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Effects of simulated and insect herbivory on nitrogen and protein precipitable
phenolic concentrations of two legumes
Tiana K. Blackmona,b , James P. Muira,b , Roger D. Wittiea,b , David H. Kattesa,b and Barry D. Lamberta,b

aDepartment of Wildlife, Sustainability, and Ecosystem Sciences, Tarleton State University, Stephenville, TX, USA; bTexas A&M Agrilife Research,
Stephenville, TX, USA

ABSTRACT
Protein-precipitating polyphenolics (PPPs) serve as a plant defense against herbivory, increasing with
stress. We studied how varying intensities of simulated andMelanoplus differentialis herbivory affected
(1) PPP concentration; (2) protein bound by PPP (PB); and (3) N concentration of panicled tick-clover
(Desmodium paniculatum; PTC) and sericea lespedeza (Lespedeza cuneata; SL) leaf regrowth. Leaves of
PTC that were submitted to simulated herbivory had lesser (p≤ .05 for all significant differences) PPP
concentration than the control for most treatments. For PTC, PPP concentration decreased with
increasing herbivory intensity for both herbivory types. For SL, PPP was similar between herbivory
types for Harvest 1 but not for 2, decreasing as herbivory intensity increased for both herbivory
types. Simulated herbivory resulted in lower PB concentrations for PTC and SL compared to the
grasshopper herbivory. Nitrogen concentration was similar for PTC and SL between herbivory types
but variable among degree of herbivory. Herbivory type affects PPP.
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Introduction

Phenolics are plant secondary metabolic compounds that may
serve as a defensive response to herbivory (Levin 1971; Boudet
2007; Khoddami et al. 2013). Examples include flavonoids,
anthocyanins, anthocyanidins, and proanthocyanidins (Khod-
dami et al. 2013). Proanthocyanidins include polymers of phe-
nolic acids (ellagic acid) called tannins (Levin 1971; Chung
et al. 1998; Khoddami et al. 2013). Within plants, tannins
vary widely in concentration (Mosjidis et al. 1990), structure
(Fahey and Jung 1989; Chung et al. 1998), allocation (Mosjidis
et al. 1990; Haring et al. 2007), and other characteristics, which
may result from the age of the plant (Stitt and Clarke 1941;
Buntin 1991; Cooper et al. 2014), stresses (Feeny 1976; Fales
1984; Tharayil et al. 2011), or season (Stitt and Clarke 1941;
Fahey and Jung 1989; Muir et al. 2014).

Tannins are generally classified as hydrolysable or con-
densed (Chung et al. 1998). Condensed tannins are very reac-
tive compounds with both oxidative and protein-binding
activities (Naumann et al. 2013). These activities may be regu-
lated by structural differences, which could affect ruminant
protein utilization (Naumann et al. 2013). In addition to pro-
teins, CT binds to compounds including starch, cellulose, and
minerals and reduces feed intake and efficiency, growth rate,
and protein digestibility (Chung et al. 1998; Ndlovu et al.
2000). Condensed tannins also suppress plant, gastrointesti-
nal, and fecal parasites (Levin 1971; Appel 1993; Haring
et al. 2007; Acero et al. 2010; Littlefield et al. 2011).

A study by Pellissier (2013) focused on distinguishing
physiological responses of Abies alba and Rubus fruticosus
to physical damage versus responses from the presence of
ungulate saliva. More specifically, flavonoid and chlorophyll
responses varied according to the treatment applied (clipping
and/or saliva). These treatments also affected plants in differ-
ent ways, with clipped treatments showing the greatest

chlorophyll fluorescence. Plants with clipping and saliva
applied tended to have lower chlorophyll fluorescence than
the either/or treatments, although the opposite became true
9 d after treatment. However, flavonoid and chlorophyll con-
tents were not affected by any of the treatments for most of
the days after treatment, with the exception of saliva on
Day 4 (chlorophyll content) and clipping + saliva on Day 5
(flavonoid content). These results suggest that the plant
does not distinguish between physical damage and the pres-
ence of ungulate saliva.

