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ABSTRACT

Function Space Tensor Decomposition and its Application in Sports Analytics

by

Justin Reising

Recent advancements in sports information and technology systems have ushered in 

a new age of applications of both supervised and unsupervised analytical techniques 

in the sports domain. These automated systems capture large volumes of data points 

about competitors during live competition. As a result, multi-relational analyses are 

gaining popularity in the field of Sports Analytics. We review two case studies of di-

mensionality reduction with Principal Component Analysis and latent factor analysis 

with Non-Negative Matrix Factorization applied in sports. Also, we provide a review 

of a framework for extending these techniques for higher order data structures. The 

primary scope of this thesis is to further extend the concept of tensor decomposition 

through the use of function spaces. In doing so, we address the limitations of PCA 

to vector and matrix representations and the CP-Decomposition to tensor represen-

tations. Lastly, we provide an application in the context of professional stock car 

racing.
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1 INTRODUCTION

1.1 Evolution of Big Data in Professional Sports

The age of newspaper box scores being the primary source of numerical informa-

tion for professional athletes has long become an after-thought over the course of the

last decade. Now, stakeholders throughout all levels of professional sports organi-

zations are engaging with an overwhelming amount of data being collected from a

multitude of sources [2]. From the front office to the field, court, or racetrack, the

competitive advantage for clubs in top echelon team sports now rely heavily on the

ability to mine, warehouse, and transform their data into actionable information.

Professional sports in the United States have taken a massive step in the pro-

curement of data and have made major investments in human and computational

resources to handle the data collected in the last decade [1]. This paradigm shift

became more prevalent in the industry after the release of the book and movie Mon-

eyball, which depicted the use of statistics to drive player acquisition decisions instead

of traditional scouting practices within the Oakland Athletics Major League Baseball

(MLB) organization during the 2002 season [1]. During that season, General Manager

Billy Beane embraced statistics that went beyond the box score. This is now known

as “Sabermetrics” and is used to inform scouting decisions to put players on the field

with very limited capital. Sabermetrics were originally developed by Bill James in

the 1970’s as “analytical musings” that have now evolved into what has become the

field of “Sports Analytics” [3].

Baseball was not the only sport that began thinking of how to use technology and
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advanced mathematical techniques to increase the tally count in the win column. Of

the major sports in the Unites States, the National Basketball Association (NBA), Na-

tional Football League (NFL), Major League Soccer (MLS), National Hockey League

(NHL) have all embraced the coming of age with analytics [1]. Some teams in each

sport have been more apprehensive than others, but when dynasty teams seemingly

form out of nowhere within a 5 year period, every team asks the same question:

“What are they doing that we are not?” The answer is not just a couple of Physics

and Mathematics PhD’s on payroll cranking out “insights”. It takes years to develop

a data-driven culture within the organization and build the pipeline from raw data

to actionable information.

Every professional sports team has a series of scouting methods for evaluating

amateur and other professional players when it comes to physiological traits like

speed, arm strength, etcetera. In baseball, the ability to do these things were typically

observational in most cases and subjective measurements varied depending on which

individual was doing the evaluation. Conventional baseball player evaluation is (or

was) dependent on five “tools”: Speed, Arm Strength, Hit for Average, Hit for Power,

and Fielding [3]. While baseball has always been the most prolific numbers game when

it comes to statistics, there was still a subjective nature to them with all of the nuances

of the game. However, since 2015, MLB mandated that all stadiums be equipped with

sonar tracking systems that track object movements including players, bats, and the

ball [19]. This ushered in a new age of big data that has never been seen before

and pushed the envelope in the sports analytics domain from the “personal computer

statistics” domain to the “cloud computing applied mathematics” domain. Over the
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course of the past 5 years, stadiums in the NBA, NFL, MLS, and NHL are now all

equipped with this type of technology generating petabytes of data collectively each

year.

One sport that has less public attention in the sports analytics industry is the

National Association for Stock Car Auto Racing (NASCAR). NASCAR also has a

very different structure than other sports. Teams are not located geographically with

a “Home Field” or track in this case. Most teams operate from a central location

in the Charlotte, North Carolina metropolitan area and travel to venues across the

country on a weekly basis. This is not the only concept that is quite different than

other professional team sports. As organizations have multiple teams at different

levels, such as major league and minor league levels in baseball, NASCAR organiza-

tions can have multiple drivers competing at the same level. For example, Joe Gibbs

Racing (JGR) is an organizational team consisting of four drivers that compete in

the Monster Energy Cup Series (MECS) sponsored by the manufacturing team Toy-

ota Racing Development (TRD). Each car-level team is comprised of a driver, crew

members, with some unique corporate sponsorships. All future mentions of “teams”

is in reference to organizational teams.

1.2 Motivation

The primary motivation for this paper is the increasing use of dimensionality

reduction, low-rank approximation, and latent factor techniques applied in sports

analytics with the goal of extracting hidden components in the underlying structure

of data. However, the granularity of data can vary widely with different types of
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contextual indices such as individual events or competitors, situational characteristics,

time-based intervals, etc. Current applications of decomposition techniques typically

ignore such categorical parameters to suit the constraints for the numerical data

types being analyzed. In sports, events that take place during competition are highly

dependent on contextual factors. For example, in basketball, time left on the clock

can influence shot selection or the inning, count, and runners on base for a pitch

selection in baseball.

Principal Component Analysis (PCA) is one of the oldest methods applied for

dimensionality reduction [13]. The primary goal of PCA is to reduce the dimension-

ality of a data set by extracting low dimensional sub-spaces while preserving as much

variability as possible. PCA is a common technique that addresses the problem of

dimensionality and sub-space leaning in data science, but its effectiveness is limited to

numerical vector and matrix data structures. PCA is also computationally expensive

for very large data sets. This causes PCA to lose power for large-scale, multi-relational

data sets that are now more common in practice. When applied to multi-model data,

the traditional PCA methods applied for matrices has been shown to be inadequate

at capturing variance across different modes and burdened by increasing storage and

computational costs [14].

There is an increasing demand for PCA type methods that can learn from tensor

data while accounting for the multi-relational structure for multi-linear dimensionality

reduction and subspace estimation [14]. In sports analytics, matrix factorization

techniques have been used in many sports applications, such as in the NBA to identify

latent factors of players that go beyond the standard five positions [5]. The extension
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of tensor decomposition to this type of problem is reviewed in more detail through

the development of tHoops, which profiles shot selection tendencies relative to time

on the clock [8]. This is a primary motivation exemplifying how subspace learning

techniques can extend traditional shot chart analyses in the context of basketball.

Collectively, this thesis provides a framework for addressing the limitations of PCA

for tensors subspace learning.

Unlike in other sports, there is a lack of analytical frameworks publicized in

NASCAR and motorsports in general. With large numbers of observations for each

car, lap, track, and season from a multitude of data types and sources, utilizing mul-

tiple indexes in higher order data structures can lead to finer analysis of data. We

further extend the application of multi-relational analysis for sports analytics and

suggest approaches in the context of NASCAR.

1.3 Objectives

The objectives for this thesis are to describe in detail applications of dimension-

ality reduction and subspace learning applications in sports related contexts and to

provide a framework for extensions of these methods utilizing concepts from func-

tional analysis. A conventional approach for multi-relational data is to reshape the

data (unfold) into a matrix structure and then apply classical PCA techniques. How-

ever this eliminates relational information from the folded index. The first primary

goal of this thesis is to demonstrate the classical approach to sports related data in

two different case studies and establish the context for extending analyses into higher-

order data structures. The second goal for this thesis is to provide a mathematical
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basis for the traditional approaches through the lens of linear algebra concepts as well

as the extension to tensor approaches through the lens of functional analysis concepts.

1.4 Outline of Thesis

The remainder of the thesis is organized as follows. Chapter 2 covers the math-

ematical background for the concepts introduced for matrix decompositions, an in-

troduction for tensors, and introduction for function spaces. Chapter 3 provides two

case studies with applications of PCA in baseball analytics and non-negative matrix

(NMF) factorization in basketball and a review of tHoops; a tensor decomposition

framework for basketball shot selection. Chapter 4 provides a comprehensive anal-

ysis including PCA and NMF approaches and introduces tensor decomposition via

function spaces in the context of NASCAR analytics. Chapter 5 includes closing

comments and suggestions for further work for the methodology.
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2 MATHEMATICAL BACKGROUND

2.1 Special Matrices

In this chapter we introduce the mathematical background for developing our

proposed framework for tensor analysis in sports analytics. The motivation for de-

composing matrices or “data frames with numerical entries” is drawn from funda-

mental aspects of linear algebra with “special matrices”. For this paper, we assume

the reader has exposure to basic undergraduate level linear algebra concepts in the

following definitions for later references.

Definition 2.1 [10] An n× n orthogonal matrix Q has orthonormal columns which

means that qTi qj = 0 and qTi qi = 1 ∀ i, j ∈ 1, ..., n. Equivalently,

i) QTQ = QQT = In

ii) ||Qx|| = ||x|| for all x ∈ Rn

iii) QT = Q−1

iv) The columns of Q are an orthonormal basis for Rn

If Sx = λx such that x 6= 0, then λ is an eigenvalue of S with eigenvector x. This

leads to the next definition.

Definition 2.2 [10] If S is an n× n matrix with eigenvalues λi and eigenvectors xi,

then

i) Trace(S) =
n∑

i,j=1

si,j =
n∑
i=1

λi

ii) Determinant(S) =
n∏
i=1

λi
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Theorem 2.3 [10] If S is an n× n symmetric matrix, then,

i) S = ST implies that the eigenvalues are real

ii) If λi 6= λj for i, j ∈ 1, ..., n, then xi · xj = 0. (orthogonal eigenvectors)

In this way, symmetric matrices, S, are like real numbers in that every λ ∈ R

and orthogonal matrices, Q are like complex numbers in that every |λ| = 1 [10].

While orthogonal and symmetric matrices are indeed “special” with their own unique

properties, they are only part of the main attraction for many applications in data

science.

2.2 Matrix Decomposition

Our first theorem is the Spectral Theorem, which is foundational for much of

matrix decomposition.

Theorem 2.4 [10] The Spectral Theorem. Every symmetric matrix has the form,

S = QΛQT (1)

Note that Q is the orthogonal eigenvector matrix of S and Λ is the diagonal matrix

of corresponding eigenvalues. The Singular Value Decomposition is the extension of

The Spectral Theorem for non-symmetric, non-square matrices.

