Permutation Groups and Puzzle Tile Configurations of Instant Insanity II

Amanda N. Justus
East Tennessee State University

Follow this and additional works at: https://dc.etsu.edu/etd
Part of the Algebra Commons, Discrete Mathematics and Combinatorics Commons, and the Set Theory Commons

Recommended Citation

Justus, Amanda N., "Permutation Groups and Puzzle Tile Configurations of Instant Insanity II" (2014). Electronic Theses and Dissertations. Paper 2337. https://dc.etsu.edu/etd/2337

Permutation Groups and Puzzle Tile Configurations of Instant Insanity II

A thesis presented to the faculty of the Department of Mathematics

East Tennessee State University

In partial fulfillment of the requirements for the degree

Master of Science in Mathematical Sciences

by

Amanda Justus

May 2014

Robert A. Beeler, Ph.D., Chair
Robert Gardner, Ph.D.

Debra Knisley, Ph.D.

Rick Norwood, Ph.D.

Keywords: algebra, group theory, combinatorics

Abstract

Permutation Groups and Puzzle Tile Configurations of Instant Insanity II by

Amanda Justus

The manufacturer claims that there is only one solution to the puzzle Instant Insanity II. However, a recent paper shows that there are two solutions. Our goal is to find ways in which we only have one solution. We examine the permutation groups of the puzzle and use modern algebra to attempt to fix the puzzle. First, we find the permutation group for the case when there is only one empty slot at the top. We then examine the scenario when we add an extra column or an extra row to make the game a 4×5 puzzle or a 5×4 puzzle, respectively. We consider the possibilities when we delete a color to make the game a 3×3 puzzle and when we add a color, making the game a 5×5 puzzle. Finally, we determine if solution two is a permutation of solution one.

Copyright by Amanda Justus 2014
All Rights Reserved

DEDICATION

I would like to dedicate my thesis in memory of the most wonderful mother anyone could ever have, Linda Johnson.

ACKNOWLEDGMENTS

I would first like to thank my thesis advisor, Dr. Robert Beeler, for all of his support, guidance, encouragement, and patience with me. I would like to thank the members of my committee, Dr. Robert Gardner, Dr. Debra Knisley, and Dr. Rick Norwood, for taking the time to help me and give me advice. I would also like to thank my father Robert "Cotton" Johnson for his continued love and support and for always believing in me.

TABLE OF CONTENTS

ABSTRACT 2
DEDICATION 4
ACKNOWLEDGMENTS 5
LIST OF FIGURES 7
1 INTRODUCTION 8
2 LITERATURE REVIEW 14
2.1 The Rubik's Cube 14
2.2 The Fifteen Puzzle 15
2.3 Instant Insanity 16
2.4 Instant Insanity II 17
3 PUZZLE GROUP 21
4 CONFIGURATION 29
$4.1 \quad 4 \times 5$ Puzzle 29
4.2 Add a Row to Create a 5×4 Puzzle 37
4.3 Remove a Color to Create a 3×3 Puzzle 39
4.4 Add a Color to Create a 5×5 Puzzle 41
5 CONCLUDING REMARKS 68
BIBLIOGRAPHY 69
VITA 71

LIST OF FIGURES

1 Instant Insanity II 9
2 The two solutions of Instant Insanity II using our notation 10
3 An example of a vertical shift on column a 10
4 An example of an inverse vertical shift on column a 11
5 The basic $3 \times 3 \times 3$ Rubik's Cube 15
6 The fifteen puzzle 16
7 The original Instant Insanity 17
8 Tiles of Instant Insanity II using numbers 18
9 Tiles of Instant Insanity II using numbers 21
10 Tiles of Instant Insanity II after a series of vertical shifts 22
11 Tree diagram to obtain Set 1 on the 4×5 puzzle 30
12 Tree diagram to obtain Set 1 on the 5×4 puzzle 37
13 The new solution one after adding a fifth row with our missing tiles 39
14 The new solution two after adding a fifth row with our missing tiles 39
15 Solution to the 3×3 puzzle 41
16 Tree diagram to obtain Set 1 on the 5×5 puzzle 42

1 INTRODUCTION

The purpose of this thesis is to look at the permutations and configurations on a puzzle called Instant Insanity II. Instant Insanity II is a sliding combination puzzle on sixteen tiles, each of which consists of one of the following colors: blue (B), green (G), red (R), white (W), and yellow (Y). On each tile there is a large colored block with two smaller colored blocks on each side. We denote the colors on the smaller tiles using lowercase letters. The right window matches the central window. For this reason, we omit this window in our notation. For example, the tile with a green left window, white center window, and white right window is simply denoted gW . Instant Insanity II consists of the tiles

$$
\begin{array}{llll}
\text { gB, } & \text { rB, } & \text { wB, } & \text { yB, }, \\
\text { bG, } & \text { rG, } & \text { yG, } & \\
\text { bR, } & \text { gR, } & \text { wR, } & \\
\text { bW, } & \text { gW, } & \text { yW, } & \\
\text { bY, } & \text { rY, } & \text { wY. } &
\end{array}
$$

Notice that there are four tiles with the color Blue and each of the remaining four colors is only assigned three tiles. For instance, we have the tiles bR , gR , and wR , but we do not have the tile $y R$. We continue this process to find the remaining tiles that would yield four tiles per color. We claim that there are four "missing tiles," namely, gY, rW, yR, and wG. The sixteen tiles are broken up into four rows and four columns. There is a fifth row, which we call the "empty row," where each of the four columns can slide a tile into, as shown in Figure 1. Notice that the empty row only has two slots instead of four. The empty row and the bottom row can be rotated both clockwise and counter-clockwise, yet no other rows are able to rotate. The goal is to arrange the tiles in such a way that:
(i) no color on the large block arrears twice in any row or column and
(ii) on each row the preceding small tile shares the same color as the following large tile.

The manufacturers claim that there is only one solution to this puzzle up to permutations of the rows. However, a recent paper has shown that there are in fact two solutions to Instant Insanity II as shown in Figure 2 [14, 16]. Notice that these two solutions are both Latin Squares. The Latin square is derived from the Latin rectangle, which is an $m \times n$ matrix in which each row contains the numbers $1,2, \ldots, n$. The numbers are ordered in such a way that no column will contain the same number twice [6]. The Latin square shares the same properties, that each row and each column will contain the numbers $1,2, \ldots, n$, but each row and column contains each of the elements only once. A 2×2 matrix has $2!=2$ possible orderings, and 3×3 matrix has $3!=6$ possible orderings. It follows that an $n \times n$ matrix will have n ! possible orderings of the n elements [15].

Figure 1: Instant Insanity II

With Instant Insanity II, we are interested in looking at the algebraic structure of the puzzle. We are also interested in trying to "fix" the puzzle. That is, we look
at different ways in which we might get only one solution instead of two.

gW	wY	yB	bG
bY	yG	gR	rB
rG	gB	bW	wR
wB	bR	rY	yW

wY	yG	gB	bW
gW	wB	bR	rG
bG	gR	rY	yB
rB	bY	yW	wR

Figure 2: The two solutions of Instant Insanity II using our notation

Let the first column be column a, the second column b, third column c, and the last column be column d. Here, we can move the tiles through what we define as vertical shifts. One vertical shift on column a would be denoted as V_{a}. Similarly, we denote the inverse of a vertical shift on column a as V_{a}^{-1}. Figures 3 and 4 illustrate a vertical shift, V_{a}, and an inverse vertical shift, V_{a}^{-1}, respectively. Similarly, the inverse vertical shift on column a is illustrated as in Figure 4.

1	2	3	4					
5	6	7	8					
9	10	11	12					
13	14	15	16	\rightarrow	1			
:---:	:---:	:---:	:---:					
5	2	3	4					
9	6	7	8					
13	10	11	12					
	14	15	16	\rightarrow	1			
:---:	:---:	:---:	:---:					
5	2	3	4					
9	6	7	8					
13	10	11	12					
16		14	15					

	1							
5	2	3	4					
9	6	7	8					
13	10	11	12					
16		14	15	\rightarrow				
:---:	:---:	:---:	:---:					
5	1	3	4					
9	2	7	8					
13	6	11	12					
16	10	14	15	\rightarrow				
:---:	:---:	:---:	:---:					
5	1	3	4					
9	2	7	8					
13	6	11	12					
10	14	15	16					

Figure 3: An example of a vertical shift on column a

To facilitate our main results it is useful to have some basic definitions from group theory. Our terminology will be consistent with that of [3, 4].

Definition 1.1 A group G is a nonempty set S together with a binary operation *
such that:
(i) G is closed under *. That is, $\forall a, b \in G, a * b \in G$.
(ii) * is associative. That is, $\forall a, b, c \in G, a *(b * c)=(a * b) * c$.
(iii) There exists an identity element, $e \in G$ such that $\forall a \in G, a * e=e * a=a$.
(iv) For every $a \in G$, we have an inverse element, $a^{-1} \in G$ such that $a^{-1} * a=$ $a * a^{-1}=e$.

5	1	3	4					
9	2	7	8					
13	6	11	12					
10	14	15	16	\rightarrow				
:---:	:---:	:---:	:---:					
5	1	3	4					
9	2	7	8					
13	6	11	12					
16	10	14	15	\rightarrow		1		
:---:	:---:	:---:	:---:					
5	2	3	4					
9	6	7	8					
13	10	11	12					
16		14	15	\rightarrow				

1								
5	2	3	4					
9	6	7	8					
13	10	11	12					
16		14	15	\rightarrow	1			
:---:	:---:	:---:	:---:					
5	2	3	4					
9	6	7	8					
13	10	11	12					
	14	15	16	\rightarrow				
:---:	:---:	:---:	:---:					
1	2	3	4					
5	6	7	8					
9	10	11	12					
13	14	15	16					

Figure 4: An example of an inverse vertical shift on column a

The order of a group is the number of elements in that group. We denote the order of G as $o(G)$. A subset H of a group G is a subgroup, denoted $H \subseteq G$, of G if H is itself a group with respect to the operation on G. The following is a famous theorem relating the order of a group to that of its subgroups.

Theorem 1.2 (Lagrange's Theorem [12]) If H is a subgroup of a finite group G, then the order of H divides the order of G.

When a group G acts on a set X, it permutes the elements in that set in a particular order. The specific path that action takes is referred to as the orbit. It is denoted by $\sigma(x)=\{g x \in X: g \in G\}$. If we have an element $a \in G$ whose orbits contain all of the group G, then we say that a is a generator of G. If G is generated by a set $\left\{a_{1}, \ldots, a_{n}\right\}$, then every element in G can be written as a product of the a_{i} 's. This situation is denoted $<a_{1}, \ldots, a_{n}>$.

Definition 1.3 A permutation of a nonempty set S is a one-to-one mapping from S onto S. A permutation is a cycle if it has at most one orbit containing more than one element. A cycle of length n is typically called an n-cycle. A transposition is a cycle of length two.

The following theorem results from the definition of permutations, cycles, and transpositions.

Theorem 1.4 [4] Every permutation can be written as a product of disjoint cycles. Further, every permutation can be written as a product of transpositions. Note that a permutation is defined to be even provided that it can be expressed as an even number of transpositions.

We will be representing group elements as products of disjoint cycles. Let A be the finite set $\{1, \ldots, n\}$. The group of all permutations of A is the symmetric group on n letters. This is denoted by S_{n}. The order of the symmetric group is n !. The subgroup of S_{n} consisting of the even permutations on n letters is the alternating group on n letters. This is denoted by A_{n}. The order of the alternating group is $\frac{n!}{2}$.

The following theorem is a result from the definition of the symmetric and alternating groups.

Theorem 1.5 [7] The alternating group is generated by 3-cycles. In other words, $A_{n}=\{(a, b, c): a, b, c, \in[n]\}$.

The next theorem will be of great use to us when we observe the permutation group of Instant Insanity II.

Theorem 1.6 (Cayley's Theorem [4]) Every group is isomorphic to a subgroup of S_{n}. An isomorphism is a one-to-one, onto mapping that preserves the group operation.

2 LITERATURE REVIEW

2.1 The Rubik's Cube

The Rubik's cube is a $3 \times 3 \times 3$ cube whose components are arranged into one large cube. There are different generating sets that can be used to generate the solution to the cube by permuting the cube [11]. Each small colored tile is called a "cubie." There are two types of cubies, namely the edge cubies and corner cubies. The center tile is called the face and these never leave their location. There are six center faces, twelve edge cubies, and eight corner cubies. There are two different approaches in solving the Rubik's cube. The first approach is the algebraic approach, where long sequences of operators are derived from smaller ones. This method is risky but it is efficient. The second approach is the geometric, where there is a reason for each turn of the cube. This method is inefficient, however it is reliable [8].

Since there are eight corners, each with three orientations and twelve edges, each with two orientations, one would think there are $8!* 3^{8} * 12!* 2^{12} \approx 5.2 \times 10^{20}$ different states to the cube. However, this would be overcounting. Hofstadter shows that any seven corner cubies can be arbitrary, implying that one corner cubie has three orientations. Similarly, he shows that any eleven edge cubies can be arbitrary, which leaves two edge cubies with two orientations each that are fixed [8]. So, we need to divide 5.2×10^{20} by a factor of $3 \times 2 \times 2=12$, resulting in 4.3×10^{19} configurations of the cube with only one solution $[8,13]$.

Morwen Thistlewaite derived a general algorithm for solving the Rubik's cube from any scrambled state within fifty-two turns. This number has since been reduced, with
the use of computers, to fifty turns [9]. Each turn of a face on the cube will generate a 4-cycle, that is a cycle of length four. Like any permutation, any sequence of moves can by represented by a product of cycles. The minimum number of moves for solving the Rubik's cube from any scrambled state is referred to as God's Number [8]. God's Algorithm is the method for which we find this number [8]. Note that a move may not consist of one single turn, but a sequence of turns of the faces of the cube. God's Number for the cube has been computed to be twenty-three moves [8].

Figure 5: The basic $3 \times 3 \times 3$ Rubik's Cube

2.2 The Fifteen Puzzle

The fifteen puzzle is made of a shallow square shaped tray that is large enough to hold sixteen small tiles in four rows and four columns. There are only fifteen tiles and the sixteenth slot is left empty [1]. It was created by Sam Loyd and became popular in the nineteenth century. It is similar to the Rubik's Cube in that the goal for both is to unscramble tiles to get a solution [8]. The fifteen puzzle is similar to our puzzle since it looks at different permutations on a 4×4 matrix. It has been determined that
some transpositions, such as $(14,15)$, can not be obtained. That is, one cannot simply exchange the tiles 14 and 15 while leaving the rest of the puzzle fixed. Configurations of the puzzle that can be achieved are related to even permutations, while those that are not possible are related to odd permutations. Spitznagel shows that if three tiles are lined up next to each other, in a row or column, then it is possible to have a cyclic permutation of these three tiles while leaving the rest of the puzzle fixed [19]. He then continues to show that this is true for any three tiles. This leads to the conclusion that the permutation group on the fifteen puzzle is isomorphic to A_{15} and has no proper normal subgroups [1, 19].

Figure 6: The fifteen puzzle

2.3 Instant Insanity

Instant Insanity is a game that consists of four cubes whose sides are each assigned a different color: blue, green, red, or white. In order to achieve a solution, one must create a $1 \times 1 \times 4$ rectangular prism in which all four colors appear on each of the four faces of the prism, as shown in Figure 7 [5]. Brown estimated that there are

82,944 prisms that can be arranged. He continued to show that a solution can be more easily attained by looking at pairs of opposite faces rather than by looking at each individual face [2]. Schwartz also uses the paring principle, where he pairs up opposite faces of the cubes, to obtain a solution to this puzzle. However, he makes an improvement on Brown's original idea, and uses letters instead of numbers in his calculations. In doing this, he uses Brown's original paring principle idea with his own improvements to reduce the number of possible prisms down to eighty-one, with two solutions possible [18]. Grecos uses this method along with some graph theory concepts to obtain a graphical solution to the puzzle $[2,5,10]$.

Figure 7: The original Instant Insanity

2.4 Instant Insanity II

As previously stated, Instant Insanity II is a sliding puzzle on sixteen tiles. Richmond and Young show in their paper that the puzzle group on Instant Insanity II is isomorphic to S_{16}. First, they show that any two tiles in the top row can be transposed and that any two vertically adjacent tiles can be transposed by sliding tiles into the empty slots at the top of the puzzle [14]. For clarity, we denote the two empty slots with an E as shown in Figure 8. They also showed that one can transpose two
tiles in a column if they are not in the first two rows by doing a sequence of vertical shifts [14]. Note that their method is similar to the vertical shift and inverse vertical shift that we described above. They used the fact that any two tiles in the top row can be transposed together with the fact that any two tiles in a column can be transposed to show that any tile in the first row and be transposed with any other tile in the puzzle. Since there are both even and odd permutations, the puzzle group on Instant Insanity II is isomorphic to S_{16} [14]. A generalization for this states that for any $n \times k$ puzzle with two empty slots at the top, the puzzle group is isomorphic to $S_{n k}$.

