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ABSTRACT

Clustering Mixed Data: An Extension of the Gower Coefficient with

Weighted L2 Distance

by

Augustine Oppong

Sorting out data into partitions is increasing becoming complex as the con-

stituents of data is growing outward everyday. Mixed data comprises contin-

uous, categorical, directional functional and other types of variables. Cluster-

ing mixed data is based on special dissimilarities of the variables. Some data

types may influence the clustering solution. Assigning appropriate weight to

the functional data may improve the performance of the clustering algorithm.

In this paper we use the extension of the Gower coefficient with judciously

chosen weight for the L2 to cluster mixed data.The benefits of weighting are

demonstrated both in in applications to the Buoy data set as well simula-

tion studies. Our studies show that clustering algorithms with application

of proper weight give superior recovery level when a set of data with mixed

continuous, categorical directional and functional attributes is clustered. We

discuss open problems for future research in clustering mixed data.
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1 INTRODUCTION

Large amount of data are collected every year. The Havard Business

School in their article “From data to Action” emphasized that we are con-

fronted with the problem of identifying what constitutes data. The bound-

aries we have today with regards to what we can digitize and analyze are

growing outward every day [7]. Data exist in different forms and this has

led to the intensive study of clustering. Clustering has been marked as a ba-

sic method of data mining for the unearthing of valuable knowledge. Other

fields of study have successfully exploited its benefit. We see its success in

pattern recognition [3] biology, psychology, psychiatry, archaeology, geology,

geography, marketing, image processing and information retrieval [4]. In re-

cent times clustering has been applied in proteomic studies where a mass

spectrometer records macromolecular observation values continuously across

a domain of mass/charge ratio values. The problem of clustering may gen-

erally be stated as follows:

Given a set of raw data points, sort them into a set of classes such that the

classes are similar as possible [1].

In this sense clustering provides a summarized and compact form of data to

benefit the ordinary user and the researcher as well. Clustering has proved

essential to address “big data”. The concept of mixed data sets emerge when

variables under consideration consist of several types, e.g., continuous, cat-
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egorical, functional, directional, etc. This heterogeneity of data is driving

research into mixed data clustering.

1.1 Background on Cluster Analysis

We define clustering as a way of grouping data such that objects in the

same group look similar and objects in different groups are heterogeneous,

according to some standard metric. A series of work focusing on existing

clustering algorithms has been done. Some of this work provide compar-

isons, both from a theoretical and an empirical outlook, on the performance

of the individual algorithm. The potency of the candidate algorithm is ac-

cessed through a number of internal and external validity metrics, stabil-

ity, runtime and scalability tests. In general, existing clustering algorithms

are categorized broadly as follows: Partitioning based, Hierarchical-based,

density-based, Grid-based and Model-based. The partition based includes

the K-means, K-medoids k-modes etc. [29].

In K-means, we consider the center as the average of all points. This

algorithm partitions data into k groups by minimizing some criterion; the

within-group sum of squares over all variables is often used as the minimizing

criterion [6]. It starts by selecting some K points as initial centroids. Each

point is then assigned to the nearest centroid depending on some chosen

proximity measure. This forms a cluster and the centroids for each cluster

are updated. The algorithm repeats these steps until a stopping criterion is

10



reached. The challenges coupled with the K -means include being sensitive to

outliers. Another challenge is that it works only when the mean of a cluster is

specified. Also the number of groups must be specified in advance. As a result

others methods such as the K-medoids and K-modes could be alternatives.

Cuesta-Albertos et al (1997) proposed trimmed k-means clustering. This

alternative method calculates the cluster means based on only N(1 − α)

observations out of the entire N observations where 0 < α < 1 [8].

Hierarchical clustering is a method of cluster analysis which seeks to build

a hierarchy of clusters. This method can either be divisive or agglomerative.

The divisive approach begins with the entire data set as one cluster and

repeatedly splits the data into the most appropriate cluster. Agglomera-

tive clustering on the other hand starts with one object in each cluster and

repeatedly merges the data into two or more appropriate clusters. The dis-

similarities between objects are usually measured by some distance. One

of the commonly used distance is the Euclidean distance. We define the

Euclidean distance between two p-dimensional observation x and y as

d(x,y) =
√

(x1 − y1)2 + (x2 − y2)2 + ...+ (xp − yp)2

Other distance measures include the Minkowski distance of order p, defined

as

d(x,y) =
∑

[|xi − yi|p]
1
p

11



, and the Canberra metric

d(x, y) =
∑ |xi − yi|

xi + y1

. There are methods or criteria applied in hierarchical clustering to deter-

mine the distance between pairs of observations as a function of the pairwise

distances. Among them are single linkage, complete linkage average linkage

and the ward’s method. For two clusters A and B, single linkage defines the

distance between A and B as

d(A,B) = min
i∈A,j∈B

dij

. Complete linkage clustering defines distance between A and B as

d(A,B) = max
i∈A,j∈B

dij

. Average linkage clustering defines distance between clusters A and B as

d(A,B) =
1

nAnB

∑
i∈A

∑
j∈B

dij,

where nA is the number of objects in cluster A, nB is the number of objects in

cluster B while dij is the distance between objects. There is another method

known as the Ward’s method. In Ward’s approach, the criterion for choosing

the pair of clusters to merge at each step is based on the optimal value of an

objective function. This criterion seeks to minimize the total within-cluster

variance. To implement this method, at each step find the pair of clusters
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that leads to minimum increase in total within-cluster variance after merging

[12]. The hierarchical method has a major setback. Once an object merges

or splits into a cluster, it cannot be reversed.

The density based methods have objects separated based on their area or

region of density, congruence and perimeter. Clusters develop and move in

the direction that density leads to. Density-based algorithms are capable of

discovering clusters of arbitrary shapes. This method provides a natural pro-

tection against outlying observations. Here, to put an object into a cluster,

its overall density is evaluated to determine the functions of datasets that

influence this particular data object. Some algorithms such as DBSCAN,

OPTICS, DBCLASD and DENCLUE make use of this approach to discover

clutsers of arbitrary shape [29].

Under the grid-based methods, the entire space of observations is parti-

tioned into a grid. This method has been noted for its fast processing time

because it goes through the dataset once to calculate the statistical values

for the grids. The accumulated grid-data make these clustering procedures

independent of the number of data objects that employ a uniform grid to

collect regional statistical data, and then perform the clustering on the grid.

So the clustering is not performed on the database directly. The performance

of a grid-based method depends on the size of the grid, which is usually much

less than the size of the database. This method however does not perform
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well on highly irregular data. Some examples of algorithms that use this

approach include Wave-Cluster and STING [29]

The model based clustering is based on the assumption that the data is

generated by a mixture of underlying probability distributions. It encom-

passes analyses of finite mixture densities [6]. This method models the set of

clusters and find the best fit of the data to the model. We write the mixture

distribution or the probability density function of xn as

p(xn) =
K∑
i=1

πip(x; θ)

where π1...πK are the mixing probabilities, p(x; θ) is the component distri-

bution of parameter, θ. The mixing probabilities must satisfy

0 ≤ πK ≤ 1 and
K∑
i=1

πK = 1

.