Theorem 2.5 [10] For an m × n matrix A with rank = r, the Singular Value

Decomposition (SVD) of A is,

A = UΣVT =
r∑
i=1

σiuiv
T
i s.t σ1 ≥ σ2 ≥ ... ≥ σr (2)

17



Just as the columns of Q are orthogonal in Theorem 2.4, the columns of U and

V and also orthogonal. However, since A is not square, then the columns of U are

orthogonal in Rm and the columns of V are orthogonal in Rn. The vectors of U and V

are referred to as the “left singular vectors” and “right singular vectors” respectively.

Also, a special property of SVD is that it decomposes the matrix into a series of unique

rank one pieces in (2) in order of importance [10]. Therefore, Ak =
k∑
i=1

σiuiv
T
i is the

best rank k approximation of A.

Definition 2.6 The Frobenius Norm is defined as ||A||F =
√
σ2

1 + σ2
2 + ...+ σ2

r .

Theorem 2.7 [10] The Eckart-Young Theorem. For A,B ∈ Rm×n, If B has

rank k and Ak =
k∑
i=1

σiuiv
T
i , then

||A−Ak||F ≤ ||A−B||F . (3)

An immediate application of of Theorem 2.7 is Non-Negative Matrix Factorization

(NMF). The goal of NMF is to approximate a non-negative matrix A ≥ 0 by a lower

rank product of two matrices.

Definition 2.8 A matrix A ∈ Rm×n is a Non-Negative Matrix if aij ≥ 0 for all

i = 1, ...,m and j = 1, ..., n.

Theorem 2.7 applied to non-negative matrices leads to the following corollary.

Corollary 2.9 [10] Non-Negative Matrix Factorization (NMF) For non-negative

matrix A ∈ Rm×n, there exists non-negative B ∈ Rm×r and non-negative C ∈ Rr×n,

such that A ≈ BC in that

min
B,C
||A−BC||2F exists. (4)
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This approximation is a Linear Dimensionality Reduction (LDR) technique that

requires the selection of a measure to assess the quality of the approximation [4]. The

measure frequently chosen is the Frobenius norm of the error in the approximation

(i.e ||A−BC||2F ). The choice of this error measure is primarily driven by the implicit

assumption of the noise present in A being Gaussian and the low rank approximation

given by Theorem 2.7, which is also known as the “Truncated SVD”.

2.3 PCA and SVD

It is important to note the results of applying the SVD factorization to ATA and

AAT, which are square, symmetric, positive definite matrices:

ATA = (V ΣUT )(UΣV T ) = VΣTΣVT = VΣ2VT (5)

AAT = (UΣV T )(V ΣUT ) = UΣTΣUT = UΣ2UT (6)

The right-hand side of equations (5) and (6) are the SVD forms of Theorem 2.4, i.e

QΛQT. For the m×n matrix A, the shape of ATA is m×m and the shape of AAT

is n × n. Lastly, it important to note that V contains the orthonormal eigenvectors

of ATA, U contains the orthonormal eigenvectors of AAT, and the diagonal of Σ2

contain σ2
1, σ2

2, ... , σ2
r , which are the non-zero eigenvalues of both ATA and AAT.

These special matrices, combined with Theorem 2.7 are key concepts of building an

analytic framework for analyzing data.

Principal Component Analysis is a tool used in numerous settings with a wide

variety of data types as a means of visualizing high-dimensional data structures [13].

Geometrically, PCA and SVD are closely related with one key step at the beginning
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for PCA, which is to center the data. However, if every feature of the data is of the

same scale and metric, this step may be unnecessary.

Definition 2.10 [10] The Sample Covariance Matrix of A ∈ Rm×n is defined

by

S =
AAT

m− 1
. (7)

After applying SVD to S, we obtain S = UΣ2UT and since S is a symmetric

matrix, then the columns of U are eigenvectors of S by Theorem 2.4, which are also

the left singular vectors of A. Then by applying SVD to A, the columns of U are

the principal components of A. As a consequence, then the eigenvalues of S equal to

the squared singular values of A, and the total variance of A =
r∑
i=1

σ2
i /(n− 1). The

key observation of Theorem 2.7 in combination with SVD is that the first k singular

vectors together account for the most variation in the data than any other set of k

singular vectors. This is the key motivation for dimensionality reduction.
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2.4 Introduction to Tensors

Tensors are not a new mathematical object, but rather a generalization of matrices

to higher number of indicies. Tensors and their decompositions were originally studied

in the 1920’s but remained in the abstract domain of mathematics until the explosion

in computational capacity in the late 20th century [6]. Over the course of the last

decade, there has been a surge of applications in statistics, data science, and machine

learning built on tensor representations of data. One of the most famous software

developments in recent years is the machine learning platform TensorFlow developed

and maintained by Google, Inc. [7]. TensorFlow provides back-end computational

support for the “Keras” package, a popular machine learning package available in

the Python and R programming languages. TensorFlow provides extensive training,

support, and documentation to allow machine learning applications easier to develop,

train, and deploy for practitioners. The name contains the fundamental structure of

machine learning and data science which is the Tensor.

Figure 1: Tensor Order [6].

Tensors are multi-dimensional array structures in a field, such as R. Figure 1
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demonstrates the traditional progression of dimensions in the form of a scalar, vector,

matrix, and tensor, denoted, x ∈ R,x ∈ R4,X ∈ R4×5,X ∈ R4×5×3 respectively.

More generally, scalars are referred to as a “0-Order Tensor”, vectors are “1st- Order

Tensors”, matrices are “2nd - Order Tensors”, and lastly, 3 dimensional structures are

“3rd - Order Tensors”. The order of the tensor is the number of axes.

Figure 2: Tensor Fibers [6].

Indexing tensors allow for sub-components to be created by fixing one or more

indices. For example, consider a third order tensor X ∈ RI×J×K . Fibers are created

by fixing all but two indices. Figure 2 demonstrates the vector fibers x:jk (column),

xi:k (row), and xij: (tube). Slices are created by fixing all but one index. Figure 3

shows matrix slices Xi:: (horizontal), X:j: (lateral), and X::k (frontal).

With fibers and slices of a tensor, it is easy to see that we can reshape tensors

by rearranging these components with vectorization and matricization (unfolding).

Given a matrix X ∈ Rm×n vectorization is achieved by stacking the columns of X

vertically, such as
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Figure 3: Tensor Slices [6].

vec(X) =


x:1

x:2
...

x:n

 (8)

Tensors can also be vectorized and matricized in a similar fashion. One method we

highlight is the mode-n matricization of a tensor. For X ∈ R(I1×I2×...×IN ), the mode-n

matricization of X is X(n) ∈ RIn×(
∏N

m=1 Im). Let x ∈ X and m ∈ M where M is the

unfolded tensor. Then the mapping of a mode-n matricization is,

xi1,i2,...,iN min,j where j = 1 +
N∑
k=1
k 6=n

(ik − 1)
k−1∏
m=1
m 6=n

Im

 (9)

For example, let X ∈ R2×2×2 be composed of two frontal slices, X::1,X::2 ∈ R2×2.

X::1 =

[
a b
c d

]
X::2 =

[
e f
g h

]
Then the matricization index is denoted by the corresponding index of fibers that are

used as columns in the associated matrix. For this example, the columns of X(1) are
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the column fibers x:jk, X(2) are the row fibers xi:k, and X(3) are the tube fibers xij:.

X(1) =

[
a b e f
c d g h

]
(10)

X(2) =

[
a c e g
b d f h

]
(11)

X(3) =

[
a b c d
e f g h

]
(12)

In undergraduate linear algebra, the Outer Product, denoted ◦, is the product of

two vector elements. For vectors a,b ∈ Rn, we obtain the following equation,

a ◦ b = abT =


a1b1 a1b2 ... a1bn
a2b1 a2b2 ... a2bn

...
...

. . .
...

anb1 anb2 ... anbn

 (13)

Equation (13) has a direct extension for tensor outer product. In the same way

that an outer product of two vectors is a matrix, the general tensor product of N

vectors (i.e first order tensors) produces an order N tensor.

Definition 2.11 [6] The Tensor Product of N first order tensors produces a tensor

X such that,

X = a(1) ◦ a(2) ◦ ... ◦ a(N) where xi1,i2,...,iN = a
(1)
i1
a

(2)
i2
...a

(N)
iN
. (14)

Definition 2.12 [6] A N-Order tensor is of rank-1 if it can be strictly decomposed

into the outer product of N first order tensors. More generally, the Rank of a tensor

is the number of minimum first order tensors necessary to produce the tensor.

Similar to Equation (13) and Equation (14), Figure 4 shows the rank one third

order tensor X = a ◦ b ◦ c. As higher order tensors can be generated by the outer
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Figure 4: Rank 1 Third Order Tensor [6].

product of first order tensors, this can be extended to the product of different order

tensors. There are multiple types of tensor products extending from Definition 13,

but for this paper, we will introduce one primary product type.

Definition 2.13 [6] The Kronecker Product, denoted ⊗, between two arbitrarily

sized matrices A ∈ RR×J and B ∈ RK×L, then A⊗B ∈ RIK×JL, is a generalization

of the outer product defined in Equation 13.

A⊗B =


a11B a12B ... a1JB
a21B a22B ... a2JB

...
...

. . .
...

aI1B aI2B ... aIJB

 = [a1 ⊗ b1 a1 ⊗ b2 ... aJ ⊗ bL] (15)
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2.5 Tensor Decomposition

Definition 2.14 [6] A tensor decomposition is unique if there exists only one combi-

nation of rank-1 tensors that sum to X up to a common scaling and/or permutation

indeterminacy.

As previously discussed for the SVD in Definition 2.5, the primary restriction

imposed for matrix decomposition with the SVD is the orthogonality of the left and

right singular vectors, which makes the decomposition unique up to row and comlumn

permutations. Similarly, a tensor decomposition is unique if it decomposes into one

and only one arrangement of rank-1 tensors [6]. However, tensor decomposition can

be unique under less restrictions than in the matrix case of the SVD. With the goal

of low-rank approximation, consider the low rank tensor X in Figure 2.4, then each

slice of the tensor,

Xk =
R∑
r=1

(a ◦ b)ckr (16)

is a low-rank matrix. Hence, a low-rank tensor is a collection of low-rank matrices with

interrelations among the slices with different scaling, namely ckr [6]. As a result, the

relationship between slices make tensors much more rigid than matrices when it comes

to conditions for uniqueness. This creates an opportunity for multiple decomposition

approaches with different structural properties for generalizing SVD from matrices to

higher order tensors.

