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ABSTRACT

Takens Theorem with Singular Spectrum Analysis Applied to Noisy Time Series

by

Thomas Torku Kofi

The evolution of big data has led to financial time series becoming increasingly com-

plex, noisy, non-stationary and nonlinear. Takens theorem can be used to analyze

and forecast nonlinear time series, but even small amounts of noise can hopelessly

corrupt a Takens approach. In contrast, Singular Spectrum Analysis is an excellent

tool for both forecasting and noise reduction. Fortunately, it is possible to combine

the Takens approach with Singular Spectrum analysis (SSA), and in fact, estimation

of key parameters in Takens theorem is performed with Singular Spectrum Analysis.

In this thesis, we combine the denoising abilities of SSA with the Takens theorem

approach to make the manifold reconstruction outcomes of Takens theorem less sen-

sitive to noise. In particular, in the course of performing the SSA on a noisy time

series, we branch off into a Takens theorem approach. We apply this approach to a

variety of noisy time series.
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1 INTRODUCTION

The financial world is evolving with many of its institutions having to deal with

the analysis of big financial time series data. Stock markets in particular are using

ideas from fields like data science, data compression, machine learning, predictive

analysis, information theory and among others to analyse these data. Thus the need

for a good modelling and forecasting technique cannot be overemphasized.

Previous studies [37] show that classical modeling and forecasting techniques do

not have good performance due to factors like non-stationarity, volatility of the stock

market, policy changes, technological changes, the presence of noise, etc. The main

assumptions underlying these techniques are linearity and normality which are re-

strictive and limited in scope. As a result, in many cases, poor approximations of the

actual data occur when these assumptions are applied.

The presence of noise significantly reduces the efficiency level of the technique used

in analyzing the data. Let xt = st + εt (t = 1, ..., n) be a time series which behaves

as a stochastic dynamic system. Then the deterministic part is st [36]. The term

εt refers to the variability or the noise in the time series xt and the portion which

makes it stochastic instead of entirely deterministic. There are two major methods

for analyzing noisy time series. According to the first method, the noise is ignored

and a forecasting model is fitted directly from the noisy data with the hope of extract-

ing the underlying deterministic dynamics. The second method entails filtering the

noisy data to reduce the noise levels before forecasting. Examples of both linear and

nonlinear noise reduction methods include simple nonlinear filtering, singular value

decomposition (SVD), local projective, and autoregressive moving averages (ARMA)
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model. According to [51] SVD-based approaches are more effective in noise reduction

than the other ones.

Research has revealed that most financial time series are nonlinear. This calls

for the application of nonlinear methods [16, 39, 51]. The Takens approach is used

to analyze and forecast nonlinear financial data but only if it is not noisy. In con-

trast, the Singular Spectrum Analysis (SSA) technique is a powerful tool that can

be used for noise reduction and forecasting of both linear and nonlinear, stationary

and non-stationary time series [37]. It is interesting to note that SSA incorporates

the elements of classical time series analysis, multivariate statistics, dynamic systems,

multivariate geometry and signal processing [32]. The SSA also incorporates filtering

of the time series and SVD [36].

It is possible to combine the Takens approach with SSA to analyze financial time

series. It is evident that we can estimate the key parameters in Takens theorem us-

ing SSA. In this work, we combine the denoising abilities of the SSA together with

Takens approach to make the reconstruction of the Takens manifold less sensitive to

noise. This work is made up of five chapters including the introduction. In Chapter

2, we provide the background to the study. In Chapters 3, we extensively present our

methodology. In Chapter 4, we make applications to a given data set and present the

results. The conclusions and discussion are given in Chapter 5.
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2 BACKGROUND

The novel Singular Spectrum Analysis came to the limelight when Broomhead

and King [14, 13, 32] and Broomhead et al. [11, 32] made their first publication on

it. Since their publication, SSA has become popular in the statistical world and

beyond. SSA has myriads of applications including finance, data science, statistics,

geosciences, climate change and many others. For example, SSA has now become a

standard tool for the analysis of climatic, meterorological and geophysical time series,

according to, Vautard and Ghil [54, 32], Ghil and Vautard [31, 32], and Yiou et al.

[56, 32].

The methods and procedures involved in SSA have currently engendered many

authors to write several papers and publications. This tells us how powerful this

statistical tool is. For example, authors like Vautard et al. [55, 32], Ghil and Taricco

[30, 32], Allen and Smith [7, 32], Danilov and Zhigljavsky [20, 32], Yiou and et al.

[57, 32] made massive references from the first publication on SSA [32]. The first

introductory book on this subject was published by Elsner and Tsonis [25, 32].

The main goal of the basic SSA is to decompose the original series into a sum

of series so that each component in this sum can be identified as either a trend, pe-

riodic or quasi-periodic component or noise [35, 32]. The capabilities of basic SSA

include ascertaining the solution to the following problems: change-point detection;

determining structure in short time series; smoothing; seasonal component extrac-

tion; periodicities with different amplitudes extraction; extracting complex trends

and others [35].