The model based clustering reduces clustering to estimation of model pa-

rameters. These parameters are estimated using expectation- maximization

algorithm or other Bayesian estimation methods. Of course there are other

model-based procedures. Banfield and Raftery [25] extended the classifica-

tion maximum likelihood procedure which was originally proposed by Scott

and Symons [31]. The model based approach to clustering arose to address

some of the challenges of the K-means and agglomerative hierarchical clus-

tering; it must be emphasized that the the former allows possible inference
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whiles the latter serve as exploratory tools.

Most clustering algorithms work with numeric data but work has been

done to include categorical data [23]. With the ever growing constituents of

data, mixed data containing both numeric and categorical characters exist.

The traditional approach is to transform the categorical data into numeric

values and proceed with clustering based on the existing numerical algorithm.

Also it could be done by clustering the categorical data directly where we

assign a distance of 1 if the two values are distinct and a distance of 0 if

the two values are identical. The setback here is that the clustering does

not reveal the true similarity structure of the data set since the two methods

fail to take into account the similarity information contained in between cat-

egorical values. Hsu, 2006; Hsu and Wang, 2005 made similar assertions [33].

Other types of data arise as curves or functions of one or several indepen-

dent variables. These data types are normally referred to as functional data.

Clustering of such data may depend on some characteristics of curves such as

positions, shapes and derivatives. For a variable to be considered functional

we must be able to determine the quantity existing at any time (or other

charting variable) along the interval T. Most clustering algorithms depend

on some dissimilarity measure between objects to guide the algorithm. When

it comes to functional data, the ideal distance measure between two curves,
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yi(t) and yj(t) measured on some domain, [0,T] is the squared L2 between

the two curves:

d(i, j) =

∫ T

0

[yi(t)− yj(t)]2dt.

In dealing with functional data, each discrete datum is converted to a

continuous functional observation by a method of smoothing. In Ferreira

et.al (2009), they applied the B-spline to smooth each functional observa-

tion. The goal was to remove noise and not change drastically the structure

of the curves before clustering. The L2 distance between two curves was

approximated by the trapezoidal rule. They argued that the data in prac-

tice consist of discrete values representing measurements along continuous

curves. We have the function h(t) along the domain [0,T] approximated as

In =
T − 0

2n
[h(0) + 2h(t1) + ...+ 2h(tn) + h(T )],

where n is the number of measurement points used in the approximation.[12]
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2 REVIEW OF PREVIOUS METHODOLOGY FOR CLUSTERING
MIXED DATA

Several methods have been proposed to cluster mixed data. The avail-

able options include doing a separate clustering on each variable type. There

are setbacks to this approach as there cannot be common ground for these

clusters.There is no concrete agreement from the conclusions made from the

clusters. Other methods involve converting all variables into a solitary vari-

able and then proceed with the cluster analysis. The disadvantage with this

method is that a great deal of information is lost and the true clustering is

affected [16].

Cluster analysis usually focuses on finding the dissimilarity between ob-

jects, but we can reach the same conclusion also by focusing on the simi-

larity between objects. J.C Gower (1971) proposed a coefficient to measure

the similarity between two objects based on mixed data [17]. Several works

have been done since then on the use of this coefficient. In 2006, Chae, Kim

and Yang assigned weights to the variable types to solve the problem which

existed in Gower’s proposed formula. They note that assigning weights to

either one of the variable types leads to clustering with dominance of one

variable type. Appropriate weights were allotted based on the characteris-

tics of the data under consideration. This was done in order to protect or

favor the phenomenon of dominance of one variable type. The dissimilarity
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measure they define is stated as follows

d∗ij = τij

c∑
l=1

1

c
(
|xil − xjl|

Rl

) + (1− τij)
√

1− Aij

= τij

c∑
l=1

1

c
(
|xil − xjl|

Rl

) + (1− τij)
√

(1−
∑r

l=c+1 sijl∑r
l=c+1wijl

where τij, 0 ≤ τij ≤ 1, is a balancing weight such that

τij =


1.0− |ρcij |

|ρcij |+|ρdij |
if 1.0 <

|ρcij |
|ρdij |

,

1.0− |ρdij |
|ρcij |+|ρdij |

if 1.0 >
|ρcij |
|ρdij |

,

0.5 if |ρcij| = |ρdij|

where −1.0 ≤ ρcij is the similarity measure for the quantitative variables, ρdij

represents a similarity measure for the binary variables, i = 2, 3, ..., n and

j = 1, 2, ..., n − 1, i > j. Rl is the range of the lth variable, wijl = 1.0 for

continuous variables, sijl = 1.0 if xi = xj and 0 otherwise, for binary variable,

and wijl could either be 0 or 1, for variables provided the comparison between

the ith and jth objects is valid for the lth variable. They acknowledged that

they employed the Pearson correlation coefficient and the product moment

correlation coefficient. The Pearson correlation coefficient is substitute for

ρcij and the product moment correlation is used for ρdij [18].

A method that came to be known as a generalized Minkowski metric is

capable of handling continuous, discrete, ordinal and nominal variables[15].

The method has proved to work with tree structured variables with a finite
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set of nominal values. It turns out that the proposed dissimilarity measure is

a metric distance. Ichino and Yaguchi (1994) recommend alternative kind of

the measure may that be normalized to incorporate variables with different

measurement scales or the application of different weight measures for the

different variable types .

Friedman and Meulman (2004) elaborate two algorithms for clustering

objects on subsets of attributes (COSA). This method was derived from al-

ready known or existing distance measures. In their work they state that

the COSA algorithm focuses primarily on clustering objects based on un-

certain similar joint values for the attributes. They thought through such a

method for potential setbacks and came up with some modifications. The

minimal modification to the COSA algorithm permitted it to be used for

clustering objects based on certain values of the attributes. This they refer

to as “Single-target clustering”. Likewise, it can be used to cluster objects

based on two extreme values which they refer to as “Dual-target clustering”

[10].

The model-based method seeks to optimize the fit between the data and

some mathematical model. The underlying assumption is that data is gener-

ated by some underlying probability distribution. This provides a means of

automatically ascertaining the number of clusters based on standard statis-
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tics. Everitt (1988) proposed a clustering model which obtained credit as one

of the earliest model based approach for clustering mixed data. The model

could work for data containing both continuous and ordinal or nominal vari-

ables. Several assumptions were made regarding this model. It is assumed

that an observed vector x, consisting of p+ q random variables assumed the

density function

f(x) =
k∑
i

piMVN (p+q)(µi,Σ),

where k is the number of clusters, p1, p2, ...pk are the mixing proportions

subject to the constraint
∑k

i pi = 1 and MVN(., .) denotes multivariate nor-

mal density. Everitt continued that the binary and ordinal variables can be

thought of as coming from underlying continuous distributions. The q cate-

gorical or ordinal variables are obtained by setting certain threshold values as

cut-off points.The continuous variables xp+1, xp+2, xp+3, ..., xp+q are observed

only through categorized variables z1, z2, z3, ..., zq. The z′js are constructed

in the following way,

zj =


1 if−∞ = δij1 < xp+j < δij2,

2 if δij2 < xp+j < δij3,

tj if δijtj < xp+j < δijtj+1 =∞

Where the δijl, i = 1, ..., k, j = 1, ..., q, l = 2, ..., tj are the threshold val-

ues used to construct the ordinal variables, z1, z2, z3, ..., zq from the continu-

ous variables xp+1, xp+2, xp+3, ..., xp+q Everitt(1988) broached and defined the

20



density function of the form

g(x, z) =
k∑
i=1

piMVN(p)(µ
(p)
i ,Σ)

∫ b1

a1

...