Condensed tannins can deter feeding by some insect her-
bivores. In some grasshoppers, CT weakly deters feeding
(Mole and Joern 1994). When given the choice, grasshoppers
will consume tannin-free plants more often than tannin-con-
taining plants (Dini and Owen-Smith 1995). Much of the
negative feeding effects of tannins occur in situations of low
protein and water, such as in mature leaves which are often
avoided (Bernays and Chamberlain 1982). In general, grami-
nivorous grasshoppers are unable to digest tannins, while
polyphagous grasshoppers are able to do so with no apparent
consequences (Barbehenn 2002). Still, the addition of tannins
into the diets of either grasshopper type reduces enzymatic
activities, including superoxide dismutase, catalase, ascorbate
peroxidase, and glutathione transferase peroxidase, which are
antioxidants (Barbehenn 2002). The latter two are involved in
tannin defense (Barbehenn 2002).

Sericea lespedeza (SL) is a tanniferous perennial warm-
season legume native to Asia (Diggs Jr. et al. 1999). It was
brought to the USA in 1896 as a forage and soil stabilizer
(Gamble et al. 1996; Cummings et al. 2007); it has since
become naturalized to the point that it is considered an inva-
sive weed in much of the USA (Dudley and Fick 2013). Some
sources hypothesize that it is allelopathic and its residues may
reduce germination rates of seeds from other plants (Dudley
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and Fick 2013). It purportedly has antioxidant health benefits
when consumed by humans (Kim et al. 2012). It is an effective
anthelmintic and reduces methane production in ruminants
(Puchala et al. 2012; Burke et al. 2014).

Panicled tick-clover (PTC) is a perennial warm-season
legume native to the USA (Diggs et al. 1999). It is common
in eastern states, spreading westward to Texas and Nebraska
and north to the Canadian border (Isely 2013). Among its
natural uses are quail feed (seed) and deer browse (Surrency
and Owsley 2001) but it could provide nutritious forage and
gastrointestinal nematode suppression in domesticated rumi-
nants (Muir et al. 2008; Cherry et al. 2013). Muir et al. (2008)
found that PTC is high in CT and N content, making it a good
candidate for agronomic domestication.

The differential grasshopper (Melanoplus differentialis) is
common to Texas and is a generalist feeder (Lewis 1984;
Reinert et al. 2011). This is an important species since it dev-
astates entire landscapes in a short time (Reinert et al. 2011).
It has been used in experimental studies since it will eat a var-
iety of plants and is easy to locate and handle (Hodge 1933;
Howard 1995). It feeds on SL and PTC and is utilized in
CT studies (Young and Cantrall 1955; Hinks et al. 1993;
Cross et al. 1997).

Studies comparing simulated herbivory with insect herbiv-
ory have not focused on plant phenolic responses. The objec-
tives of this study were to determine how varying intensities of
herbivory (simulated and by differential grasshopper) and
plant ontogeny affect (1) leaf protein-precipitable polypheno-
lics (PPPs) concentration; (2) leaf N content; and (3) leaf
regrowth PPPs and N contents. Our hypothesis was that there
is a difference in plant responses between herbivory types.

Materials and methods

Experimental design

We germinated PTC and SL seeds obtained from Texas A&M
AgriLife Research, Stephenville, TX, USA (32°15′ N, 98°12′

W, altitude 395 m) in Petri dishes in May 2013. The elevated
germination rate of SL led us to plant new SL (cultivar AU
Grazer) seed directly into 1.9 L pots, each of which contained
Sunshine Mix #4/LA4 potting mix (Sun Gro Horticulture
Canada Ltd., Vancouver, British Columbia, Canada). We
transplanted recently germinated PTC seedlings into pots
and potting mix of the same type and amount. We grew
plants in a greenhouse environment, which included natural
light and irrigation twice daily by an automatic system for a
total of 10 mm/d to avoid a water stress response. Plants
were blocked by height and then placed randomly into 6
treatments: 50% and 100% mechanical clipping, and adult
M. differentialis density intensities of 0, 5, 10, and 15 per
cage (0.0973 m3), each receiving 2 plants. We acquired grass-
hoppers in the area surrounding the greenhouse. We main-
tained grasshopper density by replacing those that expired
during the experiment. The experiment began when plants
reached 30-cm height (26 July).

