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ABSTRACT

Quantifying the Structure of Misfolded Proteins Using Graph Theory

by

Walter G. Witt

The structure of a protein molecule is highly correlated to its function. Some diseases

such as cystic fibrosis are the result of a change in the structure of a protein so that

this change interferes or inhibits its function. Often these changes in structure are

caused by a misfolding of the protein molecule. To assist computational biologists,

there is a database of proteins together with their misfolded versions, called decoys,

that can be used to test the accuracy of protein structure prediction algorithms. In

our work we use a nested graph model to quantify a selected set of proteins that have

two single misfold decoys. The graph theoretic model used is a three tiered nested

graph. Measures based on the vertex weights are calculated and we compare the

quantification of the proteins with their decoys. Our method is able to separate the

misfolded proteins from the correctly folded proteins.
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1 INTRODUCTION

In the area of discrete mathematics, there is a branch called graph theory, that

researches the connection of entities. Graph theoretical models can be applied to nu-

merous fields, which opens an interdisciplinary approach with a novel way to quantify

complex networks. There is a great deal of work being done in computational biology

to quantify protein structural characteristics and therefore identify and predict when

a protein molecule will misfold. In the sequential sections we will improve upon a

three tiered nested graph theoretical model that quantifies proteins.

1.1 Computational Biology

Biology, computer science, and mathematics all come together to form the field of

computational biology. Molecular processes are very important to understanding life,

and as a result, the research field bioinformatics was coined in 1970. It was brought

into the Oxford Dictionary in 2002 [18]. Being able to understand and generate

molecular information is crucial in computational biology.

Protein structure identification is an issue facing many computational biologists.

Experiments are costly, time consuming, and meticulous, but with the addition of

algorithms and well-defined mathematical models involving graph theory, this can be

spearheaded in a cost effective efficient way [36].

Since much of the work in computational biology is focused on large data sets,

it is difficult to apply current practices and algorithms to smaller sets [20]. Graph

theoretical measures come into play here and provide method for quantifying protein

structures. Through well-defined graph measures, it is possible to apply weights and
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quantify structures on several levels. This results in exponential data growth, given

a small data source using a nested graph model.

Computational biologists provide a unique way to quantify the characteristics of

proteins. The ability to quickly preform precise quantification at a reduced cost may

catapult this field in the limelight.

1.2 Motivation

Knisley, Knisley and Herron (KKH) introduced partitioning a protein into domains

and using those domains with weight measures of the amino acids to create a weighted

top-level graph. The focus of KKH was on the single mutation point of amino acids

chain in the cystic fibrosis membrane conductance regulator (CFTR) protein [20].

KKH partitioned nucleotide binding domain one (NBD1) into 8 subsequences of 20

amino acids guided from the secondary structure of the protein and then created a

nest graph model to represent the NBD1 of CFTR.

This process allows the invariants to be controlled through well-defined graph mea-

sures. The contact graph is created from a sequence of amino acids, which represent

the vertices, and edges, that are determined by the proximity measure of 8 angstroms

[20]. The middle level, where the amino acid subsequences are located, defines the

top level of the network as subdomains. These subdomains represent vertices of the

top level. The top level is assigned weights based on its corresponding amino acid

descriptors from the middle level.

The process allows back tracking to define new invariants. This is where after

quantification, it is possible to analyze the levels with different weighted measures to
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improve the quantification process.

1.3 Process to be Improved and Compared

How were the invariants chosen before? Is there a way to choose new domains that

are well-defined with a set of data? These questions started the process of trying to

improve the methods of (KKH).

(KKH) used a partitioning of the subsequences for the domains that were con-

structed by the guideline of having only one type of secondary structure [20] . This

yields domains that have different subsequence lengths. The original contact graph

used a cutoff value of 8 angstroms during its construction.