∫ bq

aq

MVNq(µ
(q|p)
i ,Σ(q|p))dy1, ...dyq

where µ
(q|p)
i = Σ

′
pqΣ

−1
p (x− µ(p)) and Σq|p = Σq − Σ

′
pqΣ

−1
p Σpq It is noted that

these respectively are the mean and covariance matrix for the conditional

density xp+1, ..., xp+q given x1, ..., xp+q. Σpq is the matrix of covariances be-

tween x1, ..., xp and xp+1, ..., xp+q; ΣP is the covarinace matrix of x1, ..., xp; Σq

is the covariance matrix of xp+1, ..., xp+q. The problem of model based clus-

ter analysis boils down to the estimation of parameters of density function.

There is the need to estimate the parameters for a given set of observations

in order to determine the probabilities for assigning appropriate clusters to

the observation. In order to estimate the parameters we maximize the log-

likelihood function

logL = Σk
i=1g(xi, zi).

There are other approaches to mixture model clustering which are extensions

of previously known methods. The observations should be in the form of

an n × p matrix. The observations here come from variables which are a

random sample of the form f(x) = Σπkfk(x) [19]. A later model called the

MULTIMIX model for the ith observation is given as

f(xi;φ) = ΣK
k πk

L∏
l=1

fkl(x̄il; θkl

21



where θkl contain the parameters of fkl and we treat πk as mixing prob-

abilities. If the distribution of fkl is known then there could be a known

algorithm for estimating the parameters. For instance if the fkl belongs to

the exponential family, the model’s parameters can be estimated using the

Expectation Maximization (EM) algorithm.[19]

2.1 Extended Gower Coefficient

Hendrickson and Hitchcock created an extension of the Gower coeffient

to cluster mixed data types. The dissimilarity between two objects i and j,

is defined as follows

d(i, j) =

∑
f δ

(f)
ij d

(f)
ij∑

f δ
(f)
ij

where δ
(f)
ij = 1 if the measurements xif and xjf for the fth variable are

non-missing and 0 otherwise. If f is binary or nominal then,

dfij =

{
1 if xif 6= xjf
0 if xif = xjf

If all variables are nominal or symmetric binary, then dij is equal to the

matching coefficient. If the variable is directional, then

dfij = π − |π − |θi − θj||

where θi is the angle measured on object i [21] If the variable is interval

scaled, then

dfij =
|xif − xjf |

maxh(xhf )−minh(xhf )

22



2.2 Proposed Work

It is noted that, with regards to actual work done on clustering in liter-

ature, hierarchical clustering is the most widely used clustering method in

practice [11]. We are going to apply hierarchical clustering algorithms with

the Extended Gower coefficient to cluster mixed data. We will examine both

the effects of unweighted and weighted dissimilarities to the functional data.

We want to know how functional data affect our clustering results when com-

bined with other variables. In particular we will employ the inverse-variance

weight used by Chen et. al. We will also make use of another weight function

called the CV-optimal weight in our simulation studies. This weight function

was proposed by Huaihou et. al and it seeks to minimize the coefficient of

variation of a random vector θ [20]. We will describe the weight in later

chapters. Various simulation studies will be done as well as applications to

real data set.
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3 APPLICATION TO REAL DATA

We now illustrate and present the extension of the Gower coefficient with

the appropriate weight on a real data set. The data we are using are ob-

tained from the National Buoy Data Center (NBDC) historical data page

http://www.ndbc.noaa.gov at the National Oceanic and Atmospheric Ad-

ministration (NOAA) web site. The data has many variables but the vari-

ables we will consider are wind direction, wind speed, air temperature, and

water temperature. We also include the latitude, longitude and water depth

that corresponds to each buoy. Since some of the buoys contain too many

missing values we delete such buoys. If the degree of missing values can be

tolerated ,such as missing values in variables that were time series, we took

the average of the observations before and after the missing observation.The

number of observations and the measurement times for the functional data

varied from buoy to buoy. We made some adjustment to the time index to be

the number of minutes since January 1, 2011 at 12:50 AM. The time in the

original data sets was given as year, month, day, hour, and minute We also

considered the time zone (a nominal variable) for each buoy. The time zones

in our buoy data were Central, Eastern, and Pacific. To make allowance for

this variable in the Gower coefficient, we ascribe a numerical label for each

time zone, ‘Eastern’=1, ‘Central’=2, and ‘Pacific’=3. We would treat wind

direction, wind speed, air temperature, and water temperature as functional
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variables. We also employed the B-spline smoother to introduce some degree

of smoothness to the curves since each buoy had different measurement points

We would also treat latitude and longitude as directional variables. To trans-

form from Cartesian coordinates to polar coordinates, we make the following

transformations; x = rcosθ and y = rsinθ where r =
√
x2 + y2 .Since lati-

tude and longitude are measured using the intersection of the prime meridian

and the equator as the reference point, and since all our data lie in the same

region, we use 0◦ latitude, 0◦ longitude as our reference point. We can solve

for θ by using the formula θ = arccos x−x0√
(x−x0)2+(y−y0)2

, where x is the latitude,

y is the longitude for each buoy, x0 is the latitude, y0 is the longitude at the

reference point. To illustrate this with an example we choose buoy 51000

which is located at 23.546◦N154.056◦W . We find the value of θ for this buoy

as; θ = arccos 154.056−0√
(23.546−0)2+(154.056−0)2

= 0.152 radians.

3.1 B-Splines

B-spline functions comprise flexible bands that pass through a number

of points that are called control points and create smooth curves. By these

functions we are able to develop and manage complex surfaces through a

number of knots. The spline functions are continuous at the knots. In this

way we construct curves from a given set of points by making the curve pass

through the points. Curves consisting of just one polynomial or rational
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segment has some shortcomings. For instance a high degree is required in

order to satisfy a large number of constraints e.g., (n 1)-degree is needed

to pass a polynomial Bezier curve through n data points. However, high

degree curves are inefficient to process and are numerically unstable; Also

a high degree is required to accurately fit some complex shapes. A way to

address some of these setbacks is to make use of curves that are piecewise

polynomial [27]. Our aim is to achieve some level of smoothness by joining

together neighboring curves or line segments. We use the bs() function in

R to produces B-splines. The curves derived from the functional observa-

tions were obtained this way. See Figures 3.1 and 3.2. This proves to be a

computationally efficient way to compute cubic regression splines.

