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ABSTRACT
The feasibility and safety of brain-computer interface (BCI) systems for patients with acute/subacute 
stroke have not been established. The aim of this study was to firstly demonstrate the feasibility and safety 
of a bedside BCI system for inpatients with acute/subacute stroke in a small cohort of inpatients. Four 
inpatients with early-phase hemiplegic stroke (7–24 days from stroke onset) participated in this study. The 
portable BCI system showed real-time feedback of sensorimotor rhythms extracted from scalp electro
encephalograms (EEGs). Patients attempted to extend the wrist on their affected side, and neuromuscular 
electrical stimulation was applied only when the system detected significant movement intention-related 
changes in EEG. Between 120 and 200 training trials per patient were successfully and safely conducted at 
the bedside over 2–4 days. Our results clearly indicate that the proposed bedside BCI system is feasible 
and safe. Larger clinical studies are needed to determine the clinical efficacy of the system and its effect 
size in the population of patients with acute/subacute post-stroke hemiplegia.

ARTICLE HISTORY 
Accepted 5 October 2020 

KEYWORDS 
brain-computer interface; 
electroencephalogram; 
neuromuscular electrical 
stimulation; sensorimotor 
rhythms; stroke

Introduction

Brain-computer interface (BCI) technology has already been 
used successfully to control an external device with the user’s 
brain activity, and it is expected to be used on patients with 
strokes, spinal cord injuries, and neuromuscular intractable 
diseases, to assist their motor functions. In addition, the BCIs 
are investigated on healthy subjects with regard to human 
augmentation. Recently, several research groups have shown 
that BCI can also be used as a tool for promoting neural 
plasticity, leading to functional recovery from hemiplegia/ 
hemiparesis after stroke (Shindo et al., 2011; Ushiba & 
Soekadar, 2016). The clinical application of such rehabilitative 
BCI-based neurofeedback in patients with stroke is a fast- 
growing area of research, and its effectiveness in patients with 
chronic stroke who have hemiplegia/hemiparesis has recently 
been confirmed (Broetz et al., 2010; Mukaino et al., 2014).

In the acute/subacute phase, the risk of stroke recurrence is 
higher than that in chronic stroke (Burn et al., 1994; Moroney 
et al., 1998), and the spontaneous reorganization of the nervous 
system is unstable. In most cases, patients with acute/subacute 
stroke cannot perform sitting exercises or transfer to/from 
a wheelchair because they cannot control their bodies. For all 
of these reasons, it is difficult for inpatients with acute/subacute 
stroke to train on a BCI system at regular intervals in 
a rehabilitation laboratory or a rehabilitation room.

Meanwhile, animal studies show critical neural recovery dur
ing early rehabilitative training, although the effect decreases 

with time (Biernaskie et al., 2004; Yang et al., 2003). 
Furthermore, most evidence suggests that early rehabilitation 
leads to better outcomes in humans than in animals (Horn 
et al., 2005; Maulden et al., 2005; Murphy & Corbett, 2009). 
Therefore, it is clinically important to establish an earlier (bed
side) rehabilitative intervention protocol. The current study thus 
aimed to demonstrate the safety and feasibility of a bedside BCI 
system for inpatients with acute/subacute stroke. A number of 
compact and portable embedded BCI systems that have been 
developed by industry and academia are now available for neu
rorehabilitation, some of which can potentially be used for bed
side treatment in acute stroke. However, from the viewpoint of 
a clinical-phase approach for the development of rehabilitation 
evidence (Whyte et al., 2009), the lack of phase 1 or 2 clinical 
trials has hindered progress in BCI intervention. To test the 
safety and feasibility of BCI interventions, here, we conducted 
a case-series study without a control group and conducted trials 
with our custom-designed BCI system in patients with acute/ 
subacute hemiparetic stroke. We expect our results to encourage 
larger phase 3 clinical trials in the future.

Methods

Participant recruitment and intervention design

The potential risks of acute/subacute-phase interventions 
include (1) stroke recurrence caused by a rise in the blood 
pressure due to excessive engagement during training, (2) 
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epileptic seizures, (3) headaches and other adverse nervous 
system effects, and (4) insufficient acceptance and commitment 
to the BCI training. To minimize these risks, we carefully 
selected participants and developed an appropriate intervention 
design.