The basic SSA primarily involves two stages – decomposition and reconstruction.
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The decomposition stage is divided into two steps: embedding and singular value de-

composition (SVD). The reconstruction stage has two parts: grouping and diagonal

averaging. These two stages make up the basic SSA algorithm [32]. The summary

of this algorithm is as follows. First, a one-dimensional time series is transformed

into a higher dimension representation whose dimension is called the window length.

This higher dimensional time series is called the trajectory matrix. The second step

involves computing the SVD of the trajectory matrix. The next step is the grouping

step which involves splitting the matrices from the SVD into several groups. By tak-

ing the average along the diagonals of each group and combining them into one tine

series we obtain the approximated time series of the original or initial series [32].

2.1 Time Series

A time series is the collection of quantitative observations that are measured

successively and evenly spaced in time intervals [8]. Data that can be classified as

time series include annual rainfall, daily or weekly closing price of stock, number of

death cases in the year and recording of temperature. A time series that can be

measured as a single variable is termed as univariate. If two or more variables are

measured then we call it multivariate. When we measure time series at discrete or

finite steps or points, then we have a discrete time series. The data set used in this

work is a discrete time series. The mathematical expression for a discrete time series

is xt, t = 0, 1, 2, . . .. In effect, xt is considered to be a random variable. However,

observations which are measured over a specified interval is known as a continuous

time series [5].
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Generally speaking, a time series has four major components, namely: seasonal,

cyclical, trend and irregular. Seasonal variation in time series occurs as a result of

changes in the weather and climate conditions. For example, the increase in the sales

of winter clothes is caused by seasonal variation. Repeated patterns or cycles due

to medium term changes as seen in the financial markets lead to cyclical variation.

Eventualities which are not repetitive in nature like earthquakes, flood, war and other

natural disasters create a scenario in time series referred to as irregular or random

fluctuations. A trend in time series occurs when there is a pattern of continuous

increase, decrease or stagnation over time. For example, there is an upward trend in

the rent of city apartments and a downward trend in birth rates [32, 5].

2.1.1 Time Series and Stochastic Process

A stochastic process is a non-deterministic process [5]. It involves some random-

ness and probability. Time series is also stochastic in nature in which case it is

assumed to follow some probability model [18] that explains the joint distribution

of a random variable. This means that there is uncertainty associated with the pre-

dictability of future values of the series. Each time series variable xt is considered by

assumption to be independent and identically distributed (i.i.d) and follows a normal

distribution [5]. This may not always be the case. Statistical properties such as mean

µ and variance σ2, which are not contigent upon time, are very useful in describing

the stationarity of a stochastic process. It must be observed that the square root of

the variance gives us the standard deviation σ. There are two types of stationary

process: weak and strong, which is also known as strict [38].

13



Definition 2.1 A strong stationary process occurs if the joint probability distribution

function of {xt−τ , xt−τ+1, . . . xt, . . . xt+τ+1, xt+τ} does not depend on the concept of

time t for all τ [38].

Definition 2.2 A process {xt, t = 0, 1, 2, 3, ...} is said to be weak stationary if the

statistical properties or moments of the process depend only on the time differences

[18, 38].

Definition 2.3 Non-stationarity in time series occurs when the mean and the vari-

ance of the stochastic process change over time [38].

2.1.2 Linear and Non-linear Time Series

A time series is either linear or nonlinear. A major part of time series analysis is

the white noise or the error term.

Definition 2.4 White noise is the error term emanating from a stationary random

process. So a stationary time series denoted as ρt is said to be white noise if the

Corr(ρt, ρt+τ)=0 given that t 6= t+ τ . The main assumption underlying ρt is that the

expected value or the mean of all the errors is zero. The mathematical expression is

E(ρt) = E(ρt|ρt+1, ρt+2, ....) = 0 (1)

14



Definition 2.5 A linear time series is any time series that can be expressed in the

form

xt = µ+
∞∑

j=−∞

φjρt+j (2)

where µ is the mean of xt and {ρt} are the (i.i.d) random variables [4].

Definition 2.6 A time series is nonlinear if it does not satisfy Equation (2).

2.1.3 Financial Time Series

Financial time series are the financial data obtained through the financial markets

such as the stock exchange market. They relate to financial asserts such as stock,

bonds, equities and others. Price, both historical and current, and returns are key

factors that influence the stock exchange market. Due to the volatility nature of stock

market, prices of financial assets fluctuate. This makes financial time series mostly

nonlinear, complex and non-stationary. There is also the issue of uncertainty in the

financial market such that good prediction models must be constructed to predict

future prices.
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2.2 Singular Value Decomposition

The Singular Value Decomposition (SVD) is a matrix factorization technique in

which a given matrix is factorized into product of matrices [9]. The SVD is widely

used in linear algebra, data compression, and linear least-squares problems [6].