3.2 The Rand Index and Adjusted Rand Index

We assessed the clustering solution using the Adjusted rand and the Rand

indices. The rand index is a commonly used clustering accuracy metric in-

troduced by Rand (1971). The rand index takes into account the number of

instances that exist in the same cluster and in different clusters between two

cluster solutions. The rand index is defined as follows

R =
n11 + n00

n00 + n01 + n10 + n11

where n11 is the number of pairs of instances clusters that are placed in the

same cluster in both, n00 is the number of pairs of instances that are different
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Figure 3.1: Curves showing Wind direction

clusters, n10 is the number of pairs of instances that are in the same cluster in

A, but in different clusters in B, n01 is the number of pairs of instances that

are in different clusters in A, but in the same clusters in B. A is one clustering

result from the data and B is another clustering result from the same data.

We have 0 ≤ R ≤ 1. Values close to 0 indicates that the two data clusterings

do not agree. A value close to 1 indicates that data is clustered in nearly the

same way, with a value of 1 indicating the two cluster solutions are the same.

One setback of the Rand Index is that the expected value of the of the Rand

Index between two random clusters may be different. This setback would be
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Figure 3.2: Curves showing Air temperature

addressed with the Adjusted Rand Index (ARI). The Adjusted Rand index

is another validation measure used to compare the clustering solution of two

clusterings. Here, an account is taken of randomness or chance of overlap in

the clustering. The Adjusted Rand Index (ARI) is given as

ARI =

∑
ij

(
nij

2

)
− [
∑

i

(
ai
2

)∑
j
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bj
2

)
]/
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1
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+
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bj
2

)
]/
(
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2

) ,
where nij is the number of objects that are common to clusters Ai and Bj and

Ai is the ith cluster in the first clustering and Bj is the jth cluster in the second
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clustering, a, and bjs are marginal sums, ai =
∑

j nij and bj =
∑

i nij and∑
ij nij = N . [26]. We note that although the Rand index is always positive,

the Adjusted Rand Index can produce negative values if the expected value

is greater than the index

3.3 Weighted L2 in the Extended Gower coefficient

The Extended Gower coefficient permits the inclusion of the directional

and functional variables with the other types of variables. We defined and

used the following dissimilarity for each variable type. We used the L1 for

the continuous or the interval-scaled variable . As defined previously the L1

distance between observations xi and xj for the f th variable is

d
(f)
L1

(i, j) = |xif − xjf |

. The dissimilarity measure for the functional variable is the L2 distance,

d
(f)
L2

(i, j) =

√∫
T

[xif − xjf ]2.dt

We consider the weighted L2 distance which shall be employed to measure

distances for functional data;

dw
f
L2

(i, j) =

√∫
T

w(t)[xif − xjf ]2dt

. In R we use the function metric.lp in the fda.usc. package. This function

calculates an approximate Lp distance for functional data using Simpson’s
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rule [28]. The function fdata was also employed to transform the fitted values

from fitting the B-splines for each functional variable to a functional data

object. For our functional variables, we calculated the variances from each

of the observed curves and used it to compute the inverse variance weight.

We used the Ackerman distance to calculate the dissimilarity measure for

the directional variable. If θi is the angle measured on object i, we have

dfij = π − |π − |θi − θj||.

If the variable is binary or nominal we use,

dfij =

{
1 if xif 6= xjf
0 if xif = xjf

The dissimilarity for the combined set of variables is calculated as follows;

the distance between objects i and j is

d(i, j) =

∑
f δ

(f)
ij d

(f)
ij∑

f δ
(f)
ij

,

where δ
(f)
ij is 1 if both measurements xif and xjf for the fth variable are

non-missing, and 0 otherwise (Kaufman Rousseeuw, 1990). So if we have

that both measurements xif and xjf for the fth variable are non-missing the

dissimilarity between the ith and jth objects will simply be the sum of all

of the dissimilarities calculated for the ith and jth objects, divided by the

sum of the number of variables. With our variables, we created a 26 X 26

dissimilarity matrix containing the dissimilarity measures defined above. We
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then used the hclust package in R on this matrix to perform hierarchical

clustering on the matrix. Since there are seven regions we make a choice of

7 clusters.

3.4 Summary of Results

When equal weight was applied to the functional data the Adjusted Rand

Index is 0.2604 and the Rand Index is 0.8185. The application of the inverse

variance weight to the functional variable saw an increase of 29.11% in the

Adjusted Rand Index from 0.2604 to 0.3332. The Rand index increased by

3.01%. from 0.8185 to 0.8431. The inverse variance weighted functional

data outperformed the equal weight functional data. Table 3.1 shows the

clustering solution of the weighted data.
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Table 3.1: Clustering solution with Extended Gower coefficient.

Station Region Cluster label
41046 Western Atlantic 1
41047 Western Atlantic 1
41078 Western Atlantic 2
44007 Northeast USA 3
44009 Northeast USA 3
41004 Southeast USA 2
41012 Southeast USA 2
44020 Southeast USA 3
46012 Northeast USA 4
46027 Northeast USA 5
46041 Northeast USA 5
46042 Northeast USA 4
46059 Northeast USA 6
46011 Southeast USA 4
46025 Southeast USA 5
46028 Southeast USA 4
46053 Southeast USA 5
46054 Southeast USA 4
46086 Southeast USA 5
42020 Florida/Gulf of Mexico 1
41012 Florida/Gulf of Mexico 2
42036 Florida/Gulf of Mexico 2
42039 Florida/Gulf of Mexico 2
42040 Florida/Gulf of Mexico 2
42056 Western Caribbean 1
42055 Western Caribbean 7

As can be seen from Table 3.1, the 7 cluster solution produced some

correct clusters as well as some misclassified clusters. The buoys were in

regions Western Atlantic, Northeast USA, Northwest USA, Southwest USA
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and Western Caribbean. All stations which are located in Gulf of Mexico

were misclassified into Northeast USA. Stations 44007 and 44009 which are

in Southeast USA were placed in Northeast USA region. The table shows

the clustering solution of the weighted data which is similar to the equally

weighted data. But we observed from the dendrograms that buoy number 26

which geographically is located along the West coast was clustered by itself in

the original data (See Figure 3.3). But with the weighted data it moved and

aligned itself with other buoys along the west coast. This improved cluster

solution indicates the benefit of the weighted data (See Figure 3.4).
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Figure 3.3: A dendrogram showing extension of the Gower coefficient
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Figure 3.4: A dendrogram showing the clustering solution of the weighted
data
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Figure 3.5: A US map showing the location of the buoys

A US map shows the location of the buoys in Figure 3.5. It can be

realized that the clustering solution classified most of the buoys into regions

relatively close geographically to their “true regions”. Therefore the 7-cluster

solution does not deviate much from the reality. The clustering solution does

a satisfactory job.
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4 SIMULATION STUDY

We conducted simulation studies to compare the clustering results of

mixed data with two different weight functions. The data generated consists

of continuous, categorical, directional and functional observations. The ex-

tended Gower coefficient allows this data set to be clustered concurrently.