We used the following criteria for patient selection: (1) 
ability to understand and follow our instructions and expressed 
commitment to the training; (2) sufficient cognitive function
ing (Mini-Mental State Examination score >27 points); (3) no 
bilateral motor deficits; (4) no history of epilepsy or medication 
for epilepsy; (5) no visual deficits; and (6) first-ever stroke.

We recruited four inpatients (one female and three males; 
aged 67.4 ± 14.7 years) who fulfilled these criteria in the early 
phase (less than 1 month since stroke onset) at Asahikawa 
Medical University Hospital. The average time from stroke 
onset to the first intervention was 9.5 days (range 7–13 days) 
(Table 1). The experiment was repeated two to four times on 
separate days. All patients were right-handed and received 
conventional rehabilitation (physical, occupational, and 
speech-language therapy) for 1.5 hours/day on average.

The study was conducted in accordance with the 
Declaration of Helsinki, and all patients gave written informed 
consent for participation and publication of their individual 
data, which was approved by the local ethics committee of 
Asahikawa Medical University (Number: 15119–2). The trial 
was retrospectively registered with the UMIN Clinical Trials 
Registry, number UMIN000023167, on July 14, 2016. Each 
experiment was completed within one hour, including the 
EEG setup and disassembly. The patients’ blood pressure was 
continuously monitored. If a patient felt fatigued or abnormal 

blood pressure was observed during the training, all experi
mental procedures were immediately halted.

System settings

For ease of use, the BCI system we developed has only two 
scalp-EEG signals and employs a head-mounted display 
(HMD) for visual feedback that allows patients to watch the 
feedback signal while reclining. Previous clinical BCI studies 
(Kasashima-Shindo et al., 2015; Ono et al., 2014) have shown 
that two-channel EEG recordings are sufficient for estimating 
sensorimotor cortical excitability. In our study, patients lay on 
their hospital bed in a reclining position and were equipped 
with an HMD (Wrap1200, Vuzix Corporation, Rochester, NY, 
U.S.). The main computer display was mirrored on the HMD 
to show the experimental instructions and visual feedback 
(Figure 1).

In the current study, the extensor carpi radialis (ECR) 
muscle of the affected side was chosen as the target muscle. 
A gelled self-adhesive electrode pad was placed on the belly of 
the ECR muscle on the affected side, and an identical pad was 
also placed on the distal side, 6 cm away. Electrical stimulation 
was delivered through a microcomputer-based stimulator that 
was connected to the two pads.

Neuromuscular electrical stimulation consisted of biphasic 
0.300-ms rectangular impulses of 33.3 Hz (inter-stimulus 
interval 30.0 ms). Other research groups have reported that 30- 
Hz stimulation can induce longer cortical facilitation com
pared with low frequency (3 Hz) (Pitcher et al., 2003), while 
higher-frequency (>35 Hz) stimulation can cause rapid muscle 

Table 1. Patient information and clinical evaluation.

Patient

Days of Training (Days since Stroke) Stroke (Damaged Area)

Stroke Impairment Assessment Set Score

ID Age (y) Sex (M/F) Pre-BCI Post-BCI Test

1 43 M 4 (13, 19, 20, 24) INF (Left Putamen, Left Caudate Nucleus) 0 
0

1A 
0

Finger 
Knee-mouth

2 76 M 2 (8, 19) INF (Right Caudate Nucleus) 0 
0

1B 
2

Finger 
Knee-mouth

3 76 M 3 (7, 9, 10) HEMO (Right Thalamus) 0 
1

1B 
1

Finger 
Knee-mouth

4 78 F 4 (10, 12, 13, 14) INF (Right Primary Motor Cortex) 1B 
2

2 
3

Finger 
Knee-mouth

INF, infarction; HEMO, hemorrhage; BCI; brain-computer interface (training)

Figure 1. The BCI training system and experimental setup. The main computer display was mirrored on the head-mounted display (right panel) to show the 
experimental instructions and visual feedback. Gelled self-adhesive electrode pads were placed on the extensor carpi radialis muscle on the affected side.
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fatigue and affect patient comfort (Naaman et al., 2000). Before 
each training day, the stimulus amplitude was adjusted so that 
overt wrist extension could be observed.