Defoliation

For simulated herbivory, plants were defoliated by hand. The
50% defoliation intensity was determined by the plane of sym-
metry through the stem and only leaves were removed. For
insect herbivory, grasshoppers were allowed to feed on the

SL for a 24-h period and on the PTC for a 48-h period. The
difference in duration of exposure to the grasshoppers was
necessary due to the greater biomass of PTC vis-à-vis SL.
Plants were allowed to regrow for 24 d to achieve sufficient
regrowth to provide material for laboratory analyses. Half of
each treatment was removed from the study for leaf laboratory
analysis. The remaining half was exposed to herbivory once
more in the same treatment classification as before. Leaves in
the 50% defoliation treatment were removed from the same
side as the original exposure. Plants were allowed sufficient
time for regrowth and harvested for analyses.

Laboratory analyses

Leaves from each plant were analyzed to determine concen-
trations of N and PPPs as well as amount of protein bound
(PB) by PPP as described by Nauman et al. (2013). Leaves
were placed in paper bags and dried at 55°C in a forced-air
oven for 48 h. These were then ground in a Thomas Wiley®

Mini-Mill (Arthur H. Thomas Co., Philadelphia, PA, USA)
to pass a 1-mm screen.

For phenolic extraction, 1 mL of 50% methanol:water (v/
v) was added to 50 μg of plant material. This mixture was vor-
texed, placed on a G10 Gyrotory® shaker (New Brunswick
Scientific Co., Inc., Edison, NJ, USA) for 30 min, and then
centrifuged for 5 min at 16060 × g. The supernatant was
immediately used for analysis.

For PPP analysis, 250 µL of Buffer A (0.20 M acetic acid,
0.17 M NaCl, pH 4.9), 50 µL of bovine serum albumin (BSA)
(10 mg/mL in Buffer A), 50 µL 50:50 (v/v) methanol:water,
and 50 µL of plant extract were required for each sample in
addition to a blank comprising 800 µL sodium dodecyl sulfate
(1% w/v)-triethanolamine (5% w/v) (SDS/TEA) and 200 µL of
ferric chloride (0.01 M FeCl3 in 0.01 M HCl) (Naumann et al.
2013). Samples were vortexed and then allowed to incubate for
30 min. Following incubation, samples were centrifuged twice
for 5 min each at 16060 × g, with the supernatant aspirated and
washed with 250 µL of Buffer A each time before one final
aspiration. The pellet was dissolved in 800 µL of SDS/TEA
and vortexed. Once the pellets were completely dissolved,
200 µL of ferric chloride was added and the samples were
allowed to stabilize for 30 min at ambient temperature before
the absorbance was read at 510 nm.

PB by PPP was analyzed beginning with crude extraction
and PPP analysis to form a pellet. The pellet was washed
twice, re-suspended with 500 µL of Buffer A, and vortexed
until dissolved. A 500 µL sample of solution was put into
pre-weighed foil to analyze for N. Three blanks were used:
a buffer blank (500 µL buffer A + pre-weighed foil), a bovine
serum albumin blank (500 µL bovine serum albumin + pre-
weighed foil), and a plant extract blank (200 µL plant extract
+ pre-weighed foil). All foils were placed in a forced-air oven
set at 55°C and dried until the liquid evaporated then weighed
before N analysis in a Vario MACRO C-N Analyzer (Elemen-
tar Americas, Inc., Mt. Laurel, NJ, USA). The N concentration
was multiplied by 6.25 to calculate bound protein.

Experimental design and statistical analyses

Four plants were batched per experimental unit to determine
concentrations (four replications arranged as blocks). Analy-
sis of variance was completed using Statistix 10 (Analytical
Software, Tallahassee, FL, USA). Species by defoliation
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interaction was first examined and simple factors analyzed
only if these were not significant (p > .05). Nitrogen, PPP,
and PB by PPP were dependent variables. We used a prob-
ability of ≤0.05 throughout when considering significant
differences.

Results

Plants exposed to grasshopper herbivory were defoliated dif-
ferently compared to the simulated treatments. For both
species, grasshoppers consumed the youngest leaf material
first, followed by more mature leaves. In general, they con-
sumed inter-vein leaf material. In greater intensity treat-
ments, however, older leaves were defoliated closer in time
to younger leaves since there was less material available for
each grasshopper.

