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EXPERIMENTS ON THE NEURAL NETWORK APPROACH TO THE HANDWRITTEN DIGIT 

CLASSIFICATION PROBLEM 

by 

WILLIAM MEISSNER 

(Under the Direction of Kai Wang) 

ABSTRACT 

 

When the MNIST dataset was introduced in 1998, training a network was a multiple week problem in 

order to receive results far less accurate than an average CPU can produce within a couple of hours today. 

While this indicates that training a network on such a dataset is not the complicated problem it may have 

been twenty years ago, the MNIST dataset makes a good tool for study and testing with beginner and 

medium complexity neural networks. This paper follows along with the work presented in the online 

textbook “Neural Networks and Deep Learning” by Michael Nielson and an updated repository of his 

python code examples made current for the most recent version of python. In this paper, the convolutional 

neural networks outlined in chapter 6 of "Neural networks and deep learning" will be built, run and the 

results will be analyzed and compared to the results shown in Nielson’s work to see how convolutional 

layers improve accuracy of the network. Making use of Nielson’s network3.py, I will conduct several 

experiments on this example starting with a single hidden layer to get a baseline accuracy which will be 

used to compare with the further tests in order to determine if the more complex and additional layers 

have improved the network’s accuracy. The second test will build on the first network by additionally 

utilizing a 5x5 local receptive field, 20 feature maps, and a max-pooling layer 2x2. The third test will use 

the previous features and insert a second convolutional-pooling layer identical in design to the first layer. 

The fourth test will build the network using rectified linear units and some L2 regularization (lmbda=0.1). 

Using the four different networks which each seek to correctly determine the appropriate digit from a 

dataset of thousands of handwritten images, I will compare how the networks are impacted by these 

modifications and compare my results with those presented in Michael Nielson’s textbook. 

INDEX WORDS: Neural network, Deep learning, Machine learning, MNIST 
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CHAPTER 1  

INTRODUCTION 

 

Deep learning and neural networks are becoming further and further integrated and applicable 

across just about every sector of business and education. Pattern recognition, object detection, language 

processing, segmentation, video analysis, spam detection, recognition and classification of speech and 

images are now being used everywhere from classroom education to assisting businesses to make critical 

data driven decisions. Neural networks are driving this field of data analytics and while handwritten digit 

recognition is not going to inform a board of directors the direction to take their company, it serves as a 

test case to demonstrate achievable network accuracy on a well-known dataset.  A basic artificial neural 

network has an input layer, an output layer, and one or more hidden layers in between. Together, the 

whole network is used to classify a given dataset with an accurate classification. For example, in this 

paper and similar studies, neural networks are trained to classify whether a handwritten digit is one of the 

specific numbers 0 through 9. 

Purpose of the Study 

In this paper, the convolutional neural networks outlined in chapter 6 of "Neural Networks and 

Deep Learning" will be built, run and the results will be analyzed and compared to the results shown in 

Nielson’s work to see how convolutional layers improve accuracy of the network. The four neural 

networks that will be analyzed in this paper are as follows: The first network is a shallow model with a 

single hidden layer containing 100 hidden neurons. The second network contains a convolutional layer 

consisting of 5x5 local receptive fields, a stride length of 1, and 20 feature maps along with a max-

pooling layer, which combines the features using 2x2 pooling windows. The third network is the same as 

the second network, but will have a second convolutional and pooling layer with the same features as 

outlined above. The fourth network will utilize rectified linear units instead of using the sigmoid 

activation function which was used in the previous models. This network is a little too susceptible to 

overfitting, so L2 regularization will be used to address this. The regularization parameter will be λ=0.1.  
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CHAPTER 2  

RELATED WORK 

 

Convolutional Neural Networks 

Architecture 

Traditional models for pattern recognition face several problems in their structure so that 

hardware and processing capability put limitations on the success of the models. In [4], the authors laid 

the foundation for the modern understanding of convolutional networks. They outlined that traditional 

pattern recognition networks faced several problems when applied to character recognition which limited 

their capacity to successfully classify the data. In the traditional model, LeCun et al. explained that, “a 

fully connected first layer with, say one hundred hidden units in the first layer, would already contain 

several tens of thousands of weights. Such a larger number of parameters increases the capacity of the 

system and therefore requires a larger training set. In addition, the memory requirement to store so many 

weights may rule out certain hardware implementations” [4]. Additionally, the authors went on to explain 

that the lack of ability for image applications to have inbuilt invariance to account for local distortion of 

the image set was the main limitation of such an unstructured network. Variance is inherent in a dataset 

such as one made up of numbers, letters or both numbers and letters as different writing styles will change 

placement of the distinctive features which are important for the network to learn. Convolutional 

networks address these constraints by forcing replication of weight configurations across space which 

creates a shift invariance that reduces the burden on the network to learn the dataset. The three 

architectural ideas that comprise a convolutional network were also laid out in their paper: local receptive 

fields, shared weights, and pooling. 