Definition 2.7 A matrix formed by changing the rows of the original matrix into

columns is called the transpose matrix. The transpose of matrix X is written as XT .

Definition 2.8 A matrix X is orthogonal if XXT = XTX = I, where I is the

identity matrix.

Definition 2.9 If X is a matrix, then its singular values are the roots of its covari-

ance matrix, XTX.

Definition 2.10 Let X be an m× n matrix. A number s ≥ 0 is a singular value

of X, if there exist u 6= 0 such that

XTXu = s2u (3)

or equivalently, there exist v 6= 0 such that

XXTv = s2v. (4)

Let v1, ..., vm be an orthonormal set of left singular vectors and let u1, ..., un be

an orthonormal set of right singular vectors corresponding to singular values

s1 ≥ s2 ≥ ... ≥ sr > 0. Then V = [v1|...|vm] and U = [u1|...|un] are both orthogonal.

We use sr because r is the rank of X.

16



Definition 2.11 If X is an m× n real matrix then its SVD is

X = UΣ̃V T (5)

where U and V T are both orthogonal matrices (of dimensions m × m and n × n

respectively) and

Σ̃ =

[
Σ 0
0 0

]
(6)

is an m× n matrix, where

Σ =

s1 . . . 0
. . .

0 . . . sr

 (7)

is a diagonal matrix of nonzero singular values s1 ≥ s2 ≥ ... ≥ sr > 0 of X [9].

2.3 Entropy

Shannon [49] introduced the idea of information entropy. Entropy can be seen as

the average information from a process. It is usually measured in bits and related to

probability. A bit (binary unit) is a parameter b whose values are either 0 or 1. For

example, the entropy of tossing a fair coin is 1 bit, because all the outcomes are 1 bit

length. Probability and information are closely tied together. The former is based on

counting occurrences in n trials as n approaches infinity (∞). The latter is based on

the average occurrences of the patterns in n trials for very large n [2].

Definition 2.12 Let X be a discrete random variable. Then the entropy of X, de-

noted as H(X) is defined as the average information in all the possible outcomes of

X produced over n trials as n becomes arbitrarily large.
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Definition 2.13 If X = UΣV T and if we let

pj =
sj∑
sj

(8)

then the singular entropy of X is

H(X) = −
n∑
i=1

pj log2(pj) (9)

in units of bits, where pj is the individual probability for each x.

2.4 Mutual Information

Given two variables whose entropy [19] can be defined, the amount that one vari-

ables information is decreased by knowing the others is known as the mutual informa-

tion (MI) between the two variables [19, 50]. There is more than one way to measure

statistical dependence. While some measures (like the correlation coefficient) are

limited and restricted to linear models, others (like mutual information and global

correlation coefficient) capture both linear and nonlinear relationship in any given

data set without any restrictions on the model. Many authors [33, 22] say that mu-

tual information satisfies some desirable properties of a good measure of dependence.

Mutual information can be estimated for both discrete and continuous variables.

Suppose X and Y are both discrete variables. Then the mutual information for

these two variables is defined as

I(X, Y ) =
∑∑

p(x, y) log2

p(x, y)

p(x)p(y)
(10)

where p(x, y) is the joint probability distribution function of X and Y , and p(x) and

p(y) are the marginal probability distribution of X and Y respectively [44].

18



Mutual information can also be expressed in terms of entropy as

I(X, Y ) = H(X)−H(X|Y ) (11a)

= H(X)−H(Y |X) (11b)

= H(X) +H(Y )−H(X, Y ) (11c)

where H(X) and H(Y ) are the marginal entropies, H(X|Y ) and H(Y |X) are the

conditional entropies and H(X, Y ) is the joint entropy of X and Y [49].

Statistical dependence occurs between X and Y if and only if I(X, Y ) > 0, where

H(X) ≥ H(X|Y ). If I(X, Y ) = 0, then we have statistical independence [44].

2.4.1 Limitations of the Mutual Information

There are inherent difficulties in the estimation and usage of mutual information.

The unknown relevant probability density function (p.d.f) is one difficulty. Although

approximating densities using histogram sounds like a good way to address this dif-

ficulty, doing this poses another problem of underestimating and overestimating the

empirical mutual information. Thus authors like Darbellay and Wuertz [21] proposed

a method called marginal equiquantization to tackle this problem.

Another difficulty is that the Equation in (10) takes values between 0 and in-

finity thereby making it difficult to compare different samples. Other articles like

[34, 33, 22, 23] proposed a standardized measure of mutual information called global

correlation coefficient.
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2.5 Takens Theorem and Phase Space Reconstruction

The complexity and nonlinearity inherent in financial time series make it difficult

to describe all the features of such a series. Thus an ideal situation is to decompose

the original series into state components such that by describing a state component,

we in turn describe the original series [40]. The technique used to accomplish this

task is the manifold-learning based phase space reconstruction. Manifold learning is

the embedding of a one-dimensional time series onto a higher dimensional manifold

(Ω) implied by the series [24, 40]. Manifold learning seeks to achieve three goals: ex-

traction of internal structures from the reconstructed phase space, reduction of noise

in the data, improvement in the quality of the reconstructed phase space [24]. After

the manifold learning is used to embed or map a one-dimensional time series onto a

higher dimension, phase space reconstruction (PRS) is used to describe and recover

all the features of the original series. The two key elements in PRS are the embedding

dimension K and time delay τ [40].

