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ABSTRACT

Apply Multi-Index Logistic Model on Time Series

by

Xiang Liu

In this thesis, we explore a multi-indexed logistic regression (MILR) model, with

particular emphasis given to its application to time series. MILR includes simple

logistic regression (SLR) as a special case, and the hope is that it will in some instances

also produce significantly better results. To motivate the development of MILR, we

consider its application to the analysis of both simulated sine wave data and stock

data. We looked at well-studied SLR and its application in the analysis of time series

data. Using a more sophisticated representation of sequential data, we then detail

the implementation of MILR. We compare their performance using forecast accuracy

and an area under the curve score via simulated sine waves with various intensities

of Gaussian noise and Standard & Poors 500 historical data. Overall, that MILR

outperforms SLR is validated on both realistic and simulated data. Finally, some

possible future directions of research are discussed.
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1 INTRODUCTION

1.1 Motivation of Thesis

For a stock analyst, it is crucial to make predictions of future pricing and volatil-

ity accurately. Both underestimates and overestimates of the predictive power of a

forecast model can lead to a huge loss of money and time. Traditional ARMA models

are good at dealing with stationary and linear time series. But in reality, trans-

action volume and pricing can be affected by transient and extreme events which

disrupt the stationary assumption of an ARMA model. A machine learning classifier

is therefore widely used for the analysis of delay prediction of irregular time series

data [12, 2, 7, 8, 25].

Inspired by some well-studied simple logistic regression (SLR) models based on

sequential data representation [24, 16, 10, 30], we develop a multi-indexed based lo-

gistic regression (MILR) model and hope it will outperform SLR. With multi-indexed

data representations, information from a matrix representation is relational – which

is often interpreted as graph-theoretic – and is more useful than initially sequential

representation of the same data. In the long run, we hope our research can help

people make more accurate predictions in a highly uncertain stock market.

1.2 Outline of Thesis

This thesis is organized as follows. Chapter 2 introduces several important back-

ground knowledge: time series and its frequently-used ARMA models, SLR and its

maximum likelihood estimates, bias and variance definitions and their trade-offs in
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making predictions, trajectory matrix illustration, and its role played in constructing

an MILR model.

Chapter 3 illustrates how we develop MILR based on SLR with the hope of further

reducing the loss function. Also, two different performance measures, the hit rate and

an area under the curve, are introduced.

In Chapter 4, we present performance of SLR and MILR on both simulated noisy

data and real stock historical data. The conclusions and discussions are given in

Chapter 5.
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2 BACKGROUND KNOWLEDGE

2.1 Definition of A Time Series

A time series is composed of a sequence of measurements indexed by a subset of

the integers. The ordering of the index implies a sequential ordering of the observa-

tions, and indeed, a times series is often measured at successive points in time. It is

mathematically defined as a set of vectors x(t), t = 0, 1, 2, · · · where t represents the

time elapsed [1].

A time series can be either univariate or multivariate depending on the number of

observations recorded at equally spaced time intervals. However, time is not always

contiguous [29]. For example, stock prices are equispaced for all weekdays but are

not available during weekends because the stock market is closed. A function x(t)

where t is a continuous variable is called a continuous time series. Examples include

temperature readings, river flow, and change of height. On the other hand, many

measurements are recorded at discrete points of time such as currency exchanges, the

number of population growth and death. A continuous time series can be easily trans-

formed into a discrete one by just grouping data within specific time intervals. Time

series can be either linear or nonlinear depending on whether or not the dependent

variable and all its lagged values appear in a linear fashion.

Definition 2.1 A time series is linear when the next observation is a linear function

of previous observations [20].

Definition 2.2 A time series is non-linear when it is not linear

11



2.2 Time Series Decomposition

We can decompose a time series into the sum or the product of four different

types of components: trend, cyclical, seasonal and irregular components. A trend is

a tendency to increase, decrease or stagnate over an extended period. The cyclical

variation accounts for non-periodic changes in time series caused by repeated events.

The duration of a cycle extends over a longer period, usually two or more years

[32]. Unlike cyclical which might involve some subjectivity in estimation, seasonal

variations are more regular fluctuations that occur within a year during the season.

It is quite essential for retailers to have a good estimation of seasonal differences

for making a proper retail plan. The irregular piece of a time series is the random

variation resulting from fluctuating influences. The irregular component is often

assumed to be Gaussian distributed [28, p. 15]. Some time series show more periodic

pattern whereas others display more fluctuations in their evolution. Depending on

the underlying independence assumption of the four main components of time series,

we can have either an additive model or a multiplicative model.

Definition 2.3 A multiplicative model assumes the four main components of time

series are not necessarily independent. Each observation Yt can be written as a product

of trend, cyclical, seasonal and irregular variation at time t : Yt = Tt × Ct × St × It

[23, p. 5].

Definition 2.4 An additive model assumes that the four components are indepen-

dent of each other. Each observation Yt can be written as a sum of trend, cyclical,

seasonal and irregular variation at time t : Yt = Tt + Ct + St + It [23, p. 5].

12



Time series in the real world are often only partially additive, as for example when

the irregular component is additive to a multiplicative model of the other 3 (i.e.,

Yt = Tt × Ct × St + It).

In time series forecasting, past observations are collected and analyzed to develop

a mathematical model describing the underlying data generating process for the series

[1]. After decomposition, we can proceed to make a prediction of each component.

When detecting a seasonal component, we often assume it varies little in the future.

Therefore, past seasonal effects are used to forecast seasonality in the future. Since

a time series is non-deterministic in nature, which we cannot know for certain what

will happen even short term, the analysis must reach beyond single-instant variable

and instead deal with the joint probability distribution of time series components.