To record bipolar EEG on the scalp, two pairs of Ag/AgCl 
electrodes (each 9 mm in diameter) were placed at FC3-C3 and 
FC4-C4 of the 10/10 system (Klem et al., 1999), which are close 
to the hand representation motor area. The reference and 
ground channels were positioned on the right earlobe and 
forehead, respectively. A biosignal amplifier (g.USBamp, g.tec 
medical engineering GmbH, Graz, Austria) amplified 2–50 Hz 
EEG and sent the signal to the main computer, digitizing it at 
256 Hz. The recorded data were used online but also stored on 
the main computer for offline analysis.

Interventions

After the system setting, interventions started. Each 
experimental day consisted of three stages: an EEG assessment 
before training (Stage 1), a BCI training with neurofeedback 
and neuromuscular electrical stimulation (Stage 2), and 
a second EEG assessment (Stage 3). These three stages were 
completed within one hour.

Stage 1 was performed to set up a nu-support vector regres
sion (nu-SVR) model (model calibration) and to assess the pre- 
training condition of patients’ EEG. Nu-SVR was calibrated to 
classify EEG signals into “rest” or “intention to extend the 
wrist” in Stage 2. In a single trial of Stage 1, patients observed 
a star-shaped cursor moving from the left to the right on the 
HMD over a period of 9 seconds, at a constant speed with an 
update rate of 32 Hz (update interval 31 ms), and an instruc
tion (“cue”) regarding an upper square (“motor intention/try 
to extend the affected-side wrist”) or a lower square (“rest”) 
appeared at the cue timing on the HMD (Figure 2). Then, after 
a 2-second preparation period, participants performed the 
instructed task for the next 3 seconds. Stage 1 consisted of 20 
motor-intention trials and 20 rest trials in random order. The 

procedure was the same for Stage 3, and the results of Stage 1 
and 3 were compared to assess the effects of Stage 2. During 
Stages 1 and 3, EEG signals were recorded but no EEG feed
back was given to patients. After Stage 1, a nu-SVR model 
(EEG classifier) was immediately created using EEG signals 
recorded in Stage 1. The details of feature extraction and nu- 
SVR are described in the subsection of “Feature extraction and 
classification”.

In Stage 2 (BCI training), we employed the same instruction 
display as in Stage 1 and 3, but here the star moved vertically in 
relation to the objective function of the EEG classifier. The star 
moved upward when the classifier output a positive objective 
function (motor intention) and downward when it output 
a negative objective function (rest). Similar EEG feedback has 
been employed in previous studies (Hashimoto et al., 2014; 
Shindo et al., 2011). The feedback period lasted from time 0 to 
3 seconds in each trial. If the final height of the star represented 
a positive value in motor-intention trials when the feedback 
period finished, patients received 2 seconds of neuromuscular 
electrical stimulation. Patients were instructed to observe the 
star moving and to control the star height along with the motor 
intention and rest cues, which were presented in random order. 
In motor-intention trials, patients controlled their brain activ
ity so that the star moved upward while trying to extend the 
wrist on the affected side. In rest trials, patients controlled their 
brain activity so that the star moves downward without any 
motor intention. A training session of Stage 2 consisted of 40 
trials and the inter-session intervals was 1–2 minutes. The 
target number of trials was set at 120–200 (3–5 sessions) within 
50 minutes.

We employed the “intention to extend the wrist” as a means 
to increase motor activity over the sensorimotor cortex. It 
might have been possible to replace the wrist movement with 
finger tapping or gripping. We chose the simple wrist move
ment because it was easy for the patients to understand. And 
the wrist extension is also the same movement as is induced by 

Figure 2. Movement instruction display. An instruction (cue) regarding an upper square (“intention to extend the wrist on the affected-side”) or a lower square (“rest”) 
appeared, and a star moved from the left to the right at a constant speed over a period of 9 seconds. MI: motor intention.