Theorem 2.14 Takens Theorem

Suppose x(t) = vj(t) for some j = 1, .., n, where v(t) = (v1(t), .., vn(t)) is a curve on

a manifold Ω. Suppose v(t) visits each part of Ω which means that v(t) is dense in

Ω under its topology. Then there exist τ > 0, K ∈ Z such that the corresponding

vectors (x(t), x(t+ τ), ..., x(t+Kτ)) are on a manifold topologically equivalent to Ω.

Takens Theorem and PRS can be applied to chaotic systems. Examples of such

systems are the Lorenz, Rössler and Hénon systems. We demonstrate this concept
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by first considering the Lorenz system

dx
dt

= σ(y − x),

dy
dt

= x(ρ− z)− y,

dz
dt

= xy − βz

(12)

where x, y and z are initial conditions and σ, ρ and β are parameters of the system.

A trajectory is a set of state values that are ordered over a given period of time. By

varying the values of the initial conditions we obtain different trajectories.

Well known initial conditions are x = −8.0, y = 8.0 and z = 27.0 with standard

parametric values of σ = 10, ρ = 8/3 and β = 28 [3].

To illustrate, we used Takens theorem to reconstruct the Lorenz attractor from x(t)

alone. From Figure 1, we can infer that the reconstructed system looks somewhat

different from the original but Takens theorem ensures that the reconstructed series

retains most of the features of the original system or series.

Original and Reconstructed System of the Lorenz Attractor

Figure 1: Lorenz Attractor: Original and Reconstructed System
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The next system to consider is the Hénon system. This system is made up two

parameters: a used to control the amount of stretching and b used to control the

thickness of folding. Thus it aims to capture the folding and stretching of dynamic

chaotic systems [4]. The Hénon system is given by the following equations
xn+1 = 1− a(xn)2 + yn

yn+1 = bxn

(13)

Figure 2 shows the Hénon attractor and a Takens theorem reconstruction from the

one dimensional xn data.

Original and Reconstructed System of the Henon Map

Figure 2: Henon Map: Original and Reconstructed System

A natural question is how do we obtain the most optimal time delay and embedding

dimension such that the reconstructed system retains most, if not all, the features of

the original system [4].

2.5.1 Ascertaining Time Delay and the Embedding Dimension

Time Delay

The PSR begins by estimating time delay τ . This influences the choice of the embed-

ding dimension. It is a well known fact that if τ is very small then there is redundancy
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[17]. That is, there would be very high correlation among coordinates causing the em-

bedding to cluster around the diagonal of the embedding space [41]. Similarly, a very

high τ leads to irrelevance [53, 41]. In this case, the structure of the reconstructed

space will not be revealed [3].

Literature is replete with so many methods in finding a good τ . Notable among

them are the autocorrelation function and mutual information methods. In using the

autocorrelation function, we can use methods such as First Zero and First.e.decay to

ascertain τ [4].

First Minimum of Average Mutual Information (FMoAMI)

This method is the generalization of the autocorrelation function which seeks to bring

to bear the needed statistical independence between successive lagged values [4]. This

method involves plotting the time-delayed average mutual information versus the de-

lay and identifying the first minimum in the resulting curve [27, 10].

The mathematical equation for finding τ is given as follows:

I(τ) =
∑
t,t+τ

P (xt, xt+τ ) log2

[
P (xt, xt+τ )

P (xt)P (xt+τ )

]
(14)

where P (xt) is the individual probability, P (xt, xt+τ ) is the joint probability density

function, xt is any given time series and xt+τ is the τ delayed version of xτ . I(τ)

returns a good choice for τ [4]. According to [47, 42, 43], the first minimum of I(τ) is

the time lag which yields the least redundancy or where xt+τ adds maximal informa-

tion to the information from xt. It follows that I(τ) is both a probabilistic measure

and a measure of information about xt+τ contained in xt [4].

Embedding Dimension

There are a number of methods in the literature regarding how to find a good em-
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bedding dimension. The method of false nearest neighbors is commonly used. This

method looks at the extent of close neighbor points in lower dimension and how they

do not change over time in the next higher dimension [43]. The inherent problem in

this method is the arbitrary selection of some tolerance level. Cao [15] addressed this

problem by proposing a modified method called the average false neighbors. Given

a good choice of τ , this method produces a good embedding dimension that reduces

the prediction error [52].

However, in this work we use the singular value decomposition in finding the em-

bedding dimension K. According to this approach, it was stated in [12, 46] that a

sufficient embedding dimension K is the same as the number of linearly independent

vectors derived from the columns of trajectory matrix Y . That is, K is the rank of Y .