	E	E	
1	2	3	4
5	6	7	8
9	10	11	12
13	14	15	16

Figure 8: Tiles of Instant Insanity II using numbers

We can use Richmond and Young's method for transposing tiles to find the generators for Instant Insanity II. Recall that any two tiles in the first row can be transposed and that any two tiles in a column can also be transposed [14]. We use this fact, along with rotations of the puzzle, to derive the following generators for Instant Insanity II. We get our generator a by simply rotating the bottom row. The generator b is just a rotation of the entire puzzle. By completing one vertical shift, we get the generator c. Also, we get d by transposing tiles 1 and 5 , which is a vertical transposition and e
by transposing tiles 1 and 2 , which is a horizontal transposition.

$$
\begin{aligned}
& a=(13,14,15,16) \\
& b=(1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16) \\
& c=(1,5,9,13,12,8,4) \\
& d=(1,5) \\
& e=(1,2)
\end{aligned}
$$

A recent paper by Richmond and Young and Jaap's website on puzzle games state that there are in fact two solutions to this mind boggling game [14, 16]. In their paper, Richmond and Young go through how they derive two unique solutions from the puzzle when the box claims there is only one solution. Richmond and Young use a directed graph to construct their cycles. Since there are five colors, there are five vertices labeled B, G, R, W, and Y [14]. Consider the tile gB. Since the small left window is green and the large window is blue, then there is an edge between G and B with an arrow showing that we are going from the color green to the color blue. They continue to do this for each of the remaining tiles in the puzzle. Then, they look at the vertex B and examine each of the 4-cycles that are forced from this process. Each row in a solution corresponds to a cycle in the directed graph. They find that there are 12 such cycles [14].

Notice that each of the four rows in the original solution is missing a distinct color, so they group their cycles according to the missing color. Using our notation, if the tile gB is in one cycle, then no other cycle can use gB to create a solution. Using this fact, Richmond and Young make an incompatibility graph and then take
the complement of it to create a compatibility graph. The solution from the box lists four compatible cycles, one from each of the missing color groups. They then look at the possibilities from choosing the first cycle in the missing color group where the color red is absent. They continue this for the second and the third options that are in the same missing color group and find there are only two ways of doing this where the rows have a unique alignment. Thus, there are two possible solutions instead of one [14].

3 PUZZLE GROUP

Recall the tile configuration of solution one. For simplicity, we can relabel this arrangement with the numbers one through sixteen. So, the tile gW is now referred to as 1 , wY is 2 , etcetera. Now, we look at where the tiles from solution one get sent to in solution two, as shown in Figure 9. So, 1 gets sent to 5,5 gets sent to 14,14 gets sent to 7 and so forth. If we continue this out, we get the permutation $(1,5,14,7,10,3,12,16,15,11,4,9,8,13,6,2)$. Notice that this is a cycle of length sixteen. Since this is a cycle of even length, it is an odd permutation. Thus, solution two is an odd permutation on the tiles of solution one. If we can restrict the permutations to the alternating group, that is, only containing even cycles, then we would have a unique solution.

1	2	3	4					
5	6	7	8					
9	10	11	12					
13	14	15	16	\rightarrow	5	1	12	9
:---:	:---:	:---:	:---:					
14	2	10	13					
8	3	4	16					
6	7	11	15					

Figure 9: Tiles of Instant Insanity II using numbers

Definition 3.1 Let $G_{n, k}$ be the permutation group on the tiles an Instant Insanity II type puzzle where n is the number of rows and k is the number of columns. Further, suppose that the puzzle has been left out in the sun too long and that one of the empty slots at the top has been melted shut. Now, there is only one open slot at the top to which we can move tiles.

Theorem 3.2 For the group $G_{n, k}$, we have the following:
(i) If k is odd, then $G_{n, k} \approx A_{n k}$.
(ii) If k is even, then $G_{n, k} \approx S_{n k}$.

Proof. First we need to show that $A_{n k} \subseteq G_{n, k}$. By Theorem 1.5, we know that the alternating group is generated by 3 -cycles. We begin by showing the cycle $(1,2,3) \in$ $G_{n, k}$. Look at tiles 1,2 , and 3 . We will denote the columns that tiles 1,2 , and 3 are in when the puzzle is in its original state as columns ' a, b,' and ' c,' respectively. We perform a series of vertical shifts on columns a, b, and c, namely by V_{a}, V_{b}, and V_{c}, respectively, until tiles 1,2 , and 3 are in the bottom row. Once the tiles are in these positions, we can rotate the bottom row until we get tile 1 in column b, tile 2 in column a, and tile 3 into column c. Then we can perform the inverses of the vertical shifts, V_{a}^{-1}, V_{b}^{-1}, and V_{c}^{-1}, to get the tiles back up to the top row. Figure 5 gives an example of V_{a} with our 4×4 Instant Insanity II type puzzle with one slot at the top.

2	1	3	4
5	6	7	8
9	10	11	12
13	14	15	16

Figure 10: Tiles of Instant Insanity II after a series of vertical shifts

Notice in Figure 10 that $(2,1,3)$ is the inverse of $(1,2,3)$. Thus, the 3-cycle (1, $2,3)$ is in the puzzle group $G_{n, k}$.

We now show that any 3 -cycle is in $G_{n, k}$. Start by picking any three tiles to be in the 3-cycle. These will be referred to as our "target tiles." Move these tiles to the bottom row using the appropriate vertical shifts for each of the tiles. Note that when doing a vertical shift, only one tile on the bottom row gets moved. Now, we
can rotate the bottom row to put the first target tile in column ' a.' Then we apply a series of vertical shifts to get the tile to the top row. We continue this process to get our second and third target tiles into their respective columns, followed by $n-1$ vertical shifts to get each of the tiles to the top row. Once our target tiles are in the top row, we do $n-1$ vertical shifts on column ' a,' $V_{a^{n-1}}, n$ vertical shifts on column ' c,' denoted $V_{c^{n}}$, then rotate the bottom row twice, $R 2$. Now we do $V_{c^{n}}^{-1}$, followed by $V_{a^{n-1}}^{-1}$, and $R 2^{-1}$. This results in either a 3-cycle or a 3-cycle together with a set of 2-cycles, also known as transpositions. If we have a 3 -cycle, then $A_{n k} \subseteq G_{n, k}$. If we get a 3 -cycle together with a set of disjoint transpositions, then we can square the permutation, which will leave only a 3 -cycle. Since every 3 -cycle is in $G_{n, k}$, we have that $A_{n k} \subseteq G_{n, k}$.

Suppose k is odd. Thus, all generators are even permutations. This implies $G_{n, k}$ is a subgroup of $A_{n k}$. From above, we now have that $G_{n, k} \approx A_{n k}$.

Suppose k is even. This implies that we have at least one odd permutation, namely the rotation on the bottom row. By Cayley's Theorem, $G_{n, k} \subseteq S_{n k}$. Therefore, o $o\left(G_{n, k}\right)$ divides $o\left(S_{n k}\right)$ by Lagrange's Theorem. So $o\left(G_{n, k}\right)$ divides $(n k)!$. Further, we showed above that $A_{n k} \subseteq G_{n, k}$. Ergo, $o\left(G_{n, k}\right) \geq o\left(A_{n k}\right)=\frac{(n k)!}{2}$. Further, because $G_{n, k}$ has at least one odd permutation, $o\left(G_{n, k}\right) \geq \frac{(n k)!}{2}+1$. However, there are no integers between $\frac{(n k)!}{2}+1$ and $(n k)!$ that divide $(n k)!$ other than $(n k)!$ itself. Therefore, $o\left(G_{n, k}\right)=(n k)!$, which implies $G_{n, k} \approx S_{n k}$.

Theorem 3.3 Solution two cannot be obtained as a permutation on the colors of solution one.

Proof. For simplicity, we let B correspond to the color blue, G to green, R to red, W to white, and Y to yellow. Since there are five colors, there are $5!=120$ permutations. Now we can begin looking at the 120 possible permutations. Since there are more blue tiles than any other color, we must leave the blue tiles fixed. This narrows our number of possible permutations down to twenty-four. We can further eliminate our possible number of permutations down to eighteen. Recall our missing tiles. Any permutation that contains the transpositions (G,Y), (G,W), (R,Y), or (R,W) will force our new solution to contain one of our missing tiles.

Case 1: $(\mathrm{B})(\mathrm{G})(\mathrm{R})(\mathrm{W})(\mathrm{Y})$ is the identity permutation, e. This means that we leave everything fixed, which results in no change to the solution.

Case 2: (G,R) means we swap the colors green and red. Solution one then becomes

rW	wY	yB	bR
bY	yR	rG	gB
gR	rB	bW	wG
wB	bG	gY	yW

Notice that the tiles rY, yG, gW, and wR from our original solution are now missing from our new solution and that we have added the tiles rW, yR, wG, and gY. Thus, the permutation (G,R) does not result in us achieving solution two from solution one.

Case 3: (W,Y) will swap the colors white and yellow, making the first line of solution one become
gY yW wB bG

Since gY is not a tile in our original solution, then we cannot achieve solution two from solution one.

Case 4: $(G, R)(W, Y)$ swaps green with red and swaps white with yellow. Now our solution looks like

rY	yW	WB	$b R$
bW	wR	rG	gB
gR	rB	bY	yG
yB	bG	gW	wY

Notice here that we have all of the same tiles from solution one in our new solution. However, if we look closely, we see that our new solution is really solution one with a permutation on the rows and columns.

Case 5: (G,R,W) will make the color green to to red, red to white and white back to green. So the first line of solution one will now look like

$$
\text { rG } \quad \mathrm{gY} \quad \mathrm{yB} \quad \mathrm{bR}
$$

Notice that gY is not a tile in our original solution. Thus, we cannot use the permutation (G,R,W).

Case 6: (G, W, R) will make green to go white, white to red, and red to green, making the first two lines of our new solution become

$$
\begin{array}{cccc}
\text { wR } & \text { rY } & \text { yB } & \text { bR } \\
\text { bY } & \text { yW } & \text { wG } & \text { gB }
\end{array}
$$

Since wG is not a tile, we cannot use this permutation.
Case 7: (G,R,Y) forces green to red, red to yellow, and yellow back to green. The first line of our solution is now of the form

$$
\text { yR } \quad \text { rB } \quad \text { bW } \quad \text { wY }
$$

We know that $y R$ is not a tile in our original solution, so we cannot use this permutation to achieve solution two from solution one.

Case 8: (G,Y,R) will make green go to yellow, yellow to red, and red cycles back to green. So the first three lines of our solution will now be

$y W$	$w R$	rB	$b Y$
bR	rY	yG	gB
gY	yB	bW	wG

The tiles gY and wG are not in our original solution, so this permutation cannot be used.

Case 9: (G, W, Y) will make green go to white, white to yellow, and yellow to green, the first three lines of our solution being

$$
\begin{array}{cccc}
\text { wY } & \text { yG } & \text { gB } & \text { bW } \\
\text { bG } & \text { gW } & \text { wR } & \text { rB } \\
\text { rW } & \text { wB } & \text { bY } & \text { yR }
\end{array}
$$

The tiles rW and yR are not part of our original solution. Thus, we cannot use this permutation.

Case 10: (G, Y, W) forces green to go to yellow, yellow to white, and white back to green. Now the first two lines of our solution will look like

$y G$	gW	wB	$b G$
$b W$	$w Y$	$y R$	rB

Since yR is not a tile in our original solution, we cannot use the permutation (G,Y,W).

Case 11: ($\mathrm{R}, \mathrm{W}, \mathrm{Y}$) will make red go to white, white to yellow and yellow to red. The first line of our new solution will look like

$$
\mathrm{gY} \quad \text { yR } \quad \mathrm{rB} \quad \mathrm{bG}
$$

The tiles gY and yR are not part of our original solution, so we cannot use this permutation.

Case 12: (R,Y,W) makes red go to yellow, yellow to white, and white to red. Now the first line of our solution will look like

$$
\mathrm{gR} \quad \mathrm{rW} \quad \mathrm{wB} \quad \mathrm{bG}
$$

Since rW is not a tile in our original solution, we cannot use this permutation.
Case 13: (G,R,W,Y) will make green go to red, red to white, white to yellow, and yellow to green. Now, the first three lines of our solution will look like

$$
\begin{array}{cccc}
\mathrm{rY} & \mathrm{yG} & \mathrm{gB} & \mathrm{bR} \\
\mathrm{bG} & \mathrm{gR} & \mathrm{rW} & \mathrm{wB} \\
\mathrm{wB} & \mathrm{bG} & \mathrm{gY} & \mathrm{yW}
\end{array}
$$

The tile rW is not in the original solution. Thus, we cannot use the permutation (G,R,W,Y).

Case 14: (G,R,Y,W) will make green go to red, red to yellow, yellow to white, and white back to green. The first three lines of our solution now becomes

rG	gW	wB	$b R$
bW	wR	rY	$y B$
yR	rB	bG	gY

Since we have the tiles yR and gY in our new solution and they are not in our original solution, we cannot use this permutation.

Case 15: (G,W,R,Y) will make green go to white, white to red, red to yellow, and yellow to green. Now our solution will look like

wR	rG	gB	bW
bG	gW	wY	yB
yW	wB	bR	rY
rB	bY	yG	gR

Notice that we have all of the tiles in our new solution that were in the original solution. However, this is just a permutation of the rows and columns of solution one.

Case 16: (G,W,Y,R) will make green go to white, white to yellow, yellow to red, and red will cycle back to green. Now the first line of our solution will be of the form
wY yR rB bW

Since the tile $y R$ is not in our original solution, we cannot use this permutation to achieve solution two from solution one.

Case 17: (G,Y,R,W) forces green to go to yellow, yellow to red, red to white, and white cycles back around to green. Now, our solution looks like

yG	gR	rB	$b Y$
bR	rY	yW	wB
wY	yB	bG	gW
gB	bW	wR	rG

This new configuration has the same tiles of our original solution. However it is just a rearrangement of the rows and columns of solution one. So, we cannot use this permutation.

Case 18: (G,Y,W,R) will force green to yellow, yellow to white, white to red, and red to green. Now the first line of our solution has the form
yR rW wB bY

Since yR and rW are not tiles of our original solution, we cannot use this permutation. Further, none of the twenty-four cases yields solution two from solution one. We now know that solution one and solution two are independent of each other. That is, solution two is not a permutation on the colors of solution one.

4 CONFIGURATION

4.14×5 Puzzle

Recall our missing tiles, gY, rW, yR, and wG. If we choose to use these missing tiles, then we have either a 4×5 puzzle or a 5×4 puzzle. We now examine the possibilities for solutions if we make a 4×5 puzzle. Here we include the missing tiles mentioned above. Note that with a 4×5 puzzle, we will have four unique sets of 5-cycles, specifically:

Set 1:
a) bR, rY, yW, wG, gB
b) $b R, r Y, y G, g W, w B$
c) $\mathrm{bR}, \mathrm{rG}, \mathrm{gW}, \mathrm{wY}, \mathrm{yB}$
d) $\mathrm{bR}, \mathrm{rG}, \mathrm{gY}, \mathrm{yW}, \mathrm{wB}$
e) bR, rW, wY, yG, gB
f) bR, rW, wG, gY, yB

Set 3:
a) bG, gY, yR, rW, wB
b) bG, gY, yW, wR, rB
c) $\mathrm{bG}, \mathrm{gW}, \mathrm{wR}, \mathrm{rY}, \mathrm{yB}$
d) bG, gW, wY, yR, rB
e) bG, gR, rW, wY, yB
f) bG, gR, rY, yW, wB

Set 2:
a) bY, yW, wR, rG, gB
b) bY, yW, wG, gR, rB
c) $\mathrm{bY}, \mathrm{yG}, \mathrm{gR}, \mathrm{rW}, \mathrm{wB}$
d) bY, yG, gW, wR, rB
e) bY, yR, rG, gW, wB
f) bY, yR, rW, wG, gB

Set 4:
a) bW, wR, rG, gY, yB
b) bW, wR, rY, yG, gB
c) $\mathrm{bW}, \mathrm{wG}, \mathrm{gR}, \mathrm{rY}, \mathrm{yB}$
d) bW, wG, gY, yR, yB
e) bW, wY, yG, gR, rB
f) $\mathrm{bW}, \mathrm{wY}, \mathrm{yR}, \mathrm{rG}, \mathrm{gB}$

These sets are obtained by taking a tile, say bR, and looking at all of the 5-cycles that correspond with it. We find the four sets by looking at tree diagrams. For example, Figure 11 shows how we obtain Set 1.

Theorem 4.1 There is no possible solution for the 4×5 puzzle.

Proof. Without loss of generality, we can assume that the element of Set 1 is fixed. Note that we will later refer to each of the cycles as $1 \mathrm{a}, 1 \mathrm{~b}$, etcetera for Set 1, 2a,

Figure 11: Tree diagram to obtain Set 1 on the 4×5 puzzle
$2 b$, etcetera for Set 2; this will continue for each of the four sets. Further, lowercase roman numerals refer to rotations of that set. For example, $2 \mathrm{~d}(\mathrm{i})$ refers to one rotation of 2 d , hence we have $\mathrm{yG}, \mathrm{gW}, \mathrm{wR}, \mathrm{rB}, \mathrm{bY}$. Similarly, $2 \mathrm{~d}(\mathrm{ii})$ refers to two rotations of 2d, so we have gW , wR, rB, bY, yG.