Local receptive fields 

A local receptive field connects the input pixels to a hidden layer, but every input pixel is not 

assigned to its’ own neuron. For example, in the second model outlined in the next chapter, a five by five 

local receptive field maps a group of twenty-five input pixels. That region in the input image is called the 

local receptive field for the hidden neuron. It's a little window on the input pixels. Each connection learns 
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a weight. And the hidden neuron learns an overall bias as well. You can think of that particular hidden 

neuron as learning to analyze its particular local receptive field [7].  

Shared weights and biases 

Sharing weights and biases across all neurons is an important aspect of the convolutional 

network. Besides making it easier to allow a hidden neuron to determine certain aspects of an image such 

as the vertical/horizontal edges of an image, it significantly reduces the total number of parameters 

involved in the network. Considering the network being analyzed in this paper, each 5x5 feature map 

requires 25 shared weights and a single shared bias. Assuming the twenty feature maps similar to the 

models outlined in the next section, that is 26 parameters x 20 maps for a total of 520 parameters making 

up the convolutional layer. A similar fully connected layer of 28x28 input neurons is already 784 

parameters (one for each neuron in the 28 by 28 field) before factoring in the weights and biases which 

would be multiplicative ballooning the number of parameters comprising the fully-connected layer. 

Pooling Layers 

Convolutional networks make use of an additional type of layer known as pooling layers. Pooling 

layers are used after convolutional layers in order to simplify the output of the convolutional layer. In the 

tests run below, using a procedure known as max-pooling each neuron of the max-pool output is 

representative of a 2x2 block of hidden neurons that were the output of a feature map from the 

convolutional layer. As the convolutional layer used in the tests built twenty feature maps of 24x24 

neurons output, after the pooling layer is completed, there will be twenty feature maps of 12x12 neurons.  

Considering these three features together, the four different layers at use by the four neural 

networks in this paper can be explained. We start with a grid of input neurons in a configuration of 28x28. 

These input neurons are used to encode the pixel intensities for the MNIST image. This is then followed 

by a convolutional layer using a 5×5 local receptive field and 3 feature maps. The result is a layer of 

20×24×24 hidden feature neurons. The next step is a max-pooling layer, applied to 2×2 regions, across 

each of the twenty feature maps. The result is a layer of 20×12×12 hidden feature neurons. The final layer 
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of connections in the network is a fully-connected layer. That is, this layer connects every neuron from 

the max-pooled layer to every one of the 10 output neurons [7]. 

SoftMax Layer 

A SoftMax layer is utilized to normalize the network’s output from the given data to a probability 

distribution. The function will take the input as a vector of the real numbers and normalize the distribution 

so that the components will add up to one and the larger inputs will correspond to larger probabilities. The 

SoftMax function is shown below. Given that the exponential function will always be positive and that 𝑍𝑗
𝐿 

is representative of the current neuron while 𝑘 represents the final neuron, then the sum of all neurons 

after normalization has been done will be 1. This can be represented mathematically as 𝑎1
𝐿 + 𝑎2

𝐿 +⋯+

𝑎𝑘−1
𝐿 + 𝑎𝑘

𝐿 = 1.  

aLj =
𝑒𝑍𝑗

𝐿

∑k𝑒𝑍𝑘
𝐿 

As all values of the output from a SoftMax layer add up to 1, each individual output node is 

equivalent to or can be considered as representative of the probability distribution of the dataset. 

Sigmoid Activation Function 

A Sigmoid Activation Function is appropriate for use in a neural network where inputs have been 

normalized between 0 to 1. In this paper, this was achieved through the SoftMax Layer explained above. 

Similar to a perceptron, sigmoid neurons have inputs in the range of 0 to 1, but instead of being limited to 

only values of 0 or 1, sigmoid neurons can have inputs of any value between 0 and 1. Each has its own 

weight and bias. The sigmoid activation function is used in models where the goal is predicting the 

probability as an output as the probability exists only between the range of 0 and 1. The first three 

networks looked at in this paper will make use of the sigmoid activation function and the final network 

will utilize rectified linear units which are described below. 
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Rectified Linear Units 

Rectified linear units are an activation function similar to the Sigmoid activation function. For 

any positive value inputted to the rectified linear unit function, the same exact value will be returned by 

the function. The function is defined as: f(x)=max(0,x) 