First the trajectory matrix is found using an arbitrarily large K. Then by taking the

SVD of this matrix we obtain the singular values in the form s1 ≥ s2 ≥ ... ≥ sr ≥ 0.

Ideally, we choose K to be r, the rank of Y . However, noise often causes r to have a

very high value with many singular values close 0. In this thesis, we explore methods

for choosing a value of K that is less than r.
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3 METHODOLOGY

3.1 The Singular Spectrum Analysis

In this work, we use Taken’s Theorem with the basic SSA process to analyse our

data. We decompose a one dimensional time series using embedding step and SVD.

The SVD of the SSA is used to find both the time delay τ and embedding dimension

K. During this process, noise is removed. Then by Takens theorem and PSR, we

reconstruct the series. We construct confidence intervals for both the original and the

reconstructed series for forecasting purposes.

3.1.1 The Embedding

The embedding step is the first step in the SSA algorithm. As is standard, we

begin with an arbitrary large value for the window length K. Then we transform a

one-dimensional time series of length N into a K-dimension series of length L. Thus,

we obtain a trajectory matrix of size L×K [32]. The trajectory matrix is of the form:

Y =


x0 x1 x2 ... xK−1
x1 x2 x3 ... xK
x2 x3 x4 ... xK+1
...

...
...

. . .
...

xL−1 xL xL+1 ... xN−1

 (15)

In (15) we observe that, the matrix has equal elements along the South-West to

North-East diagonals (i + j = const). This type of matrix is called a Hankel matrix

[32, 44]. In this work, we introduced a parameter called the time delay τ (or sampling

lag) and take the window length K to be the same as the the embedding dimension
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dE [15]. Thus the trajectory matrix will be of the form:

Y =


x0 xτ ... x(K−1)τ
x1 x1+τ ... x1+(K−1)τ
x2 x2+τ ... x2+(K−1)τ
...

...
...

...
xN xN+τ ... xN−(K−1)τ

 (16)

When K = 1, then we have the form of trajectory matrix expressed in Equation

(15). The general case for K > 1 is expressed in Equation (16). The first minimum

of average mutual information and first left singular vector u1(t) are both used to

ascertain the time delay τ and embedding dimension K is ascertained by SVD.

How to find τ using FMoAMI

Given x(t), how much information on average can be predicted about x(t + τ)? By

calculating the mutual information I(τ) in Equation (14), we answer this question.

The interpretation of the graph of I(τ) is as follows: A graph of I(τ) begins off very

high (given a measurement x(t)); we know as many bits as possible about x(t+ 0) =

x(t)), where τ = 0. As τ is increases, I(τ) decreases, then usually rises again. Fraser

and Swinney [27] suggest using the first minimum in I(τ) to select τ .

How to find τ using the first left singular vector

We use the u1(t) which is the first left singular vector from the SVD because it is less

sensitive to noise. From the previous approach, we know that the u1(t) provides as

much information as possible about the u1(t+ τ). Therefore the graph of I(τ) starts

at its maximum, as τ increases, I(τ) decreases and rises again. The first minimum is

the value of τ that avoids noise.

26



3.1.2 The Singular Value Decomposition

We decompose Equation (16) into the Singular Value Decomposition given by

Equation (5). More about this step is in [44, 32]. The main goal in this step is to use

the singular values from SVD to ascertain the actual embedding dimension K.

3.1.3 Separating the signal from the noise

By applying statistical independence, we separate the signal from the noise. We

use a 95% confidence criteria to select the data that would be used for analytical

purposes and set 5% as noise. To accomplish this goal, we explore two criteria [44]:

• The ratio-contribution criterion
(

sK∑
si

)
where si is the singular values obtained

from Σ̃.

• The co-variance criterion
(

s2K∑
s2i

)
where si is the singular values obtained from

Σ̃.

3.1.4 Decomposing de-noised data into an approximated trajectory matrix

The de-noised data is now transformed into an approximated trajectory matrix of

the form:

Yapp =



x̂0 x̂τ x̂2τ ... x̂Kτ
x̂1 x̂τ+1 x̂2τ+1 ... x̂Kτ+1
...

...
...

. . .
...

x̂τ−1 x̂2τ−1 x̂3τ−1 ... x̂Kτ−1
x̂τ x̂2τ x̂3τ ... x̂Kτ
x̂τ+1 x̂2τ+1 x̂3τ+1 ... x̂Kτ+1


. (17)
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3.1.5 Reconstruction of the original Series

Applying Taken’s Theorem and phase space reconstruction, we can reconstruct

the manifold from the denoised data. This step involves the decomposition of (17)

into several matrices according to the length or size of τ . These matrices are of the

following form: x̂0 x̂τ x̂2τ ...
x̂τ x̂2τ x̂3τ ...
x̂2τ x̂3τ x̂4τ ...

