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SHORT COMMUNICATION

Alleviation of allelochemical juglone-induced phytotoxicity in tobacco plants by proline

Shao-Yen Chena, Wen-Chang Chia, Ngoc Nam Trinha, Kai-Teng Chenga, Yun-An Chenb, Tzu-Chieh Linb, Yu-Chi Lina,
Li-Yao Huanga, Hao-Jen Huanga and Tzen-Yuh Chianga*

aDepartment of Life Sciences, National Cheng Kung University, No. 1 University Rd., 701, Tainan, ROC, Taiwan; bDepartment of
Biological Sciences, National Sun Yat-Sen University, No. 70, Lienhai Rd., 80424, Kaohsiung, ROC, Taiwan

(Received 15 January 2015; accepted 24 April 2015)

Juglone (5-hydroxy-1,4-naphthoquinone) is an important allelochemical in walnut trees (Juglans nigra L.). Its
allelopathic potential has been reported in different plant species. We investigated the phytotoxic effects of the
allelochemical juglone and the protective role of proline in tobacco seedlings. Juglone inhibited the growth of tobacco
seedlings and increased reactive oxygen species content in tobacco roots. Moreover, juglone stress increased proline
concentration. The expression of two proline synthesis genes, pyrroline-5-carboxylate synthetase and ornithine
aminotransferase, was upregulated and that of a proline catabolism gene, proline dehydrogenase, was downregulated
with juglone treatment in tobacco roots. Furthermore, plants pretreated with proline and then exposed to juglone showed
attenuated toxic effects in roots. Proline was able to modulate allelochemical juglone-induced stress in tobacco. In
summary, this study suggested that increased proline content in the tobacco seedlings treated with juglone may mitigate
the deleterious effect of allelochemical stress in plants by inhibiting reactive oxygen species accumulation.
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Introduction

Plant growth in the field is often affected by a number of
environmental stresses. Allelochemical toxicity is one of
the important factors limiting crop production. Allelo-
pathy is defined as the effect of one plant species on
another through the release of chemical components into
the environment (Rice 1979). Plants introduce allelo-
chemicals into the environment through foliar leaching,
root exudation, residue decomposition, volatilization,
and debris incorporation into soil (Inderjit & Keating
1999). The action of allelochemicals in target plant is
diverse and affects a large number of biochemical
reactions resulting in modifications of different physio-
logical functions (Inderjit & Duke 2003). It has long
been understood that plant allelochemical compounds
belong to natural xenobiotics (Laue et al. 2014). In
mammals, the signaling mechanisms associated with the
response to xenobiotic compounds have been exten-
sively studied. An array of xenobiotic receptors is
involved in different aspects of xenobiotic responses
(Ghose et al. 2011). However, in plant systems, allelo-
chemical-sensing system seems to be difficult to
characterize.

Hoy and Stickney (1881) reported a deleterious
effect by black walnut on the growth of plants nearby.
Juglone is a quinone and an allelopathic growth regu-
lator released by walnut (Juglans nigra L.) (Rice 1984).
The toxic effects of juglone have been studied in maize
(Hejl & Koster 2004), soybean (Bohm et al. 2006), and
Arabidopsis (Reigosa & Pazos-Malvido 2007). One of
the most important mechanisms underlying the toxic

effect of juglone is involved in the pro-oxidation action
within tissues of targeted plants (El Hadrami et al. 2005;
Murakami et al. 2010). In order to survive when exposed
to juglone, plants must defend themselves. Edwards et al.
(2011) reported that plant responses to various xenobio-
tics shows the induction of similar classes of genes
involved in metabolization and detoxification, conjuga-
tion, transport, antioxidant defense and cell protection,
and repair. Recently, Mylona et al. (2007) demonstrated
that juglone can induce enzymatic activities of antiox-
idant enzymes in maize. In our previous study, the
microarray assay of the mechanism of action of juglone
revealed the involvement of detoxification enzymes and
reactive oxygen species (ROS) scavengers in protection
against juglone toxicity (Chi et al. 2011).

