedTableID

The referencedTableID attribute stores a placeholder name instead of the actual name of the key name

(identifier) of the Standalone Polymorphic Table (SPT) that is being referenced. The actual name of the

referenced SPT will be assigned in the document representation of Polymorphic Table Entity (PTE). The attribute

can be any data type. Its data type is explicitly specified by the referencedTableIDDataType attribute. This

attribute is not required if the referencedColumnRequired is set to false.

Attribute – referencedTableIDDataType

The referencedTableIDDataType attribute stores the data type of the value that will be stored in the

referencedTableID attribute. The data type must be an element in the domain of common SQL data types. The

data type is stored as a single string that includes the size and precision (if applicable). For example, a variable

character string of size 100 is represented as “VARCHAR(100).” This attribute is not required if the

referencedColumnRequired is set to false.

Attribute – referencedColumnName

The referencedColumnName attribute stores a placeholder name instead of the actual name of the column. The

actual column name will be assigned to the placeholder key-value pair inside the document representation of

the Polymorphic Table Column Simple entity. The actual column name is the name of column of the SPT entity

that is being referenced. The referencedColumnName can be any data type. Its data type is explicitly specified

by the referencedColumnNameDataType attribute. This attribute is not required if the

referencedColumnRequired is set to false.

Attribute – referencedColumnNameDataType

The referencedColumnNameDataType attribute stores the data type of the value that will be stored in the

referencedColumnName attribute. The data type must be an element in the domain of common SQL data types.

The data type is stored as a single string that includes the size and precision (if applicable). For example, a

variable character string of size 100 is represented as “VARCHAR(100).” This attribute is not required if the

referencedColumnRequired is set to false.

Attribute – referencedColumnRequired

72

The referencedColumnRequired attribute stores a boolean value which indicates whether the following columns

are required column is required to make the schema valid: referencedTableID, referencedTableIDDataType,

referencedColumnName, and referencedColumnNameDataType. If required equal false, then the column does

not have to be included in the document.

A.5 Meta-schema Collection - table.columns.complex

The schema.table.columns.complex collection contains the combined metadata for all PTCC entities and their

associated PTCA and PTCVC entities in the data model. The following metadata information is stored in each

document in the collection.

Attribute - _id

The _id attribute is a MongoDB key which stores the unique (primary) key for the document in the collection.

The _id can be any data type. Its data type is explicitly specified by the _idDataType attribute.

Attribute - _idDataType

 The _idDataType attribute stores the data type of the _id key. The data type must be an element in the

domain of common SQL data types. The data type is stored as a single string that includes the size and precision

(if applicable). For example, a variable character string of size 100 is represented as “VARCHAR(100).”

Attribute – tableID

The tableID attribute stores the name or identifier of the polymorphic table that is being represented. The

tableID can be any data type. Its data type is explicitly specified by the tableIDDataType attribute.

Attribute - tableIDDataType

The tableIDDataType attribute stores the data type of the tableID attribute. The data type must be an element

in the domain of common SQL data types. The data type is stored as a single string that includes the size and

precision (if applicable). For example, a variable character string of size 100 is represented as “VARCHAR(100).”

Attribute – columnName

The columnName attribute stores the name or identifier the PTCS entity. The columnName can be any data

type. Its data type is explicitly specified by the columnNameDataType attribute.

73

Attribute – columnNameDataType

The columnNameDataType attribute stores the data type of the columnName attribute. The data type must be

an element in the domain of common SQL data types. The data type is stored as a single string that includes the

size and precision (if applicable). For example, a variable character string of size 100 is represented as

“VARCHAR(100).”

Attribute – required

The required attribute stores a boolean value which indicates whether the column is required to make the

schema valid. If required equal false, then the column does not have to be included in the document. The

functionality provides the ability to have nullable fields without having to store nulls.

Attribute – minOccurrences

The minOccurrences attribute stores the minimum possible number of occurrences of the PTCC in its parent

document. The possible values are 0 to infinity. Infinity is notated by the phrase “UNBOUNDED.” It is for this

reason that value is stored as a string.

Attribute – maxOccurrences

The maxOccurrences attribute stores the maximum possible number of occurrences of the PTCC in its parent

document. The possible values are 1 to infinity. Infinity is notated by the phrase “UNBOUNDED.” It is for this

reason that value is stored as a string.

Attribute – parentColumn

The parentColumn attribute is an embedded document that represents the parent PTCC column. The

embedded document contains the following key-value pairs: required, parentColumnID, and

parentColumnIDDataType.

Attribute – parentColumn, Embedded Key - required

The required attribute determines whether parentColumn is needed to make the current PTCC schema valid. If

the value is set to false, then the column does not have to be populated.

74

Attribute – parentColumn, Embedded Key – parentColumnID

The parentColumnID stores a placeholder name instead of the actual name of the parent PTCC entity. The

placeholder becomes a key in the parentColumn embedded document in the stored PTE document. The actual

parentColumnID will be set in the PTE’s document. The parentColumnID can be any data type. Its data type is

explicitly specified by the parentColumnIDDataType attribute.

Attribute – parentColumn, Embedded Key – parentColumnIDDataType

The parentColumnIDDataType attribute stores the data type of the parentColumnID attribute. The data type

must be an element in the domain of common SQL data types. The data type is stored as a single string that

includes the size and precision (if applicable). For example, a variable character string of size 100 is represented

as “VARCHAR(100).”

Attribute – columnAttributes

The columnAttributes attribute is an array of embedded documents that which contains the metadata for the

PTCC’s associated PTCA entities. The key name will be inserted into the PTE document. The following keys are

contained in each embedded document: codeEnforcedPrimaryKey, columnAttributeName,

columnAttributeNameDataType, columnAttributeRequired, referencedTableID, referencedTableIDDataType,

referencedColumnName, referencedColumnNameDataType, and referencedColumnRequired.

Attribute – columnAttributes, Embedded Key – codeEnforcedPrimaryKey

The codeEnforcedPrimaryKey attribute stores a boolean value which identifies the current columnAttribute

embedded document as the primary key. In MongoDB , unique indexes are maintained across the entire

document collection. This can create a problem if there are several documents that have embedded documents

which contain the same columnAttributeName. To avoid this pitfall, the codeEnforcedPrimaryKey attribute is

created. If set to true, the application layer is responsible for limiting the scope of the uniqueness to all PTE

documents with the same tableID as the parent PTE document.

Attribute – columnAttributes, Embedded Key – columnAttributeName

The columnAttributeName stores the value contained in the attributeName property in the associated PTCA

entity. The attribute can be any data type. Its data type is explicitly specified by the

columnAttributeNameDataType attribute.

75

Attribute – columnAttributes, Embedded Key – columnAttributeNameDataType

The columnAttributeNameDataType attribute stores the data type of the columnAttributeName attribute. The

data type must be an element in the domain of common SQL data types. The data type is stored as a single

string that includes the size and precision (if applicable). For example, a variable character string of size 100 is

represented as “VARCHAR(100).”

Attribute – columnAttributes, Embedded Key – required

The required attribute determines whether current columnAttribute embedded document attribute is needed

to make the current PTCC schema valid. If the value is set to false, then the column does not have to be

populated.

Attribute – columnAttributes, Embedded Key – referencedTableID

The referencedTableID attribute stores a placeholder name instead of the actual name of the key name

(identifier) of the SPT entity that is being referenced. The actual name of the referenced SPT will be assigned in

the document representation of PTE. The attribute can be any data type. Its data type is explicitly specified by

the referencedTableIDDataType attribute. This attribute is not required if the referencedColumnRequired is set

to false.

Attribute – columnAttributes, Embedded Key – referencedTableIDDataType

The referencedTableIDDataType attribute stores the data type of the value that will be stored in the

referencedTableID attribute. The data type must be an element in the domain of common SQL data types. The

data type is stored as a single string that includes the size and precision (if applicable). For example, a variable

character string of size 100 is represented as “VARCHAR(100).” This attribute is not required if the

referencedColumnRequired is set to false.

Attribute – columnAttributes, Embedded Key – referencedColumnName

The referencedColumnName attribute stores a placeholder name instead of the actual name of the column. The

actual column name will be assigned to the placeholder key-value pair inside the document representation of

the Polymorphic Table Column Simple entity. The actual column name is the name of column of the SPT entity

that is being referenced. The referencedColumnName can be any data type. Its data type is explicitly specified

by the referencedColumnNameDataType attribute. This attribute is not required if the

referencedColumnRequired is set to false.

76

Attribute – columnAttributes, Embedded Key – referencedColumnNameDataType

The referencedColumnNameDataType attribute stores the data type of the value that will be stored in the

referencedColumnName attribute. The data type must be an element in the domain of common SQL data types.

The data type is stored as a single string that includes the size and precision (if applicable). For example, a

variable character string of size 100 is represented as “VARCHAR(100).” This attribute is not required if the

referencedColumnRequired is set to false.

Attribute – columnAttributes, Embedded Key – referencedColumnRequired

The referencedColumnRequired attribute stores a boolean value which indicates whether the following columns

are required column is required to make the schema valid: referencedTableID, referencedTableIDDataType,

referencedColumnName, and referencedColumnNameDataType. If required equal false, then the column does

not have to be included in the document.