 ,
 x̂1 x̂τ+1 x̂2τ+1 ...
x̂τ+1 x̂2τ+1 x̂3τ+1 ...
x̂2τ+1 x̂3τ+1 x̂4τ+1 ...

 ...
 x̂τ−1 x̂2τ−1 x̂3τ−1 ...
x̂2τ−1 x̂3τ−1 x̂4τ−1 ...
x̂3τ−1 x̂4τ−1 x̂5τ−1 ...

 .
(18)

Since these matrices are Hankel matrices, we diagonalize over the averages along the

South-West to North-East diagonals [44] to obtain both the averages (which will be

the approximated time series) and standard deviations. Another name for this step

is the diagonal averaging [32, 44]. The resultant series is an array of approximated

time series corresponding to each τ in the form

[x̂0, x̂τ , x̂2τ , ...], [x̂1, x̂τ+1, x̂2τ+1, ...]...[x̂τ−1, x̂2τ−1, x̂3τ−1, ...]. (19)

We repeat the same procedures for obtaining standard deviations of the approximated

series.

[0, σ(x̂τ ), σ(x̂2τ ), ...], [σ(x̂1), σ(x̂τ+1), ...]...[σ(x̂τ−1), σ(x̂2τ−1), ..., 0]. (20)

The next thing we do is to group all the approximated series in (19) into one-

dimensional time series of the same length as the original series. It looks like the

following:

[x̂0, x̂1, ..., x̂τ−1, x̂τ , x̂τ+1, ..., x̂N−(k−1)τ ]. (21)
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The approximated standard deviations for the time series will be of the form

[0, σ(x̂1), ..., σ(x̂τ−1), σ(x̂τ ), σ(x̂τ+1), ..., 0]. (22)

3.1.6 Confidence Interval

A confidence interval supplies bounds within which we can predict future values

for the original time series. From (21) and (22), we construct confidence interval

bounds for the original time series as well as the approximated series. Based on these

bounds we can also forecast the future values of the series.

3.2 Artificial Neural Network (ANN)

An Artificial Neural Network (ANN) is a network model that mimics how the

human brain functions. It is widely used in science, mathematics, economics, biol-

ogy, finance, and elsewhere. Its computational capabilities combine big data analysis,

machine learning algorithm, and data mining techniques [29].

A basic ANN is made of three layers: the input layer, the hidden layer and the

output layer [4]. Since it is a network, it is made up of nodes called neurons and

the connections between the nodes. Signals are transmitted from the input layer to

hidden layer. Some weights are assigned to the transmitted signals to increase or

decrease their strength depending on the value of the weight. The weighted signals

are then transferred to an activation function which eventually gives out the desired

output of the signal [1, 4, 29]. Figure 3 explains how the ANN reflects the human

brain processes a received signal.
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A Simple Model of ANN

Figure 3: A simple model of ANN

3.2.1 The Mathematical Model for ANN

Lets consider the graph in Figure 4

The parameters in the mathematical model are the arbitrary weight assignments

denoted as wij, the transfer function
∑

which incorporates some bias term bk, the

activation function ϕ and the output term Oj. The bias term is sometimes called the

threshold term denoted as θj. The network model could be single-layer or multiple-

layer. The activation function could also includes: linear function, tangent hyperbolic

function and sigmoid function (logistics) [45, 1].
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The Mathematical Model of ANN

Figure 4: The mathematical model of ANN

The most used activation function is the sigmoid function defined as

ϕ(x) =
1

1 + e−x
. (23)

We can learn from the ANN algorithm. The most commonly used algorithm for

learning from ANN such that weights and bias are adjusted until error is minimal is the

backpropagation algorithm. It is also called the feed-forward layered algorithm [29].

It was first introduced in the 1970s but was fully recognized when David Rumelhart,

Geoffrey Hinton, and Ronald Williams made their famous publication on it [48].

This algorithm entails the transmission of received signal from inputs down to the

hidden layer where weights are assigned. Then the activation function releases the

output through the output layer. There is always a predicted output (by the training

data) and a desired output. An error occurs when the desired output is different

from the predicted output. The gradient descent algorithm is used to update all the

weights and biases in the system in order to minimize the error associated with each

node in the both the hidden and output layers . The adjusted weights are then fed

back into the network system iteratively until the error is zero or minimal [29, 4, 1].
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It must be noted that since the concept of gradients and derivatives are so useful

in optimization, we can find the rate of change of each node in either the hidden or

the output layer with respect to corresponding weight assigned. By differentiating

the sigmoid function in Equation (23) and simplifying, we have

ϕ′(x) = ϕ(x) [1− ϕ(x)] . (24)

Definition 3.1 output layer is defined as

δok = ϕ′(vk)(dk − yk) (25)

where dk is the kth desired output, yk is the kth predicted output and ϕ′(vk) is the

derivative in the sigmoid function corresponding to each node [1].