In order to see if there is a unique solutions on the 4×5 puzzle, let us examine all of the possibilities. We start by fixing 1a: bR, rY, yW, wG, gB. Now we look at our possibilities from Set 2 . We cannot use 2 a or 2 b because they share a common tile, namely, yW, with 1a. We cannot use 2 f because it shares the tile wG . This minimizes our possibilities down to Rows c, d, and e from Set 2. We first look at all of the rotations of 2 c together with 1 a .

1a	bR	rY	yW	wG	gB
2c(i)	yG	gR	rW		
2c(ii)	gR				
2c(iii)	rW	wB	bY	yG	
2c(iv)	wB	bY			

Clearly, we cannot use any of the four rotations of 2 c , since we we will have at least one of the main tiles lining up. Next, we look at the rotations of 2 d with 1 a .

1a	bR	rY	yW	wG	gB
$2 \mathrm{~d}(\mathrm{i})$	yG	gW	wR	rB	bY
2d(ii)	gW	wR	rB	bY	yG
2d(iii)	wR				
2d(iv)	rB	bY			

From 2 d , we have $2 \mathrm{~d}(\mathrm{i})$ and $2 \mathrm{~d}(\mathrm{ii})$ that would make for a possible solution to the 4×5 puzzle when we use 1a. Now consider possible rotations of 2 e with 1 a .

1a	bR	rY	yW	wG	gB
2e(i)	yR				
2e(ii)	rG	gW	wB	bY	yR
2e(iii)	gW	wB	bY	yR	rG
2e(iv)	wB	bY			

For 2 e , we have $2 \mathrm{e}(\mathrm{ii})$ and $2 \mathrm{e}(\mathrm{iii})$ as possibilities with 1 a . Hence, we need to fix each of these cases with 1a and examine them with Set 3 . We start by fixing 1 a and $2 \mathrm{~d}(\mathrm{i})$.

1 a	bR	rY	yW	wG	gB
$2 \mathrm{~d}(\mathrm{i})$	$y G$	gW	wR	rB	bY

Just by examining the tiles in Set 3, we can see that we cannot use 3b because it shares tile yW with 1a. We cannot use 3c and 3d since they share tile gW with $2 \mathrm{~d}(\mathrm{i})$. Also, 3f shares yW with 1a, leaving 3 a and 3 e as possible rows.

1a	bR	rY	yW	wG	gB
2d(i)	yG	gW	wR	rB	bY
3a(i)	gY	yR	rW		
3a(ii)	yR				
3a(iii)	rW				
3a(iv)	wB	bG	gY	yR	rW

We eliminate all rotations of 3a except 3a(iv). Next, we look at all rotations of 3e with 1 a and $2 \mathrm{~d}(\mathrm{i})$ fixed.

1a	bR	rY	yW	wG	gB
$2 \mathrm{~d}(\mathrm{i})$	yG	gW	wR	rB	bY
3e(i)	gR				
3e(ii)	rW	wY			
3e(iii)	wY	yB	bG	gR	rW
3e(iv)	yB	bG	gR		

So the only rotation of 3 e that we can use is $3 \mathrm{e}(\mathrm{iii})$. With 1a and $2 \mathrm{~d}(\mathrm{i})$ fixed, from Set 3, we only have $3 \mathrm{a}(\mathrm{iv})$ and $3 \mathrm{e}($ iii $)$ as possible rotations.

1 a	bR	rY	yW	wG	gB
$2 \mathrm{~d}(\mathrm{i})$	yG	gW	wR	rB	bY
$3 \mathrm{a}(\mathrm{iv})$	wB	bG	gY	yR	rW

Here, we cannot use any of Set 4. This is because 4a and 4b share tile wR with $2 \mathrm{~d}(\mathrm{i}), 4 \mathrm{~d}$ and 4 e share tile wG with 1 a , 4 e shares yG with $2 \mathrm{~d}(\mathrm{i})$, and 4 f shares yR with $3 \mathrm{a}(\mathrm{iv})$. Now we look at the possibilities when we fix $1 \mathrm{a}, 2 \mathrm{~d}(\mathrm{i})$ and $3 \mathrm{e}(\mathrm{iii})$.

1 a	bR	rY	yW	wG	gB
$2 \mathrm{~d}(\mathrm{i})$	yG	gW	wR	rB	bY
3e(iii)	wY	yB	bG	gR	rW

This also eliminates all of Set 4 since 4 a and 4 b share tile wR with $2 \mathrm{~d}(\mathrm{i}), 4 \mathrm{c}$ and $4 d$ share tile $w G$ with 1 a , and 4 e and 4 f share tile wY with $3 \mathrm{e}(\mathrm{iii})$. Thus, there are no possible solutions using 1a and $2 \mathrm{~d}(\mathrm{i})$. Next, we look at possible solutions when 1a and $2 \mathrm{~d}(\mathrm{ii})$ are fixed.

1a	bR	rY	yW	wG	gB
$2 \mathrm{~d}(\mathrm{ii})$	gW	wR	rB	bY	yG

Using this same argument, we can eliminate 2 d (ii) since each element in Set 4 shares a tiles with $2 \mathrm{~d}(\mathrm{ii})$. Hence, we have no possible solutions whenever we fix 1a and $2 \mathrm{~d}(\mathrm{ii})$. Now consider when we fix 1 a and $2 \mathrm{e}(\mathrm{ii})$.

$$
\begin{array}{c|ccccc}
1 \mathrm{a} & \text { bR } & \text { rY } & \text { yW } & \text { wG } & \text { gB } \\
\hline \text { 2e(ii) } & \text { rG } & \text { gW } & \text { wB } & \text { bY } & \text { yR }
\end{array}
$$

We use the above process to eliminate $3 \mathrm{a}, 3 \mathrm{~b}, 3 \mathrm{c}$, and 3 d from Set 3 and $4 \mathrm{a}, 4 \mathrm{~b}$, $4 \mathrm{c}, 4 \mathrm{~d}$, and 4 f from Set 4 . This leaves only 3 e and 4 e as possibilities from Sets 3 and 4 , respectively. Thus, it suffices to only compare 3 e and 4 e as shown below.

3 e	bG	gR	rW	wY	yB
4 e	bW	wY	yG	gR	rB

Since 3 e and 4 e share tile wY , there are no possible solutions when we fix 1 a and $2 \mathrm{e}(\mathrm{ii})$. The same is true for 1 a and $2 \mathrm{e}(\mathrm{iii})$ since it consists of the same tiles, just in a different order. Thus, there are no possible solutions when we fix 1a.

We continue this same process to look at when each element in Set 1 is fixed. Since we eliminated 1a, we now redirect our attention onto 1 b : $\mathrm{bR}, \mathrm{rY}, \mathrm{yG}, \mathrm{gW}, \mathrm{wB}$. We can eliminate $2 \mathrm{c}, 2 \mathrm{~d}$, and 2 e since 2 c and 2 d share tile yG with 1 b , and 2 e shares tiles gW and wB with 1 b . So the only possibilities from Set 2 are $2 \mathrm{a}, 2 \mathrm{~b}$, and 2 f . Now, we proceed to examine the rotations of 2 a with 1 b fixed.

1b	bR	rY	yG	gW	wB
$2 \mathrm{a}(\mathrm{i})$	yW	wR	rG		
$2 \mathrm{a}(\mathrm{ii})$	wR				
2a(iii)	rG	gB	bY	yW	
2a(iv)	gB	bY			

This shows that we cannot use any of the rotations of 2 a when we fix 1 b . Next we consider the rotations of 2 b .

1b	bR	rY	yG	gW	wB
$2 b(\mathrm{i})$	yW	wG	gR	rB	bY
$2 \mathrm{~b}(\mathrm{ii})$	wG	gR	rB	bY	yW
2b(iii)	gR				
2b(iv)	rB	bY			

From this observation, we can use $2 b(i)$ and $2 b(i i)$ to look for a possible solution to the 4×5 puzzle. Now we consider the rotations of 2 f when we leave 1 b fixed.

$1 b$	bR	rY	yG	gW	wB
2f(i)	yR				
2f(ii)	rW	wG	gB	bY	yR
2f(iii)	wG	gB	bY	yR	rW
2f(iv)	gB	bY			

So we can use 2 f (ii) and 2 f (iii) when looking for a solution while leaving 1 b fixed. By fixing 1 b and any rotation of 2 b , we can eliminate the following: 3a because it shares tile wB with 1 b , 3 b since it shares yW and rB with 2 b , 3c since it shares tiles $r Y$ and $g W$ with $1 \mathrm{~b}, 3 \mathrm{~d}$ because it shares tile gW with 1 b , 3e because it shares tile gR with 2b, and 3f since it shares tile rY with 1b. Thus, there are no possible solutions when 1 b and 2 b are fixed.

Now consider when we have 1 b and any rotation of 2 f fixed. When comparing tiles to 1 b and 2 f , we can eliminate all of Set 3 except 3 b and all of Set 4 except 4 a . So we only need to compare 3 b and 4 a . However, 3 b and 4 a share tile gY , so there are no solutions when we fix 1 b . Now, we continue this process again, except this time leaving 1c fixed. Recall the tiles in 1c: bR, rG, gW, wY, yB. Notice that 2a and 2e share tile rG with 1 c , 2 d shares tile gW with 1 c . Hence, the only rows from Set 2 that we can use are $2 \mathrm{~b}, 2 \mathrm{c}$, and 2 f . We can also eliminate 3c, 3d, and 3e from Set 3 and $4 \mathrm{a}, 4 \mathrm{c}, 4 \mathrm{e}$, and 4 f from Set 4 because they each share a common tiles with 1 c . Now we can fix 2 b with 1 c . Now we only need to look at the rotations of $2 \mathrm{~b}, 3 \mathrm{a}$, and 4 b when 1 c is fixed.

1c	bR	rG	gW	wY	yB
2b(i)	yW	wG			
2b(ii)	wG	gR	rB	bY	
2b(iii)	gR				
2b(iv)	rB	bY	wG	gR	rB

Clearly, we cannot use any rotation of 2 b . Thus, we move on to consider the rotations of 2 c .

1c	bR	rG	gW	wY	yB
2c(i)	yG	gR	rW		
2c(ii)	gR				
2c(iii)	rW	wB	bY	yG	gR
2c(iv)	wB	bY	yG	gR	rW

Notice that we can use 2 c (iii) and 2 c (iv). Using any rotation of 2 c will eliminate $3 \mathrm{a}, 3 \mathrm{f}$, and 4 b , leaving only 3 b and 4 d that we need to check. But 3 b and 4 d share two common tiles, namely, gY and rB. Thus, there are no possible solutions when 2 c is fixed with 1c. Next, we look at the possibilities when we fix 2 f . Here, we eliminate $3 \mathrm{a}, 4 \mathrm{~b}$, and 4 d by matching tiles. Since 4 b and 4 d were our only possibilities when we fix 1 c, Set 4 is completely eliminated. Hence, there are no solutions when we fix 1c.

Now, we can repeat this process by fixing 1d: bR, rG, gY, yW, wB. By fixing 1d, we can eliminate $2 \mathrm{a}, 2 \mathrm{~b}, 2 \mathrm{c}$, and 2 e from Set $2,3 \mathrm{a}, 3 \mathrm{~b}$, and 3 from Set 3 , and $4 \mathrm{a}, 4 \mathrm{~d}$ and 4 f from Set 4 by using the same matching tiles approach as before. If we choose to fix 2 d with 1 d , then all of Set 3 gets eliminated by matching tiles, which implies there is no possible solution when we use 2 d . Since no rotation of 2 d will conflict with 1 d , we can now go back and start looking at the rotations of $2 \mathrm{f}, 3 \mathrm{c}$, and 4 e with 1 d .

1d	bR	rG	gY	yW	wB
$2 f(\mathrm{i})$	yR				
$2 f(i i)$	rW	wG			
2f(iii)	wG	gB	bY		
2f(iv)	gB	bY	yR	rW	

It is clear to see that no rotation of 2 f will go with 1 d . Therefore, there are no possible solutions when we leave 1d fixed.

We now proceed to check for possible solutions when we fix 1 e : bR , rW, wY, yG, gB . By looking for matching tiles, we can eliminate $2 \mathrm{a}, 2 \mathrm{c}, 2 \mathrm{~d}$, and 2 f from Set 2 , 3 a , 3 d , and 3 e from Set 3 , and $4 \mathrm{~b}, 4 \mathrm{e}$, and 4 f from Set 4 . This leaves only 2 b and 2 e from Set $2,3 \mathrm{~b}, 3 \mathrm{c}$ and 3 f from Set 3 , and $4 \mathrm{a}, 4 \mathrm{c}$, and 4 d from Set 4 that we need to focus on. If we choose to fix 2 b , then we can further eliminate 3 b and 3 f , leaving only 3 c from Set 3 . We can also eliminate 4 c and 4 d , leaving only 4 a from Set 4 . However, 3c and 4 a share a tile, namely, yB. So there are no possible solutions when we fix 2 b with 1e. Our only option left from Set 2 that we can fix with 1 e is $2 e$. So our next step is to look at the rotations of 2 e when 1 e is fixed.

1e	bR	rW	wY	yG	gB
2e(i)	yR				
2e(ii)	rG	gW			
2e(iii)	gW	wB	bY		
2e(iv)	wB	bY	yR	rG	

We see there are no rotations of 2 e that we can use when we have 1e fixed. Since 2 e was our last option from Set 2 to fix with 1e, there are no solutions when we have 1e fixed.

Our last option from Set 1 for obtaining a solutions to the 4×5 case is when we fix 1f: bR, rW, wG, gY, yB. By leaving 1f fixed, we can eliminate $2 \mathrm{~b}, 2 \mathrm{c}$, and 2 f from Set $2,3 \mathrm{a}, 3 \mathrm{~b}, 3 \mathrm{c}$, and 3 e from Set 3 , and $4 \mathrm{a}, 4 \mathrm{c}$, and 4 d from Set 4 . This means that we only need to check $2 \mathrm{a}, 2 \mathrm{~d}$, and 2 e from Set 2 , 3 d and 3 from Set 3 , and $4 \mathrm{~b}, 4 \mathrm{e}$, and 4 f from Set 4 . If we choose to fix 2 a with 1 f , then we can further eliminate 3 f from Set 3 and 4 b and 4 f from Set 4 . This leaves only 3 d from Set 3 and 4 e from Set 4. Upon comparing the tiles in 3d and 4 e , we find that they share tiles wY and rB . Hence, we cannot obtain a solutions if we use 2 a . Our next option from Set 2 is to fix

2 d with 1 f . Thus, our next step is to look at all of the possible rotations of 2 d with 1f.

1d	bR	rW	wG	gY	yB
2d(i)	yG	gW			
2d(ii)	gW	wR	rB	bY	
2d(iii)	wR				
2d(iv)	rB	bY	yG		

Upon reviewing the rotations of 2 d , we find that none of the rotations will line up with 1 f to give us a solution. The last option from Set 2 that could give us a solution to the 4 x 5 puzzle is 2 e . When we compare tiles from Sets 3 and 4 to those in 2 e , we eliminate 3d and 3f, resulting in no solutions when we fix 2 e with 1 f . Thus, the 4×5 puzzle is not solvable.

4.2 Add a Row to Create a 5×4 Puzzle

Using the same tiles as we did in the 4×5 puzzle, we also look for possible solutions when we have a 5×4 puzzle instead. Here, we create tree diagrams to generate unique sets of 4 -cycles. Figure 12 shows how we created each of our sets.

Figure 12: Tree diagram to obtain Set 1 on the 5×4 puzzle

By using the tree diagram above, we can generate Set 1 . We use the same method to generate the remaining three sets as well. After completing our tree diagrams, we are left with four sets of 4-cycles.

Set 1:
a) $\mathrm{bR}, \mathrm{rY}, \mathrm{yW}, \mathrm{wB}$
b) bR, rY, yG, gB
c) $\mathrm{bR}, \mathrm{rG}, \mathrm{gW}, \mathrm{wB}$
d) $b R, r G, g Y, y B$
e) bR, rW, wY, yB
f) bR, rW, wG, gB

Set 3:
a) bG, gY, yR, rB a) bW, wR, rG, gB
b) bG, gY, yW, wB
c) $\mathrm{bG}, \mathrm{gW}, \mathrm{wR}, \mathrm{rB}$
d) $\mathrm{bG}, \mathrm{gW}, \mathrm{wY}, \mathrm{yB}$
e) $\mathrm{bG}, \mathrm{gR}, \mathrm{rW}, \mathrm{wB}$
f) bG, gR, rY, yB
a) bY, yW, wR, rB
d) $\mathrm{bY}, \mathrm{yG}, \mathrm{gW}, \mathrm{wB}$
b) bW, wR, rY, yB
c) $\mathrm{bW}, \mathrm{wG}, \mathrm{gR}, \mathrm{rB}$
d) $\mathrm{bW}, \mathrm{wG}, \mathrm{gY}, \mathrm{yB}$
e) bW, wY, yG, gB

Set 2:
b) bY, yW, wG, gB
c) bY, yG, gR, rB
e) bY, yR, rG, gB
f) bY, yR, rW, wB

Set 4:

f) bW , wY, yR, rB

Theorem 4.2 The 5×4 puzzle has 240 solutions up to rotating the columns and permuting the colors.