Attribute – childComplexColumns

The childComplexColumns attribute is an array of embedded documents that stores the parent-child PTCC entity

relationships represented in the PTCCB entity. The embedded document contains the following key-value pairs:

required, minOccurrences, maxOccurrences, childComplexColumnID, and childComplexColumnIDDataType.

Attribute – childComplexColumns, Embedded Key - required

The required attribute determines whether childComplexColumn attribute is needed to make the current PTCC

schema valid. If the value is set to false, then the column does not have to be populated.

Attribute – childComplexColumns, Embedded Key – maxOccurrences

The maxOccurrences attribute establishes the allowed maximum number of children PTCC embedded

documents within the childComplexColumns attribute. The possible values are 1 to infinity. Infinity is notated

by the phrase “UNBOUNDED.”

Attribute – childComplexColumns, Embedded Key - minOccurrences

77

The minOccurrences attribute establishes the required minimum number of children PTCC embedded

documents within the childComplexColumns attribute. The possible values are 0 to infinity. Infinity is notated

by the phrase “UNBOUNDED.”

Attribute – childComplexColumns, Embedded Key –childComplexColumnID

The childComplexColumnID stores a placeholder name in lieu of the name of the child PTCC entity. The

placeholder becomes a key in the embedded document within the childComplexColumns attribute.

Attribute – childComplexColumns, Embedded Key – childComplexColumnIDDataType

The childComplexColumnIDDataType attribute stores the data type of the columnName attribute. The data type

must be an element in the domain of common SQL data types. The data type is stored as a single string that

includes the size and precision (if applicable). For example, a variable character string of size 100 is represented

as “VARCHAR(100).”

TECHNOLOGY BACKGROUN

B.1.1 What is MongoDB?

MongoDB is an “open-source document database that provides high performance, high availability, and

automatic scaling“ [23]. MongoDB is a member of the NoSQL community. As a membe

community, MongoDB shares the common characteristic of being

require a defined schema, before the database can be used. Being that MongoDB is a document store database,

the document object is its base concept.

B.1.2 Document Object

In MongoDB, the main concept is the

a relational database management system

flexible document object allows for the embedding of documents and arrays. This “document

approach allows for the representation of complex hierarchical relationships in a single document

document contains key identifier (primary key) referred to as the

default to the ObjectId data type. Documents can

the document object. Documents that are stored in this fashion are referred to as

document is stored in MongoDB as a JSON object. An example of a document is below.

Figure 24 MongoDB document example

Since a document object is similar to row in a relational database system, it can be reasoned that there

must be a concept of a table as well. In fact, MongoDB does provide the concept called a

B.1.3 Collection Object

The collection object is a group of documents. The object has a

important concept, because this trait allows heterogeneous documents to be stored in the same collection. A

APPENDIX B

TECHNOLOGY BACKGROUND

B.1 MongoDB

source document database that provides high performance, high availability, and

. MongoDB is a member of the NoSQL community. As a membe

community, MongoDB shares the common characteristic of being schemaless. This means that it does not

require a defined schema, before the database can be used. Being that MongoDB is a document store database,

concept.

In MongoDB, the main concept is the document object. The document object is comparable to a row in

a relational database management system [32]. It is a data structure that is composed of key

object allows for the embedding of documents and arrays. This “document

sentation of complex hierarchical relationships in a single document

document contains key identifier (primary key) referred to as the _id key. The _id can be any data type but it

ocuments can also be stored in the value portion of the key

Documents that are stored in this fashion are referred to as embedded documents

is stored in MongoDB as a JSON object. An example of a document is below.

Since a document object is similar to row in a relational database system, it can be reasoned that there

must be a concept of a table as well. In fact, MongoDB does provide the concept called a collect

object is a group of documents. The object has a dynamic schema

important concept, because this trait allows heterogeneous documents to be stored in the same collection. A

78

source document database that provides high performance, high availability, and

. MongoDB is a member of the NoSQL community. As a member of the NoSQL

. This means that it does not

require a defined schema, before the database can be used. Being that MongoDB is a document store database,

is comparable to a row in

. It is a data structure that is composed of key-value pairs. The

object allows for the embedding of documents and arrays. This “document-oriented”

sentation of complex hierarchical relationships in a single document [12]. Each

can be any data type but it

be stored in the value portion of the key-value pair of

embedded documents. The

Since a document object is similar to row in a relational database system, it can be reasoned that there

collection.

dynamic schema [12]. This is an

important concept, because this trait allows heterogeneous documents to be stored in the same collection. A

79

key rule for MongoBD collections is that each each document key identifier, _id, must be unique for every

document in the collection. There are also other rules regarding the naming of collections [12]:

• Empty string cannot be used a collection name

• The null character (\0) cannot be used in a collection name

• User created collections should not the $ reserved character

• Collections should not begin with the system. prefix

B.1.4 Data Types

The following data types are supported in the MongoDB document object:

• null

• boolean

• number

• string

• date

• regular expressions

• embedded document

• objectID

• binary data

• code

B.1.5 Indexing

The MongoDB database supports the use of indexes (both unique and “normal”). The system allows for

both simple and compound indexes. MongoDB also grants the database developer the ability to index

embedded documents.

B.2 JSON

B.2.1 What is JSON?

Javascript Object Notation (JSON) is a lightweight, text-based, language-independent, data-interchange

format [13]. The key components of JSON are: a collection of name-value pairs and an order list of values .

80

B.2.2 JSON Object

A JSON object is a set of unordered name-value pairs. It is represented a pair of curly brackets

surrounded by zero or more name-vale pairs. The name portion of the name-value pair is always a string value.

The value portion is one of the supported JSON data types. A sample JSON object is shown below.

Figure 25 JSON Object example

B.2.3 Value

A value in JSON must be one of the following data types:

• string

A string is a sequence of Unicode characters which are wrapped in quotation marks [13]. The string

allows for the use of the backslash control character.

• number

A number in JSON is represented in base 10 [13] A number can contain a decimal and/or an exponent 10

ten (the exponent is denoted with the symbol e). It is important to note that infinity and NaN are not

supported.

• object

The object is a valid JSON object

• array

An array is a collection of order values.

81

• boolean

A Boolean in JSON is represent as either true or false

• null

A null value is specified with the of the word null.

B.2.4 Array

Arrays in JSON are collection of ordered values which must be one of the supported value data types.

Each array in JSON is enclosed in a set of brackets ([]), and each value inside of the brackets is delimited with a

comma. An example of a JSON array is shown below.

Figure 26. JSON Array example

B.3 XML Schema Definition Language

B.3.1 What is XML Schema Definition Language?

XML Schema Definition Language (XSD) is a language that offers the means for describing the structure

and constraining documents [41]. The language itself is created with XML. XSD creates a type system for XML

[28, 37], which is necessary because XML is a text-based language. XSD provides the constructs for specifying

valid constraints and structures [31] in addition to the type system provision. The language also provides

considerable improvements over its predecessor, the Document Type Definition (DTD). The DTD is used to

define the legal structure of an XML document. DTD originates from the Structured Generalized Markup

Language. Some ways in which DTD differs from XSD are:

• DTD has limited data typing capabilities

82

• DTD is not XML-based

• DTD does not support namespaces

B.3.2 XSD Features

B.3.2.1 Data Typing

XSD gives the XML the ability to be richly data typed. The schema definition language provides the

following built-in data types [28]:

Table 3 XSD data types

Data Type Description

string a sequence of characters

boolean represents true or false

decimal represents a decimal

float single-precision 32-bit floating-point number

double double-precision 64-bit floating-point number

duration a length of time

dateTime a specific instance of time with the format (CCYY-MM-

DDThh:mm:ss)

• CC – century

• YY – year

• DD – day

• T – date/time separator

• hh – hours

• mm – minutes

• ss – seconds

time instance of time that reoccurs each day with format

(hh:mm:ss.sss)

date a calendar date with format (CCYY-MM-DD)

gYearMonth Gregorian month in a specific Gregorian year

gYear Gregorian year

gDay Gregorian day

gMonth Gregorian month

hexBinary hex-encoded binary data

base64Binary Base64-encoded arbitrary data

anyURI URI as specified in RFC 2396

QName qualified name

NOTATION a notation attribute that is composed of QNames

XSD does not limit the data modeler or programmer to the primitive types. It also provides the constructs to

create user-defined data types.

B.3.2.2 Complex Elements

In XML, a complex element is an element that is composed of one or more elements and/or attributes.

Complex elements can be categorized into one of the following categories

• contains both elements and text

• contains only text

• contains only elements

• contains empty elements

An example of a complex element is shown below.

Figure 27 XML sample document

The same complex element defined in XSD is shown below.

Figure 28 XSD sample document

In XML, a complex element is an element that is composed of one or more elements and/or attributes.

Complex elements can be categorized into one of the following categories [42]:

contains both elements and text

An example of a complex element is shown below.

mplex element defined in XSD is shown below.

83

In XML, a complex element is an element that is composed of one or more elements and/or attributes.

84

B.3.2.3 XSD Restrictions

The XML schema definition language uses restrictions (for attributes) and facets (for elements) to

enforce data specifications (acceptable values and format). Some of the restrictions are shown below:

enumerati

• fractionDigits

This constraint is used to specify the number of allowed decimal places.

• Length

The constraint specifies the number of characters or list item allowed.