ASSISTIVE TECHNOLOGY 3



the neuromuscular electrical stimulation that we used. Since we 
focused on the outcome of finger function rather than wrist 
joint, we did not assess the motion range of the wrist joint.

Feature extraction and classification

To extract features from the EEG, we used the logarithms of the 
band power of mu (8–13 Hz) and beta (16–26 Hz) rhythms 
over the bilateral hemispheres (four types of features in total). 
The software we developed filtered EEG with a digital fourth- 
order Butterworth filter (with cutoff frequencies of 8–13 Hz for 
mu and 16–26 Hz for beta rhythms), fully rectified the filtered 
EEG and smoothed it with a moving averaging window of 
1 second. To classify these EEG feature signals into two classes 
(motor intention and rest), we used nu-SVR with a radial basis 
function as the EEG classifier. Nu-SVR was established based 
on LIBSVM software version 3.22 (Chang & Lin, 2011). These 
extraction procedures were programmed and automated to 
enable the procedure to be administered by non-BCI experts 
such as therapists.

Support vector machine (SVM) analysis is a well-known 
and effective machine learning tool for classification and 
regression, first proposed by Vapnik et al. in 1992 (Vapnik, 
1995). SVM that extends the objective variable to a continuous 
value is called support vector regression (SVR). SVR is widely 
used because it can solve nonlinear regression problems with 
relatively high accuracy.

A new version of SVR, nu-SVR, proposed by Schölkopf et al. 
(2000), it uses a constant ν in the range (0, 1]. Nu-SVR for
mulation is similar to the original SVR, with some minor 
changes. It can automatically minimize ε, which is a certain 
error threshold used in the original SVR, and realizes robust 
regression with high classification accuracy.

In the current study, the same method of feature extraction 
and classifier is used for both offline analysis for EEG signals 
obtained in Stage 1 and Stage 3 and online BCI in Stage 2. One 
of the basic concepts of BCI technology is to decode the user’s 
intention from the brain activity in real time and operate 
external computers or devices. In particular, BCI research 
that aimed at promoting neural plasticity showed that it is 
important to perform all the processing online, and to create 
a closed loop including the brain, body and BCI system (Xu 
et al., 2014). In Stage 2 of the current study, EEG features were 
extracted online to create this closed loop.

Classification accuracy

To evaluate the performance of the BCI system, classification 
accuracy was calculated offline using nu-SVR, as in the online 
analysis. In this procedure, we estimated the single-trial classi
fication accuracy for each experimental day and for each 
patient using leave-one-out cross-validation. Statistical signifi
cance levels for accuracy were also estimated by randomizing 
the order of data labels and calculating the accuracy of rando
mized data. Randomization and recalculation were repeated 
10,000 times. Consequently, the 5% and 1% significance levels 
were over 70.0% and 75.0%, respectively.

Contribution rate of EEG features

For SVR with a nonlinear kernel, it was impossible to weigh the 
contribution of each EEG feature for classification, because the 
weight vector was not produced. Therefore, we used SVR with 
a linear kernel and calculated the weight vector for each EEG 
feature. If an EEG feature was more critical for classification, 
the greater absolute value of its weight was used.

Before the linear-SVR calculation, we applied the whitening 
procedure for each EEG feature to remove the first- 
and second-order statistical effects, and then conducted the 
discrimination to acquire the weight vectors so that the sum 
of the absolute values was 1 (100%). The weight vectors for the 
four EEG features (amplitudes of the mu and beta rhythms 
from each hemisphere) were converted to absolute values and 
normalized. We defined the average of the converted values 
during motor intentions (0–3 seconds) as the “contribution 
rate”.

All analyses described above were carried out using MATLAB 
2015b and SIMULINK 2015b software (MathWorks, US) with 
custom-made programs.

Outcome assessment

To validate the practicality of our system, we set a primary 
training endpoint, as the point where patients performed 
120–200 trials within 40 minutes on each experimental day. 
EEG classification accuracy was also checked daily. The num
ber of trials was determined taking into consideration the 
average number of days that inpatients spend in bed and the 
average time taken for treatment and other rehabilitation 
procedures.