This data simulated is similar to that of Hendrickson and Hitchcock (2012).

The categorical data was generated using the sample.int function in R. This

function enables us to sample from multinomial probability function with

replacement from five categories and has the form

N !

x1!x2!x3!x4!xx!
px11 p

x2
2 p

x3
3 p

x4
4 p

x5
5 ,

where N =
∑5

1 xi, pi is the probability for each category [13]. The clus-

ter sizes were made to differ and for each cluster we made use of different

probability vectors, in order to simulate clusters of data that have different

probabilities of coming from each category. In this simulation study,the prob-

ability vectors were (0.8,0.05,0.05,0.05,0.05) where we have one principal or

dominant category and we chose the probability vectors (0.2,0.2,0.2,0.2,0.2)

to represent equally likely categories. The continuous variable was simu-

lated from a normal distribution with mean µ and standard deviation σ.

For the purpose of the study we chose the following values for µ and σ: σ

was fixed at 100 for all four clusters , µ = 5000 and for cluster 1, for clus-
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ter 2, µ = 5000 + kσ , for cluster 3, µ = 5000 + 2kσ, and for cluster 4,

µ = 5000 + 3kσ. The value of k was also chosen to vary from small to

moderate to large. Here for instance k = 5, k = 20 and k = 50. As the

value of k increases, the separation between clusters becomes greater. The

directional variable θ, is simulated by employing the von Mises distribution.

The von Mises distribution is a continuous probability distribution with two

parameters µ and κ; µ is the mean direction of the distribution, and κ is

the concentration parameter of the distribution [22]. This distribution has

density function:

expκcos(θ − µ)

2πI0(κ)
, 0 ≤ θ ≤ 2θ,

where 0 ≤ µ < 2π, κ ≥ 0 and I0(κ) is the modified Bessel function defined

by

I0(κ) =
1

2π

∫ 2π

0

exp(κcosθ)dθ

[14]. In R, the rvonmises function in the circular package is used to simulate

this distribution. For the 4 different clusters, we picked the following values

for µ and κ: the value for κ was fixed at 50 for all 4 clusters and the value

for µ was varied as follows; cluster 1, µ was 0, so that the data were highly

concentrated around 0, for cluster 2, µ was 0+k , for cluster 3, µ was 0+2k,

for cluster 4, µ was 0+3k. Also the value of k varied from small to moderate

to large; for example, we used k = 0.5, k = 1.0, and k = 2.5. There are three

different groups of signal curves that could be used for generating functional
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data. These signal curves were the same signal curves used by Hitchcock

and Ferreira (2009). They were chosen according to their description to lie

within a reasonable proximity to each other to make the clustering solution

good as possible. As presented by Hitchcock and Ferreira (2009), the first

group is made up of some form of periodic data. The first group is defined

as follows:

µ1(t) =
1

28
(t) + exp(−t) +

1

5
sin(t/3) + 0.5

µ2(t) =
1

20
(t) + exp(−t) +

1

5
sin(t/2)

µ3(t) =
1

15
(t) + exp(−t) +

1

5
cos(t/2)− 1

µ4(t) =
1

18
(t) + exp(−t) +

1

5
cos(t/2)

The second group of signal curves had no periodic tendencies and strictly

decreasing defined as follows:

µ1(t) = 50− (t2/500)− 7ln(t)

µ2(t) = 50− (t2/500)− 5ln(t)

µ3(t) = 50− (t2/750)− 7ln(t)

µ4(t) = 50− (t2/250)− 2ln(t)

The third group had a decreasing trend and contained a mixture of some

periodic tendencies and strictly decreasing functions. They are defined as
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follows:

µ1(t) = −t/2 + 2sin(t/5)

µ2(t) = −t/2 + 2cos(t/3)

µ3(t) = −t2/250− 4ln(t)

µ3(t) = −t2/250− 2ln(t)

The three groups of the signal curves are plotted in Figures 6, 7 and 8

respectively

Figure 4.1: Group 1 signal curves.
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Figure 4.2: Group 2 Signal curves
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Figure 4.3: Group 3 Signal curves

Following the same framework provided by Hitchcock and Ferreira (2009)

and the work of Hitchcock and Hendrickson, we generated 30 discretized

curves based on the 4 signal functions from the groups above. The data was

simulated over 200 points from t = 0 to t = 100 in increments of 0.5 except

for the clusters containing the ln(t) in which case the data was simulated over

201 points from t = 0.5 to t = 100 by increments of 0.5. We introduced a

random error term to the signal functions thereby making allowance for some

variation within each cluster. A discretized approximation of the stationary

Ornstein-Uhlenbeck process was used in this case. This process is a Gaussian
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process with mean zero and the covariance between the errors measured at

points tm and tn is σ2(2β)−1exp(−β|tm− tn|) (Ferreira and Hitchcock, 2009).

We kept the drift variable β, at 0.5 and let σ = 1.75 for small distance

between the clusters and σ = 1 for large distance between the clusters. See

Figure 4.4

Figure 4.4: Observed curve with Ornstein-Uhlenbeck Process
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4.1 Weight functions for functional data

It is important to raise the question whether any of the variables has the

tendency to influence our clustering result in any way. In order to avoid favor-

ing any variable type Huang (1998) used weight in his study of K means al-

gorithms for clustering large data sets with categorical variables. The weight

was applied only to the categorical variables in this instance. The values

of the weight ranges from 0.0 to infinity depending on the nature of the

data.[23]. We will consider weighted functions for the functional data in this

work, as in the work done by Hendrickson and Hitchcock, there were cases

when the functional variable dominated the clustering [32]. We will look at

two weight the functions, the first being the inverse variance weight. The

inverse variance weight is defined as

w(t) =

1
σ̂2(t)∫

T
( 1
σ̂2 (u)du

where σ̂2(t) is an estimate the sample variance of all yi(t)− yj(t) values such

that
∑

iwi = 1. The inverse variance weight function puts more weight

if curves are more spread apart and less weight on areas where the curves

are less spread apart (Chen et al. 2014). The second weight function seeks

to minimizes the coefficient of variation of the resulting squared distance

between observed functions by means of iterative procedure (CV-optimal

44



Weight) . This weight function is defined as

w(t) = [bTw(t)q]2

where bw(t) = [bw1(t), ..., bwKw(t)]T denotes a Kw- dimensional spline basis

and q is the vector of associated spline coefficients [24].

We structured our study in such a way that in some settings we wanted

the simulated data to have large distance between clusters. In other we had

small distances between clusters. This will indicate to us the performance of

the extended Gower and weighted functions under various data composition.