B.3.2.4 XSD Indicators

Indicators are used in XSD define how the elements will be used in the XML document. XSD provides for

the following seven indicators [34]:

Table 4 XSD indicators

Indicator Name Description

All The All indicator is an order indicator. It is used to

specify that the parent element’s children can appear in

any order, and must occur only one time.

Choice The Choice indicator is an order indicator. It is used to

specify that only one of the parent element’s child

elements can occur.

Sequence The Sequence indicator is an order indicator. It is used

to specify that the parent element’s children must appear

in the specified order.

maxOccurs The maxOccurs indicator is an occurrence indicator. It

specifies the maximum number of occurrences allowed

for an element.

minOccurs The minOccurs indicator is an occurrence indicator. It

specifies the minimum number of occurrences allowed

for an element.

group The group indicator is used to create a set of related

elements.

attributeGroup The attributeGroup indicator is used to create a set of

related attributes.

85

86

APPENDIX C

SOURCE CODE

C.1 Mongo Data Import Statements

87

APPENDIX D

EXPERIMENTAL DATA

D.1 Schema.tables

[

 {

 "_id": "PT_Project",

 "_idDataType": "VARCHAR(100)",

 "tableName": "PT_Project",

 "tableNameDataType": "VARCHAR(50)",

 "useGlobalColumns": true

 },

 {

 "_id": "PT_ContractChangeOrder",

 "_idDataType": "VARCHAR(100)",

 "tableName": "PT_ContractChangeOrder",

 "tableNameDataType": "VARCHAR(50)",

 "useGlobalColumns": true

 },

 {

 "_id": "PT_ContractChangeOrderMemo",

 "_idDataType": "VARCHAR(100)",

 "tableName": "PT_ContractChangeOrderMemo",

 "tableNameDataType": "VARCHAR(50)",

 "useGlobalColumns": true

 },

 {

 "_id": "PT_Drawing",

88

 "_idDataType": "VARCHAR(100)",

 "tableName": "PT_Drawing",

 "tableNameDataType": "VARCHAR(50)",

 "useGlobalColumns": true

 },

 {

 "_id": "SPT_Contractor",

 "_idDataType": "VARCHAR(100)",

 "tableName": "SPT_Contractor",

 "tableNameDataType": "VARCHAR(50)",

 "useGlobalColumns": true

 }

]

D.2 Schema.table.global.columns

[

 {

 "globalColumnName": "_id",

 "globalColumNameDataType": "VARCHAR(100)"

 }

]

D.3 Schema.table.containers

[

 {

 "_id": "OC_Documents",

 "_idTDataType": "VARCHAR(100)",

 "containerID": "OC_Documents",

 "containerIDDataType": "VARCHAR(100)",

89

 "required": false,

 "parentContainerID": "parentContainer",

 "parentContainerIDDataType": "VARCHAR(100)",

 "parentContainerRequired": false,

 "parentTableID": "PT_Project",

 "parentTableIDDataType": "VARCHAR(100)",

 "childTables": {

 "required": false,

 "minOccurrences": "1",

 "maxOccurrences": "UNBOUNDED",

 "childTableID": "childTable",

 "childTableIDDataType": "VARCHAR(100)"

 }

 }

]