In response to different environmental stresses plants
accumulate compatible solutes (Serraj & Sinclair 2002).
These different types of compatible solutes, such as
proline, sucrose, and glycine betaine, protection to plants
from stress. Proline accumulation occurs in plants under
environmental stresses such as salinity, low temperature,
and heavy-metal exposure and is considered involved in
the stress defense mechanism. Proline is synthesized
from glutamic acid by Δ1-pyrroline-5-carboxylate
synthetase (P5CS) (Delauney & Verma 1993; Yoshiba
et al. 1997). Plants also synthesize proline from ornithine
by ornithine-δ-aminotransferase (OAT, EC 2.6.1.13).
However, the content of proline also depends on its
degradation, which is catalyzed by the enzyme proline
dehydrogenase (PDH, EC 11.5.99.8) (Yoshiba et al.
1997). Salt and water stress increase proline accumula-
tion along with increased P5CS level (Hu et al. 1992;
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Savouré et al. 1995; Verbruggen et al. 1996; Yoshiba
et al. 1997), and salt stress downregulated PDH accu-
mulation (Kiyosue et al. 1996; Peng et al. 1996;
Verbruggen et al. 1996).

Tobacco plants have been used as one of the most
common models for investigating defense pathways in
response to environmental stress (Nakasugi et al. 2013).
Ability of juglone as a model allelochemical to induce
cellular damage and its connection with oxidative stress
in tobacco BY-2 cells has been reported (Babula et al.
2009). Here, we used juglone to study its effect on
tobacco plant growth, ROS generation, proline content,
and proline metabolic gene expression to better under-
stand the mode of action of allelochemical juglone-
induced toxicity and defense responses in tobacco.

Material and methods

Growth bioassay

Nicotiana benthamiana plants were grown in a growth
chamber at 27°C with cool white fluorescent light (100
μmol s−1 m−2 light intensity) under long-day conditions
(16-h white light/8-h dark). Five-day-old tobacco seed-
lings were transferred to Murashige and Skoog (MS)
medium supplemented with different concentrations
of juglone (0, 5, 10, 25, 50 μM). Primary roots were
measured by manual recording on the plate. Data were
obtained from three biological replicates.

Detection of ROS levels in tobacco roots

The increased level of cellular ROS was most likely an
early response to environmental stresses. In most studies,
ROS production is observed in minutes or even hours
(Wong & Shimamoto 2009). To determine whether
juglone treatment induced ROS production in tobacco
roots, we labeled roots with the ROS-sensitive dye
5-(and-6)-chlormethyl-2′, 7′-dichlordihydrofluorescein
diacetate, acetyl ester (CM-H2DCF-DA, Molecular
Probes). Untreated tobacco seedlings were preincubated
with 10 μM CM-H2DCFDA for 30 min, then with
concentrations of juglone (0, 5, 10, 25, 50 μM) for
15 min. A Leica MPS60 fluorescent microscope
equipped with a green-fluorescent-protein filter (excita-
tion 450–490 nm, emission 500–530 nm) was used to
detect fluorescence. Images were captured with use of a
CoolSNAP Cooled CCD Camera (CoolSNAP 5.0, North
Reading, MA, USA). All experiments were repeated at
least three times.

Determination of proline

Five-day old tobacco seedlings were transferred to
Murashige and Skoog medium supplemented with or
without 10 μM juglone. Accumulation of proline was
determined after 5 days. The free proline concentration
was determined according to the method of Bates et al.
(1973). Approximately one gram of tobacco shoots or
roots were frozen by immersion in liquid nitrogen and

ground using the TissueLyser LT (QIAGEN, Hilden,
Germany). The free proline was extracted from plant
materials by homogenizing shoot and root tissues in 3%
sulfosalicylic acid followed by centrifugation at 5000 g
for 20 min at 25°C. To 1 ml of the extract was added 1
ml of the reagent mixture (consisting of 6 ml glacial
acetic acid, 4 ml phosphoric acid water and 0.25 g
ninhydrin). The samples were boiled for 1 h, cooled and
extracted with 4 ml toluene. The absorbance of the
toluene phase was determined at 520 nm and proline
concentration was calculated from a standard curve and
expressed as µmol g−1 fresh weigh. Three replicates
were performed for each experiment.