In the new process, the contact graph being used will have a cutoff value of 7

angstroms per Silveira et al., which stated that at 7 angstroms, all connections be-

tween amino acids are concise [13]. Keeping in line with having different subsequence

lengths, I introduce spectral clustering as a partitioning method. Due to being a

well-defined clustering algorithm, it is believed that spectral clustering will be able

to partition the proteins from the Protein Data Bank (PDB) and Decoys R Us into

domains that are highly connected. Once the subdomains are representing the top

level as vertices, there will be a floor of at least 3 edges between subdomains needed

to create an edge between respective nodes at the top level. This allows well-defined

graph theoretic measures to quantify these domains in a way that provides additional

insight in the proteins in question.

The proteins being compared are 2cro, 2ci2 and 1sn3. Each of these three proteins

have 2 decoys from the database Decoys R Us. Note 1sn3 is an outdated protein, and
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is superseded by 2sn3 [37]. We continue with the use of 1sn3 in this model showing

both scenarios where 1sn3 and its decoys are present and another when they’re not.
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2 BACKGROUND

Biology, graph theory, data, and algorithms are the building blocks of this thesis.

Essential information that is going to be used later in Section 3, Process, is discussed

in this section. Special attention to definitions and measures is crucial for under-

standing the process implemented, as Section 3 becomes complex rather quickly. The

building blocks are located in biology.

With the introduction of computational biology, we can see the interaction be-

tween graph theory and life. These classical models are given purpose with their

representation of biomolecules known as proteins.

2.1 Biology Interdisciplinary

The structure of biomolecules are long chains of amino acids which are called

proteins. A protein is a polypeptide, which is a distinct sequence of amino acids. All

amino acids have the same backbone, notice the non-shaded part in Figure 1. This

is the backbone. The distinction of amino acids come from their R group, which is

the shaded part of Figure 1. Amino acids are represented by letters of the alphabet.
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Figure 1: Four amino acids with backbone (unshaded) and R group (shaded)

Table 1: Amino Acids and their corresponding letters.

Amino Acid Letter

alanine A
arginine R

asparagine N
aspartic Acid D

cysteine C
glutamine Q

glutamic acid E
glycine G

histidine H
isoleucine I

leucine L
lysine K

methionine M
phenylalanine F

proline P
serine S

threonine T
tryptophan W

tyrosine Y
valine V
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The primary structure of a protein is composed of a chain of amino acids. The

uniqueness of the chain determines the characteristics of the protein and it’s result-

ing structure. Once the chain is completed, the primary structure folds upon itself

creating a secondary structure. The structures are recorded in a database that are

constantly improved through scientific research.

The Protein Data Bank (PDB) is the primary data repository for protein and

DNA three dimensional structures. A PDB file can be extracted from the repository

that contains hierarchical structure regarding atom names and coordinates for said

protein [12].

These protein sequences are being studied intensively. Investigation of these re-

lationships between the protein protein interaction (PPI) and sequence formation

enhances understanding of how proteins function. The cognition of this will yield:

protein folding, prediction of protein structures, patterns of molecular evolution, pro-

tein engineering, and drug design. Researchers focus on these computations in hopes

of providing insights into the workings of complex biological systems [36, 12].

2.2 Decoys R Us

Decoys R Us is a database of computer generated protein structures that have been

used in the computational biology community since 2000. These highly respected

models aid in the development of current knowledge of protein structures [29]. The

purpose of the database is to improve prediction scoring methods by providing an

alternative decoy database to measure against a known database of protein structures.

Decoys R Us includes a database of single misfold proteins. It is comprised of 26
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incorrect proteins based upon 23 correct protein structures.

2.3 Graph Theory

In discrete mathematics, there is a field of graph theory. This is the study of

two disjoint sets, elements and relations. For example, picture computers that repre-

sent elements and the Internet which represents the relation of the computers. The

computers are elements that are connected through the Internet. The following is

extracted from several sources [17, 13, 3, 25, 16, 5].

A graph G = (V,E) is an ordered pair that has disjoint sets V and E. The

elements of V are called vertices or nodes, and the elements of E are called edges.

Each edge has a set of one or two vertices assoiciated to it, which are called its

endpoints.