D.4 Schema.table.columns.simple

[

{

 "_id": "PTCS_Project_ProjectCode",

 "_idDataType": "VARCHAR(100)",

 "tableID": "PT_Project",

 "tableIDDataType": "VARCHAR(100)",

 "columnName": "PTCS_Project_ProjectCode",

 "columnNameDataType": "VARCHAR(100)",

 "columnValueDataType" : "VARCHAR(4)",

 "required": true,

 "referencedTableID": "referencedTableID",

 "referencedTableIDDataType": "VARCHAR(100)",

90

 "referencedColumnName": "referencedColumnName",

 "referencedColumnNameDataType": "VARCHAR(100)",

 "referencedColumnRequired": false

},

{

 "_id": "PTCS_Project_ProjectNo",

 "_idDataType": "VARCHAR(100)",

 "tableID": "PT_Project",

 "tableIDDataType": "VARCHAR(100)",

 "columnName": "PTCS_Project_ProjectNo",

 "columnNameDataType": "VARCHAR(100)",

 "columnValueDataType" : "VARCHAR(4)",

 "required": true,

 "referencedTableID": "referencedTableID",

 "referencedTableIDDataType": "VARCHAR(100)",

 "referencedColumnName": "referencedColumnName",

 "referencedColumnNameDataType": "VARCHAR(100)",

 "referencedColumnRequired": false

},

{

 "_id": "PTCS_ContractChangeOrder_DocumentIdentifier",

 "_idDataType": "VARCHAR(100)",

 "tableID": "PT_ContractChangeOrder",

 "tableIDDataType": "VARCHAR(100)",

 "columnName": "PTCS_ContractChangeOrder_DocumentIdentifier",

 "columnNameDataType": "VARCHAR(100)",

 "columnValueDataType" : "VARCHAR(30)",

 "required": true,

 "referencedTableID": "referencedTableID",

91

 "referencedTableIDDataType": "VARCHAR(100)",

 "referencedColumnName": "referencedColumnName",

 "referencedColumnNameDataType": "VARCHAR(100)",

 "referencedColumnRequired": false

},

{

 "_id": "PTCS_ContractChangeOrder_DocumentName",

 "_idDataType": "VARCHAR(100)",

 "tableID": "PT_ContractChangeOrder",

 "tableIDDataType": "VARCHAR(100)",

 "columnName": "PTCS_ContractChangeOrder_DocumentName",

 "columnNameDataType": "VARCHAR(100)",

 "columnValueDataType" : "VARCHAR(30)",

 "required": true,

 "referencedTableID": "referencedTableID",

 "referencedTableIDDataType": "VARCHAR(100)",

 "referencedColumnName": "referencedColumnName",

 "referencedColumnNameDataType": "VARCHAR(100)",

 "referencedColumnRequired": false

},

{

 "_id": "PTCS_ContractChangeOrder_FilePath",

 "_idDataType": "VARCHAR(100)",

 "tableID": "PT_ContractChangeOrder",

 "tableIDDataType": "VARCHAR(100)",

 "columnName": "PTCS_ContractChangeOrder_FilePath",

 "columnNameDataType": "VARCHAR(100)",

 "columnValueDataType" : "VARCHAR(100)",

 "required": true,

92

 "referencedTableID": "referencedTableID",

 "referencedTableIDDataType": "VARCHAR(100)",

 "referencedColumnName": "referencedColumnName",

 "referencedColumnNameDataType": "VARCHAR(100)",

 "referencedColumnRequired": false

},

{

 "_id": "PTCS_ContractChangeOrder_ContractModificationTitle",

 "_idDataType": "VARCHAR(100)",

 "tableID": "PT_ContractChangeOrder",

 "tableIDDataType": "VARCHAR(100)",

 "columnName": "PTCS_ContractChangeOrder_ContractModificationTitle",

 "columnNameDataType": "VARCHAR(100)",

 "columnValueDataType" : "VARCHAR(100)",

 "required": true,

 "referencedTableID": "referencedTableID",

 "referencedTableIDDataType": "VARCHAR(100)",

 "referencedColumnName": "referencedColumnName",

 "referencedColumnNameDataType": "VARCHAR(100)",

 "referencedColumnRequired": false

},

{

 "_id": "PTCS_ContractChangeOrder_MemoText",

 "_idDataType": "VARCHAR(100)",

 "tableID": "PT_ContractChangeOrder",

 "tableIDDataType": "VARCHAR(100)",

 "columnName": "PTCS_ContractChangeOrder_MemoText",

 "columnNameDataType": "VARCHAR(100)",

 "columnValueDataType" : "VARCHAR(2000)",

93

 "required": true,

 "referencedTableID": "referencedTableID",

 "referencedTableIDDataType": "VARCHAR(100)",

 "referencedColumnName": "referencedColumnName",

 "referencedColumnNameDataType": "VARCHAR(100)",

 "referencedColumnRequired": false

},

{

 "_id": "PTCS_ContractChangeOrder_ContractorID",

 "_idDataType": "VARCHAR(100)",

 "tableID": "PT_ContractChangeOrder",

 "tableIDDataType": "VARCHAR(100)",

 "columnName": "PTCS_ContractChangeOrder_ContractorID",

 "columnNameDataType": "VARCHAR(15)",

 "columnValueDataType" : "INTEGER",

 "required": true,

 "referencedTableID": "referencedTableID",

 "referencedTableIDDataType": "VARCHAR(100)",

 "referencedColumnName": "referencedColumnName",

 "referencedColumnNameDataType": "VARCHAR(100)",

 "referencedColumnRequired": false

},

{

 "_id": "PTCS_ContractChangeOrder_LOCATION",

 "_idDataType": "VARCHAR(100)",

 "tableID": "PT_ContractChangeOrder",

 "tableIDDataType": "VARCHAR(100)",

 "columnName": "PTCS_ContractChangeOrder_LOCATION",

 "columnNameDataType": "VARCHAR(100)",

94

 "columnValueDataType" : "VARCHAR(10)",

 "required": true,

 "referencedTableID": "referencedTableID",

 "referencedTableIDDataType": "VARCHAR(100)",

 "referencedColumnName": "referencedColumnName",

 "referencedColumnNameDataType": "VARCHAR(100)",

 "referencedColumnRequired": false

},

{

 "_id": "PTCS_ContractChangeOrder_CostChangeIndicator",

 "_idDataType": "VARCHAR(100)",

 "tableID": "PT_ContractChangeOrder",

 "tableIDDataType": "VARCHAR(100)",

 "columnName": "PTCS_ContractChangeOrder_CostChangeIndicator",

 "columnNameDataType": "VARCHAR(100)",

 "columnValueDataType" : "CHAR(1)",

 "required": true,

 "referencedTableID": "referencedTableID",

 "referencedTableIDDataType": "VARCHAR(100)",

 "referencedColumnName": "referencedColumnName",

 "referencedColumnNameDataType": "VARCHAR(100)",

 "referencedColumnRequired": false

},

{

 "_id": "PTCS_ContractChangeOrder_CostChangeAmount",

 "_idDataType": "VARCHAR(100)",

 "tableID": "PT_ContractChangeOrder",

 "tableIDDataType": "VARCHAR(100)",

 "columnName": "PTCS_ContractChangeOrder_CostChangeAmount",

95

 "columnNameDataType": "VARCHAR(100)",

 "columnValueDataType" : "DECIMAL(10,2)",

 "required": true,

 "referencedTableID": "referencedTableID",

 "referencedTableIDDataType": "VARCHAR(100)",

 "referencedColumnName": "referencedColumnName",

 "referencedColumnNameDataType": "VARCHAR(100)",

 "referencedColumnRequired": false

},

{

 "_id": "PTCS_ContractChangeOrder_NumOfDaysToCompleteWork",

 "_idDataType": "VARCHAR(100)",

 "tableID": "PT_ContractChangeOrder",

 "tableIDDataType": "VARCHAR(100)",

 "columnName": "PTCS_ContractChangeOrder_NumOfDaysToCompleteWork",

 "columnNameDataType": "VARCHAR(100)",

 "columnValueDataType" : "INTEGER",

 "required": true,

 "referencedTableID": "referencedTableID",

 "referencedTableIDDataType": "VARCHAR(100)",

 "referencedColumnName": "referencedColumnName",

 "referencedColumnNameDataType": "VARCHAR(100)",

 "referencedColumnRequired": false

},

{

 "_id": "PTCS_ContractChangeOrder_ProjectOrderNo",

 "_idDataType": "VARCHAR(100)",

 "tableID": "PT_ContractChangeOrder",

 "tableIDDataType": "VARCHAR(100)",

96

 "columnName": "PTCS_ContractChangeOrder_ProjectOrderNo",

 "columnNameDataType": "VARCHAR(100)",

 "columnValueDataType" : "VARCHAR(9)",

 "required": true,

 "referencedTableID": "referencedTableID",

 "referencedTableIDDataType": "VARCHAR(100)",

 "referencedColumnName": "referencedColumnName",

 "referencedColumnNameDataType": "VARCHAR(100)",

 "referencedColumnRequired": false

},

{

 "_id": "PTCS_ContractChangeOrderMemo_ProjectCode",

 "_idDataType": "VARCHAR(100)",

 "tableID": "PT_ContractChangeOrderMemo",

 "tableIDDataType": "VARCHAR(100)",

 "columnName": "PTCS_ContractChangeOrderMemo_ProjectCode",

 "columnNameDataType": "VARCHAR(100)",

 "columnValueDataType" : "VARCHAR(4)",

 "required": true,

 "referencedTableID": "referencedTableID",

 "referencedTableIDDataType": "VARCHAR(100)",

 "referencedColumnName": "referencedColumnName",

 "referencedColumnNameDataType": "VARCHAR(100)",

 "referencedColumnRequired": false

},

{

 "_id": "PTCS_ContractChangeOrderMemo_ProjectNo",

 "_idDataType": "VARCHAR(100)",

 "tableID": "PT_ContractChangeOrderMemo",

97

 "tableIDDataType": "VARCHAR(100)",

 "columnName": "PTCS_ContractChangeOrderMemo_ProjectNo",

 "columnNameDataType": "VARCHAR(100)",

 "columnValueDataType" : "VARCHAR(4)",

 "required": true,

 "referencedTableID": "referencedTableID",

 "referencedTableIDDataType": "VARCHAR(100)",

 "referencedColumnName": "referencedColumnName",

 "referencedColumnNameDataType": "VARCHAR(100)",

 "referencedColumnRequired": false

},

{

 "_id": "PTCS_ContractChangeOrderMemo_DocumentIdentifier",

 "_idDataType": "VARCHAR(100)",

 "tableID": "PT_ContractChangeOrderMemo",

 "tableIDDataType": "VARCHAR(100)",

 "columnName": "PTCS_ContractChangeOrderMemo_DocumentIdentifier",

 "columnNameDataType": "VARCHAR(100)",

 "columnValueDataType" : "VARCHAR(30)",

 "required": true,

 "referencedTableID": "referencedTableID",

 "referencedTableIDDataType": "VARCHAR(100)",

 "referencedColumnName": "referencedColumnName",

 "referencedColumnNameDataType": "VARCHAR(100)",

 "referencedColumnRequired": false

},

{

 "_id": "PTCS_ContractChangeOrderMemo_DocumentName",

 "_idDataType": "VARCHAR(100)",

98

 "tableID": "PT_ContractChangeOrderMemo",

 "tableIDDataType": "VARCHAR(100)",

 "columnName": "PTCS_ContractChangeOrderMemo_DocumentName",

 "columnNameDataType": "VARCHAR(100)",

 "columnValueDataType" : "VARCHAR(30)",

 "required": true,

 "referencedTableID": "referencedTableID",

 "referencedTableIDDataType": "VARCHAR(100)",

 "referencedColumnName": "referencedColumnName",

 "referencedColumnNameDataType": "VARCHAR(100)",

 "referencedColumnRequired": false

},

{

 "_id": "PTCS_ContractChangeOrderMemo_FilePath",

 "_idDataType": "VARCHAR(100)",

 "tableID": "PT_ContractChangeOrderMemo",

 "tableIDDataType": "VARCHAR(100)",

 "columnName": "PTCS_ContractChangeOrderMemo_FilePath",

 "columnNameDataType": "VARCHAR(100)",

 "columnValueDataType" : "VARCHAR(100)",

 "required": true,

 "referencedTableID": "referencedTableID",

 "referencedTableIDDataType": "VARCHAR(100)",

 "referencedColumnName": "referencedColumnName",

 "referencedColumnNameDataType": "VARCHAR(100)",

 "referencedColumnRequired": false

},

{

 "_id": "PTCS_ContractChangeOrderMemo_MemoDate",

99