The other outcome assessment of the BCI training system 
was related to the recovery of voluntary movements in the 
affected upper limb, especially wrist extension. For the assess
ment, we used the finger and knee-mouth tests (motor func
tion, upper extremity) from the Stroke Impairment 
Assessment Set (SIAS, see Chino et al., 1994 for details). 
The finger test is used to determine a clinical score from 0 
to 5 in terms of finger flexion, extension and coordination. 
The knee mouth test confirms whether the patient can touch 
the contralateral knee with her/his affected hand and can also 
bring that hand back to her/his mouth. The score for the knee 
mouth test is also expressed on a scale of 0 to 5. We used 
these SIAS scores as the outcome measure because they reflect 
motor recovery in the two body parts trained with the BCI. 
However, as the inpatients who participated in our study 
would have most probably improved regardless of the BCI 
intervention, and as we did not include a control group, it 
would be unreasonable to consider voluntary movement as 
a major outcome.

Results

We validated that our system safely enabled BCI training in 
patients with acute/subacute stroke. Before and after training, 
patients verbally reported whether they experienced dizziness, 
nausea, sweating, or chest pain. We also checked the patients’ 
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vital signs at rest using the following criteria: heart rate of 
40–120 bpm; systolic and diastolic blood pressures of 
<220 mmHg and <120 mmHg, respectively, for infarction 
and <180 mmHg and <110 mmHg, respectively, for hemor
rhage. These blood pressure criteria are based on the Japanese 
Guidelines for the Management of Stroke 2015.

Using our portable BCI system, all four patients successfully 
performed the experiments according to our training protocols in 
their beds with no aggravation of paralysis, no abnormal muscle 
tone or spasticity, and no other adverse effects. No patient 
reported any pain over the course of the study. The variations in 
blood pressure recorded before and after the experiments were 
also within the safe range, based on the Japanese clinical guidelines 
described in the Methods section. During most experiments, the 
patients achieved the objective number of BCI training trials 
(120–200 trials) within 40 minutes. The average number of experi
mental days was 3.3 days (range 2–4 days), and no patient 
reported anxiety during the experiment.

The finger-function test results indicated recovery of the 
distal function of the upper extremity in three patients who 
could not contract those muscles at initial enrollment. 
A reduction in abnormal muscle synergies was observed in 
the remaining patient. The knee-mouth test showed improved 
proximal contraction of the affected elbow flexor muscle in two 
patients, and no change in the other two patients (Table 1).

Classification accuracy of EEG

Forty trajectories of visual feedback during one BCI training 
session are overlaid in Figure 3. This session shows the best 
classification accuracy for patient 3. The trajectories consist of 
20 motor-intention trials and 20 rest trials. The discrimination 
of these two goals by our BCI system was successful in 35 of 40 

trials (87.5%) within 3 seconds (P < .05 [70%] and P < .01 
[75%]). In the motor-intention trials, if the discrimination was 
correct, the subsequent neuromuscular electrical stimulation 
would have generated extension of the wrist in the 3–5-second 
interval. While no session showed higher classification accu
racy than the example shown in Figure 3, the system succeeded 
in detecting motor intention with higher than chance-level 
accuracy on most experimental days.

Figure 4 depicts an example of classification accuracy eva
luation calculated event-related EEG. These data were recorded 
pre-training from patient 3. The accuracy reached 95% at its 
maximum. Motor intention should have occurred in the 
0–3-second interval. The maximum classification accuracy 
during motor intention for each patient and each stage (Stage 
1 and 3) is summarized in Table 2. Statistical significance levels 
were 70% (P < .05) and 75% (P < .01), respectively, as indicated 
in Figure 4 and Table 2. Stage 1 and 3 were recorded 26 times in 
total, 16 of which exceeded the 5% level and 11 of which 
exceeded the 1% level. Overall, accuracy decreased from 
78.4% Stage 1 (pre-training) to 72.7% Stage 3 (post-training).

The contribution rate of each EEG feature is shown in Figure 5. 
Panel A shows the summation of contribution rates of mu- and 
beta-band EEG amplitudes recorded from the undamaged hemi
sphere, and panel B shows those from the damaged side. The 
contribution rates of the features from the damaged side were not 
lower than those for the undamaged side.