Definition 2.5 Let X and Y be two continuous random variables. Then

F (x, y) = P (X ≤ x
⋂

Y ≤ y)

is called the joint probability distribution of X and Y

The mathematical expression describing the probability structure of a time series is

termed as a stochastic process [21].

Definition 2.6 A stochastic process is a parametrized collection of random vari-

ables {Xt}t∈T defined on a probability space Ω and assuming values in Rn [31]. It is,

in general, an n-dimensional joint probability distribution p(X1, X2, · · · , Xn)

For this reason, each time series X = {X1, X2, · · · , Xn} can be represented as a

sampling realization of a stochastic process [17]. To capture the underlying dynamics
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of time series, a time window is applied to derive a sequence of state vectors Zt =

[Xt−d+1, · · · , Xt−1, Xt] where d is the size of the vector. We could stack these state

vector into a matrix which is called a trajectory of time series.

Definition 2.7 Given a time series X = {X1, X2, · · · , Xt, · · · }, we apply a time

window to derive a sequence of state vectors Zt = [Xt−d+1, · · · , Xt−1, Xt], which leads

to a trajectory of these state vectors T = [Z1, Z2, · · · , Zn]T [27]

We hope to see more regularities that are implied in the trajectory space than in the

originally sequential data space of the time series.

2.3 Classic Time Series Analysis and ARMA Model

As a specific realization of a stochastic process, we consider its forecast model of

the form

yt = f(Xt; β) + εt

where f(Xt; β) is a function of time t and unknown parameters β. The error term

εt is often assumed to be uncorrelated, which suggests yt to be independent as well.

But in practice, this is rarely met. Therefore, we consider linear forecast models that

capture the structure of time series, such as Autoregressive (AR)[8, 21, 11], Moving

Average (MA) [8, 21, 14] and Autoregressive Moving Average (ARMA).

2.3.1 ARMA Models

An ARMA(p, q) model is a combination of AR(p) and MA(q) models and is suit-

able for univariate time series modeling [1].
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Definition 2.8 An AR(p) model forecasts the future value of time series by using

a linear combination of p past observations, a random error ε and a constant term

that may or may not appear for the purpose of simplicity. Mathematically the AR(p)

model can be expressed as [8, 21, 11]:

ŷt = φ1yt−1 + φ2yt−2 + · · ·+ φpyt−p + εt (1)

Definition 2.9 An MA(q) model predicts the future value of time series by using

past errors as the explanatory variables. Mathematically the MA(q) model can be

expressed as [8, 21, 14]

ŷt = θ1εt−1 + θ2εt−2 + · · ·+ θqεt−q + εt (2)

Definition 2.10 An ARMA(p, q) model can be mathematically represented as

ŷt = φ1yt−1 + · · ·+ φpyt−p − θ1εt−1 − · · · − θqεt−q (3)

An AR(p) process can always be written in terms of an MA(∞) process since each of

the error terms can be represented as yt − ŷt where yt is the actual observation and
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ŷt is the estimation at time t. For example, AR(1) can be rewritten as

yt = φ1yt−1 + εt

= φ1(φ1yt−2 + εt−1) + εt

= φ2
1yt−2 + φ1εt−1 + εt = φ2

1(φ1yt−3 + εt−2) + φ1εt−1 + εt

= φ3
1yt−3 + φ2

1εt−2 + φ1εt−1 + εt

= · · ·

= εt +
∞∑
j=1

φj1εt−j

Let φj1 = θj ∀j ≥ 1. Then we have

yt = εt +
∞∑
j=1

θjεt−j

= εt + θ1εt−1 + θ2εt−2 + · · ·+ θnεt−n + · · ·

(4)

which is the form of MA(∞).

2.3.2 Autocorrelation and Partial Autocorrelation Functions

Several mathematical terms must be defined before we go forward. The expec-

tation of random variable X is a weighted summation over all possible values of the

random variable and is denoted as E(X) [22]

Definition 2.11 For a discrete random variable X with n values, the expectation
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is

E(X) =
n∑
i=1

xiP (xi)

For a continuous random variable with its value defined on a continuous sample space

IX , the expectation is defined according to

E(X) =

∫
IX

xfX(x)dx

Where P (x) is the probability of the outcome and fX(x) is the probability density

function that describes a relative likelihood of a random variable X that takes on a

given value x

The covariance is a measure of dependency between two random variables and is

denoted as Cov [22]

Definition 2.12 For two discrete random variables X and Y with joint sample space

S, the covariance of X and Y is

Cov(X, Y ) =
∑∑
(x,y)∈S

(x− E(X))(y − E(Y ))P (x, y)

And if X and Y are two continuous random variables with respective continuous sam-

ple space IX and IY , the covariance of X and Y is

Cov(X, Y ) =

∫
IY

∫
IX

(x− E(X))(y − E(Y ))f(x, y)dxdy

Where P (x, y) is the joint probability of a pair of outcome (x, y) and f(x, y) is the

joint probability function of X and Y that takes given values x and y.

The variance is a measure of how far a random variable is from its expectation

and is denoted as Var [22]
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Definition 2.13 For a discrete random variable X with n values, the variance is

Var(X) =
n∑
i=1

(xi − E(X))2P (xi)

For a continuous random variable X with its value defined on a continuous sample

space IX , the variance of X is

Var(X) =

∫
IX

(x− E(X))2fX(x)dx

The analysis of autocorrelation and partial autocorrelation functions can be used to

determine the orders p and q of an ARMA(p, q) model for a given time series.