 "_idDataType": "VARCHAR(100)",

 "tableID": "PT_ContractChangeOrderMemo",

 "tableIDDataType": "VARCHAR(100)",

 "columnName": "PTCS_ContractChangeOrderMemo_MemoDate",

 "columnNameDataType": "VARCHAR(100)",

 "columnValueDataType" : "DATE",

 "required": true,

 "referencedTableID": "referencedTableID",

 "referencedTableIDDataType": "VARCHAR(100)",

 "referencedColumnName": "referencedColumnName",

 "referencedColumnNameDataType": "VARCHAR(100)",

 "referencedColumnRequired": false

},

{

 "_id": "PTCS_ContractChangeOrderMemo_Audience",

 "_idDataType": "VARCHAR(100)",

 "tableID": "PT_ContractChangeOrderMemo",

 "tableIDDataType": "VARCHAR(100)",

 "columnName": "PTCS_ContractChangeOrderMemo_Audience",

 "columnNameDataType": "VARCHAR(100)",

 "columnValueDataType" : "VARCHAR(50)",

 "required": true,

 "referencedTableID": "referencedTableID",

 "referencedTableIDDataType": "VARCHAR(100)",

 "referencedColumnName": "referencedColumnName",

 "referencedColumnNameDataType": "VARCHAR(100)",

 "referencedColumnRequired": false

},

{

100

 "_id": "PTCS_ContractChangeOrderMemo_Sender",

 "_idDataType": "VARCHAR(100)",

 "tableID": "PT_ContractChangeOrderMemo",

 "tableIDDataType": "VARCHAR(100)",

 "columnName": "PTCS_ContractChangeOrderMemo_Sender",

 "columnNameDataType": "VARCHAR(100)",

 "columnValueDataType" : "VARCHAR(50)",

 "required": true,

 "referencedTableID": "referencedTableID",

 "referencedTableIDDataType": "VARCHAR(100)",

 "referencedColumnName": "referencedColumnName",

 "referencedColumnNameDataType": "VARCHAR(100)",

 "referencedColumnRequired": false

},

{

 "_id": "PTCS_ContractChangeOrderMemo_Subject",

 "_idDataType": "VARCHAR(100)",

 "tableID": "PT_ContractChangeOrderMemo",

 "tableIDDataType": "VARCHAR(100)",

 "columnName": "PTCS_ContractChangeOrderMemo_Subject",

 "columnNameDataType": "VARCHAR(100)",

 "columnValueDataType" : "VARCHAR(100)",

 "required": true,

 "referencedTableID": "referencedTableID",

 "referencedTableIDDataType": "VARCHAR(100)",

 "referencedColumnName": "referencedColumnName",

 "referencedColumnNameDataType": "VARCHAR(100)",

 "referencedColumnRequired": false

},

101

{

 "_id": "PTCS_ContractChangeOrderMemo_InReferenceTo",

 "_idDataType": "VARCHAR(100)",

 "tableID": "PT_ContractChangeOrderMemo",

 "tableIDDataType": "VARCHAR(100)",

 "columnName": "PTCS_ContractChangeOrderMemo_InReferenceTo",

 "columnNameDataType": "VARCHAR(100)",

 "columnValueDataType" : "VARCHAR(100)",

 "required": true,

 "referencedTableID": "referencedTableID",

 "referencedTableIDDataType": "VARCHAR(100)",

 "referencedColumnName": "referencedColumnName",

 "referencedColumnNameDataType": "VARCHAR(100)",

 "referencedColumnRequired": false

},

{

 "_id": "PTCS_ContractChangeOrderMemo_MemoBody",

 "_idDataType": "VARCHAR(100)",

 "tableID": "PT_ContractChangeOrderMemo",

 "tableIDDataType": "VARCHAR(100)",

 "columnName": "PTCS_ContractChangeOrderMemo_MemoBody",

 "columnNameDataType": "VARCHAR(100)",

 "columnValueDataType" : "VARCHAR(2000)",

 "required": true,

 "referencedTableID": "referencedTableID",

 "referencedTableIDDataType": "VARCHAR(100)",

 "referencedColumnName": "referencedColumnName",

 "referencedColumnNameDataType": "VARCHAR(100)",

 "referencedColumnRequired": false

102

},

{

 "_id": "PTCS_Drawing_DocumentIdentifier",

 "_idDataType": "VARCHAR(100)",

 "tableID": "PT_Drawing",

 "tableIDDataType": "VARCHAR(100)",

 "columnName": "PTCS_Drawing_DocumentIdentifier",

 "columnNameDataType": "VARCHAR(100)",

 "columnValueDataType" : "VARCHAR(30)",

 "required": true,

 "referencedTableID": "referencedTableID",

 "referencedTableIDDataType": "VARCHAR(100)",

 "referencedColumnName": "referencedColumnName",

 "referencedColumnNameDataType": "VARCHAR(100)",

 "referencedColumnRequired": false

},

{

 "_id": "PTCS_Drawing_ProjectCode",

 "_idDataType": "VARCHAR(100)",

 "tableID": "PT_Drawing",

 "tableIDDataType": "VARCHAR(100)",

 "columnName": "PTCS_Drawing_ProjectCode",

 "columnNameDataType": "VARCHAR(100)",

 "columnValueDataType" : "VARCHAR(4)",

 "required": true,

 "referencedTableID": "referencedTableID",

 "referencedTableIDDataType": "VARCHAR(100)",

 "referencedColumnName": "referencedColumnName",

 "referencedColumnNameDataType": "VARCHAR(100)",

103

 "referencedColumnRequired": false

},

{

 "_id": "PTCS_Drawing_ProjectNo",

 "_idDataType": "VARCHAR(100)",

 "tableID": "PT_Drawing",

 "tableIDDataType": "VARCHAR(100)",

 "columnName": "PTCS_Drawing_ProjectNo",

 "columnNameDataType": "VARCHAR(100)",

 "columnValueDataType" : "VARCHAR(4)",

 "required": true,

 "referencedTableID": "referencedTableID",

 "referencedTableIDDataType": "VARCHAR(100)",

 "referencedColumnName": "referencedColumnName",

 "referencedColumnNameDataType": "VARCHAR(100)",

 "referencedColumnRequired": false

},

{

 "_id": "PTCS_Drawing_DocumentName",

 "_idDataType": "VARCHAR(100)",

 "tableID": "PT_Drawing",

 "tableIDDataType": "VARCHAR(100)",

 "columnName": "PTCS_Drawing_DocumentName",

 "columnNameDataType": "VARCHAR(100)",

 "columnValueDataType" : "VARCHAR(30)",

 "required": true,

 "referencedTableID": "referencedTableID",

 "referencedTableIDDataType": "VARCHAR(100)",

 "referencedColumnName": "referencedColumnName",

104

 "referencedColumnNameDataType": "VARCHAR(100)",

 "referencedColumnRequired": false

},

{

 "_id": "PTCS_Drawing_FilePath",

 "_idDataType": "VARCHAR(100)",

 "tableID": "PT_Drawing",

 "tableIDDataType": "VARCHAR(100)",

 "columnName": "PTCS_Drawing_FilePath",

 "columnNameDataType": "VARCHAR(100)",

 "columnValueDataType" : "VARCHAR(100)",

 "required": true,

 "referencedTableID": "referencedTableID",

 "referencedTableIDDataType": "VARCHAR(100)",

 "referencedColumnName": "referencedColumnName",

 "referencedColumnNameDataType": "VARCHAR(100)",

 "referencedColumnRequired": false

},

{

 "_id": "PTCS_Drawing_SheetNumber",

 "_idDataType": "VARCHAR(100)",

 "tableID": "PT_Drawing",

 "tableIDDataType": "VARCHAR(100)",

 "columnName": "PTCS_Drawing_SheetNumber",

 "columnNameDataType": "VARCHAR(100)",

 "columnValueDataType" : "INTEGER",

 "required": true,

 "referencedTableID": "referencedTableID",

 "referencedTableIDDataType": "VARCHAR(100)",

105

 "referencedColumnName": "referencedColumnName",

 "referencedColumnNameDataType": "VARCHAR(100)",

 "referencedColumnRequired": false

},

{

 "_id": "PTCS_Drawing_HorizontalScale",

 "_idDataType": "VARCHAR(100)",

 "tableID": "PT_Drawing",

 "tableIDDataType": "VARCHAR(100)",

 "columnName": "PTCS_Drawing_HorizontalScale",

 "columnNameDataType": "VARCHAR(100)",

 "columnValueDataType" : "VARCHAR(15)",

 "required": true,

 "referencedTableID": "referencedTableID",

 "referencedTableIDDataType": "VARCHAR(100)",

 "referencedColumnName": "referencedColumnName",

 "referencedColumnNameDataType": "VARCHAR(100)",

 "referencedColumnRequired": false

},

{

 "_id": "PTCS_Drawing_VerticalScale",

 "_idDataType": "VARCHAR(100)",

 "tableID": "PT_Drawing",

 "tableIDDataType": "VARCHAR(100)",

 "columnName": "PTCS_Drawing_VerticalScale",

 "columnNameDataType": "VARCHAR(100)",

 "columnValueDataType" : "VARCHAR(15)",

 "required": true,

 "referencedTableID": "referencedTableID",

106

 "referencedTableIDDataType": "VARCHAR(100)",

 "referencedColumnName": "referencedColumnName",

 "referencedColumnNameDataType": "VARCHAR(100)",

 "referencedColumnRequired": false

},

{

 "_id": "PTCS_Contractor_ContractorID",

 "_idDataType": "VARCHAR(100)",

 "tableID": "SPT_Contractor",

 "tableIDDataType": "VARCHAR(100)",

 "columnName": "PTCS_Contractor_ContractorID",

 "columnNameDataType": "VARCHAR(100)",

 "columnValueDataType" : "VARCHAR(15)",

 "required": true,

 "referencedTableID": "referencedTableID",

 "referencedTableIDDataType": "VARCHAR(100)",

 "referencedColumnName": "referencedColumnName",

 "referencedColumnNameDataType": "VARCHAR(100)",

 "referencedColumnRequired": false

},

{

 "_id": "PTCS_Contractor_ContractorStreetAddress",

 "_idDataType": "VARCHAR(100)",

 "tableID": "SPT_Contractor",

 "tableIDDataType": "VARCHAR(100)",

 "columnName": "PTCS_Contractor_ContractorStreetAddress",

 "columnNameDataType": "VARCHAR(100)",

 "columnValueDataType" : "VARCHAR(50)",

 "required": true,

107

 "referencedTableID": "referencedTableID",

 "referencedTableIDDataType": "VARCHAR(100)",

 "referencedColumnName": "referencedColumnName",

 "referencedColumnNameDataType": "VARCHAR(100)",

 "referencedColumnRequired": false

},

{

 "_id": "PTCS_Contractor_ContractorCity",

 "_idDataType": "VARCHAR(100)",

 "tableID": "SPT_Contractor",

 "tableIDDataType": "VARCHAR(100)",

 "columnName": "PTCS_Contractor_ContractorCity",

 "columnNameDataType": "VARCHAR(100)",

 "columnValueDataType" : "VARCHAR(50)",

 "required": true,

 "referencedTableID": "referencedTableID",

 "referencedTableIDDataType": "VARCHAR(100)",

 "referencedColumnName": "referencedColumnName",

 "referencedColumnNameDataType": "VARCHAR(100)",

 "referencedColumnRequired": false

},

{

 "_id": "PTCS_Contractor_ContractorState",

 "_idDataType": "VARCHAR(100)",

 "tableID": "SPT_Contractor",

 "tableIDDataType": "VARCHAR(100)",

 "columnName": "PTCS_Contractor_ContractorState",

 "columnNameDataType": "VARCHAR(100)",

 "columnValueDataType" : "CHAR(2)",

108

 "required": true,

 "referencedTableID": "referencedTableID",

 "referencedTableIDDataType": "VARCHAR(100)",

 "referencedColumnName": "referencedColumnName",

 "referencedColumnNameDataType": "VARCHAR(100)",

 "referencedColumnRequired": false

},

{

 "_id": "PTCS_Contractor_ContractorZipCode",

 "_idDataType": "VARCHAR(100)",

 "tableID": "SPT_Contractor",

 "tableIDDataType": "VARCHAR(100)",

 "columnName": "PTCS_Contractor_ContractorZipCode",

 "columnNameDataType": "VARCHAR(100)",

 "columnValueDataType" : "CHAR(5)",

 "required": true,

 "referencedTableID": "referencedTableID",

 "referencedTableIDDataType": "VARCHAR(100)",

 "referencedColumnName": "referencedColumnName",

 "referencedColumnNameDataType": "VARCHAR(100)",

 "referencedColumnRequired": false

}

]