Our primary objective is to generalize PCA and SVD from matrices to tensors

and address the issues presented in regards to uniqueness. There are many ap-

proaches to tensor decomposition, but the scope of this paper discuss two common
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outer-product tensor decomposition methods with different properties: the Canoni-

cal Polyadic Decomposition (CP-Decomposition) and the Tucker Decomposition. The

CP-Decomposition is typically used for latent factor analysis while Tucker is com-

monly applied for subspace estimation, compression, or dimensionality reduction [6].

Figure 5: CP Decomposition [6].

First, we will highlight the CP-Decomposition, which is a rank decomposition.

The key concept for this decomposition is the expression of tensor as the sum of

rank-one tensors. For order-3 tensors, depicted in Figure 5, the CP-Decomposition is

formalized as,

min
X̂
||X − X̂ || where X̂ =

R∑
r=1

ar ◦ br ◦ cr = [[A,B,C]]. (17)

Note the similarity in Equation (17) and that of the NMF in Corollary 2.9. For the

general case, the CP-Decomposition is formalized as,

X̂ =
R∑
r=1

λra
(1)
r ◦ a(2)

r ◦ ... ◦ a(n)
r = [[λ; A(1),A(2), ...,A(n)]]. (18)

The factors, A(n), are normalized at unit length and the scalings are stored as λr.

These λr are trial-specific scalings of the tensor and are the fundamental difference
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in the CP model and normal PCA. While there are many algorithms for computing

the CP-Decompositon, the most common approach is the Alternating Least Squares

(ALS) algorithm. This key idea is to optimize a factor matrix while holding all others

constant and repeat for every factor matrix until a stopping criterion. But with the

formalization of equation (18), the rank is necessary for approximation. There is no

trivial algorithm in computing the rank of a tensor as it the problem in NP-hard

[6]. In practice, most algorithms fit for multiple ranks and then choose the best

approximation.

In direct contrast to CP-Decomposition is the Tucker Decomposition which de-

composes the tensor into a “core” tensor for which there are different scalings along

each mode. This is what makes Tucker akin to PCA and is sometime referred to as

higher-order PCA.

Figure 6: Tucker Decomposition [6].

Figure 6 depicts the model for the third order tensor decomposition. For this case,

consider X ∈ RI×J×K , then G ∈ RP×Q×R, A ∈ RI×P , B inRJ×Q, and C ∈ RK×R.
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The optimization problem then becomes,

min
X̂
||X − X̂ || where X̂ =

P∑
p=1

Q∑
q=1

R∑
r=1

gpqrar ◦ br ◦ cr = [[G; A,B,C]]. (19)

The factors A, B, and C are often thought of the principal components for the

respective axis. The core tensor, G, is a compression of the original tensor and ex-

presses the interaction between factors. In contrast to the CP-Decomposition, Tucker

is generally not unique because of the arbitrary structure of the core constructed.

However, if gpqr = 0 for all p 6= q 6= r in equation 19, then it would reduce to the

CP-Decomposition. In the general case, the tucker decomposition is formalized as,

min
X̂
||X−X̂ || where X̂ =

R1∑
r1=1

R2∑
r2=1

· · ·
RN∑
rN=1

gr1,r2,...rNa
(1)
i1r1
◦· · ·◦a(N)

iNrN
= [[G; A(1), ...,A(N)]].

(20)

The two key problems between these common techniques discussed lie with the

loss of orthogonal components in CP Decomposition and the interpretability of the

“core” from Tucker. Thus PCA tends to be poorly defined for tensors with order

greater than two as the concept of “centering” becomes axis dependent. To bridge

this gap we introduce a proof of concept to build a new approach to tensor PCA and

utilize the inherent network structure of tensors. Next, we will introduce functional

analysis concepts in tandem with matrix and tensor concepts to address these two

pain points in extending multi-relational PCA.

2.6 Function Spaces

Before getting into function spaces in a general sense, it is necessary to expand on

the linear algebra concept of a vector space. Vector spaces, such as Rn, have useful
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properties that are the foundational elements of matrix decomposition techniques.

We will build up vector spaces with additional properties to draw comparisons for

function spaces, and ultimately, tensor decomposition with function spaces. We begin

with the complement of the outer product from equation (13).

Definition 2.15 [11] The Inner Product on a real vector space V is the mapping

< ·, · >: V × V → R such that for all x,y, z ∈ V and α, β ∈ R,

i) < x, αy + βz >= α < x,y > +β < x, z > (Linearity in Second Argument)

ii) < x,y >=< y,x > (Symmetric)

iii) < x,x >≥ 0 (Non-Negative)

iv) < x,x >= 0 if and only if x = 0 (Positive Definite)

Definition 2.16 [11] A vector space with an inner product is called an Inner Prod-

uct Space.

Note that in Rn, the inner product is also referred to as the dot product and defined

as < x,y >=
∑n

i=1 xiyi. Defining an inner product on a vector space induces a norm

on the vector space.

Corollary 2.17 [11] Every inner product space, V, is a normed vector space with the

norm defined by,

||x||2 = (< x,x >)1/2 =

(
n∑
i=1

x2
i

)1/2

. (21)

More generally, for 1 ≤ p <∞, the p- norm on Rn is defined by,

||x||p = (< x,x >)1/p =

(
n∑
i=1

|xi|p
)1/p

. (22)
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For p =∞, the ∞-norm, or maximum norm is defined by,

||x||∞ = max{|xi|}ni=1. (23)

Definition 2.18 [12] A Banach Space is a normed vector space that is a complete

metric space with respect to the metric derived from its norm.

Altogether, we begin with the vector space Rn, define the inner product via the

dot product, which induces the norm defined in equations (22) and (23). This norm,

combined with the fact that Rn is a complete metric space (i.e every Cauchy sequence

converges), yields the important result of Rn is a finite-dimensional Banach Space.

For the case that p = 2, we obtain a special type of Banach Space.

Definition 2.19 [12] A Hilbert Space is a complete inner product space.

It is important to note that every Hilbert space is a Banach space with respect

to the norm defined in equation (21). As we have demonstrated, since Rn is an

inner product space and completed by the norm in equation (21), then it is a finite-

dimensional Hilbert space. With these key concepts on hand, we move on to the

introduction of function spaces. Similar to how vectors operate in a vector space,

functions operate in function spaces with defined mappings.

Definition 2.20 [21] A function space is the set of all real-valued functions on a

set X, denoted `(X) = {f : X → R}.

Note that we can extend the concepts of function spaces as a mapping of a set to

the complex numbers (C), but for the scope of applications in this paper, we will only
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consider the real numbers (R). The set X is commonly referred to as the indexing

set. Also, more in line with our application, consider X to be finite, then we can we

list the elements of the indexing set such that for some n ∈ N and some f ∈ `(X),

X = [x1, x2, ..., xn]→ [f(x1), f(x2), ..., f(xn)]. (24)

This is known as the array representation which allows us to view these lists of

objects as vectors and establishes a bijective relationship between X ∈ Rn and l(X).

For example, consider the set X = {x1, x2, ..., xn}, where f, g ∈ `(G) and α, β ∈ R.

Then, αf(xi) + βg(xi) ∈ R. In fact, we get all of the same properties as we do for

the traditional sense of a vector space, which lead to three key concepts regarding

function spaces.

Theorem 2.21 [21] A function space `(X) is a vector space.

Corollary 2.22 [21] If X is a finite set, then `(X) ∼= Rn where n = |X|.

Corollary 2.23 [21] If X is a finite set, then for all functions f, g ∈ `(X), fg ∈

`(X).

Extending function spaces defined as vector spaces, in Corollary 2.22, we obtain

the isometric property for function spaces of finite sets. However, in contrast to

traditional vector spaces, Corollary 2.23 introduces the additional property of the

product of functions being closed in a function space. From this, we can define an

inner product on a function space `(X) for a finite set X,

< f, g >=
n∑
i=1

f(xi)g(xi) for all f, g ∈ `(X). (25)
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Consequently, this induces a norm defined by,

||f ||2 =

(
n∑
i=1

|f(xi)|2
)1/2

. (26)

Thus, `(X) is a complete inner product space with respect equations (25) and (26),

and by Definition 2.19, a Hilbert space. With the initial notion of a function space

`(X) = {f : X → R} we also obtain familiar inequalities from traditional vector

spaces.

Theorem 2.24 [11] < f, g > is positive definite, and satisfies the Cauchy-Schwarz

Bunyakovsky Inequality,

| < f, g > | ≤ ||f || ||g|| for all f, g ∈ `(X). (27)

It immediately follows that the triangle inequality still holds in `(X) as well.

||f + g|| ≤ ||f ||+ ||g|| for all f, g ∈ `(X) (28)

Definition 2.25 For < f, g > defined on `(X), a set of functions {un} is an or-

thonormal set if

< um, un >= δmn. (29)

Theorem 2.26 [12] Every finite dimensional Hilbert space has an orthonormal basis.

Corollary 2.27 [21] For a set X where |X| = n, `(X) = {f : X → R}, there exists

{un} that is an orthonormal basis for `(X).

Definition 2.28 [12] Let V and W be vector spaces.The mapping T : V → W is a

linear transformation if

T (αv + βw) = αT (v) + βT (w) for all v,w ∈ V and α, β ∈ R. (30)
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If V is a function space on a finite set X with |X| = n, `(X) = {f : X → R},

and W ∼= Rm, then T maps from the set of functions on x ∈ X ( f ∈ `(X)), to an

element w ∈ W . Let f = [f(x1), f(x2), ..., f(xn)]. Then

w =


w1

w2
...
wn

 = T (f) =


a11 a12 . . . a1m

a21 a22 . . . a2m
...

...
. . .

...
an1 an2 . . . anm



f(x1)
f(x2)

...
f(xn)

 . (31)

Theorem 2.29 [12] If T is a linear transformation from an n dimensional vector

space V into a vector space W, then given any orthonormal basis { e1, e2, ..., en } of

V, the linear transformation T is given by,

T (v) =
n∑
k=1

< v, ek > ak for all v ∈ V , T (ek) = ak. (32)
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3 RESEARCH

The goal of this section is to describe the current applications of the mathematical

methodologies described in the mathematical background in the domain of “Sports

Analytics”. Principal Component Analysis and Non-Negative Matrix Factorization

techniques provide a framework for sports analysts to develop methods for character-

izing and profiling players, teams, and sport specific actions like “pitches” in baseball

or “shots” in basketball. Professional sports organizations like MLB and NBA have

made data publicly available for where this type of analysis has gained attention in

public articles and blogs. The NFL has incorporated an annual competition called

“The Big Data Bowl” that mimics Kaggle competitions for free and open discussion

and collaboration with football related data collected by the NFL.