Definition 2.14 Autocorrelation (ACF) measures how a time series is related to

a time-shifted version of itself. Let γk, the autovariance at lag k, be the covariance of

yt and yt−k [14, 21]. Then γ0 is the variance of the time series with itself. We define

ρk, the autocorrelation of yt at lag k, to be the following:

ρk =
γk
γ0

=
Cov(yt, yt−k)

Var(yt)
=

E[(yt − µ)(yt−k − µ)]

E(yt − µ)2
(5)

Identification of a MA model is often best done with the ACF, as the autocorrelation

is significantly non-zero only at lags involved in the MA model [5].

Definition 2.15 Partial Autocorrelation (PACF) is used to measure the correlation

between observations spaced certain number of lags apart in time after accounting

for their common dependence on the intermediate measurements [1]. The 1st or-

der partial autocorrelation will be defined to equal the 1st order autocorrelation.

Mathematically the kth order partial autocorrelation is:

ωk =
Cov(yt, yt−k | yt−1, yt−2, · · · , yt−k)√

Cov(yt, yt | yt−1, yt−2, ·, yt−k) Cov(yt−k, yt−k | yt−1, yt−2, · · · , yt−k)
(6)
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Identification of an AR model is often best done with the PACF, as the number of

non-zero partial autocorrelation gives the order of the AR model [5].

To build a proper ARMA(p, q) model, a time series requires stationary property.

Definition 2.16 A time series is stationary when statistics such as mean and vari-

ance of data do not depend on time index [3].

There are two types of stationary processes: Strongly Stationary and Weakly Sta-

tionary.

Definition 2.17 A process {x(t), t = 0, 1, 2, · · · } is Strongly Stationary if the

joint probability distribution function of xt−s, xt−s+1, · · · , xt, · · · , xt+s−1, xt+s is inde-

pendent of t for all s [21, 14].

Definition 2.18 A process is said to be Weakly Stationary of order k if the statis-

tical moments of the process up to that order depend only on time differences and not

upon the time of occurrences of the data being used to estimate the moments [21, 14].

ARMA(p, q) models are straight-forward and simple. However, sometimes there is

no information in either the ACF or the PACF. Thus it can be difficult to esti-

mate ARMA coefficients through ACF and PACF inspection, and sometimes time

series is non-stationary if it violates those stationary assumptions. To overcome these

drawbacks, several computational algorithms have been proposed in the literature

[12, 2, 7, 25]. Logistic regression is one of the algorithms that works well on time

series data [26, 6].
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2.4 Time Series Forecasting Using Binary Logistic Regression

Logistic regression is widely used to model the outcome of a categorical dependent

variable [15]. Logistic regression is often preferred to linear regression for numerous

reasons:

1. Linear regression assumes errors to be normally distributed but sometimes errors

are not normally distributed.

2. Linear regression maps data to continuous real numbers but sometimes the

response variable is categorical

3. In linear regression, parameters are estimated via minimizing the sum of squared

errors. However, in logistic regression, maximum likelihood estimation (MSE)

is used to solve for the parameters to best fit the time series.

2.4.1 Binary Simple Logistic Regression Model

Binary SLR deals with situations in which the response variable has only 2 possible

outcomes (e.g., 0 or 1). Suppose we have a binary response variable Y ∈ {1, 0} and

some independent features X = (X1, · · · , Xk). Let each (y,X) be an independent

observation at time t = (1, · · · , n) and denoted as (Xt, yt). By convention, Y is said

to be a “success” if it has a value of 1 and a “failure” otherwise (usually denoted by

either 0 or −1). Let Ny=0 represent the number of failures and Ny=1 be the number of

successes. Suppose we have k independent random variables (i.e., X = X1, · · · , Xk)

and let π = P (Y | X) be the probability of success or failure for a given observation

with features X = (x1, · · · , xk). There is a column vector of length k such that for
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each observation there is a corresponding relationship between each linear component

c +
∑k

i=1 xiβi and the probability of success (πi) of this observation where c is a

constant.

Specifically, the SLR model equates the logit transform or the log-odds of the

probability of a success, to the linear component:

log

(
π

1− π

)
= β0 + x1β1 + x2β2 + · · ·+ xkβk (7)

π
1−π is called the odds, which is the probability of success divided by the probability

of failure. The logit is the log of the odds, log(π/(1− π)). The βi, i ∈ {0, · · · , k} are

log-odds ratios. A positive value of βi suggests an increased likelihood of “success”

as the increment of feature xi.

Definition 2.19 Log-odds ratio is the logarithm of the odds ratio. Odds ratio

(OR) represents the odds given the presence of a particular feature compared to the

odds given the absence of that feature [18].

Mathematically, for any j ∈ 1, 2, · · · , k, the βj can be represented as:

βj = (β0 + x1β1 + · · ·+ 1βj + · · ·+ xkβk)− (β0 + x1β1 + · · ·+ 0βj + · · ·+ xkβk)

= logit(π(xj = 1))− logit(π(xj = 0))

= log

(
π(xj = 1)

1− π(xj = 1)

)
− log

(
π(xj = 0)

1− π(xj = 0)

)
= log

(
π(xj = 1)/(1− π(xj = 1))

π(xj = 0)/(1− π(xj = 0))

)
= log(OR)

(8)
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Hence the OR of xj is obtained by taking the exponential of βj. SLR model

also works for dependent variables having three or more categorical levels, but in

this paper, we only focus on time series analysis in the context of binary response

variables.