D.5 Schema.table.columns.complex

[

 {

 "_id": "PTCC_Drawing_DrawingSignoff",

 "_idDataType": "VARCHAR(100)",

109

 "tableID": "PT_Drawing",

 "tableIDDataType": "VARCHAR(100)",

 "columnName": "PTCC_Drawing_DrawingSignoff",

 "columnNameDataType": "VARCHAR(100)",

 "required": false,

 "minOccurrences": "0",

 "maxOccurrences": "UNBOUNDED",

 "parentColumn": {

 "required": false,

 "parentColumnID": "parentColumnID",

 "parentColumnIDDataType": "VARCHAR(100)"

 },

 "columnAttributes": [

 {

 "codeEnforcedPrimaryKey": true,

 "columnAttributeName": "phase",

 "columnAttributeNameDataType": "VARCHAR(100)",

 "columnAttributeDataType": "VARCHAR(20)",

 "columnAttributeRequired": true,

 "referencedTableID": "referencedTableID",

 "referencedTableIDDataType": "VARCHAR(100)",

 "referencedColumnName": "referencedColumnName",

 "referencedColumnNameDataType": "VARCHAR(100)",

 "referencedColumnRequired": false

 },

 {

 "codeEnforcedPrimaryKey": false,

 "columnAttributeName": "designerInitials",

 "columnAttributeNameDataType": "VARCHAR(100)",

110

 "columnAttributeDataType": "VARCHAR(3)",

 "columnAttributeRequired": true,

 "referencedTableID": "referencedTableID",

 "referencedTableIDDataType": "VARCHAR(100)",

 "referencedColumnName": "referencedColumnName",

 "referencedColumnNameDataType": "VARCHAR(100)",

 "referencedColumnRequired": false

 },

 {

 "codeEnforcedPrimaryKey": false,

 "columnAttributeName": "checkerName",

 "columnAttributeNameDataType": "VARCHAR(100)",

 "columnAttributeDataType": "VARCHAR(50)",

 "columnAttributeRequired": true,

 "referencedTableID": "referencedTableID",

 "referencedTableIDDataType": "VARCHAR(100)",

 "referencedColumnName": "referencedColumnName",

 "referencedColumnNameDataType": "VARCHAR(100)",

 "referencedColumnRequired": false

 },

 {

 "codeEnforcedPrimaryKey": false,

 "columnAttributeName": "checkedDate",

 "columnAttributeNameDataType": "VARCHAR(100)",

 "columnAttributeDataType": "DATE",

 "columnAttributeRequired": true,

 "referencedTableID": "referencedTableID",

 "referencedTableIDDataType": "VARCHAR(100)",

 "referencedColumnName": "referencedColumnName",

111

 "referencedColumnNameDataType": "VARCHAR(100)",

 "referencedColumnRequired": false

 },

 {

 "codeEnforcedPrimaryKey": false,

 "columnAttributeName": "designedDate",

 "columnAttributeNameDataType": "VARCHAR(100)",

 "columnAttributeDataType": "DATE",

 "columnAttributeRequired": true,

 "referencedTableID": "referencedTableID",

 "referencedTableIDDataType": "VARCHAR(100)",

 "referencedColumnName": "referencedColumnName",

 "referencedColumnNameDataType": "VARCHAR(100)",

 "referencedColumnRequired": false

 }

],

 "childComplexColumns": {

 "required": false,

 "minOccurrences": "0",

 "maxOccurrences": "UNBOUNDED",

 "childComplexColumnID": "childColumnID",

 "childComplexColumnIDDataType": "VARCHAR(100)"

 }

 },

 {

 "_id": "PTCC_Drawing_RevisionHistory",

 "_idDataType": "VARCHAR(100)",

 "tableID": "PT_Drawing",

 "tableIDDataType": "VARCHAR(100)",

112

 "columnName": "PTCC_Drawing_RevisionHistory",

 "columnNameDataType": "VARCHAR(100)",

 "required": false,

 "minOccurrences": "0",

 "maxOccurrences": "UNBOUNDED",

 "parentColumn": {

 "required": false,

 "parentColumnID": "parentColumnID",

 "parentColumnIDDataType": "VARCHAR(100)"

 },

 "columnAttributes": [

 {

 "codeEnforcedPrimaryKey": true,

 "columnAttributeName": "revisionDate",

 "columnAttributeNameDataType": "VARCHAR(100)",

 "columnAttributeDataType": "DATE",

 "columnAttributeRequired": true,

 "referencedTableID": "referencedTableID",

 "referencedTableIDDataType": "VARCHAR(100)",

 "referencedColumnName": "referencedColumnName",

 "referencedColumnNameDataType": "VARCHAR(100)",

 "referencedColumnRequired": false

 },

 {

 "codeEnforcedPrimaryKey": false,

 "columnAttributeName": "comments",

 "columnAttributeNameDataType": "VARCHAR(100)",

 "columnAttributeDataType": "VARCHAR(200)",

 "columnAttributeRequired": true,

113

 "referencedTableID": "referencedTableID",

 "referencedTableIDDataType": "VARCHAR(100)",

 "referencedColumnName": "referencedColumnName",

 "referencedColumnNameDataType": "VARCHAR(100)",

 "referencedColumnRequired": false

 },

 {

 "codeEnforcedPrimaryKey": false,

 "columnAttributeName": "revisedByInitials",

 "columnAttributeNameDataType": "VARCHAR(100)",

 "columnAttributeDataType": "VARCHAR(3)",

 "columnAttributeRequired": true,

 "referencedTableID": "referencedTableID",

 "referencedTableIDDataType": "VARCHAR(100)",

 "referencedColumnName": "referencedColumnName",

 "referencedColumnNameDataType": "VARCHAR(100)",

 "referencedColumnRequired": false

 }

],

 "childComplexColumns": {

 "required": false,

 "minOccurrences": "0",

 "maxOccurrences": "UNBOUNDED",

 "childComplexColumnID": "childColumnID",

 "childComplexColumnIDDataType": "VARCHAR(100)"

 }

 },

 {

 "_id": "PTCC_Drawing_DrawingIndex",

114

 "_idDataType": "VARCHAR(100)",

 "tableID": "PT_Drawing",

 "tableIDDataType": "VARCHAR(100)",

 "columnName": "PTCC_Drawing_DrawingIndex",

 "columnNameDataType": "VARCHAR(100)",

 "required": false,

 "minOccurrences": "0",

 "maxOccurrences": "UNBOUNDED",

 "parentColumn": {

 "required": false,

 "parentColumnID": "parentColumnID",

 "parentColumnIDDataType": "VARCHAR(100)"