Discussion

Portability and feasibility of bedside BCI system

We provided a simple and portable neuromuscular electrical 
stimulation system with a BCI for inpatients with acute/ 

Figure 3. Trajectories of visual feedback in a typical training session (patient 3, training day 3). Solid and dotted lines indicate motor-intention and rest trials, 
respectively. The patient intended wrist extension in the 0-3-second interval, and on successfully classified motor intention trials, electrical stimulation was delivered in 
the 3-5-second interval.
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subacute hemiplegic stroke. Using this system, we are the first 
to show that patients can safely complete BCI training lying on 
their reclining beds.

Portability is an important factor for bedside BCIs. For good 
portability, we adopted a light-weight HMD as a visual feedback 
device. We found that an HMD, unlike an external computer 
screen used in conventional BCI research (Hashimoto et al., 
2014), allows subjects to observe feedback in a comfortable 
reclining position. Another possible option for portability is 
the use of headphones for feedback. A previous study on por
table P300-based BCI proposed a system that uses headphones 
for auditory stimulation, and such a system also does not require 
an external computer screen (Käthner et al., 2013).

A patient’s home or bedside is always noisier than a medical 
laboratory hence, the EEG measurements are expected to be 
less accurate in such environments. Therefore, there is a need 
to confirm the feasibility of BCI in such environments. Annen 
et al. (2018) proposed a P300-based BCI for communication in 
patients with disorders of consciousness. In their study, 
a commercially available bedside BCI system developed by g. 
tec (mindBEAGLE, Graz, Austria) was employed. We adopted 
the same EEG recorder used in their system. This study, how
ever, is the first to demonstrate the feasibility of bedside BCI 
that uses real-time feedback of sensorimotor rhythms.

BCI training for stroke patients

For patients with chronic stroke, studies of BCI-driven neuro
muscular electrical stimulation (Mukaino et al., 2014) and BCI 
training combined with other physical therapy (Broetz et al., 
2010) have already suggested that BCI systems may induce 
activity-dependent cortical plasticity and promote functional 
recovery. The functional improvement induced by the BCI 
training can continue for 6–12 months after the intervention 
(Biasiucci et al., 2018). When electrical stimulation is applied in 
the form of pulse trains to the motor point of the muscle, 
peripheral afferent activity is elicited and fed back to the central 
nervous system as sensation. This activity is believed to form 
a closed loop including the brain, body and BCI system, and to 

Figure 4. Example of classification accuracy evaluation. Classification accuracies were recorded pre-training for patient 3 (day 3). Patient 3 intended wrist extension in 
the 0-3-second interval. The horizontal lines indicate statistical significance levels of 70% (P < .05) and 75% (P < .01).

Table 2. Summary of classification accuracy (%).

Training Patient 1 Patient 2 Patient 3 Patient 4

Day 1 Stage 1 80.0** 70.0 90.0** 80.0**
Stage 3 65.0 75.0* 83.3** 72.5*

Day 2 Stage 1 80.0** 70.0 86.7** 80.0**
Stage 3 57.5 72.5* 87.5** 77.5**

Day 3 Stage 1 70.0 - 95.0** 75.0*
Stage 3 75.0* - 70.0 65.0

Day 4 Stage 1 70.0 - - 77.5**
Stage 3 65.0 - - 70.0 Total

Average Stage 1 75.0 70.0 90.6 78.1 78.4
Stage 3 65.6 73.8 80.3 71.3 72.7

Total average 70.3 71.9 85.4 74.7 75.6

*P < 0.05, **P < 0.01.
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promote neural plasticity (Xu et al., 2014). This mechanism 
may contribute to the recovery of motor function from hemi
plegia after stroke. In fact, a recent BCI meta-analysis (Bai 
et al., 2020) showed that BCIs combined with neuromuscular 
electrical stimulation may be a better combination for func
tional recovery than other kinds of neurofeedback.