2.4.2 Maximum Likelihood Estimation of SLR

The goal of SLR is to find the proper values of the k parameters β1, β2, · · · , βk

such that the joint probability of obtaining the observed data is the greatest. Re-

sponses coming from distinct combinations of features are assumed to be from dif-

ferent populations. For example, older people compared to younger people, people

with hypertension, compared to people without may have higher chance of “success”

in diabetes.

Given a dataset with a sample size of M , let N represent the population size and

let ni denote the sample size from the ith population such that M =
∑N

i ni. Let yi

represent the observed counts of the number of success in the ith population. Since

there are
(
ni

yi

)
numbers of ways to arrange yi success among ni trails in each group,

the joint probability density function of Y

f(y | β) =
N∏
i=1

(
ni
yi

)
πyii (1− πi)ni−yi (9)

The joint probability density function in (9) expresses the values of y as a function

of known, fixed values for β. But in reality, β is the unknown parameter whereas y is

given. Therefore, the likelihood density function is of the same form as the probability
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density function except that the parameters are conditioned upon the response

L(β | y) =
N∏
i=1

(
ni
yi

)
πyii (1− πi)ni−yi (10)

Since none of the πi is involved in the binomial coefficients, we can treat each
(
ni

y

)
as a constant that can be ignored in maximizing the equation. The equation can be

thus written as

L(β | y) ∝
N∏
i=1

πyii (1− πi)ni−yi =
N∏
i=1

(
πi

1− πi

)yi
(1− πi)ni (11)

By exponentiation both sides of (7), we have(
πi

1− πi

)
= e(β0+

∑k
j=1 xijβj)

and

πi =

(
e(β0+

∑k
j=1 xijβj)

1 + e(β0+
∑k

j=1 xijβj)

)
Substituting the above equations for (11) and we get the following representation for

the likelihood function

L(β | y) ∝=
N∏
i=1

(
eyi(β0+

∑k
j=1 xijβj)

)(
1 + e(β0+

∑k
j=1 xijβj)

)−ni

(12)

This is the kernel of the likelihood function to maximize [15].

Since the logarithm is monotonic, the maximum of the likelihood function will also

generate the maximum of the log likelihood function. After applying the logarithm

on both sides, the log likelihood function is

l(β) ∝=
N∑
i=1

yi

(
β0 +

k∑
j=1

xijβj

)
− ni · log

(
1 + e(β0+

∑k
j=1 xijβj)

)
(13)
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It is beyond my ability to explain in this thesis, but it can be shown [33] that the

log-likelihood has a global maximum at points where the first derivative with respect

to each β simultaneously equal to zero

∂l(β)

∂βj
=

N∑
i=1

yixij − ni ·
1

1 + e(β0+
∑k

j=1 xijβj)
· ∂

∂βj

(
1 + e(β0+

∑k
j=1 xijβj)

)
=

N∑
i=1

yixij − ni ·
1

1 + e(β0+
∑k

j=1 xijβj)
· e(β0+

∑k
j=1 xijβj) · ∂

∂βj

(
β0 +

k∑
j=1

xijβj

)

=
N∑
i=1

yixij − ni ·
1

1 + e(β0+
∑k

j=1 xijβj)
· e(β0+

∑k
j=1 xijβj) · xij

=
N∑
i=1

yixij − niπixij

(14)

The maximum likelihood estimates for βj for j ∈ {1, · · · , k} can be found by

setting each of the j equations in Eq. 14 equal to zero.
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3 METHODOLOGY

3.0.1 MILR Implementation

SLR model has the form

log

(
P (Y = 1|X)

P (Y = 0|X)

)
= β0 + β1X1 + · · ·+ βkXk (15)

Instead of taking the dot product of vector X and β to predict for the log-odds ratio

of a particular event, MILR employs a trajectory of time series and introduces an

additional multiplicative vector of parameters, δ. MILR model has the form

log

(
P (Y = 1|T )

P (Y = 0|T )

)
= β0 + δTTβ (16)

with δ in Rl, β in Rk, and T in Rl×k of the form

T =


X1 X2 · · · Xk

X2 X3 · · · Xk+1
...

...
. . .

...
Xl Xl+1 · · · Xl+k−1

 δ =


δ1
δ2
...
δl

 β =


β1
β2
...
βk


3.0.2 Why MILR

We hope MILR will capture more regularities in a given time series than SLR for

the following reasons:

First we note each parameter of β in SLR model can be obtained through combi-

nations of δ and β in MILR. For example, when we set δ =
[
0 1 0 · · ·

]
, both β1

in MILR and β2 in SLR are used to estimate the log-odds ratio of X2.

Secondly, if we label the response variable as either 1 or −1, then for any binary

logistic regression, we have

π(Y = 1) =
1

1 + exp(−βTX)
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and

π(Y = −1) = 1− π(Y = 1)

= 1− 1

1 + exp(−βTX)

=
exp(−βTX)

1 + exp(−βTX)

=
1

1 + exp(βTX)

Therefore we can model

π(yi = ±1) =
1

1 + exp(−yiβTX)

With a sample size of N, the log-likelihood function can be written as

l(X, Y, β) =
N∑
i

log
1

1 + exp(−yi · βTXi)
=

N∑
i

− log(1 + exp(−yi · βTxi)) (17)

Therefore to maximize (17) is equivalent to minimize
∑N

i log(1 + exp(−yi · (βTXi)),

which is the form of logistic loss.