Semi-quantitative RT-PCR

Five-day-old tobacco seedlings were transferred to MS
medium with concentrations of juglone (0, 5, 10, 25, 50
μM) for 24 h before RNA extraction. Total RNA was
isolated from root and shoot tissues by use of the RNeasy
Plant Mini kit (QIAGEN, Hilden, Germany) and with
DNase by use of the RNase-Free DNase Set (QIAGEN,
Hilden, Germany). Total RNA was reversed transcribed
into cDNA by use of the ImProm-II Reverse Transcrip-
tion System with a mix of oligo (dT)18 and (dT)20
primers according to the manufacturer’s manual (Pro-
mega). The sequence-specific primer pairs and recom-
mended annealing temperatures (Ta) corresponding to
each gene are in Table A.1 (Supplemental Table). cDNA
was added to the PCR mixture containing 1 U Taq DNA
polymerase (Promega), 25 mM MgCl2, 10 mM dNTPs
and 1 μM of each primer pair. Amplicons were analyzed
by agarose gel electrophoresis (1%), and PCR products
were sequenced. Experiments were repeated at least twice
and reproducibility was confirmed. The accession num-
bers of tobacco (N. benthamiana) P5CS, OAT, PDH, and
EF1-α genes were JF903807, JF903808, AY639145, and
AY206004, respectively.

Statistical analysis

Data are presented as mean ± SE of at least three
separate experiments. The normal distribution of data
was analyzed by Kolmogorov-Smirnov test and the
homogeneity of error variance by the F-test. Compar-
isons involved paired t-test. p < 0.05 was considered
statistically significant.

Results

ROS production in tobacco roots under juglone stress

Toxicity of juglone to tobacco roots was evaluated by
dose dependent analysis. Compared with control treat-
ment, root growth was significantly reduced with
juglone treatment, beginning with 10 μM juglone inhib-
ited root growth (Figure 1a). To determine whether
juglone treatment induced ROS production, tobacco
roots of 3-day-old seedlings were pretreated with ROS-
sensitive dye (CM-H2DCFDA), then juglone for 15 min.
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CM-H2DCFDA is nonfluorescent but is oxidized to the
highly fluorescent CM-H2DCFDA by intracellular ROS.
The levels of CM-H2DCFDA fluorescence was signifi-
cantly increased with juglone between 10 and 50 μM in
tobacco roots (Figure 1b and Supplemental Figure 1).

Effect of juglone on proline accumulation and proline
metabolism gene expression

Proline content in tobacco seedlings exposed to juglone
(10 μM) increased significantly by almost twofold that
of control levels in roots, and slightly increased about
1.2-fold in shoots (Figure 2a). To determine whether the
expression of proline metabolism genes was regulated by

juglone, we examined the content of proline synthesis
genes P5CS and OAT and the proline catabolism gene
PDH in tobacco roots and shoots treated with juglone for
24 h. The mRNA level of P5CS and OAT was increased
with increasing dose of juglone, whereas that of PDH
was decreased (Figure 2b).

Effect of exogenous application of proline on juglone
stress-induced changes in tobacco roots

To elucidate the possible relation between the accumu-
lation of proline and resistance to juglone, we tested the
role of proline in juglone-inhibited root growth. Tobacco
roots were pretreated with or without proline, and root

Figure 1. The effect of juglone treatment on growth of tobacco (Nicotiana benthamiana) seedlings and juglone induces reactive
oxygen species (ROS) production in tobacco roots. (a) Five-day-old tobacco seedlings were transferred to Murashige and Skoog (MS)
medium supplemented with concentrations of juglone. Seminal root lengths were measured after 5 days. Data are mean ± SD of three
experiments. *p < 0.05 by paired t-test. Bar, 3 cm. (b) Root samples were labeled with 10 μΜ CM-H2DCF-DA for 30 min, then
treated with concentrations of juglone. Green fluorescence indicates the presence of ROS.

Figure 2. The effect of juglone on proline content and expression of proline metabolism genes in tobacco seedlings. (a) Five-day old
tobacco seedlings were transferred to MS medium supplemented with or without 10 μM juglone. Proline content was determined after
5 days. Data are mean ± SD of three experiments. Means with the different letters are significantly different at p < 0.05 (ANOVA).
(b) Gene expression in response to juglone treatment in tobacco shoots and roots. RT-PCR analysis of mRNA levels of genes related
to proline synthesis pathway – pyrroline- 5-carboxylate synthetase (P5CS) and ornithine aminotransferase (OAT), proline
dehydrogenase (PDH) – in tobacco shoots and roots during juglone treatment. Elongation factor 1 α (EF1-α) was an internal control.
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growth was assayed after exposure to juglone stress.
Treatment with juglone inhibited root growth (Figure 3a).
However, pretreatment with proline and then exposure to
juglone improved the root growth.