Proof. Recall that since there are five colors, there are $5!=120$ ways to relabel the colors. We must show that for each solution of the 4×4 puzzle, we get a solution of the 5×4 puzzle. Recall the two solutions to Instant Insanity II in Figure 2. Also recall that our "missing tiles" for a 4×5 puzzle are $y R$, wG, rW, and gY. Since $4 * 5=20=5 * 4$, we know that there are also a total of twenty tiles for the 5×4 puzzle as well. Consider solution one. We can take our missing tiles and create a cycle with them and add the cycle in to make a fifth row as in Figure 13. Similarly, we can create a cycle with our missing tiles to add in a fifth row on solution two as shown in Figure 14.

gW	wY	yB	bG
bY	yG	gR	rB
rG	gB	bW	wR
wB	bR	rY	yW
yR	rW	wG	gY

Figure 13: The new solution one after adding a fifth row with our missing tiles

wY	yG	gB	bW
gW	wB	bR	rG
bG	gR	rY	yB
rB	bY	yW	wR
rW	wG	gY	yR

Figure 14: The new solution two after adding a fifth row with our missing tiles

So, it is clear that we can take each of the two solutions of the 4×4 puzzle and add in a fifth row using the our "missing tiles" and generate solutions for the 5×4 puzzle. Since for each solution of the 4×4 puzzle, we have a solution of the 5×4 puzzle, we have that the 5×4 puzzle has twice as many solutions as ways to relabel the colors. Further, since solution two cannot be obtained from solution one by permuting the colors, all these solutions are distinct.

4.3 Remove a Color to Create a 3×3 Puzzle

Recall that there are five colors to the 4×4 puzzle: blue, greed, red, white, and yellow. What happens if we remove one of the colors to create a 3×3 puzzle? Without loss of generality, we will eliminate the color white. This leaves us with only the colors blue, green, red, and yellow. Since we are working with a 3×3 puzzle, we will need a total of nine tiles. Recall that in all of our other cases, we have more blue tiles than
any other color, so we will keep the same pattern and have one more blue tile than the other colors. Hence, we will have three blue tiles, two green tiles, two red tiles, and two yellow tiles. So our new set of tiles for this case are as follows:

$$
\begin{array}{lll}
\text { gB, } & \text { rB, } & \mathrm{yB}, \\
\text { bG, } & \text { yG, } & \\
\text { bR, } & \text { gR, } & \\
\text { bY, } & \text { rY. } &
\end{array}
$$

Theorem 4.3 There is a unique solution to the 3×3 puzzle.

Proof. As before, we must now create our sets. Since we have a 3×3 puzzle, this means that we will have three sets of 3 -cycles. Let us begin with the tile rB to create Set 1. The tile rB has the options to go to bR, bY, or bG. It cannot go to bR since that forces a 2-cycle. Now we look at what happens when we have rB going to bY. We would need the tile $y R$ to create a 3 -cycle, however $y R$ is not one of our nine tiles. Thus, we cannot let rB go to bY . Our only option left is for rB to go to bG . If we do this, then we need the tile $g R$ to create a 3 -cycle. Since $g R$ is one of our nine tiles, we have that Set 1 only has one 3 -cycle, namely rB, bG, gR.

Next, we look at the tile gB to find our Set 2. The tile gB has the option to go to bG, bR, or bY. It cannot go to bG, as this would only generate a 2 -cycle. If it goes to bR , then we would need the tile rG in order to create a 3 -cycle. Since we do not have the tile rG for the 3×3 puzzle, then gB cannot go to bR . This leaves only one option for Set 2 , namely gB, bY, yG.

The last thing that we need to do is to generate Set 3. The only tile that we have not yet used is yB . Starting with yB , it can go to either bY , bG , or bR . The tile yB cannot go to tile bY since it will force a 2-cycle. We cannot have the tile yB go to
bG. This is because bG would need to go to gY in order to create a 3-cycle, but we do not have the tile gY . So the only option for yB to go to is bR and our Set 3 is precisely $y B$, bR, rY.

Is it possible to find a solution with our three 3-cycles? Since no two colors can be in the same row or column and we have three blue tiles, then we need to set blue in a diagonal, similar to that of a Latin square.

rB		
	gB	
		yB

This will force our solution to be in Figure 15.

rB	bG	gR
yG	gB	gY
bR	rY	yB

Figure 15: Solution to the 3×3 puzzle

As in the 5×4 puzzle, we can permute the rows and columns but we will still have the same solution. Thus, there is only one unique solution for the 3×3 puzzle.

4.4 Add a Color to Create a 5×5 Puzzle

We know that we do not have a unique solution with the standard 4×4 puzzle. We also know that there is no solution if we change the puzzle to a 4×5 puzzle with only one slot at the top, and that there are numerous solutions with the 5×4 case. We next examine the case where we have a 5×5 puzzle, which leads to our next result. Here, we add a sixth color, say purple, and look for possible solutions.

Recall, with the standard 4×4 case, there are four tiles with one color and each of the remaining colors have three tiles each. We will keep the same patten here with our 5×5 case. As before, we assign "blue" to five tiles, and each of the other colors will be assigned to four tiles each. So our tiles for the 5×5 case are as follows:

$$
\begin{array}{lllll}
\mathrm{rB}, & \mathrm{gB}, & \mathrm{yB}, & \mathrm{wB}, & \mathrm{pB}, \\
\mathrm{bR}, & \mathrm{gR}, & \mathrm{wR}, & \mathrm{pR}, & \\
\mathrm{bG}, & \mathrm{rG}, & \mathrm{yG}, & \mathrm{pG}, & \\
\mathrm{bY}, & \mathrm{wY}, & \mathrm{rY}, & \mathrm{pY}, & \\
\mathrm{bP}, & \mathrm{gP}, & \mathrm{yP}, & \mathrm{wP}, &
\end{array}
$$

Figure 16: Tree diagram to obtain Set 1 on the 5×5 puzzle

As with the previous cases, we partition our sets based on the blue tiles, to obtain five sets of 5 -cycles. We construct tree diagrams to find each of our 5 -cycles, as shown in Figure 16.

Set 1:
a) $\mathrm{bR}, \mathrm{rG}, \mathrm{gW}, \mathrm{wY}, \mathrm{yB}$
b) $\mathrm{bR}, \mathrm{rG}, \mathrm{gW}, \mathrm{wP}, \mathrm{pB}$
c) $\mathrm{bR}, \mathrm{rG}, \mathrm{gP}, \mathrm{pY}, \mathrm{yB}$
d) $\mathrm{bR}, \mathrm{rW}, \mathrm{wP}, \mathrm{pY}, \mathrm{yB}$
e) bR, rW, wP, pG, gB
f) $\mathrm{bR}, \mathrm{rW}, \mathrm{wY}, \mathrm{yG}, \mathrm{gB}$
g) $\mathrm{bR}, \mathrm{rW}, \mathrm{wY}, \mathrm{yP}, \mathrm{pB}$
h) bR, rY, yG, gW, wB
i) $\mathrm{bR}, \mathrm{rY}, \mathrm{yG}, \mathrm{gP}, \mathrm{pB}$
j) bR, rY, yW, wP, pB
k) bR, rY, yP, pG, gB

Set 2:
a) bG, gR, rY, yW, wB
b) bG, gR, rY, yP, pB
c) $\mathrm{bG}, \mathrm{gR}, \mathrm{rW}, \mathrm{wY}, \mathrm{yB}$
d) bG, gR, rW, wP, pB
e) bG, gW, wR, rY, yB
f) bG, gW, wY, yP, pB
g) bG, gW, wP, pR, rB
h) bG, gW, wP, pY, yB
i) $\mathrm{bG}, \mathrm{gP}, \mathrm{pR}, \mathrm{rY}, \mathrm{yB}$
j) bG, gP, pR, rW, wB
k) bG, gP, pY, yW, wB

Set 3:
a) bY, yG, gR, rW, wB
b) bY, yG, gW, wR, rB
c) bY, yG, gW, wP, pB
d) bY, yG, gP, pR, rB
e) bY, yW, wR, rG, gB
f) bY, yW, wP, pR, rB
g) bY, yW, wP, pG, gB
h) bY, yP, pR, rG, gB
i) bY, yP, pR, rW, wB
j) bY, yP, pG, gR, rB
k) bY, yP, pG, gW, wB

Set 4:
a) $\mathrm{bW}, \mathrm{wR}, \mathrm{rG}, \mathrm{gP}, \mathrm{pB}$
b) bW, wR, rY, yG, gB
a) $\mathrm{bP}, \mathrm{pR}, \mathrm{rG}, \mathrm{gW}, \mathrm{wB}$
b) $\mathrm{bP}, \mathrm{pR}, \mathrm{rY}, \mathrm{yG}, \mathrm{gB}$
c) $\mathrm{bW}, \mathrm{wR}, \mathrm{rY}, \mathrm{yP}, \mathrm{pB}$
c) $\mathrm{bP}, \mathrm{pR}, \mathrm{rY}, \mathrm{yW}, \mathrm{wB}$
d) $\mathrm{bW}, \mathrm{wY}, \mathrm{yG}, \mathrm{gR}, \mathrm{rB}$
d) bP, pR, rW, wY, yB
e) bW, wY, yG, gP, pB
e) $\mathrm{bP}, \mathrm{pG}, \mathrm{gR}, \mathrm{rY}, \mathrm{yB}$
f) bW, wY, yP, pR, rB
f) $\mathrm{bP}, \mathrm{pG}, \mathrm{gR}, \mathrm{rW}, \mathrm{wB}$
g) bW, wY, yP, pG, gB
g) bP, pG, gW, wR, rB
h) bW, wP, pG, gR, rB
h) $\mathrm{bP}, \mathrm{pG}, \mathrm{gW}, \mathrm{wY}, \mathrm{yB}$
i) $\mathrm{bW}, \mathrm{wP}, \mathrm{pR}, \mathrm{rG}, \mathrm{gB}$
j) bW, wP, pR, rY, yB
i) bP, pY, yG, gR, rB
j) bP, pY, yG, gW, wB
k) bW, wP, pY, yG, gB
k) bP, pY, yW, wR, rB

Theorem 4.4 There are no possible solutions for the 5×5 puzzle.

Proof. Without loss of generality, we can assume the element from Set 1 is fixed.
Case 1: Fix 1a. When we fix 1a, we have the tiles bR, rG, gW, wY, and yB to use for a possible solution. We look for matching tiles, as we did in our 4×5 case, we can eliminate 3 e and 3 h from Set 3, 4a and 4 i from Set 4, and 5a from Set 5 since they all share tile rG with 1a. Next, we move on to tile gW . We can eliminate 2e, $2 \mathrm{f}, 2 \mathrm{~g}$, and 2 h from Set 2, 3b, 3c, and 3 k from Set 3, and $5 \mathrm{a}, 5 \mathrm{~g}$, 5 h , and 5 j from Set 5. The next tile we look at is wY. We can eliminate 2 c and 2 f from Set $2,4 \mathrm{~d}, 4 \mathrm{e}, 4 \mathrm{f}$, and 4 g from Set 4, and 5 d and 5 h from Set 5 . The final tile we look at is yB . We
can eliminate 2c, 2e, 2h, and 2i from Set 2, 4 j from Set 4, and 5d, 5e, and 5h from Set 5 . This leaves us with $2 \mathrm{a}, 2 \mathrm{~b}, 2 \mathrm{~d}, 2 \mathrm{j}$, and 2 k from Set $2,3 \mathrm{a}, 3 \mathrm{~d}, 3 \mathrm{f}, 3 \mathrm{~g}, 3 \mathrm{i}$, and 3 j from Set $3,4 \mathrm{~b}, 4 \mathrm{c}, 4 \mathrm{~h}$, and 4 k from Set 4 , and $5 \mathrm{~b}, 5 \mathrm{c}, 5 \mathrm{f}, 5 \mathrm{i}$, and 5 k from Set 5 as possibilities when we have 1a fixed.

We start by fixing 2a with 1a. This automatically eliminates 3 a , $3 \mathrm{f}, 3 \mathrm{~g}$, 3i, and 3 j from Set $3,4 \mathrm{~b}, 4 \mathrm{c}$, and 4 h from Set 4 , and $5 \mathrm{~b}, 5 \mathrm{c}, 5 \mathrm{f}, 5 \mathrm{i}$, and 5 k from Set 5 by using the matching tiles approach from above. This leaves us with no possibilities from Set 5 when we fix 2 a with 1 a .

Our next possible solution with 1a fixed is to look at what happens when we fix 2 b . By fixing 2 b with 1 a , we can eliminate $3 \mathrm{a}, 3 \mathrm{c}, 3 \mathrm{~h}, 3 \mathrm{i}, 3 \mathrm{j}$, and 3 k from Set $3,4 \mathrm{~b}, 4 \mathrm{c}$, $4 \mathrm{~d}, 4 \mathrm{f}, 4 \mathrm{~g}, 4 \mathrm{~h}$, and 4 j from Set 4 , and $5 \mathrm{~b}, 5 \mathrm{c}, 5 \mathrm{e}, 5 \mathrm{f}$, an 5 i from Set 5 . This eliminates all of our remaining possibilities from Set 4 . So we cannot obtain a solution when 2 b is fixed with 1a.

The next possibility from Set 2 with 1a fixed is 2 d . When we fix 2 d with 1a, we can eliminate 3a, 3c, 3f, 3g, 3i, and 3 j from Set 3 , $4 \mathrm{a}, 4 \mathrm{c}, 4 \mathrm{~d}, 4 \mathrm{e}, 4 \mathrm{~h}, 4 \mathrm{i}, 4 \mathrm{j}$, and 4 k from Set 4 , and $5 \mathrm{~d}, 5 \mathrm{e}, 5 \mathrm{f}$, and 5 i from Set 5 . This leaves us with 3 d from Set $3,4 \mathrm{~b}$ from Set 4 , and $5 \mathrm{~b}, 5 \mathrm{c}$, and 5 k from Set 5 as possibilities when 2 d is fixed with 1 a . Since there is only one option from Set 3 and only one option from Set 4, we compare 3 d and 4 b . Comparing 3 d and 4 b , we see that they share tile yG . Thus, we cannot use them together. This implies that we cannot use 2 d with 1 a .

The next element from Set 2 that we look for a possible solution with 1a fixed is 2j. Fixing 2 j with 1a, we can eliminate 3a, 3d, 3f, 4h, 3i, and 3 k from Set 3, 4a, 4e, $4 \mathrm{f}, 4 \mathrm{i}$, and 4 j from Set 4 , and $5 \mathrm{a}, 5 \mathrm{~b}, 5 \mathrm{c}, 5 \mathrm{~d}, 5 \mathrm{f}$, and 5 j from Set 5 . This means that
our possibilities from the remaining three sets gets narrowed down to 3 g and 3 j from Set $3,4 \mathrm{~b}, 4 \mathrm{c}, 4 \mathrm{~h}$, and 4 k from Set 4 , and 5 i and 5 k from Set 5 . Looking for matching tiles when we fix 3 g with 2 j and 1a, we can eliminate $4 \mathrm{~b}, 4 \mathrm{c}$, and 4 k from Set 4 , and 5 k from Set 5 . This leaves us with no possibilities from Set 4 to use when finding a solution with 3 g , 2d, and 1a fixed. Hence, we cannot use 3 g . Next, we look at fixing 3 j with 2 j and 1a. Doing this, we can eliminate 4 c and 4 h from Set 4 , and 5 i and 5 k from Set 5 , leaving us with no options from Set 5 to use for a possible solution. So we cannot use 3 j with 2 j and 1a, which implies that we cannot use 2 j when looking for a possible solution with 1a.

Our only other option from Set 2 to fix with 1 a is 2 k . When we fix 2 k , we can eliminate 3a, 3d, 3e, 3f, 3g, 3i, and 3k from Set 3, 4a, 4e, and 4k from Set 4, and 5a, $5 \mathrm{c}, 5 \mathrm{f}, 5 \mathrm{i}, 5 \mathrm{j}$, and 5 k from Set 5 . This leaves us with 3 j from Set $3,4 \mathrm{~b}, 4 \mathrm{c}$, and 4 h from Set 4 , and 5 b from Set 5 as possibilities. Since there is only one option from Set 3 and only one option from Set 5 , we can compare their tiles to see if they have any in common. Upon doing so, we find that 3 j and 5 b have tile rB in common, which means that we cannot use 3 j and 5 b in the same solution. Since they were the only options from Set 3 and Set 5 when 2 k is fixed with 1 a , we cannot use 2 k with 1 a when looking for a possible solution. Thus, there is no solution with 1a fixed.