Suppose we select k features and implement a SLR model. β is then in Rk and X

is in Rk. The goal of SLR is to minimize

f(β, β0) =
N∑
i=1

log(1 + exp(−yi(β0 + βTXi)))

By constructing a L by K evolution trajectory of this time series and implementing

a MILR model, we have the logistic loss of MILR to be

f(δ, β, β0) =
N∑
i=1

log(1 + exp(−yi(δTTiβ + β0)))

By setting δ =
[
1 0 0 · · ·

]
, the objective function changes to

f(β, β0) =
N∑
i=1

log(1 + exp(−yi(β0 + βTXi))),
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which has the same form of SLR objective function. Since this is only one of the

many possible values of δ, it is guaranteed that there exists δ∗ such that f(δ∗, β, β0) ≤

f(β, β0). Therefore, MILR produces lower loss than SLR on the same data set.

Lastly, MILR yields smaller variance of errors in comparison to SLR implemented

on the same data set with δ ∈ Rl, β ∈ Rk, X ∈ Rk, T ∈ Rl×k. With an initial value of

δ =
[
1
l

1
l
· · · 1

l

]
, the marginal value δTTβ becomes:

β1

(
X1 +X2 + · · ·+Xl

l

)
+ · · ·+ βk

(
Xk +Xk+1 + · · ·+Xl+k−1

l

)
Since X1, X2, · · · , Xl+k−1, · · · , XN are identically distributed random variables

from time series, each random variable has the same mean and variance. Mathe-

matically, we have

E(Xi) = µ Var(Xi) = σ2 for all i = 1, 2, · · · , N

Let X̄1 =
(
1
l

)
(X1 +X2 + · · ·+Xl), X̄2 =

(
1
l

)
(X2 +X3 + · · ·+Xl+1) and so on. The

mean of X̄i for all i = 1, 2, · · · , N is:

E(X̄i) = E

[(
1

l

)
(Xi +Xi+1 + · · ·+Xi+l−1)

]
=

1

l
E(Xi +Xi+1 + · · ·+Xi+l−1)

=
1

l
(E(Xi) + E(Xi+1) + · · ·+ E(Xi+l−1))

=
1

l
(µ+ µ+ · · ·+ µ)

=
l

l
µ = µ
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the variance of X̄i for all i = 1, 2, · · · , N is:

Var(X̄i) = Var

[(
1

l

)
(Xi +Xi+1 + · · ·+Xi+l−1)

]
=

(
1

l

)2

Var(Xi +Xi+1 + · · ·+Xi+l−1)

=
1

l2
(Var(Xi) + Var(Xi+1) + · · ·+ Var(Xi+l−1))

=
1

l2
(σ2 + σ2 + · · ·+ σ2)

=
lσ2

l2
=
σ2

l

Since the average of X has the noise with the same mean and smaller standard

deviation, i.e., σ/
√
l. MILR can do no worse than SLR on averaged data because of

the smaller variance of noise fitting. Therefore, MILR model should perform at least

no worse than SLR model in theory.

3.0.3 Receiver Operating Characteristic (ROC) Curve

To test the validity of a forecasting model, it is fundamental to predict unused

data accurately from the same population. To test the performance of a classifier, we

draw the ROC curve and look at the area under curve (AUC) value.

As shown in Fig. 1a, TPR is also called sensitivity, the chance of accurately

predicting the occurrence of “1” or success. While FPR is the percentage of making

inaccurate prediction of “0” or failure, FNR is the complement of sensitivity, i.e., 1 -

TPR. TNR is also called specificity which is the proportion of unsuccessful cases that

are correctly classified as failures. We could obtain Hit rate or accuracy from Fig. 1a

Hit Rate =
TPR + TNR

TPR + FPR + FNR + TNR
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(a) TPR and FPR Table (b) Comparing ROC Curves

Figure 1: Analysis of ROC Curve, Figures Extracted From [9]

TPR and FPR affect each other and are both under the influence of thresholds.

All data is predicted to be “1” if threshold = 0. While we want TPR to be as

large as possible and FPR to be as small as possible, we wouldn’t see the efficiency

of such a classification with all data are categorized to be “1” with TPR = 1 and

FPR = 1 in this case. With the increment of threshold up to 1, there is less data

predicted to be “1” and both TPR and FPR decrease down to 0. Overall, we want

to increase TPR with less increase of FPR and hence drawing the ROC curve to

visualize their relationship (see Fig. 1b). The more concave the curve, the better the

classifier. An area of 0.5 under the curve represents a completely random classifier

in which predictions are made via a coin toss. While AUC greater than 0.8 would be

considered good.
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4 APPLICATION: DATA AND RESULTS

This section depicts the performance of both SLR and MILR on three simulated

noisy sine wave data and samples from the Standard & Poor’s 500 historical data. The

descriptions of data and results of model comparisons are presented with commentary.

In the analyses of simulated data, we start describing how we generate samples

of sine wave for different intensities of Gaussian noise. Next we apply SLR model to

a sequence of 3 lagged values and predict signs (i.e., ±) of the pure sine wave of the

same frequencies and amplitudes. Then by converting sequential data representation

with a 3 by 3 trajectory matrix, we employ MILR to see if it outperforms SLR on

the 2 important measures of forecast abilities: hitting rates of testing data and areas

under the curve (AUC) values. The results of three simulated data analyses validate

the applicability of MILR and inspire our investigation of a more complex, real stock

data.