Nitrogen

PTC N content was similar between mechanical and grass-
hopper herbivory, although they differed within herbivory
types. Nitrogen content increased by 26% and 40%, respect-
ively, across the 50% and 100% simulated defoliation treat-
ments compared to the control but not across the
grasshopper treatments (Table 1). While N content increased
14% between Intensities 1 and 2, it declined 9% from Inten-
sity 2 to 3.

Nitrogen contents were also similar for SL between mech-
anical and grasshopper treatments. Sericea lespedeza N con-
tent decreased for most treatments compared to the control,
but remained unchanged for the 100% simulated defoliation
(Table 2). Within herbivory type, leaf N content increased
12% between Intensities 1 and 2 but remained unchanged
for Intensity 3. With repeated herbivory, N content increased
for moderate herbivory (Intensities 1 and 2 and 50% defolia-
tion) but decreased with greater herbivory (Intensity 3 and
100% defoliation).

Protein-precipitable polyphenolics

PTC PPP contents were lower for mechanical herbivory than
grasshopper herbivory, with the exception of 50% defoliation
which was similar to Intensity 1. PPP content decreased with
increasing herbivory intensity (Table 1). Within insect her-
bivory, PPP content increased 37% between Intensities 1
and 2 but decreased 12% between Intensities 2 and

3. Similarly, PPP decreased 20% between 50% and 100% defo-
liation. PPP content increased among all treatments with
repeated herbivory, excluding 100% defoliation, which
decreased 75%.

Sericea lespedeza PPP was similar between mechanical
and grasshopper treatments for Harvest 1 but not 2. PPP con-
tent decreased an average 20% as herbivory increased regard-
less of herbivory type (Table 2). PPP content decreased a
maximum of 26% from control to Intensity 1 and a minimum
of 15% each from Intensity 2 to 3 and from the control to 50%
defoliation. PPPs increased from Harvest 1 to 2 for all treat-
ments except Intensity 1 and 50% defoliation, which
decreased by 16% and 24%, respectively.

PB by PPP

PTC PB was much lower for simulated herbivory than grass-
hopper herbivory, and 50% defoliation was similar to the con-
trol for Harvest 1. PTC PB increased by 17% between
grasshopper Intensities 1 and 2 but declined by 14% between
Intensities 2 and 3 (Table 1). Simulated treatments also
caused a 100% decrease in PB, from Harvest 1 to 2.

PB by PPP was also lower for SL-simulated herbivory
treatments than grasshopper herbivory, although all treat-
ments were at least 50% greater among herbivory treatments
compared to the control (Table 2). There were no differences
in PB between the simulated treatments for the first harvest;
PPP in leaves submitted to 100% mechanical defoliation,
however, declining by 48%, twice as much as for the 50%
defoliation.

Discussion

Some plant responses were different between simulated and
grasshopper herbivory types. Although N was similar for
both species, PPP and PB were different between herbivory
types.

The increase and subsequent decrease in N content with
herbivory intensity is consistent with similar studies (Rooke
and Bergström 2007; Schädler et al. 2007; Cooper et al.
2014). Lower N content may be due to N mobilization for
leaf production; greater herbivory intensities result in fewer
leaves to photosynthesize, so the plant allocates resources to
produce more leaves (Culvenor and Simpson 1991; Cooper
et al. 2014).

Table 1. Panicled tick-clover leaf nitrogen, protein-precipitable polyphenolics
(PPPs) and protein bound (PB) by PPP chemical response to mechanical or
grasshopper defoliation.

Treatment
a

Nitrogen (%) PPPs (g kg−1)
PB by PPPs
(g kg−1)

1 2 1 2 1 2

Control 2.05c 1.78b 20.42a 22.72a 242.42c 171.79b

Grasshopper intensity 1 2.22b 1.57c 13.32d 23.29a 310.42b 262.98a

Grasshopper intensity 2 2.14b,c 1.79b 18.33b 24.37a 363.13a 196.93b

Grasshopper intensity 3 2.16b,c 1.43c 16.15c 21.44a 313.89b 208.45a,b

50% Clip 2.22b 1.79b 14.05d 15.95b 239.18c 110.88c

100% Clip 2.81a 2.52a 11.31e 2.83c 186.73d 0.00d

Standard error 0.0591 0.0696 0.7340 1.4354 18.935 28.843

Note: Letters denote significant differences (p≤ .05) within columns based on
least significant difference multiple means comparisons.

aGrasshopper intensity X refers to the number of grasshoppers (5X) per 0.0973
m3 cage. Two plants were placed in each cage, representing the experimental
unit.