In some settings the variables had the same mean for each cluster while in

some settings all variables had different means for each cluster. There are

four clusters in each data and we changed the cluster sizes for each simulation

setting. We considered the following cluster sizes:

• 25 objects in each cluster

• 33 objects in cluster 1,2 and 3 and 1 objects in cluster 4

• We also chose 10 objects in cluster 1, 20 objects in cluster 2, 30 objects

in cluster 3 and 40 objects in cluster 4

For each of the 15 simulation settings, we simulated 1000 data sets for

each combination of parameter setting and also for each considered cluster

sizes. We calculated the rand index, the adjusted rand index as well as the
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mean and standard error for each setting. Table 4.1 and 4.2 show the various

simulation settings
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Table 4.1: Simulation Study Settings: Settings 1:8
Setting Categorical

Variable
Probs.

Continuous
Variable 1

Mean

Continuous
Variable 2

Mean

Directional
Variable
Mean

Functional
Variable
sigma

1


(0.8, 0.05, 0.05, 0.05, 0.05)
(0.05, 0.8, 0.05, 0.05, 0.05)
(0.05, 0.05, 0.8, 0.05, 0.05)
(0.05, 0.05, 0.05, 0.05, 0.8)



5000
10000
15000
20000




500
5500
10500
15500




0
0.5
1
1.5

 σ = 1

2


(0.8, 0.05, 0.05, 0.05, 0.05)
(0.05, 0.8, 0.05, 0.05, 0.05)
(0.05, 0.05, 0.8, 0.05, 0.05)
(0.05, 0.05, 0.05, 0.05, 0.8)



5000
10000
15000
20000




500
5500
10500
15500




0
0.1
0.2
0.3

 σ = 1

3


(0.2, 0.2, 0.2, 0.2, 0.2)
(0.2, 0.2, 0.2, 0.2, 0.2)
(0.2, 0.2, 0.2, 0.2, 0.2)
(0.2, 0.2, 0.2, 0.2, 0.2)



5000
10000
15000
20000




500
5500
10500
15500




0
0.5
1
1.5

 σ = 1

4


(0.8, 0.05, 0.05, 0.05, 0.05)
(0.05, 0.8, 0.05, 0.05, 0.05)
(0.05, 0.05, 0.8, 0.05, 0.05)
(0.05, 0.05, 0.05, 0.05, 0.8)



5000
5500
6000
6500



500
1000
1500
2000




0
0.5
1
1.5

 σ = 1

5


(0.8, 0.05, 0.05, 0.05, 0.05)
(0.05, 0.8, 0.05, 0.05, 0.05)
(0.05, 0.05, 0.8, 0.05, 0.05)
(0.05, 0.05, 0.05, 0.05, 0.8)



5000
10000
15000
20000




500
5500
10500
15500




0
0.5
1
1.5

 σ = 1.75

6


(0.2, 0.2, 0.2, 0.2, 0.2)
(0.2, 0.2, 0.2, 0.2, 0.2)
(0.2, 0.2, 0.2, 0.2, 0.2)
(0.2, 0.2, 0.2, 0.2, 0.2)



5000
10000
15000
20000




500
5500
10500
15500




0
0.1
0.2
0.3

 σ = 1

7


(0.8, 0.05, 0.05, 0.05, 0.05)
(0.05, 0.8, 0.05, 0.05, 0.05)
(0.05, 0.05, 0.8, 0.05, 0.05)
(0.05, 0.05, 0.05, 0.05, 0.8)



5000
5500
6000
6500



500
1000
1500
2000




0
0.1
0.2
0.3

 σ = 1

8


(0.2, 0.2, 0.2, 0.2, 0.2)
(0.2, 0.2, 0.2, 0.2, 0.2)
(0.2, 0.2, 0.2, 0.2, 0.2)
(0.2, 0.2, 0.2, 0.2, 0.2)



5000
10000
15000
20000




500
5500
10500
15500




0
0.5
1
1.5

 σ = 1.75
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4.2 Results of the simulated study

We discovered the weights improved the clustering solution using the ex-

tended Gower coefficient in most of the settings. The rand index is the

largest when using weights in the extended Gower coefficient indicating that

the weighted extended Gower coefficient produce the best clustering as com-

pared to the equally weighted L2 distance.

Figure 4.5: A clustering dendrogram showing the extended Gower coefficient.

In some cases the inverse-variance weight performed better while in other
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cases the CV-optimal weight proved superior. In other instances the weight

functions had no effect on the clustering solution as the average Rand In-

dices were the same for the equally weighted extended Gower coefficient and

the weighted Gower coefficient. It is also observed that the weighted func-

tions produced smaller average rand indices than the equally weighted Gower

coefficient.

Figure 4.6: A clustering dendrogram showing the extended Gower coefficient
with weighted L2.

We make the observation that the Inverse-variance weight proved superior
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to the CV-optimal weight when there is a small distance between clusters.

That is the value of σ = 1.75 which indicates small distance between clusters

in the Ornstein-Uhlenbeck process. The average rand index in this case was

larger for the inverse variance weight.This is true for all but few settings

where the average rand index was slightly higher for the CV-optimal weight.

In one instance when the cluster sizes are 25 in each cluster the difference

was 0.0428. Also when the cluster sizes were 33,33,33 and 1, the CV opti-

mal weight performed better with a difference of 0.0354. When there is a

large distance between the clusters of the functional data, that is σ = 1, the

original extended Gower coefficient performed better than the weighted func-

tions, as we had larger values for the average Rand indices. This is the case

for most of the settings involving the inverse variance weight. In some set-

tings however, the weight functions had no influence on the extended Gower

coefficient. The Rand indices for the extended Gower coefficient and the

weighted functions remained unchanged. In general, when there is a large

distance between clusters, the extended Gower coefficient without applying

weights to the functional variable performed just as well or better than the

weighted functional variable. No particular cluster size allocation dominated

the outcome of the clustering solution. The average Rand index was higher

in some settings with equal cluster sizes, 25 objects in each cluster. In other

settings cluster size 33,33,33 and 1 in each cluster produced higher values of
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the average Rand index. Likewise, cluster size 40,30,20 and 10 also produced

some higher Rand index values in some settings. In some settings where

the equally weighted functions was superior in performance to the inverse

variance weight (setting 6 ,10 12), we had the categorical variables coming

from equiprobable categories though the continuous and the directional vari-

ables had different means. In both cases there was large distance between the

clusters. In the other settings (settings 2,4,7) where equally weighted L2 pro-

duced higher rand indices, the categorical variables contained one dominant

category with probability vectors (0.8,0.05,0.05,0.05,0.05). In these cases the

means for the continuous and directional variables were all different though

both cases had large separation between clusters (σ = 1). In only one case do

we have the equally weighted distance perform better than the CV-optimal

weight( setting 13a). There were 25 objects in each cluster under this setting.
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Table 4.2: Simulation Study Settings: Settings
9:15

Setting Categorical
Variable
Probs.