4.1 Analysis of Simulated Data

We sample 1500 data from a simulated lagged series of sine wave with a period of

400 and an amplitude of 1 (i.e., sin πt
200

). The first two-thirds is used to train a model

and the rest is used to score the trained model. Responses are the signs of each data

point. To investigate noisy measurements of SLR and MILR models and capture

the randomness of real data, we add three different intensities (20%, 50%, 80%) of

Gaussian noise to the signal. In SLR model, a sequence of 3 lagged values serves as

the independent variable. In MILR, we create a 3 by 3 trajectory matrix on the basis

of sequential data and plug it into the model. Two important measures of forecast
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abilities, hitting rates of testing data and areas under the curve (AUC) values, are

employed to test if MILR outperforms SLR.

4.1.1 Sine Wave with 20% Gaussian White Noise

Examining the time series plot in Figure 2. The straight line colored in black

is the response variable, Direction. There is a clear shape of sine wave with little

variation of the form.

Figure 2: Time Series Plot of Sine Wave with 20% Gaussian White Noise

The organization and layout of a sample data set is shown in Table 1. Direc-

tion is the sign of current data point from noise free sine wave and Current is the

corresponding value from the noisy data.

Table 1: Data Structures and Variables – Sine Wave with 20% Gaussian Noise

Index Current Lag1 Lag2 Lag3 Lag4 Lag5 Direction

1392 0.040 0.201 0.388 -0.128 0.285 -0.307 1.0
1393 0.350 0.040 0.201 0.388 -0.128 0.285 1.0
1394 0.482 0.350 0.040 0.201 0.388 -0.128 1.0
1395 0.187 0.482 0.350 0.040 0.201 0.388 1.0
1396 -0.161 0.187 0.482 0.350 0.040 0.201 1.0
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Because of the inadequate proportion of Gaussian noise (20%), they should match

each other (i.e., Current > 0 ⇒ Direction = 1.0; Current < 0 ⇒ Direction = −1.0)

most of the time with few exceptions (see data at index 1396 for example). Lag1 ∼

Lag5 are the lagged values of Current variable from the noisy sine wave.

Overall measures of accuracies and AUC values are summarized in Table 2. Hit

rates of both models are very good (> 95%) on both training and testing data sets.

Table 2: Model Performance – Sine Wave with 20% Gaussian Noise

Data Training Set Testing Set
Statistics Hit rate ROC Hit rate ROC

SLR 0.958 0.996 0.96 0.994
MILR 0.971 0.997 0.974 0.997

Indicated by AUC values, both models are considered to be excellent classifiers

(AUC: 0.9 ∼ 1.0). The ROC curves for different trained models applied to forecast

testing set are presented in Figure 3a and Figure 3b

(a) SLR (b) MILR

Figure 3: ROC Curve – Sine Wave with 20% Gaussian Noise

MILR slightly outperforms SLR in all measurements of model performance but

both work well with simulated data with light noise.
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4.1.2 Sine Wave with 50% Gaussian White Noise

Examining the time series plot in Figure 4. The straight line colored in black is

the response variable, Direction. We can still see the form of a sinusoid with various

length of spikes reaching out of the waveform.

Figure 4: Time Series Plot of Sine Wave with 50% Gaussian White Noise

The organization and layout of a sample data set is shown in Table 3. As we add

more noise to the signal, we see more cases of mismatch between signs of Current and

Direction. However, we do not see values bouncing around zero that quickly.

Table 3: Data Structures and Variables – Sine Wave with 50% Gaussian Noise

Index Current Lag1 Lag2 Lag3 Lag4 Lag5 Direction

628 0.290 0.360 -0.255 -0.295 0.592 1.020 -1.0
629 -0.679 0.290 0.360 -0.255 -0.295 0.592 -1.0
630 -1.344 -0.679 0.290 0.360 -0.255 -0.295 -1.0
631 -0.468 -1.344 -0.679 0.290 0.360 -0.255 -1.0
632 0.571 -0.468 -1.344 -0.679 0.290 0.360 -1.0

Overall measures of accuracies and AUC values are summarized in Table 4. Even

with half as much noise, both SLR and MILR still generate over 80% hit rates in

both training and testing data sets.
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Table 4: Model Performance – Sine Wave with 50% Gaussian Noise

Data Training Set Testing Set
Statistics Hit rate ROC Hit rate ROC

SLR 0.840 0.916 0.826 0.900
MILR 0.872 0.950 0.868 0.939

Indicated by AUC values, both models are still considered to be excellent classifiers

(AUC: 0.9 ∼ 1.0). The ROC curves for different trained models applied to forecast

testing set are presented in Figure 5a and Figure 5b

(a) SLR (b) MILR

Figure 5: ROC Curve – Sine Wave with 50% Gaussian Noise

Hit rate is improved by 5% with the implementation of MILR.

4.1.3 Sine Wave with 80% Gaussian White Noise

Examining the time series plot in Figure 6. The straight line colored in black is

the response variable, Direction. We can barely see the sinusoid in the plot. Values

fluctuate back and force between positive and negative values.

The organization and layout of a sample data set is shown in Table 5. With high

noise-to-signal ratio, signs of noisy data can no longer be reliable to indicate signs of

34



Figure 6: Time Series Plot of Sine Wave with 80% Gaussian White Noise

value from pure sine wave. Also, it becomes almost impossible to indicate if the next

data point is above or below zero by the value of current data point.

Table 5: Data Structures and Variables – Sine Wave with 80% Gaussian Noise

Index Current Lag1 Lag2 Lag3 Lag4 Lag5 Direction

1974 0.913 0.368 0.328 -0.734 -0.425 -0.984 -1.0
1975 -0.097 0.913 0.368 0.328 -0.734 -0.425 -1.0
1976 0.443 -0.097 0.913 0.368 0.328 -0.734 -1.0
1977 0.701 0.443 -0.097 0.913 0.368 0.328 -1.0
1978 -0.048 0.701 0.443 -0.097 0.913 0.368 -1.0

Overall measures of accuracies and AUC values are summarized in Table 6. There

are still 70% values from the training set and 66% from the testing set that can be

correctly classified by MILR model.