The adjacency matrix of graph G denoted AG, is the matrix whose rows and

columns are both indexed by identical ordering of VG, such that

AG[u, v] =


1 if u, v ∈ E

0 otherwise

The degree matrix of a graph G denoted DG, is a diagonal n × n matrix for

which

du,v =


degree of Gu if u = v

0 otherwise

The Laplacian matrix of a graph G, denoted LG is LG = DG − AG

A closed walk of a graph G, is a sequence of pairwise adjacent vertices beginning
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and ending with the same vertex. The trace (diagonal) of the AkG, where k is the

number of walks desired. The trace of a power of the adjacency matrix is a method

for counting the number of closed walks.

The following are node measures are from networkX’s algorithm library, it can

be found in [25]. NetworkX is a library which specializes in graph theoretic measure

algorthims.

The eccentricity of a node v in graph G is the maximum distance from v to all

other nodes in G.

The node clique number returns the largest maximal clique containing each

node given. The formal definition follows, a subset S of VG is called a clique if every

pair of vertices in S is joined by at least one edge, and no proper superset of S has

this property. So a clique on G is the maximum subset of mutually adjacent vertices

in G [17].

The degree centrality of a node v in the graph G is the fraction of nodes it

is connected to. The degree centrality values are normalized by dividing by the

maximum possible degree in a simple graph, which is n− 1 where n is the number of

nodes in G.

The closeness centrality of a node u in graph G is the reciprocal of the sum of

the shortest path distances from u to all n − 1 other nodes [16]. This is normalized

by the sum of possible distances n− 1,

C(u) =
n− 1∑n−1

v=1 d(u, v)
,

where d(v, u) is the shortest path between v and u and n is the number of nodes in

graph G.
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The betweenness centrality of a node v is the sum of the fraction of all pairs

of shortest paths that pass through v

CB(V ) =
∑
s,t∈V

σ(s, t|v)

σ(s, t)
,

where V is the set of nodes, σ(s, t) is the number of shortest (s, t) paths, and σ(s, t|v)

is the number of those paths passing through some node v other than s, t. If s =

t, σ(s, t) = 1, and if v ∈ s, t, σ(s, t|v) = 0 [6].

The current flow closeness centrality is a variant of closeness based on effective

resistance between nodes in a network.

CCC(s) =
n∑

s 6=t pst(s)− pst(t)
for all s ∈ V,

where pst(s) − pst(t) is the effective resistance. Another name for this algorithm is

information centrality [7].

The current flow betweenness centrality of nodes is an electric current model

for information spreading, which is defined by

CCB(v) =
1

nB

∑
s,t∈V

τst(v) for all v ∈ V,

where nB = (n− 1)(n− 2) [7].

The eigenvector centrality is the calculation of the centrality for a node based

on the centrality of its neighbors. The eigenvector centrality for node i is xi. Ax = λx,

where A is the adjacency matrix of graph G with eigenvalue λ.

The communicability centrality, also known as the subgraph centrality, of

a node n is the sum of closed walks of all lengths starting and ending at node n.

Communicability centrality of a node u of graph G can be found by the spectral
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decomposition of the adjacency matrix. It is defined as

SC(i) =
N∑
j=1

(
vij
)2
eλj ,

where vij is the i − th component of the orthonormal basis RN composed by the

eigenvectors A associated to the eigenvalues λj [14].

2.4 Spectral Clustering

Clustering algorithms are used for data that is highly connected [24]. Spectral

clustering is used for data that is connected, but not necessarily isolated in a way

that convex optimization can take place. The basic goal is to divide the data points of

a given graph into clusters of similar points that are different from other clusters [23].

This yields a specified number of clusters of points that are mathematically similar.

In order to implement spectral clustering, the number of clusters need to be deter-

mined. The number of clusters is directly related to the lowest values corresponding

to the eigenvalues of the normalized Laplacian of the graph theoretic model [24, 23].

The graph theoretic model needs to be represented as an adjacency matrix A.

The degree matrix D is then used to create a Laplacian matrix,

L = D − A.

Then the normalized Laplacian is constructed from L,

Ln = D−1/2LD−1/2

and the eigenvalues are found for the normalized Laplacian. The eigenvalues are then

plotted and the total number n of the lowest values are picked off to form the number

of clusters for the spectral clustering algorithm [24, 23].
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When choosing the number of clusters it is important to plot the eigenvalues of

the normalized Laplacian in order from least to greatest. The goal is to pick a gap

between the eigenvalues. This gap will represent the optimal amount of clusters for

the algorithm to compute. It also important to note that if several gaps are shown,

the cluster value chosen should be reasonable. It would not make sense to break a

network with 60 nodes into 30 clusters.