 },

 "columnAttributes": [

 {

 "codeEnforcedPrimaryKey": true,

 "columnAttributeName": "drawingIndexIdentifier",

 "columnAttributeNameDataType": "VARCHAR(100)",

 "columnAttributeDataType": "VARCHAR(20)",

 "columnAttributeRequired": true,

 "referencedTableID": "referencedTableID",

 "referencedTableIDDataType": "VARCHAR(100)",

 "referencedColumnName": "referencedColumnName",

 "referencedColumnNameDataType": "VARCHAR(100)",

 "referencedColumnRequired": false

 },

 {

 "codeEnforcedPrimaryKey": false,

 "columnAttributeName": "designerName",

115

 "columnAttributeNameDataType": "VARCHAR(100)",

 "columnAttributeDataType": "VARCHAR(50)",

 "columnAttributeRequired": true,

 "referencedTableID": "referencedTableID",

 "referencedTableIDDataType": "VARCHAR(100)",

 "referencedColumnName": "referencedColumnName",

 "referencedColumnNameDataType": "VARCHAR(100)",

 "referencedColumnRequired": false

 },

 {

 "codeEnforcedPrimaryKey": false,

 "columnAttributeName": "detailerName",

 "columnAttributeNameDataType": "VARCHAR(100)",

 "columnAttributeDataType": "VARCHAR(50)",

 "columnAttributeRequired": true,

 "referencedTableID": "referencedTableID",

 "referencedTableIDDataType": "VARCHAR(100)",

 "referencedColumnName": "referencedColumnName",

 "referencedColumnNameDataType": "VARCHAR(100)",

 "referencedColumnRequired": false

 },

 {

 "codeEnforcedPrimaryKey": false,

 "columnAttributeName": "sheetSubset",

 "columnAttributeNameDataType": "VARCHAR(100)",

 "columnAttributeDataType": "VARCHAR(20)",

 "columnAttributeRequired": true,

 "referencedTableID": "referencedTableID",

 "referencedTableIDDataType": "VARCHAR(100)",

116

 "referencedColumnName": "referencedColumnName",

 "referencedColumnNameDataType": "VARCHAR(100)",

 "referencedColumnRequired": false

 },

 {

 "codeEnforcedPrimaryKey": false,

 "columnAttributeName": "subsetSheets",

 "columnAttributeNameDataType": "VARCHAR(100)",

 "columnAttributeDataType": "INTEGER",

 "columnAttributeRequired": true,

 "referencedTableID": "referencedTableID",

 "referencedTableIDDataType": "VARCHAR(100)",

 "referencedColumnName": "referencedColumnName",

 "referencedColumnNameDataType": "VARCHAR(100)",

 "referencedColumnRequired": false

 },

 {

 "codeEnforcedPrimaryKey": false,

 "columnAttributeName": "structureNumberStart",

 "columnAttributeNameDataType": "VARCHAR(100)",

 "columnAttributeDataType": "CHAR(7)",

 "columnAttributeRequired": true,

 "referencedTableID": "referencedTableID",

 "referencedTableIDDataType": "VARCHAR(100)",

 "referencedColumnName": "referencedColumnName",

 "referencedColumnNameDataType": "VARCHAR(100)",

 "referencedColumnRequired": false

 },

 {

117

 "codeEnforcedPrimaryKey": false,

 "columnAttributeName": "structureNumberEnd",

 "columnAttributeNameDataType": "VARCHAR(100)",

 "columnAttributeDataType": "CHAR(7)",

 "columnAttributeRequired": true,

 "referencedTableID": "referencedTableID",

 "referencedTableIDDataType": "VARCHAR(100)",

 "referencedColumnName": "referencedColumnName",

 "referencedColumnNameDataType": "VARCHAR(100)",

 "referencedColumnRequired": false

 }

],

 "childComplexColumns": {

 "required": false,

 "minOccurrences": "0",

 "maxOccurrences": "UNBOUNDED",

 "childComplexColumnID": "childColumnID",

 "childComplexColumnIDDataType": "VARCHAR(100)"

 }

 },

 {

 "_id": "PTCC_ContractChangeOrder_LineItem",

 "_idDataType": "VARCHAR(100)",

 "tableID": "PT_ContractChangeOrder",

 "tableIDDataType": "VARCHAR(100)",

 "columnName": "PTCC_ContractChangeOrder_LineItem",

 "columnNameDataType": "VARCHAR(100)",

 "required": false,

 "minOccurrences": "0",

118

 "maxOccurrences": "UNBOUNDED",

 "parentColumn": {

 "required": false,

 "parentColumnID": "parentColumnID",

 "parentColumnIDDataType": "VARCHAR(100)"

 },

 "columnAttributes": [

 {

 "codeEnforcedPrimaryKey": true,

 "columnAttributeName": "lineItemIdentifier",

 "columnAttributeNameDataType": "VARCHAR(100)",

 "columnAttributeDataType": "VARCHAR(15)",

 "columnAttributeRequired": true,

 "referencedTableID": "referencedTableID",

 "referencedTableIDDataType": "VARCHAR(100)",

 "referencedColumnName": "referencedColumnName",

 "referencedColumnNameDataType": "VARCHAR(100)",

 "referencedColumnRequired": false

 },

 {

 "codeEnforcedPrimaryKey": false,

 "columnAttributeName": "itemDescription",

 "columnAttributeNameDataType": "VARCHAR(100)",

 "columnAttributeDataType": "VARCHAR(50)",

 "columnAttributeRequired": true,

 "referencedTableID": "referencedTableID",

 "referencedTableIDDataType": "VARCHAR(100)",

 "referencedColumnName": "referencedColumnName",

 "referencedColumnNameDataType": "VARCHAR(100)",

119

 "referencedColumnRequired": false

 },

 {

 "codeEnforcedPrimaryKey": false,

 "columnAttributeName": "unitOfMeasure",

 "columnAttributeNameDataType": "VARCHAR(100)",

 "columnAttributeDataType": "VARCHAR(10)",

 "columnAttributeRequired": true,

 "referencedTableID": "referencedTableID",

 "referencedTableIDDataType": "VARCHAR(100)",

 "referencedColumnName": "referencedColumnName",

 "referencedColumnNameDataType": "VARCHAR(100)",

 "referencedColumnRequired": false

 },

 {

 "codeEnforcedPrimaryKey": false,

 "columnAttributeName": "previousQuantity",

 "columnAttributeNameDataType": "VARCHAR(100)",

 "columnAttributeDataType": "DECIMAL(8,2)",

 "columnAttributeRequired": true,

 "referencedTableID": "referencedTableID",

 "referencedTableIDDataType": "VARCHAR(100)",

 "referencedColumnName": "referencedColumnName",

 "referencedColumnNameDataType": "VARCHAR(100)",

 "referencedColumnRequired": false

 },

 {

 "codeEnforcedPrimaryKey": false,

 "columnAttributeName": "addedQuantity",

120

 "columnAttributeNameDataType": "VARCHAR(100)",

 "columnAttributeDataType": "DECIMAL(8,2)",

 "columnAttributeRequired": true,

 "referencedTableID": "referencedTableID",

 "referencedTableIDDataType": "VARCHAR(100)",

 "referencedColumnName": "referencedColumnName",

 "referencedColumnNameDataType": "VARCHAR(100)",

 "referencedColumnRequired": false

 },

 {

 "codeEnforcedPrimaryKey": false,

 "columnAttributeName": "revisionPlanQuantity",

 "columnAttributeNameDataType": "VARCHAR(100)",

 "columnAttributeDataType": "DECIMAL(8,2)",

 "columnAttributeRequired": true,

 "referencedTableID": "referencedTableID",

 "referencedTableIDDataType": "VARCHAR(100)",

 "referencedColumnName": "referencedColumnName",

 "referencedColumnNameDataType": "VARCHAR(100)",

 "referencedColumnRequired": false

 },

 {

 "codeEnforcedPrimaryKey": false,

 "columnAttributeName": "unitPrice",

 "columnAttributeNameDataType": "VARCHAR(100)",

 "columnAttributeDataType": "DECIMAL(8,2)",

 "columnAttributeRequired": true,

 "referencedTableID": "referencedTableID",

 "referencedTableIDDataType": "VARCHAR(100)",

121

 "referencedColumnName": "referencedColumnName",

 "referencedColumnNameDataType": "VARCHAR(100)",

 "referencedColumnRequired": false

 },

 {

 "codeEnforcedPrimaryKey": false,

 "columnAttributeName": "changeType",

 "columnAttributeNameDataType": "VARCHAR(100)",

 "columnAttributeDataType": "CHAR(1)",

 "columnAttributeRequired": true,

 "referencedTableID": "referencedTableID",

 "referencedTableIDDataType": "VARCHAR(100)",

 "referencedColumnName": "referencedColumnName",

 "referencedColumnNameDataType": "VARCHAR(100)",

 "referencedColumnRequired": false

 }

],

 "childComplexColumns": {

 "required": false,

 "minOccurrences": "0",

 "maxOccurrences": "UNBOUNDED",

 "childComplexColumnID": "childColumnID",

 "childComplexColumnIDDataType": "VARCHAR(100)"

 }

 },

 {

 "_id": "PTCC_ContractChangeOrder_Authorization",

 "_idDataType": "VARCHAR(100)",

 "tableID": "PT_ContractChangeOrder",

122

 "tableIDDataType": "VARCHAR(100)",

 "columnName": "PTCC_ContractChangeOrder_Authorization",

 "columnNameDataType": "VARCHAR(100)",

 "required": false,

 "minOccurrences": "0",

 "maxOccurrences": "UNBOUNDED",

 "parentColumn": {

 "required": false,

 "parentColumnID": "parentColumnID",

 "parentColumnIDDataType": "VARCHAR(100)"

 },

 "columnAttributes": [

 {

 "codeEnforcedPrimaryKey": true,

 "columnAttributeName": "authorizationIdentifier",

 "columnAttributeNameDataType": "VARCHAR(100)",

 "columnAttributeDataType": "VARCHAR(15)",

 "columnAttributeRequired": true,

 "referencedTableID": "referencedTableID",

 "referencedTableIDDataType": "VARCHAR(100)",

 "referencedColumnName": "referencedColumnName",

 "referencedColumnNameDataType": "VARCHAR(100)",

 "referencedColumnRequired": false

 },

 {

 "codeEnforcedPrimaryKey": false,

 "columnAttributeName": "roleName",

 "columnAttributeNameDataType": "VARCHAR(100)",

 "columnAttributeDataType": "VARCHAR(50)",

123

 "columnAttributeRequired": true,

 "referencedTableID": "referencedTableID",

 "referencedTableIDDataType": "VARCHAR(100)",

 "referencedColumnName": "referencedColumnName",

 "referencedColumnNameDataType": "VARCHAR(100)",

 "referencedColumnRequired": false

 },

 {

 "codeEnforcedPrimaryKey": false,

 "columnAttributeName": "authorizerName",

 "columnAttributeNameDataType": "VARCHAR(100)",

 "columnAttributeDataType": "VARCHAR(50)",

 "columnAttributeRequired": true,

 "referencedTableID": "referencedTableID",

 "referencedTableIDDataType": "VARCHAR(100)",

 "referencedColumnName": "referencedColumnName",

 "referencedColumnNameDataType": "VARCHAR(100)",

 "referencedColumnRequired": false

 },

 {

 "codeEnforcedPrimaryKey": false,

 "columnAttributeName": "authorizationDate",

 "columnAttributeNameDataType": "VARCHAR(100)",

 "columnAttributeDataType": "DATE",

 "columnAttributeRequired": true,

 "referencedTableID": "referencedTableID",

 "referencedTableIDDataType": "VARCHAR(100)",

 "referencedColumnName": "referencedColumnName",

 "referencedColumnNameDataType": "VARCHAR(100)",

124

 "referencedColumnRequired": false

 }

],

 "childComplexColumns": {

 "required": false,

 "minOccurrences": "0",

 "maxOccurrences": "UNBOUNDED",

 "childComplexColumnID": "childColumnID",

 "childComplexColumnIDDataType": "VARCHAR(100)"