Table 2. Sericea lespedeza leaf nitrogen, protein-precipitable polyphenolics
(PPPs), and protein bound (PB) by PPP response to mechanical or grasshopper
defoliation.

Treatment

Nitrogen (%) PPPs (g kg−1)
PB by PPPs
(g kg−1)

1 2 1 2 1 2

Control 2.46a 2.24a,b 7.10b 9.05a 122.16c 146.13b,c

Grasshopper intensity 1a 1.72c,d 1.77d 8.97a 7.52b 231.09a 174.74a

Grasshopper intensity 2a 1.93b,c 2.04b,c 6.98b 7.34b 175.17b 166.89a,b

Grasshopper intensity 3a 1.98b 1.96c,d 5.92c 6.73c 181.85b 124.18c,d

50% Clip 1.67d 2.02b,c 5.99c 4.57e 131.31c 100.40d

100% Clip 2.41a 2.36a 4.55d 5.47d 131.30c 68.11e

Standard error 0.0987 0.1214 0.2018 0.2745 9.3417 11.856

Note: Letters denote significant differences (p≤ .05) within columns based on
least significant difference multiple means comparisons.

aGrasshopper intensity X refers to the number of grasshoppers (5X) per 0.0973
m3 cage. Two plants were placed in each cage, representing the experimental
unit.
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Alternatively, the reduction in N content could be the
result of nutrient stress (Bryant et al. 1993). Since the plants
grew in pots and were not fertilized, N would have been a lim-
ited resource if not for atmospheric N fixation in the plant
nodules. This biological N fixation may have been affected
by a number of variables, such as exhausted soil nutrients
including P, photosynthetic rates, rhizobial genotype, and
environmental factors not accounted for in our study (West
et al. 2005).

Similar trends between simulated and natural herbivory
treatments are consistent with some studies (Lyytikäinen-
Saarenmaa 1999) but not others (Baldwin 1990). The ten-
dency for SL N content to decline with increasing herbivory
intensity was consistent with findings reported by Cooper
et al. (2014), with the exception of the 100% defoliation
which was similar to the control. Lower N availability can
limit feed efficiency by reducing urea recycling and microbial
efficiency in ruminants (Reed 1995) as reported for other
forages containing CT (Mangan 1988). In grasshoppers,
lower N availability is associated with reduced population
densities because N is a limiting nutrient (Loaiza et al.
2011). Additionally, N availability is a major driver of foliar
damage by grasshoppers (Loaiza et al. 2011).

PTC PPP contents were inconsistent with a previous
study. Cooper et al. (2014) found that PPP content increased
from unclipped leaves to those submitted to 25% defoliation
before declining for the remaining treatments. These results
parallel what we observed following the second harvest, but
not the first, suggesting that insect defoliation affects naive
plants in a different way. Once-stressed regrowth never
attained the PPP of the control plants, while repeatedly
stressed regrowth remained above control plant levels with
the exception of major defoliation (grasshopper Intensity 3
and 50% and 100% mechanical defoliation).

Donnelly and Anthony (1983) reported greater condensed
tannin contents in plants repeatedly defoliated than in plants
defoliated once, in line with our observations of PTC. The
reduction in PPP with increased defoliation over repeated
events is also consistent with a study observing Quercus
spp., in which leaf PPP on previously defoliated branches
decreased compared to control branches (Faeth 1992).

Sericea lespedeza PPP contents following grasshopper her-
bivory differed from what Cooper et al. (2014) reported for
mechanical harvests. Contrary to our findings, they observed
a decrease in leaf PPP between 0% and 25% defoliation fol-
lowed by an increase under more intense herbivory. This
suggests differences in plant response between low-intensity
natural and simulated herbivory.