The algorithm that will be implemented is taken from scikit-learn. The only

parameter being used is the number of clusters.

2.5 Amino Acid Descriptors

Every amino acid is represented as a molecule, as seen in Figure 1. These molecules

have key characteristics that make each amino acid unique. The R group is what gives

these amino acids their distinction.

Graph theory can represent another characteristic of these amino acids. When

these molecules are represented using chemical bonds, it can be shown using molecular

topology that these amino acids can be represented by graph theoretical models,

where the atoms are the nodes and the chemical bonds are the edges of the graph

model [34].

These two representations give us a plethora of descriptors to aid in the quantifi-

cation of all 20 amino acids. Using the AAindex, which is a database of numerical

indices representing physiochemical and biochemical properties [1], and graph tho-

eretic measures on molecular topologies, a table of descriptors is compiled for each

amino acid.
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Although there are numerous descriptors available, there are 21 in the table used

in our model. Of the 21 used, only 9 are taken to quantify the proteins in question.

The following is a description of the 9 descriptors used [10, 9, 1].

The 9 descriptors used are defined as follow:

The domination number of a graph G, is the cardinality of a minimum set S

of vertices such that every vertex of G is either in S or a neighbor of a vertex in S

[17]. The maximum domination number is the maximum instead of the minimum.

chargedonar is the parameter of charge transfer donor capability [9].

coilconformation is the Chou-Fasman parameter of the coil conformation [9].

chargetransfr is the parameter of charge transfer capability [9].

Balaban is the Balaban Index, which is

J =
m

γ + 1

n∑
i=1

n∑
j=1

(
SiSj

)−1/2
where n are the nodes and m are the edges of the molecular graph. γ = m− n+ 1 is

the cyclomatic number, which the smallest number of edges that need to be removed

in order so that no graph cycle is remaining, and Si,j are the sum of entries in the

respective rows of the graph distance matrix [2].

EIIP is the electron-ion interaction potential [8].

Plr is the side-chain polarity. If a side chain is reactive with water, then it is said

to be polar [11]. A value of 1 is assigned to the amino acid if it is polar and a value

of 0 is assigned if it is not polar.

The circumference of a graph G, represented as c, is the length of the longest

cycle. If no cycle is present the value 0 will recorded [21].
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Table 2: Amino Acids Descriptor Index.

Descriptor Index Name

G maximal domination number
chargedonar parameter of charge transfer donor capability

coilconformation Chou-Fasman parameter of the coil conformation
chargetransfr parameter of charge transfer capability

Balaban The Balaban Index
EIIP electron-ion interaction potential
Plr side-chain polarity
c circumference of the molecular topology

averagehydrophcity normalized average hydrophobicity scales

2.6 Data Analysis

When there is data present, sometimes it needs to preprocessed so we can see

what story the data is trying to tell us. To find out the story, we use l2 normalization

of preprocessing from the scikit-learn, as well as, the dendrogram function from the

same package.

A Norm must follow these four axioms:

Nonnegativity: ||x|| ≥ 0

positivity: ||x|| = 0 iff x = 0

Homogeneity: ||cx|| = |c|||x||

Triangle Inequality: ||x+ y|| ≤ ||x||+ ||y||

These axioms make sure that any non-zero vector can be normalized. The result is a

normed linear space, written of the form || · || [19].
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The l2 norm, which is called the Euclidean norm of a vector x = [x1 . . . xn]T ∈ Cn

is as follows:

||x||2 =
(
|x1|2 + · · ·+ |xn|2

)1/2
A Dendrogram is the application of hierarchical clustering. It is a tree-type

diagram showing a series of steps that groups information into clusters. This method

of clustering uses single linkage clustering to distinguish between steps taken [15].