The direct access to data for casual fans and amateur practitioners of data sci-

ence and machine learning is a significant factor in the development of the techniques

described in this paper in the field of sports analytics. In this section, we will first

investigate two sport specific case studies for general applications of Principal Com-

ponent Analysis and Non-Negative Matrix Factorization. Then we will review the

applications of tensor decomposition frameworks with a generalised example and in

relation to the tHoops framework [8]. In their work, Pelechrinis et al. propose a

method of analyzing spatio-temporal sports data using tensor decomposition meth-

ods to create profiles with respect to competitor metric.
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3.1 PCA in Sports Analytics

Terminology used in baseball pitch analytics like “spin rate”, “spin direction”,

and “release velocity” have become common at all levels of engagement with the

game since the introduction of StatCast in 2015. In this case study, the anatomy of

pitch types are analyzed by their measured metrics collected from the sophisticated

tracking systems that make up StatCast. The data set chosen for this analysis is a

subset of the pitch data from the 2016 MLB season that consists of pitches thrown

on Mondays (See Appendix 1.1 for data source and feature descriptions).

Table 1: 2016 Monday Baseball Pitch Data Header

probCalledStrike releaseVelocity spinRate spinDir locationHoriz locationVert movementHoriz movementVert

1 0.98 94.20 2, 044.22 205.48 -0.37 2.93 -6.93 8.28
2 0.74 97.10 1, 966.32 220.14 0.34 3.22 -7.48 7.35
3 0.97 96.50 2, 127.17 198.82 0.39 2.27 -5.22 9.79
4 1 95.60 1, 947.11 198.73 -0.004 2.38 -7.24 8.40
5 1 95.60 1, 903.08 205.50 0.27 2.42 -6.79 9.37
6 0.32 98.30 2, 038.06 206.73 -0.21 1.43 -8.30 7.96

Table 2: 2016 Monday Pitch Summary

Feature N Mean St. Dev. Min Pctl(25) Pctl(75) Max

probCalledStrike 73,569 0.48 0.43 0.00 0.01 0.95 1.00
releaseVelocity 73,569 88.51 5.93 60.00 84.70 92.90 105.00
spinRate 73,569 2,201.33 318.24 159.04 2,062.02 2,396.80 3,472.37
spinDir 73,569 183.78 61.35 0.01 148.75 222.64 359.99
locationHoriz 73,569 −0.04 0.86 −4.05 −0.63 0.56 3.97
locationVert 73,569 2.27 0.93 −2.54 1.68 2.87 6.75
movementHoriz 73,569 −0.79 6.40 −16.21 −6.21 4.55 20.42
movementVert 73,569 5.25 5.25 −16.21 2.83 9.04 17.85

After some data cleaning and feature selection, we obtain the descriptions of key

pitch metrics for 73,569 pitches thrown in the 2016 season. The goal of this analysis

is to uncover the underlying structure of pitches based on the physical attributes
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measured for each pitch type through a decomposition of the “Pitch Data Matrix”

for all pitches.

Table 3: Pitch Correlation Matrix
probCalledStrike releaseVelocity spinRate spinDir locationHoriz locationVert movementHoriz movementVert

probCalledStrike 1 0.08 0.02 0.03 -0.03 0.17 -0.01 0.09
releaseVelocity 0.08 1 0.09 0.29 -0.03 0.25 -0.27 0.71

spinRate 0.02 0.09 1 -0.21 0.09 0.07 0.13 -0.07
spinDir 0.03 0.29 -0.21 1 -0.18 0.05 -0.73 0.29

locationHoriz -0.03 -0.03 0.09 -0.18 1 −0.13 0.16 0.01
locationVert 0.17 0.25 0.07 0.05 -0.13 1 -0.03 0.25

movementHoriz -0.01 -0.27 0.13 -0.73 0.16 -0.03 1 -0.20
movementVert 0.09 0.71 -0.07 0.29 0.01 0.25 -0.20 1

In general exploratory data analysis of the pitch data, it is not uncommon to see

correlations between features. In this case, as seen in Table 3, horizontal movement

and spin direction have a moderate negative correlation at approximately 73 percent.

This is a perfectly normal association in how pitches are thrown and move based on

the tilt of the axis for which the spin revolves. Also, release velocity and vertical

movement have a moderate correlation of approximately 71 percent. Again, the

association is justified by example of four seam fastballs having an approximate flat

back spin while curveballs and other non-fastball type pitches have a combination

of degrees of lateral and downward movement. Many people familiar with baseball

know pitch types and spin directions intuitively, or have a unique understanding of

the “Magnus Effect” and it’s applications in baseball.

While no two pitches from two different pitchers are exactly the same, there are

classes of pitch types that have been generally accepted based on the movement or grip

type of the pitch. With this heuristic being so prevalent before technology allowed

for these metrics to be recorded during live games, it is reasonable to look for clusters

of pitches within the data.
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Figure 7: Pitch PCA Biplot - Velocity.

In Figure 7, it is clear that the first principal component is creating separation

based on the release velocity of the pitch. However, there is still a lot of overlap in

the pitches, which is expected with the variety of pitchers included in this data set.

Altogether, there are 611 individual pitchers contributing to the global data set of

pitches. Someone with extensive domain knowledge of baseball and pitching may see

another structure beneath heat map in Figure 7. This person would know that pitch

types vary between left-handed and right-handed pitchers. For example, a two-seam

fastball from a left-handed pitcher would actually move in the opposite direction of

a two-seam fastball from a right-handed pitcher.

Figure 8 really begins to tell the story of pitch structure between a certain class of
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Figure 8: Pitch PCA Biplot - Pitch Type by Pitcher Hand.

pitcher, being “left-handed” v.s “right-handed”. It can be seen that the “FF” pitch

type (Four-Seam Fastball) is in the bottom left of the each plot. This pitch is the

most similar between the right-handed and left handed pitchers in terms of release

velocity and horizontal movement. Note, the symmetry of every other pitch type

between left and right handed pitchers reflecting along an invisible y = x line on the

PCA Biplot for each pitcher class. This type of analysis is leading to more structural

insights behind the anatomy of pitch types based on the information provided.

The contrast plot of left and right handed pitchers in Figure 8 is an example

of creating another axis in which to analyze the decomposition of pitch types. By

peeling back another layer for these principal components in which to separate, more
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information becomes visible. However, principal component analysis does require

some contextual knowledge of how the data is collected in order to make valid inter-

pretations. Another distinction to possibly consider would be the contrast between

individual pitchers.

Figure 9: Pitch PCA Biplot - Pitcher Comparison.

Figure 9 shows the contrast between three prominent major league pitchers Chris

Sale, Dallas Keuchal, and Gerrit Cole. The key focus in this comparison is in the

separation of pitch classes between the pitchers and how they vary. For example,

Chris Sale’s Slider (SL) is quite distinct from his other two pitches. Also, his Change-

Up (CH) and Two-Seam Fastball (FT) seem to be closely related but have variation

between the two pitches. In particular, these two pitches have similar movements with

different release velocities. For Dallas Keuchel, there are similarities in the spread

of the pitch types to that of Chris Sale, except for the small cluster of Change-Ups

in the fourth quadrant. Finally, Gerrit Cole throws a lot of Four-Seam Fastballs
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with Change-Ups and Two-Seam Fastballs mixed in the left cluster. His Slider and

Curveball (CU) are the distinct pitches here.

Upon further investigation of these principal components between the pitchers in

Figure 9, the commonality between them is the separation of pitches along principal

component one. This means the most variation between each of the pitches is com-

prised of “Spin Direction”. For this reason, the pitch types for Chris Sale and Dallas

Keuchel clusters are spread similarly along principal component one while Gerrit Cole

has a reflected mapping. This is because Gerrit Cole is right-handed and Chris Sale

and Dallas Keuchel are left-handed. To address the coordinate flip for Change-Ups

between Chris Sale and Dallas Keuchel, PCA was applied to each subset of data for

each pitcher individually. As a result, the principal axes are not orthogonal between

pitchers because they have structurally different pitches.

This leads to a very important concept in how to handle the additional axes for

consideration in Tensor PCA; how to maintain orthogonality of the principal axes.

The main difference between the visualizations in Figure 8 and Figure 9 is in how the

layers were constructed. For Figure 8, PCA was applied to the global data set, then

indexed by left and right handed pitchers for comparison. For Figure 9, the data was

first indexed for individual pitchers, then PCA was applied. In terms of tensors, this

is an sample extension of the CP Decomposition in which there was pitcher-indexed

re-scaling applied prior to PCA.

41



3.2 NMF in Sports Analytics

In 2013, the NBA mandated that each team’s venue be outfitted with player

tracking systems [8]. Since then, many techniques have been applied to the spatial

data collected in the NBA. Shot charts are a notable graphic for sports media outlets

to display during television broadcasts for fan experience. However, basic shot charts

over the course of a game or season can become cluttered and lose their value for

insight. For example, an initial exploration of the spatial component of shots taken

by players in the 2014-15 NBA season may take the form of one of the following types

of visualizations depending on the scope.

Figure 10: Shot Chart - James Harden Figure 11: Shot Chart - Tim Duncan

In Figure 10, we can see a scatter of shots taken by James Harden in the 2014-15

season. For shot charts of this type, there tend to be clusters of dense areas on the

court for around the basket for lay-ups and along the three-point line as these are

common areas for which shots are taken. However, the frequency of mid-range shots

42



between these two areas can vary between players such as with Tim Duncan’s shot

chart in Figure 11. The casual fan of the NBA, is familiar with player positions and

how certain types of player fit a “mold”. Consider a player like Tim Duncan, who

stood at 6’-11”, that was a typical post player that played the “Center” position for

his entire 19 year career. Figure 11 confirms a common bias that post-players do not

deviate far from the basket when taking a shot.

Without knowing the players’ identity, after comparing the shot charts in Figure

10 and Figure 11, one could hypothesize that they were taken by two different types of

players based on their shot selection areas. Prior to spatial data becoming available,

this type of “player binning” was left to domain experts like coaches or scouts that

evaluate players. In recent years, more applications like principal component anal-

ysis and non-negative matrix factorization have offered insights with more objective

sentiment by uncovering mathematical structure beneath the shot charts.

Figure 12 is a generalized heat map of successful shots made in that season by

the 347 individual players in the dataset. The zone, “Restricted Area 2” (RA2) in

Figure 12 is directly under the basket and where the most shots are taken in the

2014-15 NBA season. This is an intuitive observation as well since lay-ups and dunks

happen there exclusively. In the examples so far, we can only determine that players

take shots of minimal distance from the basket with high frequency as do Harden

and Duncan. But outside of that, they differ where they take secondary shots. It is

appropriate to hypothesize if there are other players that have similar shot patterns

to the two prominent players described above.