Case 2: Fix 1b. Next, we look at what happens when we fix 1b, which is made up of tiles $\mathrm{bR}, \mathrm{rG}, \mathrm{gW}$, wP, and pB . Fixing 1 b allows us to eliminate $2 \mathrm{~b}, 2 \mathrm{~d}, 2 \mathrm{f}, 2 \mathrm{~g}$, and 2 h from Set 2, 3b, 3c, 3e, 3f, 3g, 3h, and 3k from Set 3, 4a, 4c, 4e, 4h, 4i, 4j, and 4 k from Set 4 , and $5 \mathrm{a}, 5 \mathrm{~g}, 5 \mathrm{~h}$, and 5 j from Set 5 . This leaves us with $2 \mathrm{a}, 2 \mathrm{c}, 2 \mathrm{i}, 2 \mathrm{j}$, and 2 k from Set 2, 3a, 3d, 3i, and 3 j from Set 3, 4b, 4d, 4f, and 4 g from Set 4, and 5 b ,
$5 \mathrm{c}, 5 \mathrm{~d}, 5 \mathrm{e}, 5 \mathrm{f}, 5 \mathrm{i}$, and 5 k from Set 5 as possibilities when 1 b is fixed.
Our first possibility from Set 2 with 1 b fixed is from 2 a. Fixing 2 a with 1 b eliminates 3 a , $3 \mathrm{e}, 3 \mathrm{f}, 3 \mathrm{~g}, 3 \mathrm{i}, 3 \mathrm{j}$, and 3 k from Set $3,4 \mathrm{~b}, 4 \mathrm{c}, 4 \mathrm{~d}, 4 \mathrm{~h}$, and 4 j from Set 4 , and $5 \mathrm{a}, 5 \mathrm{~b}, 5 \mathrm{c}, 5 \mathrm{e}, 5 \mathrm{f}, 5 \mathrm{i}, 5 \mathrm{j}$, and 5 k from Set 5 . This leaves us with 3d from Set 3, 4 f and 4 g from Set 4 , and 5 d from Set 5 as possibilities with 2 a and 1 b fixed. Since Set 3 and Set 5 each only have one possibility, we can compare their tiles. Upon comparing 3d and 5d, we see that they have tile pR in common. Hence, there is no possible solution when we have 2 a fixed with 1 b .

Next, we fix 2c with 1b. Using the matching tiles approach, we can eliminate 3a, 3 i , and 3 j from Set $3,4 \mathrm{~d}, 4 \mathrm{e}, 4 \mathrm{f}, 4 \mathrm{~g}, 4 \mathrm{~h}$, and 4 j from Set 4 , and $5 \mathrm{~d}, 5 \mathrm{e}, 5 \mathrm{f}, 5 \mathrm{~h}$, and 5 i from Set 5 . This leaves us with $3 \mathrm{~d}, 4 \mathrm{~b}, 5 \mathrm{~b}, 5 \mathrm{c}, 5 \mathrm{~d}, 5 \mathrm{e}, 5 \mathrm{f}$, and 5 k as possibilities from Sets 3,4 , and 5 , respectively. Since there is only one possibility from Set 3, namely 3d, we can fix it and look at the possibilities we have from Sets 4 and 5 . By fixing 3d with 2 c and 1 b , we can eliminate 4 b from Set 4 , and $5 \mathrm{~d}, 5 \mathrm{e}$, and 5 k from Set 5 . This eliminates all of Set 4 since 4 b was our only option. So there is no solution when we fix 2 c with 1 b .

Next, we look at the possibilities we have when we fix 2 i with 1 b . Recall that 2 i has the tiles $\mathrm{bG}, \mathrm{gP}, \mathrm{pR}, \mathrm{rY}$, and yB . This eliminates 3d and 3i from Set 3, 4b and 4f from Set 4 and 5b, 5c, 5d, and 5e from Set 5. This leaves us with 3a and 3j from Set $3,4 \mathrm{~d}$ and 4 g from Set 4 , and $5 \mathrm{f}, 5 \mathrm{i}$, and 5 k from Set 5 as possibilities when we fix 2 i with 1 b . We now fix 3 a and look for matching tiles. Recall that 3 a has the tiles bY, yG, gR, rW, and wB. When we fix 3 a with 2 i and 1 b , we can eliminate 4 d and 4 g from Set 4 , and 5 f and 5 i from Set 5 . This eliminates all of Set 4, which implies
that we cannot use 3 a with 2 i and 1 b fixed. Now we see what happens when we fix 3 j , which has the tiles bY, yP, pG, gR, and rB. This eliminates 4 d and 4 g from Set 4 and 5 f , 5 i , and 5 k from Set 5, eliminating all of Set 4 and all of Set 5 . Thus, we cannot use 2i with 1 b .

We now fix 2 j with 1 b and look for matching tiles. Notice that 2 j contains the tiles bG, gP, pR, rW, and wB. This eliminates 2a, 2d, and 2 i from Set 2, 4 f from Set 4 , and $5 \mathrm{~b}, 5 \mathrm{c}, 5 \mathrm{~d}$, and 5 f from Set 5 . Our possibilities to find a solution are 3 j from Set $3,4 \mathrm{~b}, 4 \mathrm{~d}$, and 4 g from Set 4 , and $5 \mathrm{e}, 5 \mathrm{i}$, and 5 k from Set 5 . Since 3 j is our only possibility from Set 3 when we fix 1 b and 2 j , we fix 3 j and look for matching tiles from Set 4 and Set 5 . Recall that 3 j is made u p of the tiles $\mathrm{bY}, \mathrm{yP}, \mathrm{pG}, \mathrm{gR}$, and rB . Looking for matching tiles, we can eliminate 4 d and 4 g from Set 4 , and 5 e , 5 i , and 5 k from Set 5 , eliminating all of Set 5 . Thus, we cannot use 3 j with 2 j and 1 b fixed. This implies that we cannot use 2 j when we have 1 b fixed.

Our last option when we have 1 b fixed is from 2 k . Recall that 2 k is made up of the tiles bG, gP, pY, yW, and wB. We can eliminate 3a, 3d, and 3i from Set 3, and 5c, 5 f , 5 i , and 5 k from Set 5 . Our possibilities from the remaining three sets are 3 j from Set $3,4 \mathrm{~b}, 4 \mathrm{~d}, 4 \mathrm{f}$, and 4 g from Set 4 , and $5 \mathrm{~b}, 5 \mathrm{~d}$, and 5 e from Set 5 . Since there is only one possibility from Set 3, we fix 3 j . This eliminates 4 d , 4 f , and 4 g from Set 4 and 5 e from Set 5, leaving 4b, 5b, and 5d from Sets 4 and 5, respectively, as possibilities. We now compare the tiles in 4 b to those in 5 b and 5 d . Upon comparison, we find that we cannot use 5 b with 4 b since they share tiles rY , yG , and gB but we can use 5 d with $4 \mathrm{~b}, 3 \mathrm{j}, 2 \mathrm{k}$, and 1 b fixed. Now we look at rotations of 2 k with 1 b fixed.

1 b	bR	rG	gW	wP	pB
$2 \mathrm{k}(\mathrm{i})$	gP	pY	yW		
$2 \mathrm{k}(\mathrm{ii})$	pY	yW	wB	bG	gP
$2 \mathrm{k}(\mathrm{iii})$	yW	wB	bG	gP	
$2 \mathrm{k}(\mathrm{iv})$	wB	bG			

The only rotation of 2 k that we can use with 1 b fixed is $2 \mathrm{k}(\mathrm{ii})$. We now look at the rotations of 3 j with 1 b and $2 \mathrm{k}(\mathrm{ii})$ fixed.

1 b	bR	rG	gW	wP	pB
$2 \mathrm{k}(\mathrm{ii})$	pY	yW	wB	bG	gP
$3 \mathrm{j}(\mathrm{i})$	yP	pG			
$3 \mathrm{j}(\mathrm{ii})$	pG	gR	rB		
$3 \mathrm{j}(\mathrm{iii})$	gR				
$3 \mathrm{j}(\mathrm{iv})$	rB	bY	yP	pG	gR

The only rotation of 3 j that we can use with 1 b and $2 \mathrm{k}(\mathrm{ii}$) fixed is 3 j (iv). Now, we fix $3 \mathrm{j}(\mathrm{iv})$ with $2 \mathrm{k}(\mathrm{ii})$ and 1 b and look at rotations of 4 b .

1 b	bR	rG	gW	wP	pB
$2 \mathrm{k}(\mathrm{ii})$	pY	yW	wB	bG	gP
$3 \mathrm{j}(\mathrm{iv})$	rB	bY	yP	pG	gR
$4 \mathrm{~b}(\mathrm{i})$	wR				
$4 \mathrm{~b}(\mathrm{ii)}$	rY				
$4 \mathrm{~b}(\mathrm{iii})$	yG	gB	bW		
$4 \mathrm{~b}(\mathrm{iv})$	gB				

No rotation of 4 b works with $1 \mathrm{~b}, 2 \mathrm{k}(\mathrm{ii})$, and $3 \mathrm{j}(\mathrm{iv})$ fixed. Thus, there are no possible solutions with 1 b fixed.

Case 3: Fix 1c. We now look at what happens when we fix 1c, which contains the tiles bR, rG, gP, pY, and yB. This eliminates 2c, 2e, 2h, 2i, 2j, and 2k from Set 2, $3 \mathrm{~d}, 3 \mathrm{e}$, and 3 h from Set $3,4 \mathrm{a}, 4 \mathrm{e}, 4 \mathrm{i}, 4 \mathrm{j}$, and 4 k from Set 4 , and $5 \mathrm{a}, 5 \mathrm{~d}, 5 \mathrm{e}, 5 \mathrm{~h}, 5 \mathrm{i}, 5 \mathrm{j}$, and 5 k from Set 5 . This leaves 2 a , 2b, 2d, 2f, and 2 g from Set 2, 3a, 3b, 3c, 3f, 3g, $3 \mathrm{i}, 3 \mathrm{j}$, and 3 k from Set $3,4 \mathrm{~b}, 4 \mathrm{c}, 4 \mathrm{~d}, 4 \mathrm{f}, 4 \mathrm{~g}$, and 4 h from Set 4 and $5 \mathrm{~b}, 5 \mathrm{c}, 5 \mathrm{f}$, and 5 g from Set 5 as possibilities.

The first possibility from Set 2 is by fixing 2 a , which contains the tiles bG, gR, rY, $y W$, and wB. This eliminates 3a, 3e, 3f, 3g, 3i, 3j, and 3k from Set 3, 4b, 4c, ,4d, 4 h , and 4 j from Set 4 , and $5 \mathrm{a}, 5 \mathrm{~b}, 5 \mathrm{c}, 5 \mathrm{e}, 5 \mathrm{f}, 5 \mathrm{i}, 5 \mathrm{j}$, and 5 k from Set 5 . We have 3 b and 3 c from Set 3 , 4 f and 4 g from Set 4 and 5 g from Set 5 as possibilities. Since there is only one option from Set 5 , we will fix 5 g. This eliminates 3 b and 3 c from Set 3 and 4 g from Set 4 , leaving no more possibilities from Set 3 to use. This implies that there is no solutions when 2 a is fixed with 1 c .

Next, we fix 2 b with 1a. Recall that 2 b is made up of tiles $\mathrm{bG}, \mathrm{gR}, \mathrm{rY}, \mathrm{yP}$, and pB . This allows us to eliminate 3a, 3c, 3i, 3j, and 3k from Set 3, 4b, 4c, 4d, 4f, 4g, and 4 h from Set 4, and $5 \mathrm{~b}, 5 \mathrm{c}$, and 5 f from Set 5 . Notice that this eliminates all of Set 4, preventing us from having a solution when 2 b is fixed with 1 c .

Now we look at what happens when we fix 2d, whose tiles are bG, gR, rW, wP, and pB . We can eliminate $3 \mathrm{a}, 3 \mathrm{c}, 3 \mathrm{f}, 3 \mathrm{~g}, 3 \mathrm{i}$ and 3 j from Set $3,4 \mathrm{c}, 4 \mathrm{~d}$, and 4 h from Set 4 , and 5 f from Set 5 . Now we have 3 b and 3 k from Set $3,4 \mathrm{~b}, 4 \mathrm{f}$, and 4 g from Set 4 , and $5 \mathrm{~b}, 5 \mathrm{c}$, and 5 g from Set 5 as possibilities. We now fix 3 b with with 2 d and 1 c . This allows us to eliminate 4 b and 4 f from Set 4 , and 5 b and 5 g from Set 5, leaving only 4 g and 5 c as possibilities from Sets 4 and 5 , respectively. Upon comparing the tiles in 4 g and 5 c , we see there are no tiles in common. So we now go back and look at the rotations of 2 d with 1 c fixed.

1 c	bR	rG	gP	pY	yB
$2 \mathrm{~d}(\mathrm{i})$	gR				
$2 \mathrm{~d}(\mathrm{ii})$	rW	wP	pB	bG	gR
$2 \mathrm{~d}(\mathrm{iii})$	wP	pB	bG	gR	rW
$2 \mathrm{~d}(\mathrm{iv})$	pB	bG			

We can use the rotations $2 \mathrm{~d}(\mathrm{ii})$ and $2 \mathrm{~d}($ iii $)$ with 1 c. So now we fix $2 \mathrm{~d}(\mathrm{ii})$ and look at the rotations of 3 b .

1c	bR	rG	gP	pY	yB
$2 \mathrm{~d}(\mathrm{ii})$	rW	wP	pB	bG	gR
$3 \mathrm{~b}(\mathrm{i})$	yG	gW	wR	rB	bY
3b(ii)	gW				
3b(iii)	wR				
3b(iv)	rB	bY	yG	gW	wR

The only rotation of 3 b that we can use with 1 c and $2 \mathrm{~d}(\mathrm{ii})$ is $3 \mathrm{~b}(\mathrm{i})$. Now we look at the rotations of 4 g when we have $1 \mathrm{c}, 2 \mathrm{~d}(\mathrm{ii})$, and 3 b (i) fixed.

1 c	bR	rG	gP	pY	yB
$2 \mathrm{~d}(\mathrm{ii})$	rW	wP	pB	bG	gR
$3 \mathrm{~b}(\mathrm{i})$	yG	gW	wR	rB	bY
$4 \mathrm{~g}(\mathrm{i})$	wY	yP			
$4 \mathrm{~g}(\mathrm{ii)}$	yP	pG			
4 g (iii)	pG				
4 g (iv)	gB	bW			

No rotation of 4 g works with $1 \mathrm{c}, 2 \mathrm{~d}(\mathrm{ii})$, and $3 \mathrm{~b}(\mathrm{i})$ fixed. Now, we go back and look at the possible rotations of 3 b when $2 \mathrm{~d}(\mathrm{iii})$ is fixed with 1 c .

1c	bR	rG	gP	pY	yB
$2 \mathrm{~d}(\mathrm{iii})$	wP	pB	bG	gR	rW
$3 \mathrm{~b}(\mathrm{i})$	yG	gW	wR	rB	bY
3b(ii)	gW	wR	rB	bY	
3b(iii)	wR				
3b(iv)	rB	bY	yG		

The only rotation of 3 b that works here is $3 \mathrm{~b}(\mathrm{i})$. Now we look at the rotations of 4 g with $3 \mathrm{~b}(\mathrm{i}), 2 \mathrm{~d}(\mathrm{iii})$, and 1c fixed.

1c	bR	rG	gP	pY	yB
$2 \mathrm{~d}(\mathrm{iii})$	wP	pB	bG	gR	rW
$3 \mathrm{~b}(\mathrm{i})$	yG	gW	wR	rB	bY
$4 g(\mathrm{i})$	wY	yP	pG		
$4 \mathrm{~g}(\mathrm{ii)}$	yP				
$4 g(\mathrm{iii})$	pG				
$4 g$ (iv)	gB	bW			

Since we cannot use any rotation of 4 g with $3 \mathrm{~b}(\mathrm{i}), 2 \mathrm{~d}(\mathrm{iii})$, and 1 c , we have no solution when we use 3 b with 2 d and 1c. Now we look for a solution when we fix 3 k with 1 c and 2 d . This eliminates 4 f and 4 g from Set 4 , and 5 g , and 5 c from Set 5 . Our only option from Set 4 is 4 b and our only option from Set 5 is 5 b. Upon comparing 4 b and 5b, we find that they have tile rY in common, which implies that we cannot use 3 k with 2 d and 1 c . Thus, there is no solution when 2 d is fixed with 1 c .

We now look at when we fix 2f, whose tiles are bG, gW, wY, yP, and pB. Doing this eliminates $3 \mathrm{~b}, 3 \mathrm{c}, 3 \mathrm{~h}, 3 \mathrm{i}, 3 \mathrm{j}$, and 3 k from Set 3 , and $4 \mathrm{c}, 4 \mathrm{~d}, 4 \mathrm{f}$, and 4 g from Set 4. Our options for a possible solution come from 3a, 3f, and 3 g from Set 3, 4 b and 4 g from Set 4 , and $5 \mathrm{~b}, 5 \mathrm{c}, 5 \mathrm{f}$, and 5 g from Set 5 . Since there are the least amount of options from Set 4, we look at what happens when we fix 4 b with 1c and 2 f . This eliminates 3 a and 3 g from Set 3 , and $5 \mathrm{~b}, 5 \mathrm{c}$, and 5 g from Set 5 , leaving only 3 f and $5 f$ from Sets 3 and 5, respectively. Upon comparing tiles of 3 f to those of 5 f , we find that there are no common tiles. Now we look at the rotations of 2 f with 1 c fixed.