Single-linkage clustering is a method of clustering analysis where distance

between clusters is defined to be the least distance between the pair, where one of

the data points is in the group or cluster [15].
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3 IMPLEMENTATION

This section describes the technical process, in python, of quantifying protein

structures. The grouping for the domains of the mid level graph is a spectral clustering

algorithm implemented from the scikit-learn package [31], and the graph measures

used to define weights for the top level graph are implemented from the networkX

package [25] in python. After quantification a table is compiled using the pandas

package [27] and subsequently analyzed with a hierarchical clustering algorithm in

the SciPy package [32] to create a dendrogram. The dendrogram is a measure of how

well the invariants chosen work for our quantification.

3.1 Process

The quantification process starts with a Protein Data Bank (PDB) file. In this

section 2ci2, a A PDB file is uploaded and its sequence (chain) of amino acids are

listed. The ID numbers for the corresponding amino acids are defined, as proteins

are not all the same length. This is used to create a contact graph in networkX [25].
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Figure 2: Contact Graph for 2ci2

The graph theoretic model of the protein shows high connectivity. In order to

obtain a nice number of domains for the mid level graph, a normalized Laplacian

is constructed through the networkX package. After the normalized Laplacian is

constructed, the eigenvalue problem is solved and the lowest values will be selected.
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Figure 3: Eigenvalues of the normalized Laplacian

The number of clusters is 7 based upon the lowest eigenvalues. The number of

clusters for each protein is determined for the true proteins and the cluster number

will be applied to the respective decoys. That is, the cluster number for 2ci2 is 7; thus

its respective decoys will be partitioned into 7 clusters as well. The adjacency matrix

is then constructed using the pandas package. The spectral clustering algorithm from

the scikit-learn package is implemented. Spectral clustering provides a method to

account for the connectivity of the nodes in the adjacency matrix. The data is merged

and the nodes from the adjacency matrix are now labeled to the corresponding cluster

produced from the spectral clustering algorithm. The groups in Figure 4 are shown

to contain different clusters of amino acids. This is the purpose of using spectral

clustering. It was meant to group the protein in ways that take into account its

connectivity.
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(a) Cluster 0 for 2ci2 (b) Cluster 1 for 2ci2

(c) Cluster 2 for 2ci2 (d) Cluster 3 for 2ci2

(e) Cluster 4 for 2ci2 (f) Cluster 5 for 2ci2

(g) Cluster 6 for 2ci2

Figure 4: Clusters for protein 2ci2

The top level graph is constructed with nodes that correspond to the respective
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cluster in mid level. These nodes are labeled {0, 1, 2 . . . , n−1} where n is the number

of clusters used in the spectral clustering algorithm. The method for determining if

clusters are connected in the top level graph is as follows: if there are 3 or more edges

connecting clusters, then an edge is used to connect the nodes in the top level graph.

The top level graph for 2ci2 is shown in Figure 5.

Figure 5: Top level graph from respective clusters

3.2 Quantification

After the top level graph is created, the nodes representing the respective clusters

are given weights. This process starts with the adjacency matrix for each cluster in

Figure 4 that represents the corresponding node in Figure 5.
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Table 3: 2ci2 Cluster 0 Adjacency Matrix

The measure being used is the number of complete walks of length 3. This is

calculated by cubing the adjacency matrix and calculating the trace of the cubed

adjacency matrix.

Figure 6: 2ci2 Cluster 0 Complete Walks of 3

Coefficients in the resulting array are assigned as weights, respectively, to the

corresponding nodes.

The amino acid descriptors (AAD) data frame, Table 4, which shows quantification

for every amino acid used in this model. These quantities are descriptors taken from

molecular topology, graph theoretic measures and the amino acid index. Note that

not every value recorded in the table is used for the final quantification process. The

descriptors defined in the previous section are the ones that are used.
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Table 4: Amino acids descriptors

The (AAD) values in Table 4 are now associated with the the amino acid labels

of Figure 7.

Figure 7: Amino acids being used in cluster 0

The (AAD) are now concatenated to create a new data frame. This is shown in

Table 5.
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Table 5: Concatenated amino acids with first 5 (shown) descriptors for cluster 0

Next the array of counts of closed walks of length 3 for cluster 0 in Figure 7 are

then multiplied, as scalars, onto the the concatenated matrix in Table 5. The result

of this process is represented in Table 6.