Definition 3.2 hidden layer is also defined as

δhk = ϕ′(vk)(δokwij) (26)

where the wij is the connective weights from the ith node in the input layer to the jth

node in the hidden layer [1].

Adjusting both the weights and bias functions includes [1]:

Definition 3.3 weight function

w(n+ 1) = w(n) + αw(n− 1) + ηδ(n)y (27)

where w(n + 1) is the new weight of the nth iteration, w(n) is the current weight, α

is some mobility factor and η is the learning parameter [1].
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Definition 3.4 bias function

b(n+ 1) = b(n) + αb(n− 1) + ηδ(n)1 (28)

where b(n+ 1) is the new bias of the nth iteration, b(n) is the current bias, α is some

mobility factor and η is the learning parameter [1].

3.2.2 Machine Learning with an ANN

A given data set in a machine learning algorithm is partitioned into training,

testing and validation sets. We can also use just the training and the testing sets

depending on the classifier. In the ANN algorithm, the training data is used for the

training phase of the algorithm. That is, the desired classes are known or determined

for each input or observation and the output nodes can be assigned also the desired

outputs dk. This makes it possible to evaluate the difference between the desired

outputs and the predicted outputs yk. Thus, we can find the errors associated with

trained data point as ek = dk − yk. All the error terms are then fed back into the

network to be adjusted by adjusting the corresponding weights. This can be done

iteratively until the minimal error is achieved or the desired output is equal to the

predicted output [4, 1, 29] .

3.2.3 Stock Market Predicting Using ANN

Most financial time series exhibit nonlinear patterns. Hence the ANN remains the

most powerful tool for predicting the stock market. Again, the main merit of using

ANN in predicting stock is its ability to handle noisy data and accurately classify

patterns in untrained data set [4].
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3.2.4 Model Appraisal

It is a common and intuitive practice to assess and appraise a built model. The

goal of doing this is to ensure that the application of the model produces good results

[4]. The most widely used method for this assessment is the Receiver Operating

Characteristics (ROC) curve. This curve can also be used to organize classifiers and

visualize the performance. It can be used in decision making [26].

General Description of ROC Curve

Figure 5: ROC Curve for Model Appraisal

An ANN is a discrete classifier which outputs only one class label. This single-point

output is obtained from the pair of false positive rate (sensitivity) and true positive

rate (1-specificity) as shown in Figure 5. The curve is always bounded by 1 [4].

The broken dashed red lines in Figure 5 is a 45 degree diagonal indicating a random

classifier. A perfect or best classifier is obtained when the ROC gives an area under
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curve (AUC) of 1. The AUC is the probability of accurately classifying a randomly

chosen observation given that the training set is relatively balanced [28].
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4 APPLICATION: DATA AND RESULTS

This section entails the application of our approach to a given data set. We

selected a section of Apple Stock from Yahoo! finance. In the first place, we apply

the Takens theorem in conjunction with Singular Spectrum Analysis (SSA) to denoise

the data. Both the principle of mutual information and first left singular vector u1(t)

from SVD are used to find a suitable sampling lag or time delay τ and the SVD in

SSA is used to find the embedding dimension K for the reconstruction of the denoised

data.

The data set consists of the daily Close, Open, High, Low, Volume, Adjusted Close

prices. A little over 5-year consecutive previous values of the data set is used (June

8, 2009 to August 6, 2014) in this work.

The histograms and descriptive statistics of the data set are given in Figure 6-8 and

Table 1 respectively.

Histograms for Close Price and Open Price

Figure 6: Histograms: Close and Open
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Histograms for High Price and Low Price

Figure 7: Histograms: Low and High

Histograms for Volume and Close Minus Open

Figure 8: Histograms: Volume and Close Minus Open
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Descriptive Statistics

Statistics N Mean St. Dev. Min Max

Open 1260 401.75 363.59 135.42 702.41
High 1260 405.41 145.39 136.93 705.07
Low 1260 397.53 144.01 132.88 699.57
Close 1260 401.55 145.34 134.01 702.10

Volume 1260 122092900 356728330 39373600 470249500
Adjusted Close 1260 55.15 20.25 18.21 95.80

4.0.5 Specific Application to Closing Price

We first apply the model to the Closing Price. We begin by applying the Takens

Theorem with SSA to find a suitable time delay τ and embedding dimension K. The

two graphs in Figure 9 show how mutual information and first left singular vector

u1(t) are both used to find τ .

Graphs showing how to find the time lag

Figure 9: Finding τ using mutual information and first left singular vector

From Figure 9, we find the suitable sampling lag by looking at the first minimum

of the two curves. Interesting, they both have their first minimum at 5. Hence our

sampling lag is 5. That is, the two curves start off from their maximum located at the

mutual information axis. As τ (time lag axis) begins to increase from 0, the curves
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of the I(τ) begin to decrease. The first minimum value of τ as the I(τ) decrease is 5

(This value corresponds to one of the values on the time lag axis). Now, we use the

SVD to find the corresponding embedding dimension K. We choose a large arbitrary

value for K, say K = 100. The actual K is bounded by the arbitrary value for K.