1c	bR	rG	gP	pY	yB
$2 \mathrm{f}(\mathrm{i})$	gW	wY	yP		
$2 \mathrm{f}(\mathrm{ii})$	wY	yP	pB	bG	gW
$2 \mathrm{f}(\mathrm{iii})$	yP	pB	bG	gW	wY
$2 f(\mathrm{iv})$	pB	bG			

We can use the rotations $2 \mathrm{f}(\mathrm{ii})$ and $2 \mathrm{f}(\mathrm{iii})$ with 1c fixed. Now we fix $2 \mathrm{f}(\mathrm{ii})$ and look at rotations of 4 b .

1 c	bR	rG	gP	pY	yB
$2 \mathrm{f}(\mathrm{ii})$	wY	yP	pB	bG	gW
$4 \mathrm{~b}(\mathrm{i})$	wR				
$4 \mathrm{~b}(\mathrm{ii)}$	rY				
$4 \mathrm{~b}(\mathrm{iii})$	yG	gB	bW	wR	rY
$4 \mathrm{~b}(\mathrm{iv})$	gB	bW	wR	rY	

So the only rotation of 4 b that we can use is 4 b (iii). Now, we fix $1 \mathrm{c}, 2 \mathrm{f}(\mathrm{ii})$, and 4 b (iii) and look at the rotations of 3 f .

1c	bR	rG	gP	pY	yB
2f(ii)	wY	yP	pB	bG	gW
4 (iii)	yG	gB	bW	wR	rY
3f(i)	yW	wP			
3f(ii)	wP	pR	rB		
3f(iii)	pR				
3f(iv)	rB	bY	yW		

No rotation of 3 f will work with 1 c , $2 \mathrm{f}(\mathrm{ii})$, and $4 \mathrm{~b}(\mathrm{iii})$ fixed. So now we fix $2 \mathrm{f}(\mathrm{iii})$ and look at the rotations of 4 b .

1c	bR	rG	gP	pY	yB
$2 \mathrm{f}(\mathrm{iii})$	yP	pB	bG	gW	wY
$4 \mathrm{~b}(\mathrm{i})$	wR				
$4 \mathrm{~b}(\mathrm{ii)}$	rY	yG			
4b(iii)	yG	gB			
$4 \mathrm{~b}(\mathrm{iv})$	gB	bW	wR	rY	

No rotation of 4 b works when 1 c and $2 \mathrm{f}(\mathrm{iii})$ are fixed, implying that we cannot use 4 b with 1 c and 2 f . Now we can look at when we fix 4 h with 1 c and 2 f . This eliminates 3 a , 3f, and 3 g from Set 3, and 5 g from Set 5, which eliminates all of Set 3 . This implies that there is no solutions when we fix 2 f with 1 c .

We now look at our last possibility with 1 c fixed. When we fix 2 g , we have the tiles bG, gW, wP, pR, and rB. This eliminates 3b, 3c, 3f, 3h, and 3i from Set 3, 4d, 4 f , and 4 h from Set 4 , and $5 \mathrm{~b}, 5 \mathrm{c}$, and 5 g from Set 5 . Our possibilities are 3 a from Set $3,4 \mathrm{~b}, 4 \mathrm{c}$, and 4 g from Set 4 , and 5 from Set 5 . Upon comparing the tiles in 3 a to those in 5 f , we find that they share the tiles gR , rW , and wB , thus eliminating any possibility of fixing 2 g with 1c. Hence, there is no solution when we fix 1c.

Case 4: Fix 1d. Since we cannot use 1a, 1b, or 1c when looking for possible solutions to the 5×5 puzzle with one open slot at the top, we proceed by now investigating
what happens when we fix 1 d . Recall, the tiles of 1 d are bR , rW , wP, pY, and yB . Just by fixing 1d, we eliminate 2c, 2d, 2e, 2g, 2h, 2i, 2j, and 2 k from Set 2, 3a, 3c, 3f, 3 g , and 3 i from Set 3 , 4h, $4 \mathrm{i}, 4 \mathrm{j}$, and 4 k from Set 4 , and $5 \mathrm{~d}, 5 \mathrm{e}, 5 \mathrm{f}, 5 \mathrm{~h}, 5 \mathrm{i}, 5 \mathrm{j}$, and 5 k from Set 5. Our remaining elements from Sets 2, 3, 4 and 5, respectively, are 2a, 2b, 2f, 3b, 3d, 3e, 3h, 3j, 3k, 4a, 4b, 4c, 4d, 4e, 4f, 4g, 5a, 5b, 5c, and 5g.

We begin by fixing 2 a with 1 d . This eliminates $3 \mathrm{e}, 3 \mathrm{j}$, and 3 k from Set $3,4 \mathrm{~b}, 4 \mathrm{c}$, and 4 d from Set 4 , and $5 \mathrm{a}, 5 \mathrm{~b}$, and 5 c from Set 5 , leaving 3 b , 3 d , and 3 h from Set 3, 4a, 4e, 4f, and 4 g from Set 4 , and 5 g from Set 5 as possibilities. for a solution. Notice that there is only one possibility from Set 5 , namely 5 g , so we set that fixed with 1 d and 2 a to look for a solution. By fixing 5 g , we eliminate 3 b and 3 d from Set 3 , and $4 \mathrm{a}, 4 \mathrm{f}$, and 4 g from Set 4 . We are left with only one element from each of the two remaining sets, 3 h from Set 3 and 4 e from Set 4 . Upon comparing the tiles in 3 h and 4 e , we find that there are no tiles in common. Now we look at the rotations of 2 a when 1 d is fixed.

$1 d$	bR	rW	wP	pY	yB
2a(i)	gR				
2a(ii)	rY	yW			
2a(iii)	yW	wB	bG	gR	rY
2a(iv)	wB	bG	gR	rY	

Clearly, 2 a (iii) is the only rotation of 2 a that works when we have 1 d fixed. Now, we can fix 2 a (iii) with 1 d and look at the rotations of 3 h .

1d	bR	rW	wP	pY	yB
2a(iii)	yW	wB	bG	gR	rY
3h(i)	yP	pR	rG		
3h(ii)	pR				
3h(iii)	rG	gB			
3h(iv)	gB	bY	yP		

No rotation of 3 h works when we have 1 d and 2 a (iii) fixed. This implies that we cannot use 2 a with 1 d fixed.

Now, we fix 1 d with 2 b , which is composed of the tiles $\mathrm{bG}, \mathrm{gR}, \mathrm{rY}, \mathrm{yP}$, and pB . This allows us to eliminate $3 \mathrm{~h}, 3 \mathrm{j}$, and 3 k from Set 3 , $4 \mathrm{a}, 4 \mathrm{~b}, 4 \mathrm{c}, 4 \mathrm{~d}, 4 \mathrm{f}$, and 4 g from Set 4 , and 5 b and 5 c from Set 5 . This leaves us with no options from Set 4 to use to construct a possible solution. Hence, there is no solution when we fix 2 b with 1d.

Our last option from Set 2 that we can fix with 1 d is 2 f . Recall that 2 f is made up of the tiles bG, gW, wY, yP, and pB. Fixing 2 f with 1 d lets us further eliminate $3 \mathrm{~b}, 3 \mathrm{~h}, 3 \mathrm{j}$, and 3 k from Set $3,4 \mathrm{a}, 4 \mathrm{c}, 4 \mathrm{~d}, 4 \mathrm{e}, 4 \mathrm{f}$, and 4 g from Set 4 , and $5 \mathrm{a}, 5 \mathrm{c}$, and 5 g from Set 5 . We are left with 3 d and 3 e from Set $3,4 \mathrm{~b}$ from Set 4 , and 5 b from Set 5. Since there is only one option from Set 4 and only one option from Set 5, we can compare their tiles. We find that $4 b$ and $5 b$ share the tiles $r Y, y G$, and $g B$. This means that we cannot use 2 f with 1 d . Since 2 f was our last option from Set 2 that we could fix with 1 d , we now know that there is no solution when 1 d is fixed.

Case 5: Fix 1e. We proceed down the list of elements in Set 1 to look for a possible solution. Now, we will look for a solution when we fix 1 e , whose tiles are bR , rW , wP, pG, and gB . By fixing 1 e , we can eliminate $2 \mathrm{c}, 2 \mathrm{~d}, 2 \mathrm{~g}, 2 \mathrm{~h}$, and 2 j from Set 2 , 3 a , $3 \mathrm{c}, 3 \mathrm{e}, 3 \mathrm{f}, 3 \mathrm{~g}, 3 \mathrm{~h}, 3 \mathrm{i}, 3 \mathrm{j}$, and 3 k from Set $3,4 \mathrm{~b}, 4 \mathrm{~g}, 4 \mathrm{~h}, 4 \mathrm{i}, 4 \mathrm{j}$, and 4 k from Set 4 , and $5 \mathrm{~b}, 5 \mathrm{~d}, 5 \mathrm{e}, 5 \mathrm{f}, 5 \mathrm{~g}$, and 5 h from Set 5 . This leaves us with possibilities of $2,2 \mathrm{~b}, 2 \mathrm{e}, 2 \mathrm{f}$, 2 i , and 2 k from Set $2,3 \mathrm{~b}$ and 3 d from Set $3,4 \mathrm{a}, 4 \mathrm{c}, 4 \mathrm{~d}, 4 \mathrm{e}$, and 4 f from Set 4, and $5 \mathrm{a} 5 \mathrm{c}, 5 \mathrm{i}, 5 \mathrm{j}$, and 5 k from Set 5 when looking for a possible solution. Since Set 3 has the least amount of possibilities, we look at each of the cases when we fix 3 b and 3 d with 1 e .

By fixing 3 b with 1 e , we can eliminate 2 e and 2 f from Set 2, $4 \mathrm{a}, 4 \mathrm{c}, 4 \mathrm{~d}, 4 \mathrm{e}$, and 4 f from Set 4 , and $5 \mathrm{a}, 5 \mathrm{i}, 5 \mathrm{j}$, and 5 k from Set 5 . Notice that this eliminates all of our remaining options from Set 4. Thus, we cannot choose 3b to be fixed with 1e when looking for a possible solution.

Our only other option is to fix 3 d with 1 e . By doing this, we eliminate 2 i and 2 k from Set 2, 4a, 4d, 4e, and 4 f from Set 4, and $5 \mathrm{a}, 5 \mathrm{c}, 5 \mathrm{i}, 5 \mathrm{j}$, and 5 k from Set 5 . When we fix 3 d with 1 e , we end up eliminating all of Set 5 . This implies that we cannot use 3 d with 1 e when looking for a possible solution. Hence, there is no solutions with 1 e fixed since our only options from Set 3 were 3b and 3d.

Case 6: Fix 1f. We now look for a possible solution to the 5×5 puzzle when we fix 1f. Recall that 1f contains the tiles bR, rW, wY, yG, and gB. This allows us to eliminate 2c, 2d, 2f, and 2 j from Set 2, 3a, 3b, 3c, 3d, 3e, 3g, 3h, and 3ifrom Set 3, $4 \mathrm{~b}, 4 \mathrm{~d}, 4 \mathrm{e}, 4 \mathrm{f}, 4 \mathrm{~g}, 4 \mathrm{i}$, and 4 k from Set 4 , and $5 \mathrm{~b}, 5 \mathrm{~d}, 5 \mathrm{f}, 5 \mathrm{~h}, 5 \mathrm{i}$, and 5 j from Set 5 . This leaves us with options of $2 \mathrm{a}, 2 \mathrm{~b}, 2 \mathrm{e}, 2 \mathrm{~g}, 2 \mathrm{~h}, 2 \mathrm{i}$, and 2 k from Set $2,3 \mathrm{f}, 3 \mathrm{j}$, and 3 k from Set 3 , $4 \mathrm{a}, 4 \mathrm{c}, 4 \mathrm{~h}$, and 4 j from Set 4 , and $5 \mathrm{a}, 5 \mathrm{c}, 5 \mathrm{e}, 5 \mathrm{~g}$, and 5 k from Set 5 . Again, Set 3 has the least amount of options.

We begin by fixing 3 f with 1 f . This allows us to further eliminate $2 \mathrm{a}, 2 \mathrm{~g}, 2 \mathrm{~h}, 2 \mathrm{i}$, and 2 k from Set $2,4 \mathrm{~h}$ and 4 j from Set 4 , and $5 \mathrm{a}, 5 \mathrm{c}, 5 \mathrm{~g}$, and 5 k from Set 5 . Since Set 5 only has one option left, we now fix 5 e with 1 f and 3 . By doing this, we can eliminate 2 b and 2 e from Set 2, and 4 c from Set 4 . This does not leave us with any more options from Set 2 to look for a possible solution. This implies that we cannot use 3 f when 1 f is fixed.

Our next option from Set 3 with 1 f fixed is 3 j . If we fix 3 j with 1 f , then we eliminate $2 \mathrm{a}, 2 \mathrm{~b}$, and 2 g from Set $2,4 \mathrm{c}$ and 4 h from Set 4 , and $5 \mathrm{e}, 5 \mathrm{~g}$, and 5 k from Set 5 . This leaves us with $2 \mathrm{e}, 2 \mathrm{~h}, 2 \mathrm{i}$, and 2 k from Set 2 , 4 a and 4 j from Set 4 , and 5 a and 5 c from Set 5 as options when looking for a possible solution. Since there are only two options from Set 4, we look at what happens when we fix 4 a with 3 j and 1 f . Using the matching tiles approach, we find that we can eliminate $2 \mathrm{e}, 2 \mathrm{i}$, and 2 k from Set 2, and 5a from Set 5. This only leaves us with one option from Set 2 and one option from Set 5 . Now we can compare the tiles in 2 h to those in 5 c . We find that 2 h and 5 c share no common tiles. Now we look at the rotations of 2 h with 1 f fixed.

1f	bR	rW	wY	yG	gB
$2 h(\mathrm{i})$	gW	wP	pY		
$2 h(i i)$	wP	pY	yB	bG	
$2 h($ iii	pY	yB	bG	gW	wP
$2 h(i v)$	yB	bG	gW	wP	pY

We see that the rotation 2 h (iii) and the rotation 2 h (iv) both will work when 1 f is fixed. Now we set 2 h (iii) fixed with 1 f and look at the rotations of 3 j .

1f	bR	rW	wY	yG	gB
$2 \mathrm{~h}(\mathrm{iii})$	pY	yB	bG	gW	wP
$3 \mathrm{j}(\mathrm{i})$	yP	pG	gR	rB	bY
3 j (ii)	pG	gR	rB	bY	yP
3 j(iii)	gR				
3 (iv)	rB	bY	yP	pG	

The only rotation of 3 j that will work when we fix 1 f and $2 \mathrm{~h}(\mathrm{iii})$ is $3 \mathrm{j}(\mathrm{i})$. Now we keep $3 \mathrm{j}(\mathrm{i})$ fixed with 1 f and $2 \mathrm{j}(\mathrm{iii})$ and look at the rotations of 4 a .

1f	bR	rW	wY	yG	gB
$2 \mathrm{~h}(\mathrm{iii})$	pY	yB	bG	gW	wP
$3 \mathrm{j}(\mathrm{i})$	yP	pG	gR	rB	bY
$4 \mathrm{a}(\mathrm{i})$	wR				
$4 \mathrm{a}(\mathrm{ii})$	rG	gP	pB	bW	
$4 \mathrm{a}(\mathrm{iii})$	gP				
$4 \mathrm{a}(\mathrm{iv})$	pB	bW			

We cannot use any rotation of 4 a whenever 1 f , 2 h (iii), and $3 \mathrm{j}(\mathrm{i})$ are fixed. Now we go back and look at the rotations of 3 j when we have $2 \mathrm{~h}(\mathrm{iv})$ fixed.

1f	bR	rW	wY	yG	gB
$2 h(\mathrm{iv})$	yB	bG	gW	wP	pY
$3 \mathrm{j}(\mathrm{i})$	yP	pG			
$3 \mathrm{j}(\mathrm{ii})$	pG	gR	rB	bY	yP
$3 \mathrm{j}(\mathrm{iii})$	gR				
$3 \mathrm{j}(\mathrm{iv})$	rB				

The only rotation of 3 j that works when we fix $2 \mathrm{~h}(\mathrm{iv})$ with 1 f is $3 \mathrm{j}(\mathrm{ii})$. Now we look at the rotations of 4 a whenever we have $1,2 \mathrm{~h}$ (iv), and 3 j (ii) fixed.