Table 6: Cluster 0 with first 5 (shown) descriptors with weights applied

A linear combination for each of the descriptor value is taken. These linear com-

binations will serve as weights for each respective node in the top level graph. The

result for cluster 0 of 2ci2 is shown Table 7.
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Table 7: Linear combination for each weighted descriptor in cluster 0

After this process is repeated for all the clusters, the respective nodes in the top

level graph are represented by the calculated weights. All the linear combinations of

the descriptor weights for each cluster are concatenated into a new data frame. This

can be seen in Table 8, where S0, S1, . . . , Sn−1, are the corresponding clusters.

Now that we have weights for the top level graph, we implement graph theoretic

measures for the top level graph. The measures defined in Section 2.3 are used on

the top level graph. These measure are specifically chosen due to the fact that they

assign a value for each node represented in the top level graph. Now that each node

in the top level graph can be measured, we can apply the measures to the descriptor

weights for the top level graph in Table 8.
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Table 8: Descriptor weights for the top level graph

This is the same process as before, as in the graph theoretic measures in the top

level graph for each node are represented as scalars and multiplied through their cor-

responding clusters S0, S1, . . . , Sn−1. After this is done, we take a linear combination

of each measure for every amino acid descriptor. The resulting information is con-

catenated into a spreadsheet for the corresponding protein. The results for protein

2ci2 can be seen in Table 9.
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Table 9: 2ci2 top level graph measures with amino acid descriptors

After the top level graph measures with amino acid descriptors table is created, we

select a subset of entries to compare for the proteins in question. The graph measure

is listed first with the descriptor following, as seen in Table 10. It is listed as the

column header, while the protein quantified represents the row.

Table 10: Top level graph measures with selected amino acid descriptors
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4 RESULTS

The process outlined in Section 3.1 is repeated for the proteins and their respective

decoys. The proteins being studied are 2cro, 2ci2, and 1sn3. 2cro is partitioned into

5 cluster. 2ci2 is partitioned into 7 clusters. 1sn3 is partitioned into 9 clusters. Each

of these proteins have 2 decoys that can be compared and the respective decoys are

partitioned into the same number of clusters as the main protein resulting in Table

11.

Table 11: Top level graph measures with selected weighted descriptors

The data is normalized using an l2 norm. Then we implement a hierarchical

clustering method shown using a dendogram shown in Figure 8.

The protein 1sn3 is an outdated protein in the set. It is not as concerning that it

is classified with the decoys. Protein 1sn3 and its respective decoys are removed from

Table 11 as shown in Table 12.
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Figure 8: Dendrogram of the normalized l2 data for all proteins used

Table 12: Concatenated table of top level graph measures for 2ci2, 2cro, and respective

decoys

The data is normalized using an l2 norm. Then we implement a hierarchical

clustering method shown using a dendogram shown in Figure 9.
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Figure 9: Dendrogram of the normalized l2 data for 2ci2, 2cro, and respective decoys

The quantification of proteins with a nested graph model that was partitioned by

spectral clustering shows that there are distinct characteristics that belong to the sets

of proteins. It is shown that the selected proteins are grouped with their decoys, but

are distinctly different than the respective decoy.
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5 CONCLUSION

From the first result in Figure 8, we see that the proteins are grouped together with

their respective decoys. With the knowledge that the protein 1sn3 is obsolete, it is

no surprise that it is grouped with the decoys. The removal of 1sn3 and its respective

decoy proteins yields the second result, Figure 9. It is shown that the remaining

proteins, 2cro and 2ci2, are completely separated from their respective decoys. This

is shown in both cases.

This model shows that incorporating a different sequence partitioning method for

proteins and their decoys in a graph theoretic model yields results that groups well

but at the same time, keeps the proteins separated from their respective decoy.

Further advancement of this method could be used by researchers to refine pro-

tein structure prediction algorithms. The nested graph model with vertex weights

derived from features of protein structures shows promise as an added tool for the

advancement of protein science.
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