Continuous
Variable 1

Mean

Continuous
Variable 2

Mean

Directional
Variable
Mean

Functional
Variable
sigma

9


(0.8, 0.05, 0.05, 0.05, 0.05)
(0.05, 0.8, 0.05, 0.05, 0.05)
(0.05, 0.05, 0.8, 0.05, 0.05)
(0.05, 0.05, 0.05, 0.05, 0.8)



5000
10000
15000
20000




500
5500
10500
15500




0
0.1
0.2
0.3

 σ = 1.75

10


(0.2, 0.2, 0.2, 0.2, 0.2)
(0.2, 0.2, 0.2, 0.2, 0.2)
(0.2, 0.2, 0.2, 0.2, 0.2)
(0.2, 0.2, 0.2, 0.2, 0.2)



5000
5500
6000
6500



500
1000
1500
2000




0
0.5
1
1.5

 σ = 1

11


(0.8, 0.05, 0.05, 0.05, 0.05)
(0.05, 0.8, 0.05, 0.05, 0.05)
(0.05, 0.05, 0.8, 0.05, 0.05)
(0.05, 0.05, 0.05, 0.05, 0.8)



5000
5500
6000
6500



500
1000
1500
2000




0
0.5
1
1.5

 σ = 1.75

12


(0.2, 0.2, 0.2, 0.2, 0.2)
(0.2, 0.2, 0.2, 0.2, 0.2)
(0.2, 0.2, 0.2, 0.2, 0.2)
(0.2, 0.2, 0.2, 0.2, 0.2)



5000
5500
6000
6500



500
1000
1500
2000




0
0.5
1
1.5

 σ = 1

13


(0.2, 0.2, 0.2, 0.2, 0.2)
(0.2, 0.2, 0.2, 0.2, 0.2)
(0.2, 0.2, 0.2, 0.2, 0.2)
(0.2, 0.2, 0.2, 0.2, 0.2)



5000
5500
6000
6500



500
1000
1500
2000




0
0.1
0.2
0.3

 σ = 1

14


(0.8, 0.05, 0.05, 0.05, 0.05)
(0.05, 0.8, 0.05, 0.05, 0.05)
(0.05, 0.05, 0.8, 0.05, 0.05)
(0.05, 0.05, 0.05, 0.05, 0.8)



5000
5500
6000
6500



500
1000
1500
2000




0
0.1
0.2
0.3

 σ = 1.75

15


(0.2, 0.2, 0.2, 0.2, 0.2)
(0.2, 0.2, 0.2, 0.2, 0.2)
(0.2, 0.2, 0.2, 0.2, 0.2)
(0.2, 0.2, 0.2, 0.2, 0.2)



5000
5500
6000
6500



500
1000
1500
2000




0
0.5
1
1.5

 σ = 1.75
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5 DISCUSSION

This work focuses on clustering mixed data involving continuous, categor-

ical, directional and functional variables. We presented a method the creates

an extension of the Gower coefficient. We applied hierarchical clustering al-

gorithms to produce the clustering solution. Our focus in this thesis was on

weighting the functional data.The application of judiciously chosen weight

to the functional data is done to avoid the functional data from influencing

the clustering solution. We considered the inverse variance weight and a

weight function called the CV-optimal weight which is based on minimizing

the coefficient of variation of the squared distance between functional obser-

vations. We first used the inverse variance weighting method on a real data

set, the buoy data. The Rand index was calculated for equally weighted and

the weighted settings.This index gives a proportion of pairs of objects that

have been correctly clustered in the same group or correctly clustered into

different groups. The Rand Indices were higher for the weighted functional

data compared to the equally equally weighted functional data. The cluster-

ing solutions based on the weighted data proved superior as the clustering

solution classified the buoys into regions relatively close geographically to

their “true regions”.

In the simulation study, the weighting procedure was shown to improve

performance of the extended Gower coefficient under different data settings.
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The improvement is quite dramatic compared to the standard unweighted

approach. In some settings however, there was no change in performance, as

the Rand indices were the same for both the weighted and the unweighted

data. This occurred mostly when there were large distances between clus-

ters of the functional variable. The size of the cluster also influenced the

average adjusted Rand indices. When cluster sizes were different there were

differences in the values of the Average Rand indices though the size of the

clusters did not inhibit significantly the work of the influence of the weight

functions. In some settings the original unweighted performed better than

the weighted data in adjusted Rand indices comparisons. This occurred

mostly when the inverse variance weight was applied. One setback with the

CV-optimal weight function is that when the size of observed curves is too

large it takes a lot of time to compute and may run into high dimensionality

problems.

We observed that when there is a small distance between clusters of the

functional variables and large separation between the directional variables,

the inverse variance weight performed better than the CV-optimal weight.

In cases where the equally weighted functional data achieved superiority over

the weighted data (inverse variance weight), there were large distances be-

tween clusters of the functional data. Also in the setting where no one par-

ticular method performed better than the other there was a large distance
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clusters of the functional variables and large separation between clusters of

the directional variable.

As future work we could look into applying reasonable weight functions

on all variables. We could also simulate data containing different types of

signal functions. The signal functions used for the simulation study is is

a mixture of increasing and decreasing curves. We could look into data

containing strictly decreasing functions or a mixture of several functions. In

the future, we also expect research on mixed data clustering to continue to

be driven by the development of algorithms to handle mixed data.
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APPENDIX

RAND INDICES ALONG WITH ADJUSTED RAND INDICES

Table .1: Setting 1: Adjusted Rand and Rand Comparisons.

Simulation 1a Adjusted Rand Index Rand Index
Extended Gower 1.0000 1.0000

Inverse variance Weight 1.0000 1.0000
CV-optimal Weight 1.0000 1.0000
Simulation 1b
Extended Gower 1.0000 1.0000

Inverse variance Weight 1.0000 1.0000
CV-optimal Weight 1.0000 1.0000
Simulation 1c
Extended Gower 1.0000 1.0000

Inverse variance Weight 1.0000 1.0000
CV-optimal Weight 1.0000 1.0000

Table .2: Setting 2: Adjusted Rand and Rand Comparisons.

Simulation 2a Adjusted Rand Index Rand Index
Extended Gower 1.0000 1.0000

Inverse variance Weight 0.6206 1.0000
CV-optimal Weight 1.0000 1.0000
Simulation 2b
Extended Gower 0.7011 0.8758

Inverse variance Weight 1.0000 1.0000
CV-optimal Weight 1.0000 1.0000
Simulation 2c
Extended Gower 1.0000 1.0000

Inverse variance Weight 0.9167 0.9655
CV-optimal Weight 1.0000 1.0000
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Table .3: Setting 3: Adjusted Rand and Rand Comparisons.

Simulation 3a Adjusted Rand Index Rand Index
Extended Gower 1.0000 1.0000

Inverse variance Weight 0.9100 0.9612
CV-optimal Weight 1.0000 1.0000
Simulation 3b
Extended Gower 1.0000 1.0000

Inverse variance Weight 1.0000 1.0000
CV-optimal Weight 1.0000 1.0000
Simulation 3c
Extended Gower 1.0000 1.0000

Inverse variance Weight 1.0000 1.0000
CV-optimal Weight 1.0000 1.0000

Table .4: Setting 4: Adjusted Rand and Rand Comparisons.