1f	bR	rW	wY	yG	gB
$2 \mathrm{~h}(\mathrm{iv})$	yB	bG	gW	wP	pY
$3 \mathrm{j}(\mathrm{ii})$	pG	gR	rB	bY	yP
$4 \mathrm{a}(\mathrm{i})$	wR				
$4 \mathrm{a}(\mathrm{ii)}$	rG				
$4 \mathrm{a}(\mathrm{iii})$	gP	pB	bW		
$4 \mathrm{a}(\mathrm{iv})$	pB				

No rotation of 4 a works whenever we have 1f, $2 \mathrm{~h}(\mathrm{iv}$), and 3 j (ii) fixed. This means that we cannot use 4 a with 1 f and 3 j . Now we look at whenever we fix 4 j with 1 f and 3j. We can eliminate $2 \mathrm{e}, 3 \mathrm{~h}$, and 3 i from Set 3 , and 5 a and 5 c from Set 5 , leaving no more options from Set 5 . So, we cannot use 4 j with 3 j and 1 f , which implies that we cannot use 3 j whenever we have 1 f fixed.

Our last option is to fix 3 k with 1 f . This eliminates $2 \mathrm{a}, 2 \mathrm{~b}, 2 \mathrm{e}, 2 \mathrm{~g}, 2 \mathrm{~h}$, and 2 k from Set $2,4 \mathrm{c}$ and 4 h from Set 4 , and $5 \mathrm{a}, 5 \mathrm{c}, 5 \mathrm{e}, 5 \mathrm{~g}$, and 5 k from Set 5 . Now we are left with 2 i from Set $2,4 \mathrm{a}$ and 4 j from Set 4 and 5 k from Set 5 . Since there is only one option from Set 2 and only one option from Set 5, we can compare the tiles in 2 i and 5 k . Upon doing so, we find that 2 i and 5 k have no tiles in common. Now we compare the tiles in 4 a to those in $1 \mathrm{f}, 2 \mathrm{i}, 3 \mathrm{k}$, and 5 k . We find that 4 a shares wR with

5 k and gP with 2 i . So we cannot use 4 a with $1 \mathrm{f}, 2 \mathrm{i}, 3 \mathrm{k}$, and 5 k fixed. Our last option is to compare the tiles in 4 j to those in $1 \mathrm{f}, 2 \mathrm{i}, 3 \mathrm{k}$, and 5 k . We find that 4 j shares tiles pR, rY, and yB with 2 i . This implies that we cannot use 4 j , which implies that there is no solution when we have 1f fixed.

Case 7: Fix 1g. Since we cannot obtain a solution from using 1a through 1f. We now turn our attention on 1 g , which contains the tiles $\mathrm{bR}, \mathrm{rW}, \mathrm{wY}, \mathrm{yP}$, and pB . This eliminates $2 \mathrm{~b}, 2 \mathrm{c}, 2 \mathrm{~d}, 2 \mathrm{f}$, and 2 j from Set 2 , $3 \mathrm{a}, 3 \mathrm{c}, 3 \mathrm{~h}, 3 \mathrm{i}, 3 \mathrm{j}$, and 3 k from Set 3, 4a, $4 \mathrm{c}, 4 \mathrm{~d}, 4 \mathrm{e}, 4 \mathrm{f}$, and 4 g from Set 4 , and $5 \mathrm{~d}, 5 \mathrm{f}$, and 5 h from Set 5 . We are then left with $2 \mathrm{a}, 2 \mathrm{e}, 2 \mathrm{~g}, 2 \mathrm{~h}, 2 \mathrm{i}, 2 \mathrm{k}, 3 \mathrm{~b}, 3 \mathrm{~d}, 3 \mathrm{e}, 3 \mathrm{f}, 3 \mathrm{~g}, 4 \mathrm{~b}, 4 \mathrm{~h}, 4 \mathrm{i}, 4 \mathrm{j}, 4 \mathrm{k}, 5 \mathrm{a}, 5 \mathrm{~b}, 5 \mathrm{c}, 5 \mathrm{e}, 5 \mathrm{~g}, 5 \mathrm{i}, 5 \mathrm{j}$, and 5 k from Sets $2,3,4$, and 5 , respectively, as possibilities when looking for a solution.

Notice that Set 3 and Set 4 have the same amount of options, so we will fix 3b from Set 3 . Doing so eliminates $2 \mathrm{e}, 2 \mathrm{~g}$, and 2 h from Set $2,4 \mathrm{~b}, 4 \mathrm{~h}$, and 4 k from Set 4 , and $5 \mathrm{a}, 5 \mathrm{~b}, 5 \mathrm{~g}, 5 \mathrm{i}, 5 \mathrm{j}$ and 5 k from Set 5 . This leaves only 2 a from Set 2 , along with 4 i and 4 j from Set 4 , and 5 c and 5 e from Set 5 . Since there is only one possibility from Set 2 , we fix 2 a with 1 g and 3 b . When we fix 2 a with 1 g and 3 b , we eliminate 4 j from Set 4 and 5 c and 5 e from Set 5 leaving no options from Set 5 , which implies that we cannot use 2 a with 1 g and 3 b fixed. Thus, there is no solution when we fix 3 b with 1 g .

We now look at what happens when we fix 3d with 1 g . Recall that 3d contains the tiles bY, yG, gP, pR, and rB. By fixing 3 d with 1 g , we can eliminate $2 \mathrm{~g}, 2 \mathrm{i}$, and 2 k from Set $2,4 \mathrm{~b}, 4 \mathrm{~h}, 4 \mathrm{i}, 4 \mathrm{j}$, and 4 k from Set 4 , and $5 \mathrm{a}, 5 \mathrm{~b}, 5 \mathrm{c}, 5 \mathrm{~g}, 5 \mathrm{i}, 5 \mathrm{j}$, and 5 k from Set 5 . This eliminates all of our options from Set 4 . So we cannot use 3 d with 1 g when looking for a possible solution.

Our next option from Set 3 is to fix 3 e with 1 g . By doing this, we eliminate 2 a , 2 e , and 2 k from Set $2,4 \mathrm{~b}, 4 \mathrm{i}$, and 4 k from Set 4 , and $5 \mathrm{a}, 5 \mathrm{~b}, 5 \mathrm{c}, 5 \mathrm{~g}$, and 5 k from Set 5 , leaving us with 2 g , 2 h , and 2 i from Set 2 , 4 h and 4 j from Set 4 , and 5 e , 5 i , and 5 j from Set 5 as possibilities. By fixing 4 h with 3 e and 1 g , we eliminate all of Sets 2 and 5 except 2 i and 5 j , respectively. Upon comparing the tiles in 2 i and 5 j , we see there are no common tiles. So we look at the rotations of 2 i with 1 g fixed.

$1 g$	bR	rW	wY	yP	pB
$2 \mathrm{i}(\mathrm{i})$	gP	pR	rY		
$2 \mathrm{i}(\mathrm{ii})$	pR				
$2 \mathrm{i}(\mathrm{iii})$	rY	yB	bG	gP	
$2 \mathrm{i}(\mathrm{iv})$	yB	bG	gP	pR	rY

The only rotation of 2 i that will work with 1 g fixed is $2 \mathrm{i}(\mathrm{iv})$. We now proceed to fix $2 \mathrm{i}(\mathrm{iv})$ with 1 g and look at the rotations of 3 e .

$1 g$	bR	rW	wY	yP	pB
$2 \mathrm{i}(\mathrm{iv})$	yB	bG	gP	pR	rY
3e(i)	yW	wR	rG	gB	bY
3e(ii)	wR				
3e(iii)	rG	gB	bY		
3e(iv)	gB				

Clearly, there is no rotation of 3 e that with work when 1 g and $2 \mathrm{i}(\mathrm{iv})$ are fixed. Hence, we cannot use 4 h when looking for a possible solution. Now, we fix 4 j with 1 g and 3 e . This eliminates 2 g , 2 h , and 2 i from Set 2 and 5 e from Set 5 , leaving no more options from Set 2 when looking for a possible solution. This implies that we cannot use 4 j with 3 e and 1 g fixed, which also implies that we cannot use 3 e with 1 g when looking for a possible solution.

The next possibility from Set 3 with 1 g is 3 f. This eliminates $2 \mathrm{a}, 2 \mathrm{~g}, 2 \mathrm{~h}, 2 \mathrm{i}$, and 2 k from Set 2 , 4h, 4i, 4j, and 4 k from Set 4, and 5a, 5b, 5c, 5g, 5i, and 5k from Set
5. This leaves us with only 2 e from Set $2,4 \mathrm{~b}$ from Set 4 , and 5 e and 5 j from Set 5 . Since there is only one option from Set 2 and only one option from Set 4, we compare 2 e and 4 b . Upon comparing the tiles, we find that 2 e and 4 b share the tile wR , which implies that we cannot use 3f when looking for a possible solution with 1 g .

Our last option from Set 3 to use when we have 1 g fixed is 3 g . By fixing 3 g , we eliminate $2 \mathrm{a}, 2 \mathrm{~g}, 2 \mathrm{~h}$, and 2 k from Set $2,4 \mathrm{~b}, 4 \mathrm{~h}, 4 \mathrm{i}, 4 \mathrm{j}$, and 4 k from Set 4 , and $5 \mathrm{~b}, 5 \mathrm{c}$, $5 \mathrm{e}, 5 \mathrm{~g}$, and 5 k . This leaves no possible options from Set 4 to use when looking for a solution. This implies that we cannot use 3 f with 1 g . Thus, there is no solution when 1 g is fixed.

Case 8: Fix 1h. We now proceed to look for a possible solution by fixing 1h, which made up of the tiles $\mathrm{bR}, \mathrm{rY}, \mathrm{yG}, \mathrm{gW}$, and wB . This automatically eliminates $2 \mathrm{a}, 2 \mathrm{~b}$, $2 \mathrm{e}, 2 \mathrm{f}, 2 \mathrm{~g}, 2 \mathrm{~h}, 2 \mathrm{i}, 2 \mathrm{j}$, and 2 k from Set 2, 3a, 3b, 3c, 3d, 3i, and 3k from Set 3, 4b, 4c, $4 \mathrm{~d}, 4 \mathrm{e}, 4 \mathrm{j}$, and 4 k from Set 4 , and $5 \mathrm{a}, 5 \mathrm{~b}, 5 \mathrm{c}, 5 \mathrm{e}, 5 \mathrm{f}, 5 \mathrm{~g}, 5 \mathrm{~h}, 5 \mathrm{i}$, and 5 j from Set 5 . This leaves us with 2 c and 2 d from Set $2,3 \mathrm{e}, 3 \mathrm{f}, 3 \mathrm{~g}, 3 \mathrm{~h}$, and 3 j from Set 3, 4a, 4f, $4 \mathrm{~g}, 4 \mathrm{~h}$, and 4 i from Set 4 , and 5 d and 5 k from Set 5 as options to look for a possible solution.

First, we see what happens when we fix 2 c with 1 h . This eliminates 3 j from Set $3,4 \mathrm{f}, 4 \mathrm{~g}$, and 4 h from Set 4, and 5 d from Set 5 . Our options are $3 \mathrm{e}, 3 \mathrm{f}, 3 \mathrm{~g}$, and 3 h from Set 3, 4a and 4 i from Set 4, and 5 k from Set 5 . Since there is only one option left from Set 5 , we fix 5 k with 1 h and 2 c . This eliminates 3 e , 3 f , and 3 g from Set 3 , and 4a from Set 4. This reduces our options down to only 3 h and 4 i from Sets 3 and 4 , respectively. When we compare the tiles in 3 h to those in 4 i , we find that they share pR , rG , and gB . This means that we cannot use 3 h with 4 i , which implies that
we cannot use 2 c with 1 h .
Our only other option from Set 2 to fix with 1 h is 2 d . Recall that 2 d is composed of the tiles $\mathrm{bG}, \mathrm{gR}, \mathrm{rW}$, wP , and pB . This eliminates $3 \mathrm{f}, 3 \mathrm{~g}$, and 3 j from Set 3 , 4a, 4 h , and 4 i from Set 4, and 5 d from Set 5 . Our options from Sets 3, 4, and 5 are 3e, $3 \mathrm{~h}, 4 \mathrm{f}, 4 \mathrm{~g}$, and 5 k . Since 5 k is the only option from Set 5 , we choose to fix 5 k with 2 d and 1 h . This eliminates 3 e from Set 3 and 4 f from Set 4 , leaving only 3 h from Set 3 and 4 g from Set 4 as possibilities. Upon comparing the tiles of 3 h and 4 g , we find that they share $y P$ and $g B$. Hence, we cannot use 2 d with 1 g . This implies that there is no solution when 1 h is fixed.

Case 9: Fix 1i. Next, we look at 1i, which contains the tiles bR, rY, yG, gP, and pB , to look for a possible solution. Just by comparing tiles, we can eliminate 2 a , 2 b , 2d, 2e, 2f, 2i 2j, and 2k from Set 2, 3a, 3b, 3c, and 3d, from Set 3, 4a, 4b, 4c, 4d, 4e, 4 j , and 4 k from Set 4 , and $5 \mathrm{~b}, 5 \mathrm{c}, 5 \mathrm{e}, 5 \mathrm{i}$, and 5 j from Set 5 . This leaves us with $2 \mathrm{c}, 2 \mathrm{~g}$, and 2 h from Set 2,3 , 3 f, $3 \mathrm{~g}, 3 \mathrm{~h}, 3 \mathrm{i}, 3 \mathrm{j}$, and 3 k from Set 3 , $4 \mathrm{f}, 4 \mathrm{~g}, 4 \mathrm{~h}$, and 4 i from Set 4 , and $5 \mathrm{a}, 5 \mathrm{~d}, 5 \mathrm{f}, 5 \mathrm{~g}, 5 \mathrm{~h}$, and 5 k as options to look for a possible solution.

First, we set 2c fixed with 1i. We can further eliminate 3 i and 3 j from Set 3, 4f, 4 g , and 4 h from Set 4, and 5 d , 5 f , and 5 h from Set 5 , leaving $3 \mathrm{e}, 3 \mathrm{f}, 3 \mathrm{~g}, 3 \mathrm{~h}$, and 3 k from Set 3, 4i from Set 4, and 5a, 5g, and 5 k from Set 5 . Since there is only one option from Set 4, 4i, we set it fixed with 2c and 1i. This eliminates all of Set 3 except 3 k and all of Set 5 except 5 g and 5 k . Since there is only one option from Set 3 and two options from Set 5, we compare the tiles in 3 k to those in 5 g and 5 k . We cannot use 5 g with 3 k since they have tiles pG and gW in common. However, we can use 5 k with 3 k as they have no tiles in common. We now look at the rotations of 2 c with 1 i
being fixed.

1i	bR	rY	yG	gP	pB
2c(i)	gR				
2c(ii)	rW	wY			
2c(iii)	wY	yB	bG		
2c(iv)	yB	bG	gR	rW	wY

The only rotation of 2 c that works when 1 i is fixed is $2 \mathrm{c}(\mathrm{iv})$. Now, we look at the rotations of 3 k with 1 i and $2 \mathrm{c}(\mathrm{iv})$ are fixed.

1 i	bR	rY	yG	gP	pB
$2 \mathrm{c}(\mathrm{iv})$	yB	bG	gR	rW	wY
$3 \mathrm{k}(\mathrm{i})$	yP	pG			
$3 \mathrm{k}(\mathrm{ii})$	pG	gW	wB	bY	yP
$3 \mathrm{k}(\mathrm{iii})$	gW	wB	bY	yP	
$3 \mathrm{k}(\mathrm{iv})$	wB				

When we have 1 i and 2 c (iv) fixed, the only rotation of 3 k that will work is $3 \mathrm{k}(\mathrm{ii})$. We now proceed to look at the rotations of 4 i with $1 \mathrm{i}, 2 \mathrm{c}(\mathrm{iv})$, and $3 \mathrm{k}(\mathrm{ii})$ fixed.

1 i	bR	rY	yG	gP	pB
$2 \mathrm{c}(\mathrm{iv})$	yB	bG	gR	rW	wY
$3 \mathrm{k}(\mathrm{ii})$	pG	gW	wB	bY	yP
$4 \mathrm{i}(\mathrm{i})$	wP	pR	rG		
$4 \mathrm{i}(\mathrm{ii)}$	pR				
$4 \mathrm{i}(\mathrm{iii})$	rG				
$4 \mathrm{i}(\mathrm{iv})$	gB				

No rotation of 4 i works when we have $1 \mathrm{i}, 2 \mathrm{c}(\mathrm{iv})$, and $3 \mathrm{k}(\mathrm{ii})$ fixed. Thus, there is no solution when 2 c is fixed with 1 i .

Now, we see what happens when we fix 2 g with 1 i . This eliminates $3 \mathrm{f}, 3 \mathrm{~g}, 3 \mathrm{~h}, 3 \mathrm{i}$, 3 j , and 3 k from Set 3, 4f, 4i, and 4h from Set 4, and 5a, 5d, 5g, 5h, and 5k from Set 5. This leaves us with only 3 e from Set $3,4 \mathrm{~g}$ from Set 4 , and 5 from Set 5 . Upon comparing the tiles in $3 \mathrm{e}, 4 \mathrm{~g}$, and 5 f , we find that 3 e and 4 g share tile gB and 4 g and $5 f$ share tiles pG. So there is no solution when we set 2 g fixed with 1 i.