Rectified Linear Units are preferable and perform better than sigmoid neurons in some situations, 

but not all and there is not a clearly defined set of circumstances when Rectified Linear units will 

outperform sigmoid neurons. Sigmoid neurons will reach a point where their output approaches either 

zero or one and will stop learning and be considered saturated. Rectified linear units will never saturate 

through increasing the weighted input, which means that learning of the network does not slowdown, but 

when the weighted input becomes negative, the neuron will not learn at all. So, it is not as simple 

deciding to always use rectified linear units over other activation functions and increasing the weighted 

inputs incrementally in order to collect ever increasing results in the capacity of the network to learn.  
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MNIST Dataset 

The MNIST dataset is from the National Institute of Standards and Technology (NIST). The 

training set consists of handwritten numbers from 250 different people, pooled from high school students 

and employees at the U.S. Census Bureau. The MNIST dataset in total contains 60,000 images in the 

training set and 10,000 patterns in the testing set [5]. The dataset can be downloaded online and some 

examples from the MNIST dataset are shown in Figure 1.  

Fig. 1. Example Images from the MNIST Dataset, Including 60,000 Images in the Training Set and 

10,000 Patterns in the Testing Set.  
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CHAPTER 3  

CNN MODELS 

Michael Nielsen’s network3.py used in his textbook, “Neural Networks and Deep Learning” 

provided the models used below. His GitHub repository is written for Python 2.7 and is incompatible with 

Python 3. Michal Daniel Dobrzanski created a repository for Nielsen’s code that was updated to work for 

Python 3, and Dobrzanski’s repository was used to build the networks tested in this paper. Network3.py is 

used as a library to build the convolutional networks explained below. Along with this existing code, the 

machine learning library Theano was used as it makes for an easy implementation of backpropagation in 

convolutional neural networks. 

Baseline Network 

In order to inform how the models in this paper perform, it is helpful to create a baseline for 

comparison. A shallow model with a single hidden layer was used to accomplish this goal. The layer 

contained 100 hidden neurons which are passed through a SoftMax Layer in order to normalize the inputs 

and the model trained for 60 epochs, using a learning rate of η=0.1, a mini-batch size of 10, and no 

regularization [7]. 

>>> import network3 

>>> from network3 import Network 

>>> from network3 import ConvPoolLayer, FullyConnectedLayer, SoftmaxLayer 

>>> training_data, validation_data, test_data = network3.load_data_shared() 

>>> mini_batch_size = 10 

>>> net = Network([ 

        FullyConnectedLayer(n_in=784, n_out=100), 

        SoftmaxLayer(n_in=100, n_out=10)], mini_batch_size) 

>>> net.SGD(training_data, 60, mini_batch_size, 0.1,  

            validation_data, test_data) 

  



13 
 

One Convolutional Layer and One Pooling Layer 

The second network builds on the first network. On top of the 100 hidden neuron layer which was 

passed through a SoftMax layer, a convolutional pooling layer utilizing 5x5 local receptive fields, a stride 

length of 1, and 20 feature maps were added. Along with this, a max-pooling layer, which combines the 

features using 2x2 pooling windows, was inserted [7].  

>>> net = Network([ 

        ConvPoolLayer(image_shape=(mini_batch_size, 1, 28, 28),  

                      filter_shape=(20, 1, 5, 5),  

                      poolsize=(2, 2)), 

        FullyConnectedLayer(n_in=20*12*12, n_out=100), 

        SoftmaxLayer(n_in=100, n_out=10)], mini_batch_size) 

>>> net.SGD(training_data, 60, mini_batch_size, 0.1,  

            validation_data, test_data)    

 

Inserting a Second Convolutional-Pooling Layer into the Previous Model 

Next, a second convolutional-pooling layer was inserted onto the existing framework from the 

second model to see if this additional layer would be able to further improve the accuracy of the network. 

The new layer was inserted between the existing convolutional-pooling layer and the fully-connected 

hidden layer. Using the same parameters as the first convolutional-pooling layers, and matching hyper 

parameters, the model looks like this [8]: 

>>> net = Network([ 

        ConvPoolLayer(image_shape=(mini_batch_size, 1, 28, 28),  

                      filter_shape=(20, 1, 5, 5),  

                      poolsize=(2, 2)), 

        ConvPoolLayer(image_shape=(mini_batch_size, 20, 12, 12),  

                      filter_shape=(40, 20, 5, 5),  

                      poolsize=(2, 2)), 

        FullyConnectedLayer(n_in=40*4*4, n_out=100), 

        SoftmaxLayer(n_in=100, n_out=10)], mini_batch_size) 

>>> net.SGD(training_data, 60, mini_batch_size, 0.1,  

            validation_data, test_data)         
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Rectified Linear Units and Some L2 Regularization (lmbda=0.1) 