Table 6: Model Performance – Sine Wave with 80% Gaussian Noise

Data Training Set Testing Set
Statistics Hit rate ROC Hit rate ROC

SLR 0.628 0.673 0.570 0.606
MILR 0.703 0.775 0.660 0.721

Indicated by AUC values, SLR almost fails to work as a classifier (AUC: 0.5 ∼ 0.6).
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The hit rate is improved by more than 10% with the implementation of MILR. The

ROC curves for different trained models applied to forecast testing set are presented

in Figure 7a and Figure 7b

(a) SLR (b) MILR

Figure 7: ROC Curve – Sine Wave with 80% Gaussian Noise

Throughout analyses of three simulated data with various intensities of Gaussian

noise, we find the MILR is more advantageous to SLR when the signal to noise ratio

decreases. The results of simulated data validate the applicability of MILR and inspire

our investigation of a more complex, real stock data.

4.2 Analysis of Standard & Poor’s 500 Historical Data

The Standard & Poor’s 500 index data is obtained from Yahoo Finance. Standard

& Poor’s 500 is a weighted index of the 500 publicly traded corporations in the US

stock market [4]. Standard & Poor’s 500 index is the asset basis of many market

derivative products. We try to predict the signs of the percentage return of today

based on the price information of the past. The formula for percentage return is the

difference of closing price between today and yesterday divided by yesterday’s closing

price. If the percentage return is positive, the stock price increases that day and if
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the percentage return is negative, the investment on the stock loses its value.

To make our study comparable to what Michael Halls-Moore did [19], we analyse

the same training and testing data. Specifically, the data before January 1st, 2005

and after January 1st, 2001 is training set and the data in year 2005 is used for testing

our models. We have a total of 996 training data and 250 testing data. As for SLR

model, settings of variables and parameters remain the same as it is in Michael’s

work. In MILR, a 4 by 2 trajectory matrix whose first row is the features inputs in

SLR serves as the independent variable.

The general trend of adjusted closing price is shown in Figure 8. Points colored

in red have positive percentage returns. There is a general decreasing trend before

2003 and an upward trend after 2003. No clear cycles and seasonal effects are seen in

the plot.

Figure 8: Time Series Plot of Standard & Poor’s 500 Historical Data

The organization and layout of a sample data set is shown in Table 7. We could

not see a clear pattern for telling the signs of current value by the values of the past.
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Table 7: Data Structures and Variables – Standard & Poor’s 500 Index

Date Current Lag1 Lag2 Lag3 Lag4 Lag5 Direction

2001-01-10 0.959 0.381 -0.192 -2.624 -1.055 5.010 1.0
2001-01-11 1.032 0.959 0.381 -0.192 -2.624 -1.055 1.0
2001-01-12 -0.623 1.032 0.959 0.381 -0.192 -2.624 -1.0
2001-01-16 0.614 -0.623 1.032 0.959 0.381 -0.192 1.0
2001-01-17 0.213 0.614 -0.623 1.032 0.959 0.381 1.0

Overall measures of accuracies and AUC values are summarized in Table 8. Both

models seem to be under-fitted as the training accuracy is moderately lower than

testing accuracy.

Table 8: Model Performance – Standard & Poor’s 500 Stock

Data Training Set Testing Set
Statistics Hit rate ROC Hit rate ROC

SLR 0.516 0.527 0.560 0.559
MILR 0.514 0.527 0.579 0.555

Although by the standard of AUC values, both models fail to identify a correct

class, MILR outperforms SLR by its improved testing accuracy (58% vs 56%). The

ROC curves for different trained models applied to forecast testing set are presented

in Figure 9a and Figure 9b
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(a) SLR (b) MILR

Figure 9: ROC Curve – Standard & Poor’s 500 Stock



5 DISCUSSION

The work is done with the aim of providing better tools for financial data forecast-

ing. Recent years have seen the growing use of forecasting algorithms in analyzing

financial time series data [12, 2, 7, 8, 25]. It is quite important to capture the regular

pattern among the overall uncertain financial markets. Existent stationary time series

models like ARMA can hardly tell apart the noisy inputs and reliable predictions.

Simple logistic regression (SLR) model, as an example of a generalized linear model,

is found to be very useful in the context of non-stationary time series [13].

In this paper, we focus on developing a generalized scope of SLR by introducing

an extension of multi-index representation of sequential data. We call this model

MILR (multi-indexed logistic regression). MILR, compared to SLR, is more versatile

(e.g., incorporating SLR as a special case) and informative (e.g., averaging away

uncertainties). Our research is driven to support the application of MILR.

Three simulated data with various intensities of Gaussian random noise are used to

test our hypothesis. Results consistently support our prediction that MILR achieves

better forecast power than SLR especially when the data is more noisy. Moving on to

test the validity of MILR in forecasting real financial stock data, we expect to see a

similar effect of MILR, compared to SLR, on increasing the predictive performance.

This effect could probably be smaller since real data is more unpredictable and less

assumptions we made in simulation are met. Although both SLR and MILR are seen

to be poor classifiers by the standard of AUC score, MILR outperforms SLR with

higher hit rates (58% vs 56%).