In a blog post entitled Using Machine Learning to Find the 8 Types of Players
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Figure 12: Court Zone Heat Map

in the NBA , the author describes multiple machine learning algorithms applied to a

similar NBA basketball data set to expand the definition of player types from their

simple position labels [16]. In the same spirit, we are going to apply non-negative

matrix factorization to shooting data to try to uncover different types of shooters

based on their spatial shot selections.

In this application, we begin with a matrix of values for counts of shots taken in

each zone for each player depicted in Figure 12. This matrix, A ∈ R347×12 consists

of 347 players and 12 court zones. By Corollary 2.9, there exists B ∈ Rm×r and C ∈

Rr×12 such that A ≈ BC. We use the following objective function to approximate r,

min
B,C
||A−BC||2F subject to bij, cij ≥ 0 ∀ i, j. (33)

When applying non-negative matrix factorization, observe that the product of B
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Figure 13: NBA NMF Latent Factors

and C matrices is a low rank (r < n) approximation of the original matrix. In this

case, the decomposition of A associates weights to latent factors between the players

and court zones.

Figure 14: Factor Coefficient Map

The factors weights in Figure 14 partition into notable groupings in terms of shot

locations. Factor 1 is heavily weighted for just zone “RA2” which is the restricted area
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directly beneath the basket. Subsequently, factor 2 is dominated by “BA2”, which

is a mild radial extension of RA2. Factor 3 is composed of all 3 point areas on the

court. Factor 4 is made up of mid-range areas around the top of the key and lastly,

factor 5 is composed of the mid-range baseline shots. It is important to note here

that these official court zones were used by Pelechrinis et al. as they include natural

boarders on the court [8]. These factors are capturing a structural relationships that

exists between the zones underlying the heat map in Figure 12.

Player Value Position

Andre Drummond 1.00 C
Tyreke Evans 0.930 SG

DeAndre Jordan 0.919 C
Enes Kanter 0.827 C

Anthony Davis 0.825 PF
DeMarcus Cousins 0.788 C

LeBron James 0.785 SF
Derrick Favors 0.781 PF

Russell Westbrook 0.749 PG
Greg Monroe 0.748 PF

Table 4: Factor 1 Weights

Player Value Pos

Stephen Curry 1.00 PG
Klay Thompson 0.831 SG

Kyle Korver 0.769 SG
James Harden 0.724 SG

JJ Redick 0.695 SG
Damian Lillard 0.684 PG
Trevor Ariza 0.675 SF
Danny Green 0.663 SG

Wesley Matthews 0.598 SG
Robert Covington 0.574 SF

Table 5: Factor 3 Weights

In Table 4, we can see a dynamic group of players that are grouped together

that share similar qualities. This factor is heavily weighted by shots taken in the

Restricted Area. More notable players like that of Andre Drummond, Anthony Davis,

DeMarcus Cousins, LeBron James, and Russell Westbrook, are known for attacking

the rim with aggressive dunks. By their listed positions, four of them are labeled

traditional Centers (C) while others are Power Forwards (PF) and Shooting Guards

(SG). This factor describes players that favor shooting the ball directly underneath

46



the goal in the Restricted Area.

Table 5 shows the top ten weights of players for Factor 3, which profiles 3 point

shooters. For the casual fan, it should be no surprise who the top two players in

this category are. Since the 2014-15 season, teammates Stephen Curry and Klay

Thompson have acquired the collective nickname of the “Splash Brothers” as result

of having higher than average 3 point shooting percentages. In addition to being a

constant long range threat duo, Curry, Thompson, and the Golden State Warriors

also began their 5 year NBA Finals appearance run in 2015.

3.3 Tensor PCA Techniques

The case studies demonstrating PCA and NMF in analyzing baseball pitches and

basketball shots allow analysts to gain insights into the structure of the data collected.

For these unsupervised models, analysis does not yield “absolutes” but rather patterns

to inform further research. This can open a dialogue between researchers and domain

experts in creating new questions about the data. As dimensionality, complexity,

and volume of data in sports analytics increase, these techniques help researchers

ask better questions that can isolate the signal from the noise. In this section, we

introduce tensor decomposition techniques with the same objective of identifying

hidden latent factors beneath the surface of the data.

As previously mentioned Pelechrinis et al. [8] introduced a multi-aspect analytical

framework for analyzing spatio-temporal basketball data called “tHoops”. Their work

is a direct extension of the basketball case study described in this paper to address

a gap created in the NMF approach by taking into account the temporal aspect that
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can affect a player’s shot selection. In this particular review, we will focus on the

general application to the shot selection process by players.

Figure 15: tHoops Framework [8]

Figure 15 is a complete description of the tHoops framework where Xijk is the

number of shots that player i took from court zone j during time k. Pelechrinis et al.

assert that “tHoops identifies prototype patterns in the data, expressed as triplets of

vectors corresponding to the three dimensions of X respectively.” [8] The coefficients

of each vector in the “Player Embedding” matrix correspond to a “soft member-

ship” of each player to the respective component (pattern) [8]. Each component is a

temporal-spatial pattern decomposed from the tensor X.

Similar to how a tensor is a generalization of a matrix, the generalization of SVD

in n-modes is the Canonical Polyadic (CP) or PARAFAC Decomposition [8]. Figure
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15 depicts how X is expressed as the sum of rank-1 tensors.

X ≈
F∑
f=1

af ◦ bf ◦ cf . (34)

In summary, a, b, and c correspond to players, court zones, and period respec-

tively. Each of the F components can be thought of as clusters and the coefficients of

the indices in the component correspond to a degree of association within the cluster.

The larger the coefficient, the closer the association [8]. The component represents

a “soft representation” of players that tend to take shots from similar court zones

at similar times. Consequently, the b and c vectors correspond to latent factors of

spatio-temporal patterns derived from X.

The primary advantage the tensor decomposition approach has over the matrix

factorization techniques is the ability to consider multiple aspects simultaneously,

which allows for richer context for latent patterns. One could argue that we could

compare shot charts directly for a subset of shots taken during a particular game

time, such as the fourth period. But as discussed in the Pitch PCA analysis, doing

PCA (or NMF) locally vs globally are two different projections that approximate

different data structures. Therefore, in taking such an approach, we would have

inadvertently thrown out possibly valuable information related to other time periods

that can interact with shot selections in the fourth period alone. Consequently, as

more contextual factors are taken into consideration, i.e higher dimensions, we lose

more information, making it more difficult to identify quality patterns.

It is important to emphasize that just as with applying PCA and NMF, tHoops

(or tensor decomposition in general) is an unsupervised learning method that makes it

difficult to assess the model. These methods require additional contextual knowledge
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related to the sports, players, and data acquisition methods to interpret the results in

a meaningful way. In other words, using a latent pattern to inform a defensive strategy

against a particular player/team at a particular time does nothing for an individual

that cannot develop defensive strategies. Value is a consumer driven metric, and in

data science, it is assessed by the decision-maker.
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4 APPLICATION TO NASCAR

Background research for applications of data science and machine learning tech-

niques in NASCAR are scarce in the public domain. There certainly is not a shortage

of data collected by the teams to implement common algorithms and analyses, but

unlike the data collected with MLB, NBA, and NFL, the NASCAR data is not made

available through public API’s or other databases. As a consequence, any novel tech-

niques applied and/or developed by individual teams are kept in house exclusively.

NASCAR is an incredibly competitive sport where teams are notorious for pushing

the envelope to get as much speed out of the car as possible. Every aspect of the car’s

body is now measured with laser precision as well as human inspection for mechanical

components by NASCAR officials before and after each race. There have also been

major changes in the style of racing since 2017 with the introduction of “Stage Rac-

ing” and subsequently, a new points system and playoff structure. Lastly, NASCAR

has recently announced the introduction of the “Next Gen” car that will become

standard for all teams to adopt in 2021. With these recent and future changes on the

horizon, teams are eager to maximize the utility of the data available by NASCAR

across multiple levels within the organization.

4.1 Data Source

In early 2018, prior to the inaugural Monster Energy Cup Series (MENCS) race at

Daytona International Speedway, NASCAR announced that timing, scoring, location,

and telemetry data collected from cars during practice, qualifying , and race events

would be shared among teams [15]. Prior to this announcement, this type of data
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was collected by a company called Sports Media Technology (SMT) that provides

data-driven applications accessible to television partners that allow fans to engage

with a data-rich viewing experience in real time [18]. However, teams in the garage

only had access to their own data that was collected from the Electrical Control Unit

(ECU) on the car and could only access it by physically plugging into the car after

the race. Other data streams were collected via data scraping techniques by some

teams which likely prompted the announcement as a response from NASCAR to even

the playing field [15].

The raw data is made accessible to teams by NASCAR from private servers in

real time during races. From there, teams can use the data for custom or third party

applications and data warehousing at individual teams’ expenses. The data used in

this thesis was made available by an industry liaison, in particular, we focus on the

“Timing and Scoring” data for every regular season race in the Monster Energy Cup

Series for the 2018 season. In total, there were 36 races considered in this data set.

Races that did not count towards the NASCAR points scoring structure, specifically

the “Clash”, “Dual” and ”All-Star” races, were not considered.