The previous models are variations of one of the networks introduced in [4], referred to in that 

paper as LeNet-5. These previous networks all make use of a sigmoid activation function. For the fourth 

network, rectified linear units will be used instead of using the sigmoid activation function. This network 

will also be trained for 60 epochs, with a learning rate of η=0.03. This network is a little too susceptible to 

overfitting, so L2 regularization will be used to address this. The regularization parameter will be λ=0.1:  

>>> from network3 import ReLU 

>>> net = Network([ 

        ConvPoolLayer(image_shape=(mini_batch_size, 1, 28, 28),  

                      filter_shape=(20, 1, 5, 5),  

                      poolsize=(2, 2),  

                      activation_fn=ReLU), 

        ConvPoolLayer(image_shape=(mini_batch_size, 20, 12, 12),  

                      filter_shape=(40, 20, 5, 5),  

                      poolsize=(2, 2),  

                      activation_fn=ReLU), 

        FullyConnectedLayer(n_in=40*4*4, n_out=100, activation_fn=ReLU), 

        SoftmaxLayer(n_in=100, n_out=10)], mini_batch_size) 

>>> net.SGD(training_data, 60, mini_batch_size, 0.03,  

            validation_data, test_data, lmbda=0.1) 
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CHAPTER 4 

RESULTS 

 

Discussion of the Obtained Classification Results 

Four neural networks have been trained on the MNIST dataset in order to observe the variation of 

accuracies for handwritten digits. Test and validation accuracy for 60 different epochs were observed on 

the four neural networks in order to test and examine how these changes impact the accuracy of the 

network. Networks 1 and 2 were run for a full 60 epochs, while networks 3, and 4 were stopped early as 

the network was no longer showing improvement in accuracy. These networks were stopped after 30 

epochs and 42 epochs respectively. Figures 2, 3, 4 and 5 show the performance of the neural network for 

different combinations of hidden layers. Table 1 shows the minimum and maximum test and validation 

accuracies of the network found after the training for the four different cases by varying number of hidden 

layers for the recognition of handwritten digits. 

Table 1. Results of Four Neural Networks Over the Training Epochs 

Neural 

Network 

Minimum 

Validation 

Accuracy 

(%) 

Minimum 

Validation 

Epoch 

Corresponding 

Test Accuracy 

(%) 

Maximum 

Validation 

Accuracy 

(%) 

Maximum 

Validation 

Epoch 

Corresponding 

Test Accuracy 

(%) 

1 92.71 1 91.79 97.69 36 97.66 

2 93.80 1 93.19 98.69 59 98.68 

3 90.97 1 90.54 98.92 24 98.89 

4 97.56 1 97.39 99.19 37 99.20 
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Looking at the results of the first network, at epoch 1 the minimum test accuracy of 91.79% is 

found and a validation accuracy of 92.71% is found. At epoch 36, the maximum validation accuracy is 

found to be 97.69% and at epoch 31, the maximum testing accuracy is found to be 97.68%.  

Fig. 2. Observed Accuracy for Network 1  
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In the second network, at epoch 1 the minimum test accuracy of 93.19% is found and the 

minimum validation accuracy of 93.80% is found. At epoch 59, the maximum validation accuracy is 

found to be 98.69% and the maximum testing accuracy was also found at this epoch with a value of 

98.68%.  

Fig. 3. Observed Accuracy for Network 2  
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For the third network, epoch 1 produced the minimum validation accuracy of 90.97% and the 

corresponding minimum test accuracy was found to be 90.54%. At epoch 24, the maximum validation 

accuracy is found to be 98.92% and the maximum testing accuracy was also found at this epoch with a 

value of 98.89%.  

Fig. 4. Observed Accuracy for Network 3 
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The fourth network at epoch 1 found the minimum validation accuracy of 97.56% and the 

minimum test accuracy of 97.39%. At epoch 37, the maximum validation accuracy is found to be 99.19% 

and the maximum testing accuracy was also found at this epoch with a value of 99.20%.  

Fig. 5. Observed Accuracy for Network 4 
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CHAPTER 5  

CONCLUSION 

 

The tests performed on the neural networks in this paper had closely similar results to the figures 

reported by Nielsen in his textbook. Nielsen only reported the obtained classification accuracies of his 

tests of the networks, but comparatively his results closely mirror the results obtained in tests run for this 

paper. Nielsen’s classification accuracies for networks one through four were 97.80%, 98.78%, 99.06%, 

and 99.23% respectively. While the testing accuracies reported above are marginally lower, they increase 

by nearly identical margins. This shows an observable and repeatable impact on network accuracy 

through the additional hidden layers and complexity added to the network over the course of the four 

network tests. 
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