The singular values are arranged in non-decreasing order. Then we use the criteria

discussed in section 3.1.3 to estimate K. Thus K = 4. In the process of finding the

actual K, we end up denoising the data. We proceed to reconstruct the manifold

using the parameters that we have found. Figure 10 reveals how the original closing

price resembles the reconstructed closing price.

Original and Reconstructed Closing Price

Figure 10: Plot for Original and Reconstructed Closing Price

Finally, we construct the confidence interval to observe patterns within the closing

price and prediction purposes.
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Confidence Interval for Predicting Closing Price

Figure 11: Confidence Interval for Predicting Closing Price

We apply our model to the Open price and Close Minus Open sections of the data. The

sampling lag τ and embedding dimension K for Open price are 7 and 4 respectively.

For Close Minus Open, we obtain τ = 4 and K = 10. The graphs for Open price and

Close Minus Open are under Appendix 1 and 2 respectively.

4.0.6 Results

We evaluate how well our model can denoise the noisy time series, reconstruct the

series and give accurate predictions. So, in this section, we only test the performance

of the model by using the reconstructed Close Minus Open data. This process of

evaluation and assessment involves feeding the reconstructed data into the ANN [4]

for training and prediction. The heuristic approach for partitioning the data set is

75 : 15 : 15. This means that 75% of the data is treated as the training set, 15% of

data is used for validating the model and the remaining 15% is used for testing the

model [4].

The goal is to predict the next day Close price by looking at the relationship

between the Close Price and Open Price. In this work, we define two classes :
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• Predict Class 1 if Close > Open.

• Predict Class 0 if Close ≤ Open.

After defining our classes, we select some section of the reconstructed data from Close

Minus Open data for our machine learning algorithm. The selection spans from June

8, 2008 to February 28, 2011. This constitutes 600 days of the entire data set. The

model for the 600 days produces an area under the curve (AUC) of 0.80. This implies

that we have a good model for both denoising and predicting.

ROC Curve for the Model

Figure 12: ROC curve for the Model

41



5 CONCLUSION AND REMARKS

The financial market offers a lot of prospects for all stakeholders including bro-

kers, investors, agents and others. The recent economic meltdown in 2008 caused

more harm than good to this sector of the economy. Many financial institutions are

becoming more global and thus financial data increasingly is becoming complex and

noisy. The need for a good and accurate model to predict future values or price of

financial assets is becoming a great concern to all stakeholders and players.

The traditional linear models for noisy data are limited in both scope and appli-

cation. Thus we need a model that captures both linear and non-linear patterns in

data without necessarily assuming any structure. Thanks to the novel basic SSA, we

can effectively handle noisy data. In this work, we apply Taken’s theorem with SSA

to denoise a noisy data. While removing the noise, we find the sampling lag τ via

mutual information and first left singular vector and the embedding dimension K by

SVD.

We reconstruct the series based on the assumption that the error term (noise) is

independent of the series. Thus the mutual information between the reconstructed

data and the error term is zero. The Taken’s theorem guarantees that we are able

to reconstruct the denoised series to have at least the same properties as the original

series. We construct confidence interval based on the reconstructed data and the

original series. A 95% confidence interval indicates the bounds within which we can

predict the next day value.

After subjecting our model through an evaluation process, we observe that our

model is a good one (an AUC of 0.80). This implies that using Taken’s theorem with
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SSA we can effectively denoise any given noisy data and make good predictions about

the future prices.

The following include some remarks, observations and future work.

1. We only evaluated the model based on 600 data points instead of the entire 1260

data points. The reason for this choice is to create cases for future study. We

can compare models based on just few data points and the entire data points.

2. We only used the covariance-approach in our criteria for denoising the data.

The other criteria include ratio-contribution approach and mutual information.

3. Future work could be to compare the best model from using all three criteria

of denoising noisy data:

• ratio-contribution criterion
(

sK∑
si

)
where si is the singular values obtained

from Σ̃.

• co-variance criterion
(

s2K∑
s2i

)
where si is the singular values obtained from

Σ̃.

• mutual information used in finding K.
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APPENDIX

0.1 Appendix A: Specific Application to Open Price

Graphs showing how to find time lag

Figure 13: Finding τ using mutual information and first left singular vector

Original and Reconstructed Open Price

Figure 14: Plot for Original and Reconstructed Open Price
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Confidence Interval for Predicting Open Price

Figure 15: Confidence Interval for Predicting Open Price
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0.2 Appendix B: Specific Application to Close Minus Open

Graphs showing how to find time lag

Figure 16: Finding τ using mutual information and first left singular vector

Original and Reconstructed Close Minus Open

Figure 17: Plot for Original and Reconstructed Close Minus Open
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Confidence Interval for Predicting Close Minus Open

Figure 18: Confidence Interval for Predicting Close Minus Open
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