Participation in BCI research as an outpatient in the chronic 
phase is safer than as an inpatient in the early stroke phase as it 
avoids the various risks of early-phase intervention. Moreover, 
in the acute/subacute-phase of stroke (within 90 days of 
stroke), vitals are sometimes unstable. Thus, to avoid clinical 
risks, experimenters should monitor the patients’ vital signs 
during the training. Additionally, most patients in the early- 
phase have little stamina and have difficulty moving to 
a rehabilitative laboratory or rehabilitation room even if it is 
in the same building as the inpatient ward. These factors make 
it difficult for researchers to conduct large-scale studies inves
tigating the effects of BCI training on patients with acute/ 
subacute-phase stroke.

Accuracy of EEG classification

In the current study, EEG classification accuracy was rather 
poor: 61% of Stage1 and 3 (16 out of 26 sessions) had accura
cies above chance level (P < .05). This does not mean that our 
BCI is flawed; it means that patients with early stroke are not 
able to activate the sensorimotor cortex enough to affect their 
EEGs.

When the sensorimotor area is activated by motor inten
tions and shows proper patterns of cortical activity, positive 
visual feedback is given by the BCI system. When the sensor
imotor area shows improper patterns despite motor intentions, 
feedback becomes negative. This process is part of the neural 
operant conditioning during BCI use. Because patients with 
acute stroke show smaller EEG changes (Event-related desyn
chronization, ERD) over the sensorimotor area in the affected 
hemisphere than control groups, despite motion intentions 
(Stępień et al., 2011), ERD enhancement induced by BCI use 
might be able to shift the patients’ EEG toward normal values. 
Previous studies also reported ERD enhancement via BCI use 
in patients with chronic stroke, as well as increased EEG 
classification accuracy (Ono et al., 2014).

Comparing classification accuracy before and after training 
showed that post-training accuracy was actually lower than 
pre-training accuracy in three of the four patients (excluding 
patient 2). One possible explanation is loss of concentration 
due to mental fatigue. Another is the difference in measure
ment conditions during Stage 1 and Stage 3. When the Stage 2 
(BCI training) was completed and Stage 3 started, the visual 
feedback moved horizontally at a constant speed and did not 
move vertically; only the periods of rest, preparation, and 
intention were shown. The patients may thus have been per
plexed, and the effects of daily training on classification accu
racy could have been measured incorrectly.

Study limitations

In the four patients, finger function improved from 0, 0, 0, and 
1B to 1A, 1B, 1B, and 2 (SIAS, finger-function test), and proximal 
arm function improved from 0, 0, 1, and 2 to 0, 2, 1, and 3 (SIAS, 
knee-mouth test). However, we cannot say for sure whether this 
functional recovery primarily resulted from using our system or 
whether it was part of the normal post-stroke recovery process.

Furthermore, the current study cannot directly speak to the 
effectiveness of BCI use for patients with acute/subacute stroke 
or to what the proper training intensity might be. What we can 
say is that our study showed that bedside training with 
a portable BCI is a practical and safe intervention in these 
cases. We can also say that patients with acute/subacute stroke 
can change their EEG patterns and that our system is capable of 
measuring such changes.

To learn more about functional improvements in the upper 
extremity through training, large-scale and long-term follow- 
up studies are needed. Open questions such as whether more 
training can change EEG patterns or improve hand function or 
whether functional improvement can be continued after dis
charge still persist. Additionally, next-phase clinical studies are 
necessary and should employ standard motor evaluations such 
as Fugl-Meyer assessment, electromyography, and range of 
motion measurements in the upper limb joints. Though this 
study is a short-term case series without control participants 
and without long-term detailed clinical evaluations, our find
ings should encourage future randomized controlled trials or 
larger-scale BCI studies in patients with acute stroke.

Figure 5. Contribution rate of EEG features from each hemisphere. Panel A shows the summation of contribution rates of mu- and beta-band EEG amplitudes recorded 
from the undamaged hemisphere, and panel B shows those from the damaged hemisphere.
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Conclusions

The present study shows that bedside training with our porta
ble BCI is a feasible and safe intervention in cases of acute/ 
subacute stroke. Four inpatients safely and successfully exe
cuted the training while reclining on their beds within 
7–24 days of stroke onset, using our BCI system that includes 
neuromuscular electrical stimulation. Further trials are needed 
to determine an appropriate level of training intensity as well as 
to investigate the efficacy of introducing this training proce
dure early in the rehabilitation and recovery process.
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