The decrease in SL PPP contents between harvests for all
species with the exception of Intensity 3 and 100% clip
suggests that lower-intensity treatments were not adequate
to achieve responses similar to what other studies on SL
have observed (Donnelly and Anthony 1983; Muir et al.
2014). The greater intensity treatments that resulted in bio-
mass loss similar to mowing or cutting for hay that previous
studies have used as treatments could explain the variation in
results (Muir et al. 2014), as could variations in timing of
those treatments (Nykänen and Koricheva 2004).

An additional simulated herbivory treatment for both
species would be required in this study to directly compare
our simulated results with Cooper et al. (2014). The decrease
in PPP content for both species from 50% to 100% defolia-
tion, however, is similar, suggesting that there may be

distinctive responses in leaf PPP accumulation for herbivory
types. This phenomenon has been supported by studies
examining other physiological processes (Baldwin 1988;
Kessler and Baldwin 2002) and herbivores (Ward and
Young 2002). However, some studies contradicted these find-
ings, for example, in the meta-analysis by Nykänen and Kor-
icheva (2004).

PTC PB dynamics as a result of herbivory were consistent
with those reported by Cooper et al. (2014) for simulated her-
bivory of PTC and by Alba-Meraz and Choe (2002) for
Melanoplus herbivory of other plant species. Protein-binding
affinity affects ruminant nutrition since it prevents microbial
degradation in the rumen (Silanikove et al. 2001; Min and
Hart 2003; Pawelek et al. 2008). PTC PB declined following
100% defoliation in this study as well as in that reported by
Cooper et al. (2014) corresponding to the physiologically
costly requirements of making protein-binding compounds
(Coley et al. 1985; Keinänen et al. 1999), since polyphenolic
production is reliant on photosynthesis to fix carbon (Bryant
et al. 1983; McDonald et al. 1999). These results do not sup-
port some hypotheses which predict that more resources are
spent on defenses in high-intensity herbivory conditions
(Janzen 1974; Coley et al. 1985). Similarly, McDonald et al.
(1999) found that increased CO2 availability increases poly-
phenolic concentrations in certain trees. Starch, a product
of photosynthesis (Sharkey 1985), is also positively correlated
with accumulation of certain tannins, including CT (Lawler
et al. 1997; McDonald et al. 1999). Even in nutrient-rich con-
ditions, CT are much lower in low light (thus low photosyn-
thetic activity) conditions for Eucalyptus spp., possibly
mirroring conditions with little to no leaves (Lawler et al.
1997), although severe defoliation increases polyphenolic
response in some species (Bryant et al. 1993).

Compared to PTC, SL PB changes as a result of herbivory
were inconsistent, with no apparent trends across treatments.
For example, both harvest types increased leaf PB content
between the control and Intensity 1 and decreased between
Intensities 1 and 2, but were similar in simulated treatments
in Harvest 1 while they decreased between simulated treat-
ments in Harvest 2. Cooper et al. (2014) found that defolia-
tion resulted in less leaf PB than in undefoliated plants, in
contrast to responses to both herbivory types in this study.
This may be due at least in part to differences in how simu-
lated herbivory treatments were applied (Baldwin 1990).
Cooper et al. (2014) removed leaves a pre-measured distance
from the top of the plant to simulate ruminant herbivory,
while we harvested equally from all heights to simulate grass-
hopper herbivory as observed in a pilot study at our
greenhouse.

In summary, there were no differences in N response
between simulated and grasshopper herbivory for either
legume in our study. Plant PPP and PB response to herbivory,
however, varied between the two species and herbivory types.
These physiological differences could have a nutritional
impact on the herbivores that consume them in addition to
differences in other biological effects in the herbivores. If pro-
ducers encounter extensive attacks by grasshoppers on pas-
tures containing these legumes, they should be prepared to
compensate livestock rations for the reduced N availability
and associated increase in tannin content of forages. Manage-
ment should be based on production needs – for example, if
there is an extensive internal parasite issue with goats, then
they should manage the legumes for the increased PPP.
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Otherwise, N availability will be more important for pro-
duction, as in cattle. Our results support studies, such as
Korth and Dixon (1997), which provide evidence for distinc-
tive responses to herbivory compared to mechanical wound-
ing. Future research should focus on the possibilities of
further distinguishing herbivory types.
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