The raw data contains 362,075 observation and 30 features. Timing and scoring

data is primarily index by lap as each competitor crosses the Start-Finish line. Table

6 shows the first 6 observations of the Timing and Scoring data set which includes

14 categorical features, 15 numerical features and one date-time feature. Table 7

contains lap counts for each stage and track lengths for each race. (Note: ∗ indicates

playoff races.)
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Table 6: 2018 NASCAR Timing and Scoring Data Header

SeriesID SeriesNameShort EventName TrackNameShort TrackName TimingSessionID SessionNameShort SessionName RunType StartDateTime

1 1 MENCS 18HOM HOM Homestead Miami Speedway 2983 Race Ford EcoBoost 400 Race 1542555000
2 1 MENCS 18HOM HOM Homestead Miami Speedway 2983 Race Ford EcoBoost 400 Race 1542555000
3 1 MENCS 18HOM HOM Homestead Miami Speedway 2983 Race Ford EcoBoost 400 Race 1542555000
4 1 MENCS 18HOM HOM Homestead Miami Speedway 2983 Race Ford EcoBoost 400 Race 1542555000
5 1 MENCS 18HOM HOM Homestead Miami Speedway 2983 Race Ford EcoBoost 400 Race 1542555000
6 1 MENCS 18HOM HOM Homestead Miami Speedway 2983 Race Ford EcoBoost 400 Race 1542555000

CarNumber CompetitorName Make LapNumber LapFlag LapTime LapPassTime LapPassLocation LapStanding LapStandingFinal

1 00 Landon Cassill(i) Chv 1 Green 35.311 38.32 Track 33 33
2 1 Jamie McMurray Chv 1 Green 34.176 36.355 Track 21 21
3 10 Aric Almirola Frd 1 Green 33.894 34.864 Track 10 10
4 11 Denny Hamlin Tyt 1 Green 33.503 33.503 Track 1 1
5 12 Ryan Blaney Frd 1 Green 33.844 35.437 Track 14 14
6 13 Ty Dillon Chv 1 Green 34.376 37.411 Track 30 30

LapFastTime LapFastLap LapTimeToLeader LapsToLeader LapTimeToAhead LapsToAhead LapPitStopCount LastLapPitLap LapStartPosition LapsLed

1 35.311 1 4.817 0 0.213 0 0 0 32 0
2 34.176 1 2.852 0 0.067 0 0 0 21 0
3 33.894 1 1.361 0 0.007 0 0 0 10 0
4 33.503 1 0 0 0 0 0 0 1 1
5 33.844 1 1.934 0 0.006 0 0 0 15 0
6 34.376 1 3.908 0 0.008 0 0 0 31 0
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Table 7: Race Track Characteristics

Track Event Stage1 Stage2 Stage3 FinalStage TrackLength(mi)

Atlanta 18ATL 85 170 NA 325 1.50
Auto Club 18CAL 60 120 NA 200 2.00

Bristol 18BRI1 125 250 NA 500 0.53
Bristol-2 18BRI2 125 250 NA 500 0.53
Charlotte 18CHA 100 200 300 400 1.50

Charlotte-2∗(road) 18CHR 25 50 NA 109 2.28
Chicagoland 18CHI 80 160 NA 267 1.50
Darlington 18DAR 100 200 NA 367 1.36
Daytona 18DAY1 60 120 NA 200 2.50

Daytona-2 18DAY2 40 80 NA 160 2.50
Dover 18DOV1 120 240 NA 400 1.00

Dover-2∗ 18DOV2 120 240 NA 400 1.00
Indianapolis 18IND 50 100 NA 160 2.50

ISM ( Phoenix) 18PHO1 75 150 NA 312 1.00
ISM ( Phoenix)-2∗ 18PHO2 75 150 NA 312 1.00

Kansas 18KAN1 80 160 NA 267 1.50
Kansas-2∗ 18KAN2 80 160 NA 267 1.50
Kentucky 18KEN 80 160 NA 267 1.50
Las Vegas 18LAS1 80 160 NA 267 1.50

Las Vegas-2∗ 18LAS2 80 160 NA 267 1.50
Martinsville 18MAR1 130 260 NA 500 0.52

Martinsville-2∗ 18MAR2 130 260 NA 500 0.52
Miami∗ 18HOM 80 160 NA 267 1.50

Michigan 18MIC1 60 120 NA 200 2.00
Michigan-2 18MIC2 60 120 NA 200 2.00

New Hampshire 18LOU 75 150 NA 301 1.06
Pocono 18POC1 50 100 NA 160 2.50

Pocono-2 18POC2 50 100 NA 160 2.50
Richmond 18RIC1 100 200 NA 400 0.75

Richmond-2∗ 18RIC2 100 200 NA 400 0.75
Sonoma 18SON 25 50 NA 110 1.99

Talladega 18TAL1 55 110 NA 188 2.66
Talladega-2∗ 18TAL2 55 110 NA 188 2.66

Texas 18TEX1 85 170 NA 334 1.50
Texas-2∗ 18TEX2 85 170 NA 334 1.50

Watkins Glen 18WAT 20 40 NA 90 2.45
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Initial data exploration of the complete 2018 season of timing and scoring data can

be quite cumbersome with the variety of categorical variables available. For example,

lap times can vary widely between tracks and even with this mind, visualizing the

distributions of lap times between them requires some extra leg work.

Figure 16: 2018 Season Lap Time Box Plots

Figure 16 shows the box plots for green-flag lap times between tracks. There are

significant outliers for lap times that cause the distributions to flatten. This is caused

by the measurement parameters for this data set, namely, crossing the Start-Finish

line. For cars that begin a lap and crash to the point where the car can no longer be

driven, then the car may not come back across the Start-Finish line. Depending on

the type of analysis done on lap times, these incidents would require unique handling
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from track to track based on other observational knowledge that is not recorded in

the data, such as cars being involved in wrecks.

Figure 17: 2018 Season Track Lap Time Box Plots

Total laps completed by position and by car number can be seen in Figure 17.

Two notable observations is the fall off of laps completed in the later positions and for

certain car numbers. For position based lap counts, this is attributed to cars finishing

between positions 30 and 40 are lapped by lead lap cars or do not finish the race due

to wrecks or mechanical failures. For car number based lap counts, slight decreases

in lap counts are the result of similar reasons. However, the sharp drop seen for some

cars is due to part-time participation in races. For this thesis, we focus more on the

frequency of lap counts relative to driver, position, and track.
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4.2 Processed Data

Pre-processing is the most crucial and often time-consuming step in a data science.

Inconsistencies in the data arise for a variety of factors, such as missing values, nonuni-

form indexes for grouping variables, etcetera. Some of the challenges with NASCAR

data in can be dealing with drivers who do not finish races because of mechanical

failures or wrecks or identifying discrepancies in lap times between green flag laps

and caution laps. In addition to multi-aspect nuances that affect the “cleanliness” of

the data due to the nature of the sport, some teams have part-time drivers due to

sponsorship deals and other contractual negotiations. For the 2018 season, each race

consists of 40 competitors that can enter the race, however, only 35 drivers competed

in each of the 36 races in the 2018 season. Similar to tHoops, which considered shot

counts in various court sections by players, we investigated counts of laps completed

by drivers in each position through the 2018 season.

In Figure 18, the heat map is ordered by positions drivers completed laps in

most frequently in for the 2019 regular season. These drivers maintained the top-10

positions with much higher frequency over the course of the season. The driver rating

system in NASCAR, similar to a quarter-back rating in the NFL, is heavily weighted

by “Average Running Position” [17]. With the presentation of this heat map, we

would expect drivers ratings to follow a similar trend aside from points acquired from

stage wins and wins.

It is not uncommon for drivers that typically contend in higher positions during

races log laps in the back of the field due to varying pit strategies, failing pre-race

inspections, or poor qualifying. The heat map in Figure 18 shows how positions with
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Figure 18: Position Heat Map

higher densities are near the top and bottom positions. In particular, note that the

“00” car had 2,116 laps recorded in the 35th position and recorded zero or single digit

lap counts in all position greater than 20th. Meanwhile, the “4” car led 1992 laps

over the course of the season and recorded single or double digit laps below the 25th

position. It is also important to keep in mind that laps recorded in a position is not

only dependent on the driver’s ability and car performance, but also the ability of the

drivers and cars around them. The frequency of successfully blocking passes or failing

to pass cars can cause higher densities for lap counts in positions and conversely for

lower densities.
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4.3 PCA in NASCAR

A typical approach with PCA is as an investigative tool for variance between

features. In this case, the primary interest is the variation in laps completed between

positions among drivers in the Monster Energy Cup Series. Similar to MLB pitches

and NBA shot selections, variations in laps completed in positions can vary widely

depending on a number of factors. Wrecking a car early in a race or leading the

majority of the race can lead to seriously asymmetric distributions of position lap

counts and both can happen to a highly skilled drivers. The goal of PCA in this

case is to relate drivers by reducing the dimensionality of the positions into principal

components (PC’s).

Figure 19: Position-Laps PCA Biplot.
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The PCA Biplot in Figure 19 has an interesting spread among the drivers with the

more dense cluster of drivers influenced by negative components of PC 1 and more

dispersed along the positive components. As PCA is an exploratory unsupervised

method, we can begin to ask questions about this cluster of drivers in quadrant 3

that can lead to other analyses. For a researcher with domain knowledge and watches

races routinely, two things are immediately obvious about this cluster of drivers. Each

of them, with the exception of the 41, 42, and 9 cars had multiple race wins. Also,

this cluster corresponds to cars with higher densities in higher positions in the heat

map. We can further investigate the principal components individually to identify

patterns in our data.

Figure 20: Principal Component Loadings.
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Figure 20 is a visual representation of the the element values for the first two

columns of U resulting from the SVD. These orthogonal vectors are linear combina-

tions of the original features (Positions) projected into the column space. Principal

Component 1 is relatively split into two major feature weights for positions greater

than 18 and with negative values and positions less than 18 with positive values. In a

general sense, we can conclude that approximately 48 percent of the variation in laps

completed by position is explained by the frequency of recording laps above position

18 or not. Principal Component 2 has a slightly different shape with negative values

for the top 7 and bottom 10 positions, but positive values for positions between 7

and 30. This corresponds to the position densities previously noted in the Figure

18 heat map observed where cars that run in positions above 10 and below 30 more

frequently tend to have less variation. Meanwhile, positions in the the middle of the

pack tend to change position more frequently.

4.4 NMF in NASCAR

While applying PCA gave us insights regarding the variation between position lap

counts, we are further interested in how drivers are rated in regard to their lap counts

and if there are subclasses of drivers. We have already seen an interesting grouping of

drivers by generating the PCA Biplot in Figure 19. Since we are dealing with strictly

non-negative counts of laps, NMF is appropriate method in extracting other latent

factors from the data. We will take the same approach as in the basketball case study

but with “Drivers” and “Positions” instead of “Players” and “Zones”.

In Figure 22, we can see three distinct groupings for each of the factors by position.
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Figure 21: NASCAR NMF Latent Factors

By the weights associated to these positions, we can associate factor one to a tendency

to complete laps in the top 10. Factor two shows a high tendency in positions 20

through 25, while factor three highlights positions 30 through 35. In contrast to

PCA, where we observed a distinction between top 20 and bottom 20, NMF offers a

slightly more granular separation with an additional grouping.

Figure 22: NMF Position Map
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Figure 23 depicts the driver coefficients from the factorization where we also see

clear groupings of drivers. The drivers with the highest weights for factor one corre-

spond to the the factor groupings in Figure 22. Attention is immediately drawn to

the highly weighted drivers, as we are now able to cluster drivers’ position tendencies.

The most notable feature of this mapping is the cluster of drivers for factor 1, in that

each of the top 14 drivers in this cluster made the playoffs. The outliers that just

made it into the playoffs were the 88 and 3 cars. The moderate weights for these cars

indicates that these driver primarily run in the middle of the pack but also spends a

considerable time in the top 10 as well.