Simulation 4a Adjusted Rand Index Rand Index
Extended Gower 1.0000 1.0000

Inverse variance Weight 0.9100 0.9612
CV-optimal Weight 1.0000 1.0000
Simulation 4b
Extended Gower 1.0000 1.0000

Inverse variance Weight 0.8989 0.9628
CV-optimal Weight 1.0000 1.0000
Simulation 4c
Extended Gower 1.0000 1.0000

Inverse variance Weight 0.8589 0.9412
CV-optimal Weight 1.0000 1.0000
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Table .5: Setting 5: Adjusted Rand and Rand Comparisons.

Simulation 5a Adjusted Rand Index Rand Index
Extended Gower 0.4500 0.7857

Inverse variance Weight 1.0000 1.0000
CV-optimal Weight 0.7369 0.9020
Simulation 5b
Extended Gower 0.6692 0.8554

Inverse variance Weight 0.9110 0.9620
CV-optimal Weight 0.8677 0.9444
Simulation 5c
Extended Gower 0.7524 0.8980

Inverse variance Weight 0.9856 0.9941
CV-optimal Weight 0.7074 0.8745

Table .6: Setting 6: Adjusted Rand and Rand Comparisons.

Simulation 6a Adjusted Rand Index Rand Index
Extended Gower 1.0000 1.0000

Inverse variance Weight 0.4209 0.7721
CV-optimal Weight 1.0000 1.0000
Simulation 6b
Extended Gower 1.0000 1.0000

Inverse variance Weight 0.3684 0.7341
CV-optimal Weight 1.0000 1.0000
Simulation 6c
Extended Gower 1.0000 1.0000

Inverse variance Weight 0.4386 0.7154
CV-optimal Weight 1.0000 1.0000
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Table .7: Setting 7: Adjusted Rand and Rand Comparisons.

Simulation 7a Adjusted Rand Index Rand Index
Extended Gower 1.0000 1.0000

Inverse variance Weight 0.8011 0.9266
CV-optimal Weight 0.9731 0.9901
Simulation 7b
Extended Gower 1.0000 1.0000

Inverse variance Weight 0.5426 1.0000
CV-optimal Weight 1.0000 1.0000
Simulation 7c
Extended Gower 1.0000 1.0000

Inverse variance Weight 0.6579 0.8580
CV-optimal Weight 1.0000 1.0000

Table .8: Setting 8: Adjusted Rand and Rand Comparisons.

Simulation 8a Adjusted Rand Index Rand Index
Extended Gower 0.2776 0.7246

Inverse variance Weight 0.9226 0.9715
CV-optimal Weight 0.4345 0.7558
Simulation 8b
Extended Gower 0.4730 0.7731

Inverse variance Weight 0.9311 0.9707
CV-optimal Weight 0.7541 0.8964
Simulation 8c
Extended Gower 0.2953 0.6594

Inverse variance Weight 0.9608 0.9836
CV-optimal Weight 0.6965 0.8745
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Table .9: Setting 9: Adjusted Rand and Rand Comparisons.

Simulation 9a Adjusted Rand Index Rand Index
Extended Gower 0.4012 0.7448

Inverse variance Weight 0.4751 0.7861
CV-optimal Weight 0.5562 0.8289
Simulation 9b
Extended Gower 0.4147 0.7364

Inverse variance Weight 0.6711 0.8596
CV-optimal Weight 0.6021 0.8343
Simulation 9c
Extended Gower 1.0000 1.0000

Inverse variance Weight 0.6579 0.8580
CV-optimal Weight 1.0000 1.0000

Table .10: Setting 10: Adjusted Rand and Rand Comparisons.

Simulation 10a Adjusted Rand Index Rand Index
Extended Gower 1.0000 1.0000

Inverse variance Weight 1.0000 1.0000
CV-optimal Weight 1.0000 1.0000
Simulation 10b
Extended Gower 1.0000 1.0000

Inverse variance Weight 0.4408 0.7529
CV-optimal Weight 1.0000 1.0000
Simulation 10c
Extended Gower 1.0000 1.0000

Inverse variance Weight 0.8784 0.9493
CV-optimal Weight 1.0000 1.0000
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Table .11: Setting 11: Adjusted Rand and Rand Comparisons.

Simulation 11a Adjusted Rand Index Rand Index
Extended Gower 0.4508 0.7832

Inverse variance Weight 0.8136 0.9307
CV-optimal Weight 0.8203 0.9339
Simulation 11b
Extended Gower 0.6307 0.8475

Inverse variance Weight 0.8667 0.9428
CV-optimal Weight 0.8252 0.9428
Simulation 11c
Extended Gower 0.7311 0.8915

Inverse variance Weight 0.8457 0.9366
CV-optimal Weight 0.4721 0.7721

Table .12: Setting 12: Adjusted Rand and Rand Comparisons.

Simulation 12a Adjusted Rand Index Rand Index
Extended Gower 0.9731 0.9901

Inverse variance Weight 0.3456 0.7457
CV-optimal Weight 1.0000 1.0000
Simulation 12b
Extended Gower 1.0000 1.0000

Inverse variance Weight 0.5056 0.7869
CV-optimal Weight 0.9432 0.9758
Simulation 12c
Extended Gower 1.0000 1.0000

Inverse variance Weight 0.2553 0.6941
CV-optimal Weight 1.0000 1.0000
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Table .13: Setting 13: Adjusted Rand and Rand Comparisons.

Simulation 13a Adjusted Rand Index Rand Index
Extended Gower 0.4035 0.7780

Inverse variance Weight 0.4249 0.7764
CV-optimal Weight 0.3206 0.7279
Simulation 13b
Extended Gower 0.2795 0.67778

Inverse variance Weight 0.2089 0.6721
CV-optimal Weight 0.4531 0.7743
Simulation 13c
Extended Gower 0.2284 0.6697

Inverse variance Weight 0.3156 0.7111
CV-optimal Weight 0.2842 0.6770

Table .14: Setting 14: Adjusted Rand and Rand Comparisons.

Simulation 14a Adjusted Rand Index Rand Index
Extended Gower 0.4396 0.7885

Inverse variance Weight 0.7233 0.8976
CV-optimal Weight 0.4841 0.7919
Simulation 14b
Extended Gower 0.3803 0.7285

Inverse variance Weight 0.6339 0.8438
CV-optimal Weight 0.7196 0.8792
Simulation 14c
Extended Gower 0.0632 0.6026

Inverse variance Weight 0.6112 0.8410
CV-optimal Weight 0.6020 0.8430
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Table .15: Setting 15: Adjusted Rand and Rand Comparisons.

Simulation 15a Adjusted Rand Index Rand Index
Extended Gower 0.1573 0.6511

Inverse variance Weight 0.5797 0.8325
CV-optimal Weight 0.3588 0.7396
Simulation 15b
Extended Gower 0.4433 0.7642

Inverse variance Weight 0.4586 0.7747
CV-optimal Weight 0.4816 0.7630
Simulation 15c
Extended Gower 0.3775 0.7372

Inverse variance Weight 0.6375 0.8519
CV-optimal Weight 0.3568 0.7420
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