 }

 }

]

D.6 PT_Project

[

 {

 "_id": "Project-1",

 "tableID": "PT_Project",

 "PTCS_Project_ProjectCode": "PRJ1",

 "PTCS_Project_ProjectNo": "0001",

 "OC_Documents": {

 "childTables": [

 {

 "childTable": "ChangeOrder-1"

 },

 {

 "childTable": "DRAW-1"

 }

]

125

 }

 }

]

D.7 PT_Drawing

[

 {

 "_id": "DRAW-1",

 "PTCS_Drawing_DocumentIdentifier": "DRAW-1",

 "PTCS_Drawing_ProjectCode": "PRJ1",

 "PTCS_Drawing_ProjectNo": "0001",

 "PTCS_Drawing_SheetNumber": 202,

 "PTCS_Drawing_HorizontalScale": "NTS",

 "PTCS_Drawing_VerticalScale": "As Noted",

 "PTCS_Drawing_DocumentName": "Sheet_B-INDEX-1.dgn",

 "PTCS_Drawing_FilePath": "\\drawings",

 "PTCC_Drawing_RevisionHistory": {

 "columnAttributes": [

 {

 "revisionDate": "11/1/2002",

 "comments": "Added the bridge support structures.",

 "revisedByInitials": "JBB"

 },

 {

 "revisionDate": "11/5/2002",

 "comments": "Removed the second pillar from the west side.",

 "revisedByInitials": "JBB"

 },

 {

126

 "revisionDate": "12/1/2002",

 "comments": "Changed the direction of the cross beams on second level.",

 "revisedByInitials": "GRA"

 }

]

 },

 "PTCC_Drawing_DrawingSignoff": {

 "columnAttributes": [

 {

 "phase": "Design",

 "checkerName": "Phil Brown",

 "checkedDate": "11/6/2002",

 "designerInitials": "JBB",

 "designedDate": "11/5/2002"

 },

 {

 "phase": "Detail",

 "checkerName": "Alice Smitherson",

 "checkedDate": "12/20/2002",

 "designerInitials": "JBB",

 "designedDate": "11/5/2002"

 },

 {

 "phase": "Design II",

 "checkerName": "Phil Brown",

 "checkedDate": "12/31/2002",

 "designerInitials": "ARB",

 "designedDate": "12/22/2002"

 }

127

]

 },

 "PTCC_Drawing_DrawingIndex": {

 "columnAttributes": [

 {

 "designerName": "Jeff Blank",

 "detailerName": "Bailey Smith",

 "sheetSubset": "Bridge",

 "subsetSheets": 2,

 "structureNumberStart": "1-01-01",

 "structureNumberEnd": "4-04-04"

 }

]

 }

 }

]

D.8 PT_ContractChangeOrderMemo

[

 {

 "PTCS_ContractChangeOrderMemo_DocumentIdentifier": "MEMO-1",

 "PTCS_ContractChangeOrderMemo_DocumentName": "Route 111 Memo 1",

 "PTCS_ContractChangeOrderMemo_FilePath": "\\memo",

 "PTCS_ContractChangeOrderMemo_ProjectCode": "PRJ1",

 "PTCS_ContractChangeOrderMemo_ProjectNo": "0001",

 "PTCS_ContractChangeOrderMemo_MemoDate": "10/16/2001",

 "PTCS_ContractChangeOrderMemo_Audience": "Resident Engineer or Program Engineer",

 "PTCS_ContractChangeOrderMemo_Sender": "Project Engineer",

128

 "PTCS_ContractChangeOrderMemo_Subject": "Contract Modification Order #11, Right-of-Way

Agreement-Fence Change",

 "PTCS_ContractChangeOrderMemo_InReferenceTo": "11111 /NH 66-063 Route 66 - East",

 "PTCS_ContractChangeOrderMemo_MemoBody": "The Right-of-way Agreement with the owners of Parcel

46 required that Fence Combination Wire be placed between Right-of-Way Point 165 and Right-of-Way

Point 166."

 },

 {

 "PTCS_ContractChangeOrderMemo_DocumentIdentifier": "MEMO-2",

 "PTCS_ContractChangeOrderMemo_DocumentName": "Route 111 Memo 2",

 "PTCS_ContractChangeOrderMemo_FilePath": "\\memo",

 "PTCS_ContractChangeOrderMemo_ProjectCode": "PRJ1",

 "PTCS_ContractChangeOrderMemo_ProjectNo": "0001",

 "PTCS_ContractChangeOrderMemo_MemoDate": "10/27/2001",

 "PTCS_ContractChangeOrderMemo_Audience": "Resident Engineer",

 "PTCS_ContractChangeOrderMemo_Sender": "Project Engineer",

 "PTCS_ContractChangeOrderMemo_Subject": "Contract Modification Order #43, Concrete Change",

 "PTCS_ContractChangeOrderMemo_InReferenceTo": "222 /NH 70-051 Route 66 - West",

 "PTCS_ContractChangeOrderMemo_MemoBody": "The current concrete mixture must be change to

support the weight of the heavy machinery for the upcoming year's project."

 }

]

D.9 SPT_Contractor

[

 {

 "_id": "CONTRACTOR-1",

 "tableID": "SPT_Contractor",

 "PTCS_Contractor_ContractorID": "CONTRACTOR-1",

 "PTCS_Contractor_ContractorStreetAddress": "12 Allensmith Drive",

 "PTCS_Contractor_ContractorCity": "Charlotte",

129

 "PTCS_Contractor_ContractorState": "NC",

 "PTCS_Contractor_ContractorZipCode": "28217"

 }

]

D.10 PT_ContractChangeOrder

[

 {

 "_id": "ChangeOrder-1",

 "PTCS_ContractChangeOrder_DocumentIdentifier": "ChangeOrder-1",

 "PTCS_ContractChangeOrder_DocumentName": "ChangeOrder1.pdf",

 "PTCS_ContractChangeOrder_FilePath": "\\changeorder",

 "PTCS_ContractChangeOrder_ProjectCode": "PRJ1",

 "PTCS_ContractChangeOrder_ProjectNo": "0001",

 "PTCS_ContractChangeOrder_ContractModificationTitle": "Row Agreement-Fence Change",

 "PTCS_ContractChangeOrder_MemoText": "Your contract is hereby modified to include Fence Wire

between Right-of-Way Point 165 and Righ-of-Way Point 166",

 "PTCS_ContractChangeOrder_ContractorID": "CONTRACTOR-1",

 "PTCS_ContractChangeOrder_Location": "Route 66-South",

 "PTCS_ContractChangeOrder_ChangeOrderDate": "9/30/2002",

 "PTCS_ContractChangeOrder_ProjectOrderNo": "NH 77-077",

 "PTCS_ContractChangeOrder_CostChangeIndicator": "A",

 "PTCS_ContractChangeOrder_CostChangeAmount": 3000.00,

 "PTCS_ContractChangeOrder_NumOfDaysToCompleteWork": 4,

 "PTCC_ContractChangeOrder_ContractChangeOrderAuthorization": {

 "columnAttributes": [

 {

 "authorizationIdentifier": "AUTH-1",

 "roleName": "FWHA Operations Engineer",

130

 "authorizerName": "Bill R Pepper",

 "authorizationDate": "10/1/2002"

 },

 {

 "authorizationIdentifier": "AUTH-2",

 "roleName": "Region Transportation Director",

 "authorizerName": "Kelly J Brinkley",

 "authorizationDate": "10/2/2002"

 }

]

 },

 "PTCC_ContractChangeOrder_LineItem": {

 "columnAttributes": [

 {

 "lineItemIdentifier": "LINEITEM-1",

 "itemDescription": "607 Fence Comb Wire w/Metail Posts",

 "unitOfMeasure": "LF",

 "previousQuantity": 0.00,

 "addedQuantity": 500.00,

 "revisionPlanQuantity": 500.00,

 "unitPrice": 6.00,

 "changeType": "A"

 },

 {

 "lineItemIdentifier": "LINEITEM-2",

 "itemDescription": "607 Fence Comb Wire w/Metail Posts",

 "unitOfMeasure": "LF",

 "previousQuantity": 5000.00,

 "addedQuantity": -500.00,

131

 "revisionPlanQuantity": 4500.00,

 "unitPrice": 5.50,

 "changeType": "D"

 }

]

 }

 }

]

132

APPENDIX E

SUPPLEMENTAL MODELING DIAGRAMS

Figure 29 Logical Model - PT_ContractChangeOrderMemo

133

Figure 30 Logical Model – PTCC_Drawing_DrawingIndex

Figure 31 Logical Model – OC diagram

134

	Polymorphic Data Modeling
	Recommended Citation

	Microsoft Word - 386386-convertdoc.input.374582.XSP0p.docx