In order to examine the influence of proline on
juglone-induced ROS accumulation, tobacco roots were
preincubated for 3 h with 100 μM proline and subse-
quently exposed to 10 μM juglone for another 15 min.
As shown in Figure 3b and Supplemental Figure 1,
proline pretreatment mitigated juglone-induced ROS
accumulation.

Discussion

It is well known that allelochemical toxicity can inhibit
plant growth. Allelopathy stress typically results from a
combination of allelochemicals which interfere with
several biochemical reaction and physiological processes
in the receiving plant (Gniazdowska & Bogatek 2005).
Increased ROS levels are an important component of
environmental stress signaling (Apel & Hirt 2004). Like
other stress factors, the effect of allelopathy stress on
target plant may be uncontrolled production and accu-
mulation of ROS (Bais et al. 2003). Juglone was found
an ROS-generating xenobiotic in plants (Mylona et al.
2007). ROS play a vital role in the plant defense against
stresses. Low ROS content, as a signal, can lead to repair
of cellular damage, but high levels can lead to pro-
grammed cell death (Neill et al. 2002; Gao et al. 2008).
We found that juglone rapidly induced ROS production.
ROS production may contribute to juglone-inhibited root
growth.

Stress-induced proline accumulation has been stu-
died in plants such as rice, Arabidopsis, and tobacco.

Accumulation of proline could be due to de novo
synthesis or decreased degradation or both. It is clear
from many studies that proline accumulation in plants
exposed to environmental stress was found associated
with increased expression of P5CS and OAT and
decreased expression of PDH. Here, we found that
proline concentration increased the mRNA expression
of P5CS and OAT and decreased that of PDH with
juglone treatment, indicated that juglone participate in
the regulation of proline synthesis and degradation in
tobacco roots. Yang et al. (2009) found that exogenous
ROS (H2O2) treatment lead to a rapid accumulation of
proline and regulate gene expression of P5CS. Here, we
had observed that juglone treatment induced ROS
production. Taken together, our results may link the
ROS accumulation with perception of juglone stress and
activation of a signaling pathway leading to alteration of
proline metabolism-related gene expression in plants.

Proline is known to protect plants against environ-
mental stresses such as drought and salinity. The
functional role of proline in different environmental
stresses has been explored by overexpressing or suppres-
sing a number of synthesis and catabolism pathway
genes. Several works reported that overproduction of
proline in plants led to increased tolerance against
osmotic stress (Kishor et al. 1995; Molinari et al. 2007)
and knockout seedlings of Arabidopsis mutant AtP5CS1
and rice mutant OsP5CS2 were sensitive to salt stress
(Hur et al. 2004; Székely et al. 2008). Thus, proline is
thought to contribute to osmotic adjustment. Recently,
proline was proposed to quench singlet oxygen (Alia
et al. 2001). Chen and Dickman (2005) demonstrated
that proline can be an intracellular ROS scavenger.
Duran-Servantes et al. (2002) reported that three

Figure 3. Exogenous application of proline (pro) enhances tolerance to juglone (ju) in tobacco seedlings. (a) Length of seminal roots
in tobacco seedlings measured after 5 days of juglone treatment. Data are mean ± SD of three experiments. Means with the different
letters are significantly different at p < 0.05 (ANOVA) (b) Effect of proline treatment on 10-μM juglone-induced ROS accumulation
in tobacco roots. Root samples pretreated or not with 100 μM proline for 3 h were treated with 10 μM juglone for 15 min.
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allelochemicals, 2-benzoxazolinone (BOA), p-hydroxy-
benzoic, and ferulic acid, induced accumulation of
proline. Oxidative stress induction has been found to
be the mode of action of numerous allelochemicals (Weir
et al. 2004; Cruz-Ortega et al. 2007). However, the role
of proline in aspects of antioxidant defense has not been
reported during allelochemical stress in plants. In this
study, proline pretreatment improved root growth under
juglone stress in tobacco seeding and mitigated juglone-
induced ROS accumulation (Figure 3). It is tempting to
speculate that proline may be an antioxidant compound,
involved in the molecular physiology of allelochemical
stress protection.

Therefore, increased proline content in the tobacco
seedlings treated with juglone may mitigate the deleteri-
ous effect of allelochemical stress in plants by inhibiting
ROS accumulation. The present work extends current
knowledge of early transcriptional regulation by juglone
stress in tobacco roots and provides valuable insights into
aspects of juglone detoxification and acquired tolerance.
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