Our last option from Set 2 that we can fix with 1 i is 2 h . By doing this, we eliminate $3 \mathrm{f}, 3 \mathrm{~g}$, and 3 k from Set 3 , 4 h and 4 i from Set 4 , and $5 \mathrm{a}, 5 \mathrm{~d}, 5 \mathrm{~g}, 5 \mathrm{~h}$, and 5 k from Set 5 . This leaves us with $3 \mathrm{e}, 3 \mathrm{~h}, 3 \mathrm{i}$, and 3 j from Set 3 , 4 f and 4 g from Set 4 , and 5 f from Set 5 . This leaves us with only one option left from Set 5 , so we set 5 f fixed with 2 h and 1 i . We can now eliminate 3 i and 3 j from Set 3 , and 4 g from Set 4 . Our options from Set 3 are now 3e and 3h, while our only option left from Set 4 is 4f. We now compare the tiles in 3 e and 3 h to those in 4 f . We cannot use 3 h since it shares tiles $y P$ and $p R$ with $4 f$, but since 3 e and 4 f have no tiles in common we can use 3 e . Now we look at the rotations of 2 h when 1 i is fixed.

1 i	bR	rY	yG	gP	pB
$2 \mathrm{~h}(\mathrm{i})$	gW	wP	pY	yB	bG
$2 \mathrm{~h}(\mathrm{ii})$	wP	pY			
2h(iii)	pY	yB	bG		
2h(iv)	yB	bG	gW	wP	

The only rotation of 2 h that works with 1 i fixed is $2 \mathrm{~h}(\mathrm{i})$. Now we look at the rotations of 3 e with 1 i and $2 \mathrm{~h}(\mathrm{i})$ fixed.

1 i	bR	rY	yG	gP	pB
$2 \mathrm{~h}(\mathrm{i})$	gW	wP	pY	yB	bG
3e(i)	yW				
3e(ii)	wR				
3e(iii)	rG	gB	bY		
3e(iv)	gB	bY			

No rotation of 3 e works when we have 1 i and $2 \mathrm{~h}(\mathrm{i})$ fixed. Thus, we cannot use 2 h with 1 i . Therefore, there is no solution when 1 i is fixed.

Case 10: Fix 1j. We now look for possible solutions when we have 1 j fixed. Note that 1 j contains the tiles $\mathrm{bR}, \mathrm{rY}, \mathrm{yW}, \mathrm{wP}$, and pB . This allows us to eliminate 2 a , $2 \mathrm{~b}, 2 \mathrm{~d}, 2 \mathrm{e}, 2 \mathrm{f}, 2 \mathrm{~g}, 2 \mathrm{~h}$, and 2 i from Set 2, 3c, 3e, 3f, and 3 g from Set 3, 4a, 4b, 4c, 4e,
$4 \mathrm{~h}, 4 \mathrm{i}, 4 \mathrm{j}$, and 4 k from Set 4 , and $5 \mathrm{~b}, 5 \mathrm{c}, 5 \mathrm{e}$, and 5 k from Set 5 . This leaves us with 2 c and 2 j from Set 2, 3a, 3b, 3d, 3h, 3i, 3j, and 3k from Set 3, 4d, 4f, and 4 g from Set 4, and 5a, 5d, 5f, 5g, 5h, 5i, and 5j from Set 5 .

We begin by fixing 2 c with 1 j . We can further eliminate 3 a , 3 i and 3 j from Set $3,4 \mathrm{~d}, 4 \mathrm{f}$, and 4 g from Set 4 , and $5 \mathrm{~d}, 5 \mathrm{f}, 5 \mathrm{~h}$, and 5 i from Set 5 . Notice that this eliminates all of Set 4, which implies that there is no solution when we fix 2 c with 1 j .

Now, we set 2 j fixed with 1 j to look for possible solutions. We can eliminate 3a, $3 \mathrm{~d}, 3 \mathrm{~h}, 3 \mathrm{i}$, and 3 k from Set 3 , 4 f from Set 4 , and $5 \mathrm{a}, 5 \mathrm{~d}, 5 \mathrm{f}$, and 5 j from Set 5 . Now our only possibilities are $3 \mathrm{~b}, 3 \mathrm{j}, 4 \mathrm{~d}, 4 \mathrm{~g}, 5 \mathrm{~g}, 5 \mathrm{~h}$, and 5i, which come from Sets 3 , 4, and 5 , respectively. There are two options from Set 3 , so we first fix 3 b with 2 j and 1 j . This allows us to eliminate 4 d from Set 4 , and $5 \mathrm{~g}, 5 \mathrm{~h}$, and 5 i from Set 5 , eliminating all of our options from Set 5 . So we cannot use 3 b with 1 j and 2 j . Our next option from Set 3 is 3 j to fix with 1 j and 2 j . This allows us to eliminate 4 d and 4 g from Set 4 and $5 \mathrm{~g}, 5 \mathrm{~h}$, and 5 i from Set 5 . Notice that this eliminates all of Set 4 and all of Set 5. Thus, we cannot use 2 j with 1 j . Hence, there is no solution when we fix 1 j .

Case 11: Fix 1k. The last possibility when looking for a solution comes by fixing 1 k , which contains the tiles $\mathrm{bR}, \mathrm{rY}, \mathrm{yP}, \mathrm{pG}$, and gB . We can eliminate $2 \mathrm{a}, 2 \mathrm{~b}, 2 \mathrm{e}, 2 \mathrm{f}$, and 2 i from Set 2, 3e, 3g, 3h, 3i, 3j, and 3 k from Set 3 , $4 \mathrm{~b}, 4 \mathrm{c}, 4 \mathrm{f}, 4 \mathrm{~g}, 4 \mathrm{~h}, 4 \mathrm{i}, 4 \mathrm{j}$, and 4 k from Set 4 , and $5 \mathrm{~b}, 5 \mathrm{c}, 5 \mathrm{e}, 5 \mathrm{f}$, and 5 g from Set 5 . This leaves us with $2 \mathrm{c}, 2 \mathrm{~d}, 2 \mathrm{~g}$, $2 \mathrm{~h}, 2 \mathrm{j}$, and 2 k from Set $2,3 \mathrm{a}, 3 \mathrm{~b}, 3 \mathrm{c}, 3 \mathrm{~d}$, and 3 f from Set $3,4 \mathrm{a}, 4 \mathrm{~d}$, and 4 e from Set 4 , and $5 \mathrm{a}, 5 \mathrm{~d}, 5 \mathrm{i}, 5 \mathrm{j}$, and 5 k from Set 5 as options when looking for a possible solution.

Set 4 contains the smallest number of possibilities, so we begin by fixing 4 a with 1 k . We can eliminate $2 \mathrm{~d}, 2 \mathrm{j}$, and 2 k from Set $2,3 \mathrm{~b}, 3 \mathrm{c}$, and 3 d from Set 3 , and 5 a
and 5 k from Set 5 . This reduces our options down to $2 \mathrm{c}, 2 \mathrm{~g}$, and 2 h from Set 2 , 3 a and 3 f from Set 3, and 5 d , 5 i , and 5 j from Set 5 . Since Set 3 contains the smallest number of possibilities, we set 3a fixed with 4 a and 1 k . This eliminates 2c from Set 2 , leaving us with 2 g and 2 h as possibilities. It also eliminates 5 d , 5 i , and 5 j from Set 5 , which in turn is all of Set 5 , leaving us with no solution when we fix 3 a with 4 a and 1 k . Next, we fix 3 f with 4 a and 1 k . This eliminates 2 g and 2 h from Set 2 , and 5 d and 5 i from Set 5 . Our only possible options from Sets 2 and 5 are 2c and 5 j , respectively. Upon comparing the tiles in 2 c and 5 j , we find there are no common tiles. So we now look at the rotations of 2 c when 1 k is fixed.

1 k	bR	rY	yP	pG	gB
2c(i)	gR				
2c(ii)	rW	wY			
2c(iii)	wY	yB	bG	gR	rW
2c(iv)	yB	bG	gR	rW	wY

We find that we can use rotations 2 c (iii) and $2 \mathrm{c}(\mathrm{iv}$) when we have 1 k fixed. Now we look at the rotations of 3 f when we have 1 k and $2 \mathrm{c}(\mathrm{iii})$ fixed.

1 k	bR	rY	yP	pG	gB
2c(iii)	wY	yB	bG	gR	rW
3f(i)	yW	wP	pR	rB	bY
3f(ii)	wP	pR	rB	bY	yW
3f(iii)	pR				
3f(iv)	rB	bY			

The only rotation of 3 f that works when we have 1 k and $2 \mathrm{c}(\mathrm{iii})$ fixed is $3 \mathrm{f}(\mathrm{i})$. We can now set $3 \mathrm{f}(\mathrm{i})$ fixed with 1 k and 2 c (iii) and look at the rotations of 4 a .

1 k	bR	rY	yP	pG	gB
$2 \mathrm{c}(\mathrm{iii})$	wY	yB	bG	gR	rW
$3 \mathrm{f}(\mathrm{i})$	yW	wP	pR	rB	bY
$4 \mathrm{a}(\mathrm{i})$	wR				
$4 \mathrm{a}(\mathrm{ii)}$	rG	gP			
$4 \mathrm{a}(\mathrm{iii})$	gP	pB			
$4 \mathrm{a}(\mathrm{iv})$	pB	bW	wR		

No rotation of 4 a works when we have $1 \mathrm{k}, 2 \mathrm{c}(\mathrm{iii})$, and $3 \mathrm{f}(\mathrm{i})$ fixed. This implies that we cannot use the rotation $2 \mathrm{c}($ iii $)$ with 1 k . We have one other option from Set $2,2 \mathrm{c}(\mathrm{iv})$, that we can fix with 1 k . We need to now look at the rotations of 3 f with 2c(iv) and 1k fixed.

$1 k$	bR	rY	yP	pG	gB
2c(iv)	yB	bG	gR	rW	wY
3f(i)	yW	wP	pR		
3f(ii)	wP	pR	rB	bY	yW
3f(iii)	pR				
3f(iv)	rB				

The only rotation of 3 f that works when we have $2 \mathrm{c}(\mathrm{iv})$ fixed with 1 k is $3 \mathrm{f}(\mathrm{ii})$. We now look at the rotations of 4 a when we have 1 k , $2 \mathrm{c}(\mathrm{iv})$, and $3 \mathrm{f}(\mathrm{ii})$ fixed.

1 k	bR	rY	yP	pG	gB
$2 \mathrm{c}(\mathrm{iv})$	yB	bG	gR	rW	wY
3f(ii)	wP	pR	rB	bY	yW
$4 \mathrm{a}(\mathrm{i})$	wR				
4a(ii)	rG	gP	pB		
4a(iii)	gP				
4a(iv)	pB				

No rotation of 4 a works when we fix $1 \mathrm{k}, 2 \mathrm{c}(\mathrm{iv})$, and $3 \mathrm{f}(\mathrm{ii})$. This implies that we cannot use 4 a with 1 k .

We now look set 4 d fixed with 1 k and look for options from Sets 2,3 , and 5 . By fixing 4 d , we eliminate $2 \mathrm{c}, 2 \mathrm{~d}$, and 2 g from Set $2,3 \mathrm{a}, 3 \mathrm{~b}, 3 \mathrm{c}, 3 \mathrm{~d}$, and 3 f, from Set 3 , and $5 \mathrm{~d}, 5 \mathrm{i}, 5 \mathrm{j}$, and 5 k from Set 5 . Notice that while we are left with some options from Sets 2 and 5, we have eliminated all of Set 3 . Thus, we cannot use 4 d with 1 k .

Our last possibility is to set 4 e fixed with 1 k . This eliminates $2 \mathrm{c}, 2 \mathrm{~d}, 2 \mathrm{j}$, and 2 k from Set 2 , 3a, 3b, 3c, and 3d from Set 3, and 5d, 5i, and 5 from Set 5 . Our options are now 2 g and 2 h from Set 2 , 3 f from Set 3 , and 5 a and 5 k from Set 5 . We now fix

3 f with 1 k and 4 e . This eliminates 2 g and 2 h from Set 2 , and 5 a and 5 k from Set 5 , eliminating all of Set 2 and all of Set 5 . So we cannot use 3 f with 1 k and 4 e , which implies that we cannot use 1 k when looking for a possible solution. Therefore, the 5×5 puzzle is not solvable.

5 CONCLUDING REMARKS

Earlier, we discussed what it means to be a generator. We also discussed the difference between the alternating group and the symmetric group on n letters. Theorem 1.5 tells us that the alternating group is generated by 3-cycles. So, what is a minimum generating set for S_{n} ?

Section 2.1 describes that God's Algorithm is the minimum number of moves to solve the Rubik's cube from any scrambled state. Does God's Algorithm exists for Instant Insanity II? If so, what is God's Algorithm for Instant Insanity II? Also, for what other values of n and k does an Instant Insanity II puzzle on $n \times k$ tiles have a unique solution?

We know that the fifteen puzzle is a two-dimensional puzzle that is on a 4×4 grid. We also observed that the original Instant Insanity is a three-dimensional puzzle on a $1 \times 1 \times 4$ grid, and the Rubik's cube is also a three-dimensional puzzle but is on a $3 \times 3 \times 3$ grid. Looking at these three different puzzles, one can claim that the fifteen puzzle may be "easier" than Instant Insanity or the Rubik's cube since it is only a two-dimensional puzzle. So we must ask the question "How do we quantify the difficulty of a puzzle?" The following lists some things one might want to consider in trying to find the difficulty of a puzzle.

- The number of combinations.
- The average "word" length. That is, what is the minimum sequence of moves required to swap any two tiles of Instant Insanity II?
- The existence of a "good" algorithm.

BIBLIOGRAPHY

[1] W. W. Rouse Ball and H. S. M. Coxeter. Mathematical recreations and essays. Dover Publications Inc., New York, thirteenth edition, 1987.
[2] T. A. Brown. A Note on "Instant Insanity". Math. Mag., 41(4):167-169, 1968.
[3] J. R. Durbin. Modern algebra. John Wiley \& Sons Inc., New York, sixth edition, 2009. An introduction.
[4] J. B. Fraleigh. A first course in abstract algebra. Addison-Wesley Publishing Co., Reading, Mass.-London-Don Mills, Ont., 1967.
[5] A. P. Grecos and R. W. Gibberd. A Diagrammatic Solution to "Instant Insanity" Problem. Math. Mag., 44(3):119-124, 1971.
[6] M. Hall, Jr. Combinatorial theory. Blaisdell Publishing Company, 1967.
[7] I. N. Herstein. Topics in algebra. Blaisdell Publishing Co. Ginn and Co. New York-Toronto-London, 1964.
[8] D. R. Hofstadter. Magic cubology. In Metamagical Themas, pages 301-328. Basic Books, 1981.
[9] D. R. Hofstadter. On crossing the rubicon. In Metamagical Themas, pages 329-363. Basic Books, 1982.
[10] A. Jebasingh and A. Simoson. Platonic solid insanity. In Proceedings of the Thirty-third Southeastern International Conference on Combinatorics, Graph

Theory and Computing (Boca Raton, FL, 2002), volume 154, pages 101-111, 2002.
[11] O. Knill, R. E. Mäder, and ETH Zürich. The rotation group of Rubik's cube. Sigsam Bulletin, 21:33-43, 1987.
[12] J. L. Lagrange. Reflections on the algebraic solution of equations. New Memoirs of the Royal Academy of Sciences and Belled-Lettres in Berlin, pages 202-203, 1771.
[13] J. Mulholland. Lecture 12: Puzzle groups. http://people.math.sfu.ca/ ~jtmulhol/math302/notes/12-PuzzleGroups.pdf, 2011. Accessed: June 20, 2013.
[14] T. Richmond and A. Young. Instant Insanity II. College Math. J., 44(4):265-272, 2013.
[15] F. S. Roberts. Applied Combinatorics. Prentice-Hall, Inc., New Jersey, 1984.
[16] J. Scherphuis. Instant Insanity II. http://www.jaapsch.net/puzzles/insanity2.htm, 2013. Accessed: July 10, 2013.
[17] W. Schmidt. This and that. http://www.waynesthisandthat.com/15puzzle.htm, 2013. Accessed: September 15, 2013.
[18] B. L. Schwartz. An Improved Solution to "Instant Insanity". Math. Mag., $43(1): 20-23,1970$.
[19] E. L. Spitznagel, Jr. A New Look at the Fifteen Puzzle. Math. Mag., 40(4):171174, 1967.

VITA

AMANDA JUSTUS

Education:

Professional Experience: Graduate Assistant, East Tennessee State University, Johnson City, Tennessee, 2012-2014

Awards/Honors:
B.S. Mathematics, King College, Bristol, Tennessee 2012
M.S. Mathematical Sciences, East Tennessee State University, Johnson City, Tennessee 2014

Features story "Solving Puzzles with Algebra" in ETSU School of Graduate Studies graduate student research magazine, "Illuminated," Volume 3(1), pp. (14-15).