Figure 23: NMF Driver Map

In comparing Tables 8 and 9, we see familiar names and car numbers in the Factor

1 grouping as we did in the primary PCA cluster. However, with the NMF approach,
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Car # Value Competitor Name

41 1.000 Kurt Busch
22 0.990 Joey Logano
9 0.967 Chase Elliott
4 0.960 Kevin Harvick
18 0.954 Kyle Busch
2 0.940 Brad Keselowski
78 0.919 Martin Truex Jr.
11 0.915 Denny Hamlin
14 0.880 Clint Bowyer
10 0.869 Aric Almirola
12 0.849 Ryan Blaney
42 0.807 Kyle Larson
20 0.666 Erik Jones
48 0.536 Jimmie Johnson
88 0.388 Alex Bowman

Table 8: Factor 1 Driver Weights

Car # Value Competitor Name

37 1.000 Chris Buescher
6 1.000 Matt Kenseth
38 0.954 David Ragan
13 0.895 Ty Dillon
47 0.839 AJ Allmendinger
95 0.825 Regan Smith
1 0.801 Jamie McMurray
19 0.782 Daniel Suarez
24 0.765 William Byron
17 0.764 Ricky Stenhouse Jr.
34 0.764 Michael McDowell
21 0.659 Paul Menard
43 0.648 Bubba Wallace
3 0.623 Austin Dillon
88 0.611 Alex Bowman

Table 9: Factor 2 Driver Weights

there is more distinction made between groups of drivers. There is evidence that

the 4 and 18 cars were the dominant cars in 2018 according to the raw lap counts

depicted in Figure 18, but get edged out by three other drivers according to factor

one in Table 8. Each of the drivers in factor one were playoff contenders by the end

of the season with the exception of the 88 car Alex Bowman. Surprisingly, the 3 car

managed to sneak into the playoffs despite being ranked so low in factor two, the

“Middle-of-the-Pack” group.

Factor two consists of drivers that could have made a late run in the season for a

playoff bid. In fact, in the current 2019 season at the time of writing the 24 and 88

cars made the playoffs with relative ease. The 19 car driven by Daniel Suarez had a

strong year and switched teams from Joe Gibbs Racing to Stewart-Hass Racing and

just missed the playoffs. These is evidence suggesting there’s more to being weighted
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heavily in a group than laps counts in position alone that describe the performance of

drivers. For this reason, it would be advantageous to investigate the tensor structure

type of this data with track as an additional axis.
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4.5 Tensor Decomposition in NASCAR: Part 1

For this application, we extend the application of PCA to the heat map in Figure

18 to a higher order tensor structure. Where we previously investigated lap counts

by position for each driver in the form of a heat map or incidence matrix, we will add

the additional feature of “Track” as a third axis in the form of an order three tensor.

Figure 24 shows an example structure for this tensor indicating the axes where the

indices will consist of the number of laps recorded by driver, position, and track in

the 2018 season. First, we will introduce a proof of concept and formally define the

algorithm for Function Space Tensor Decomposition in the general case of an order

three tensor. Note that this methodology can be extended for real or complex higher

order tensors. Then we will demonstrate the application for this NASCAR data with

the goal of identifying latent patterns with respect to driver, position, and track and

discuss the patterns in context.
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Figure 24: Position, Car, and Track Tensor Example
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Consider an order-3 tensor X ∈ RM×N×R. Let, X be the tensor such that,

X = [Xm::]
M
m=1 = [xm,n,r]

M,N,R
m,n,r=1 (35)

Given the tensor X, we can define an action on the vector space RM by,

Xv =
M∑
k=1

Xk::vk (36)

Then X is a linear transformation and a mapping X : RM → RN×R. In addition, X

has an inner product, and norm defined by,

〈Xk::,X`::〉 =
∑
ij

XkijX`ij and ||Xk::|| = (〈Xk::,X`::〉)
1
2 (37)

Therefore, X is a normed inner product space, that generalizes the concept of a

“column space” of a matrix. As a result, X has an adjoint given by mapping, XTX :

RM → RM , which is a matrix of inner products of the original tensor slices:

XTX = [〈Xk::,X`::〉]Mk,`=1 (38)

Consequently, XTX is a symmetric positive semi-definite matrix and SVD yields

XTX = VΣ2VT. By Theorem 2.4, the eigen-decomposition of the symmetric matrix

XTX indicates that the columns of V form an orthonormal basis for XTX where the

singular values are ordered σ1 ≥ σ2 ≥ ... ≥ σM ≥ 0. Then,

XTX = VΣ2VT =⇒ U = [u1|u2|...|uM] where uk =
1

σk
Xvk (39)

Lastly, since the columns of V form and orthonormal basis for XTX, the principal

components are obtained by,

P = [p1|p2|...|pM] where pk = Xvj (40)
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Consequently, the “principal components” are tensors that are one order lower

than X . In this case, since our tensor X is a 3rd-Order tensor, the princiapl com-

ponents are 2nd-Order tensors, i.e matrices. Note that by defining the action of the

tensor in equation (36) as a linear transformation on the vector space of the first

index, namely RM in the formal definition, we are free to use each of the indices to

define this action. As a result, we obtain orthogonal projections of the corresponding

adjoint matrix of inner products relative to the respective action defined. This allows

us to view the principal components in each subspace. This can be thought of as pivot

for constructing the principal components by initializing the feature space index of

the tensor in equation (36).

In Figure 24, our tensor X is defined by the axes “Car Number”, “Position”, and

“Track”. There are 35 distinct drivers, 24 individual tracks, and 40 positions cor-

responding to X ∈ R35×24×40. So each element of the tensor xm,n,r corresponds to

the number of laps that Driver m completed at Track n in Position r. Then Xm::

is relational heat map of laps counts by position and track for driver m, X:n: is the

relational heat map of lap counts by driver and track, and X::r is the relational heat

map of lap counts by driver and track for each position. We begin the analysis by in-

vestigating the first feature space in the tensor structure for the NASCAR application

as our pivot, “Car Number”.

We define the action on the “Car Number” feature space, R35 by,

Xv =
35∑
k=1

Xk::vk (41)

Applying the computations in the preceding algorithm yields principal components

in the subspace for two variables, in particular, the adjacent indices, “Position” and
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“Track”. Therefore, rather than principal components being vectors in the matrix

PCA case, our principal components are 2-dimensional arrays. We retain orthogo-

nality in the function space defined by the mapping XTX from SVD. The resulting

singular values from SVD applied to XTX, indicate the amount of variance explained

for the lap counts in the tensor relative to our pivot feature space, “Car Number”(Or

rather “as projected onto the principal axes in the car number feature space”). Each

singular value in decreasing order corresponds to a principal component.

si =
σ2
i

||Σ2||2 where
∑35

i=1 si = 1

s1 = 0.5586, s2 = 0.2001, s3 = 0.0795, ..., s35 = 4.72× 10−7

(42)

Figure 25: Function Space Tensor PC 1

The first principal component for the decomposition of the tensor can be seen

in Figure 25. This component explains approximately 55.88 percent of the variation
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in lap counts in the feature space. These principal components can be thought of

a profiles ranked by their singular values. Note that in this heat map, there are

variations in significance between tracks and positions. The highest weighted tracks

in order are Martinsville (MAR), Richmond (RIC), Dover (DOV) and Bristol (BRI).

These tracks have a particular commonality between them, with the exception of

Dover, in that MAR, RIC, and BRI are all short tracks that are approximately 0.5

mile in length that run 400 or 500 lap races. Another interesting observation is that

Sonoma (SON), Charlotte Roval (CHR), and Watkins Glenn (WAT) are the least

weighted tracks overall and are all road courses. Road courses tend to be longer in

track length and run between 90 and 110 laps in total at these tracks.

Figure 26: Function Space Tensor PC 2

In Figure 26, the second principal component explains approximately 20 percent
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of the variation in lap counts in the feature space and shows separation largely be-

tween the top ten positions and the positions between 25 and 37. We also saw in the

NMF analysis a similar separation of position tendencies in Figure 22. As previously

mentioned, tracks have many characteristics that teams account for that affect deci-

sions that influence position at any given time during a race. Specifically, at MAR,

RIC, or BRI, lap times are can range between 15 and 25 seconds. If a car is forced

to make a green flag pit stop, then that driver will inevitably be multiple laps down

by the end of the pit stop. Conversely, at road courses, lap times can range between

75 and 85 seconds, for which a green flag pit stop can be completed without losing a

lap behind the leader.

In summary, the ordering of the weights by track really only correspond to raw

total laps counts, but the fall off across positions is directly explained by the fact

that cars in the back of the pack tend to get lapped and subsequently, tend to record

less laps than those who stay on the lead lap. However, in each of the subsequent

principal components, the same six tracks are dominating the significance because of

the variation in lap counts between tracks. Since raw lap counts are dominating the

variation, the low lap counts at the road courses WAT, CHR, and SON get practically

washed out as background noise.

The reason this is important is because in contrast to the tHoops framework, which

used spatial data points relative to players and time, races do not have consistent time

intervals across every track. This would be analogous to how tHoops binned time into

quarters, but games having varying quarter lengths which would significantly affect

the number of shots taken. This is what makes NASCAR such a unique sport to do

71



analysis.

Although these results are skewed by the high lap totals for short tracks, they

confirm that this approach is indeed capturing the variation. Laps themselves are

not uniform across each track. Tracks have different shapes, lengths, surface types,

and banking degrees in the turns. For example, leading 50 laps at Bristol Motor

Speedway is approximately 25 miles and would reflect 10 percent of the entire race.

Meanwhile, 50 laps at Daytona International Speedway is approximately 125 miles

and 25 percent of the race. Each track offers different characteristics that affect

car performance and situational decision making by drivers and crew chiefs that can

wildly influence position at any given time. In order to get deeper insights, we need

to address the scale of lap units for each track.
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4.6 Tensor Decomposition in NASCAR: Part 2

Feature scaling can be rather troublesome in higher order data structures. In the

case for our tensor, we would need to address which index to perform the scaling

respectively. Note that we have already addressed variation in races competed by

drivers by filtering out drivers that competed in every race. Positions have a natural

maximum of 40 available participants due to qualifying restrictions. As we have seen,

it isn’t the number of tracks that is the issue but the number of laps between them.

Note that depending on how axes are defined for general tensors will dictate a scaling

methodology which will be covered in the further work discussion. In this case, we

simply re-scaled the number of laps as a percentage of the total laps run at each track

in the season. In doing so, we get more informative principal components for the

underlying tensor network structure as “profiling components”.

The sequence of the approach is still the same, and we will first consider the pivot

mapping from the “Car Number” feature space and define the action on R35 by,

Xv =
35∑
k=1

Xk::vk (43)

After applying SVD to the adjoint XTX, we obtain the following variance measures

from the singular values for each of the principal components:

s1 = 0.5912, s2 = 0.1638, s3 = 0.0707, ..., s35 = 0.0009

Note that the first 3 principal components account for approximately 82 percent of

the variation with decreasing amounts accounted by each of the subsequent singular

values.
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Figure 27: Track-Position Profile 1

The first principal component is depicted in Figure 27 where we can see almost a

contrast heat map than before, but with the same general qualities. Again, the tracks

are ordered by cumulative significance and we see the same fall off trend for positions

for each track. In general, we tend to see higher percentages of laps recorded at higher

positions, but in this case BRI has much lower overall significance. Bristol is a very

unique track in relation to every other track in that given that it is a half-mile track,

it is the only track that has pit stalls on both the front stretch and the back stretch.

Depending on the location of a driver’s pit stall relative to the Start-Finish line,

this could significantly impact they enter and exit pit lane. Because these position

records are taken as a car crosses the Start-Finish line, the magnitude of positions

lost or gained can be heavily impacted for any given pit lane event.
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Figure 28: Track-Position Profile 2

Principal component two accounts for approximately 16 percent of the variation

and we see the same trend in the separation between the front runners and back

of the pack. It is important to note the consistent insignificance we see in last few

positions that can be easily explained by drivers that wreck early in a race and are

unable to finish will consequently have lap completion rates close to zero. There are

two observations that stick out in this plot regarding Charlotte (CHA) and Daytona

(DAY). The highly significant cell in CHA position 1 is of particular interest in that

Kyle Busch (18) led 377 of the 600 laps. Also, Daytona is well-known for “The Big

One” as it pertains to crashes that occur at almost every race there. At the 2.5

mile super-speedway, speeds exceed 200mph regularly as drivers form single file lines

around the track. At these speeds, and the proximity of the cars, a miscalculation
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maneuvering through traffic can, and does, cause significant pile ups where higher

numbers of cars do not finish the race. Bristol also shares this characteristic due to

the limited lateral track space for cars to fight for position, but at much lower speeds.

In summary, this component is capturing the positions where highest percentage of

laps are recorded for each track.

Next, we consider a different pivoting strategy to obtain principal components in

a different feature space. This time we focus on the “Track” pivot to develop the

notion of “Driver-Position” profiles. This time, we define the action on R24 by,

Xv =
24∑
k=1

X:k:vk (44)

After applying SVD to the adjoint XTX, we obtain the following variance measures

from the singular values for each of the principal components:

s1 = 0.9149, s2 = 0.0015, s3 = 0.0011, ..., s24 = 2.77× 10−4

Here we obtain approximately 93 percent of the variation by the first two principal

components, and more notably, approximately 91 percent in principal component one

alone.

Through the analysis of the the NASCAR data so far with the results from PCA

and NMF revealing the separation of drivers relative to positions, we have developed

a sense of how drivers typically perform. The high amount of variation explained by

a 2-dimensional array principal component in Figure 29 shows a similar heat map to

the original heat map in Figure 18. However, when we account for the additional

feature “Tracks” and utilizing the tensor structure, the first principal component

“Car-Position Profile” has a much clearer picture of where drivers tend to run, at
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Figure 29: Driver-Position Profile 1

least in 2018. In the context of the 2018 playoffs, the 4, 18, and 78 car were each

competing for the championship in Homestead as part of the final four drivers in the

NASCAR playoff structure. The fourth driver edged their way into the championship

round ahead of three drivers that ranked higher in Figure 29 by winning a crucial

race in the final lap prior to the championship. The 22 car made the final playoff

round and ended up winning the race at Homestead for the 2018 championship. As is

a common theme in sports analytics, capitalizing on analytical trends can get a team

to the playoffs, but once there, a single “black swan” event can change the likeliest

of outcomes.

Lastly, we will consider the pivot strategy to obtain principal components in the

“Position” feature space. This will allow us to develop the notion of “Driver-Track
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Profiles”. This time, we define the action on R40 by,

Xv =
40∑
k=1

X::kvk (45)

After applying SVD to the adjoint XTX, we obtain the following variance measures

from the singular values for each of the principal components:

s1 = 0.5193, s2 = 0.2081, s3 = 0.0957, ..., s40 = 4.64× 10−5

Figure 30: Driver-Track Profile 1

The first principal component in this feature space in Figure 30 accounts for

approximately 52 percent of the variation and depicts trends in how well drivers

run at each track in 2018. We are able to pick out some hot spots, such as the

22 car at Homestead (HOM), the 9 car at Watkins Glenn (WAT), and to 18 car at
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Charlotte (CHA) to name a few. However, this component requires some substantial

contextual knowledge about the drivers and tracks to interpret. Keep in mind that

the value for each tensor element is the percent of total laps held by each driver, in

each position at each track. It is noteworthy to pay attention to the low significant

cells for drivers, especially the drivers that we are used to seeing at the top positions.

Some key events took place to cause these cold zones such as the 4 car finishing 24th

at California (CAL) and 40th at Charlotte (CHA) due to a crash early in the race.

The 22 car crashed on lap 1 at Watkins Glenn (WAT) and finished last. The 78

car struggled at Indianapolis finishing 40th due to a mechanical failure on lap 41 and

crashes caused short outings for the 18, 9, and 2 cars at Daytona (DAY).

Figure 31: Driver-Track Profile 2

Principal component two accounts for approximately 21 percent of the variation
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and has similar hot spots for drivers and tracks that were noted in principal component

one with much less noise. In fact, a closer look at these drivers for races at these tracks

reveals exactly where drivers led the most laps. In some cases, such as the 18 car

at Charlotte (CHA), the 9 car at Watkins Glenn (WAT), and the 78 car at Pocono

(POC) and Kentucky (KEN), these hot spots correlate to wins. Leading the most

laps is relatively correlated with winning the race, however, in California, the 18 and

78 cars both led for the majority of the race until the 78 car ran away with the lead

in the last 32 laps winning by a margin of approximately 11 seconds. The 42 car led

242 laps at Darlington (DAR) and gave up the lead to the 2 car with 22 laps to go in

the race. In summary, this second component profiles were drivers dominated leading

races.

There is no doubt that just as with PCA or NMF, interpreting principal com-

ponents and latent factors generated by these methods requires necessary contextual

knowledge to pick up on patterns with utility. For example, utilizing the “Driver-

Track Profiles” can guide research into other aspects of the race to target certain

drivers and investigate their trends in other relational data sets that can lead to

other competitive insights. The indices chosen for this tensor decomposition method

can be extended into other feature analyses such as investigating lap times over the

course of a race as non-uniform time series. The underlying network structure for

tensors allows for more flexibility than the CP and Tucker Decomposition approaches

while maintaining rigid decompositions without sacrificing interpretability.

80



5 CONCLUSION

Further work in this area is inevitable stemming from a number of fields such as

multi-linear algebra, network dynamics, and functional analysis. Tensor PCA and

decomposition techniques are in high demand with the increased frequency of multi-

relational data structures utilized in practice. As machine learning and computational

methods continue to be developed, tensor structures will remain as the fundamen-

tal structure for applications in the field various analytical context including sports

analytics. A couple of things to consider moving forward would be to develop the

mathematical framework more formally and include general finite order tensors of

real and complex valued vector spaces.

The next area to address is the computational aspect of the application. In this

thesis, we use general python packages such as pandas, numpy, matplotlib, scipy, and

Tensorly. We also incorporate R for other tasks with data manipulation and plotting

packages included in the tidyverse as well as the rTensor package for converting data

frames into tensor objects. There are many other packages, in other languages as

well, designed to carry out tensor products, decompositons, and manipulations such

as vectorization and matricization covered in Chapter 2. Additional packages may be

available to better utilize the network structure to further develop the function space

methodology more efficiently to complement existing packages or built into new ones.
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APPENDICES

1 Appendix A - Data Sources

1.1 Case Study: MLB Pitch Analysis

Data retrieved from https://www2.stat.duke.edu/courses/Summer17/sta101.001-

2/uploads/project/project.html

1.2 Case Study: NBA Shot Analysis

Data retrieved from https://github.com/kpelechrinis/NBA Shot Data [8].
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2 Appendix B - Code Implementation

2.1 Python Code

# Import necessary packages
%matplotlib inline
from matplotlib import pyplot as plt
from scipy import linalg
import numpy as np
import pandas as pd

# Import data and select relevant features
Timing18df = pd.read_csv(’TimingLaps2018Normalized.csv’)
tdf = Timing18df [[’TrackNameShort ’,’CarNumber ’,’

LapStanding ’,’LapPct ’]]

# Create lists of indices
CarNumbers = tdf.CarNumber.unique ()
CarNumbers.sort()
Positions = tdf.LapStanding.unique ()
Positions.sort()
Tracks = tdf.TrackNameShort.unique ()

# Create list of group keys
XDf = tdf.groupby ([’CarNumber ’,’TrackNameShort ’,’

LapStanding ’])
Tgroups = list(XDf.groups.keys())

# Assign lengths of indices
m = len( tdf.CarNumber.unique () )
n = len( tdf.TrackNameShort.unique () )
r = len( tdf.LapStanding.unique () )

# Create Multi -Dimensional Array
X = np.zeros( (m,n,r), dtype = float )
for i in range(m):

print(’.’, end = ’’)
for j in range(n):

for k in range(r):
group = (CarNumbers[i], Tracks[j], Positions[k

] )
if( group in Tgroups):

X[i,j,k] = XDf.get_group(group).iloc [0][’
LapPct ’]

t = X.astype(float)

# Note: Adjust m and k for pivot index
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m = t.shape [0]
THT = np.array([ [ (t[k,: ,:]*t[l,:,:]).sum() for k in

range(m)] for l in range(m)] )

# Apply SVD and obtain singular values
V,Sigma , V = linalg.svd( T T )
np.cumsum(Sigma **2)/sum(Sigma **2)

# Obtain Principal Axis and Principal Component
# Note: Adjust V column index for corresponding Principal

Axis
U_0 = sum([t[k,:,:]*V[k,0] for k in range(m) ])
P0 = U_0**2 / sum((U_0 **2).flatten ())

# Plotting Principal Component Heat Map
# Note: Adjust labels for relative pivots and axes
fig , ax = plt.subplots(figsize = (10 ,10))
plt.imshow(P0, cmap = ’plasma ’)
plt.colorbar( fraction =0.025 , pad=0.04, label = ’

Significance ’)
plt.xlabel(’Position ’)
plt.ylabel(’TrackId ’);
plt.yticks(ticks = list(range(0,n)),labels = Tracks)
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