We believe the insight and methodology used in our research could benefit future
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work in the field of multi-dimensional data and time series. This study only exam-

ines simulated Gaussian noisy data and volatile stock data. More varieties of time

series data (e.g., Natural events, electroencephalogram (EEG) recordings, industrial

production indices, etc.) can be tested to verify our hypothesis and to refine MILR.

Also the length of δ can be arbitrary and more research questions should be asked in

regards to the impact of δ on the performance of MILR. Furthermore, The relation-

ship of MILR with other important mathematical algorithms (e.g., Singular Value

Decomposition, Markov Chains, etc) can be explored.
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APPENDIX: Python Code

∗∗∗Python Package Import∗∗∗

import pandas as pd

from pandas import DataFrame

from pandas . i o . data import DataReader

from s k l e a rn . met r i c s import con fus i on mat r ix

from s k l e a rn . met r i c s import r o c auc s co r e , roc curve , auc

from s k l e a rn . l i n ea r mode l import L o g i s t i c R e g r e s s i o n

import theano

import theano . t en so r as T

∗∗∗Loading data ∗∗∗

# Create g l o b a l data t h a t v a r i a b l e in f u n c t i o n can be used

global NofLag ; NofLag = 3

global s tock ; s tock = ”ˆGSPC” #S&P 500

# Input i s a s t o c k data between 2001 and 2015 year

# Dependent v a r i a b e i s a d j u s t e d c l o s i n g p r i c e o f today

snpret , t s a d j c l o s e = c r e a t e l a g g e d s e r i e s ( stock , datet ime .

datet ime (2001 ,1 ,10) , datet ime . datet ime (2005 ,12 ,31) , l a g s=

NofLag )

# p r i n t ( s n p r e t [ : 5 ] . t o l a t e x ( f l o a t f o r m a t =’%.4 f ’ , b o l d r o w s =
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False ) )

# Training and t e s t i n g data

X = snpret [ [ ”Lag%d” %i for i in range (1 , NofLag+1) ] ]

y = snpret [ ” D i r e c t i on ” ]

s t a r t t e s t = datet ime . datet ime (2005 ,1 ,1 )

X tra in = X[X. index < s t a r t t e s t ]

X tes t = X[X. index >= s t a r t t e s t ]

global y t r a i n ; y t r a i n = y [ y . index < s t a r t t e s t ]

global y t e s t ; y t e s t = y [ y . index >= s t a r t t e s t ]

∗∗∗ t r a j e c t o r y matrix ∗∗∗

global T tra in ; T tra in = [ ] #i n i t i a t e a two−dimensiona l

t r a j e c t o r y l i s t

for i in range ( len ( X tra in )−NofLag+1) :

T tra in . append ( X tra in [ : : − 1 ] [ i : i+NofLag ] )

T tra in = T tra in [ : : −1 ] # t r a i n i n g t r a j e c t o r y matrix

print ( ”The f i r s t two t r a i n i n g t r a j e c t o r y input data : \n \n%s

\n%s ” %(T tra in [ : 1 ] , T tra in [ 1 : 2 ] ) )

print ( )

global T tes t ; T te s t = [ ] #i n i t i a t e a two−dimensiona l

t r a j e c t o r y l i s t
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for i in range ( len ( X tes t )−NofLag+1) :

T te s t . append ( X tes t [ : : − 1 ] [ i : i+NofLag ] )

T te s t = T tes t [ : : −1 ]

print ( ”The f i r s t two t e s t i n g t r a j e c t o r y input data : \n \n%s \

n%s ” %(T tes t [ : 1 ] , T te s t [ 1 : 2 ] ) )

∗∗∗Theano L o g i s t i c Optimizat ion with Ordinary l o g i s t i c model

∗∗∗

# Declare Theano symbo l i c v a r i a b l e s

x = T. dmatrix ( ”x” )

y = T. dvector ( ”y” )

# d e c l a r e l o g i s t i c r e g r e s s i o n c o e f f i c i e n t

s = ze ro s (3 ) ; s [ 0 ] = 1

w = theano . shared ( s , name=”w” )

# i n i t i a l i z e the b i a s term

b = theano . shared ( 0 . , name=”b” )

# Construct Theano e x p r e s s i o n graph

p 1 = 1 / (1 + T. exp(−T. dot (x , w) − b) ) # P r o b a b i l i t y t h a t

t a r g e t = 1

p r e d i c t i o n = p 1 > 0 .5 # The p r e d i c t i o n

t h r e s h o l d e d
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xent = −y ∗ T. log ( p 1 ) − (1−y ) ∗ T. log (1−p 1 ) # Cross−entropy

l o s s f u n c t i o n

# xent = T. l o g (1+ T. exp ( y∗(−T. dot ( x , w) − b ) ) )

co s t = xent . mean ( ) # The c o s t to minimize

gw , gb = T. grad ( cost , [w, b ] )

# Compile the t r a i n i n g f u n c t i o n and p r e d i c t f u n c t i o n (

i n i t i a l i z a t i o n )

t r a i n = theano . func t i on (

inputs =[x , y ] ,

outputs =[ p r ed i c t i on , xent , w] ,

updates =((w, w − 0 .1 ∗ gw) , (b , b − 0 .1 ∗ gb ) ) )

p r e d i c t = theano . func t i on ( inputs =[x ] , outputs=p r e d i c t i o n )

p r ed i c t p rob = theano . func t i on ( inputs =[x ] , outputs=p 1 )

de l t a = array ( [ 1 , 0 , 0 ] )

# Because we s t a r t wi th v a l u e o f d e l t a to tune v a l u e o f beta ,

we need to dot product o f d e l t a and X

de l t aTx t ra in = squeeze ( [ dot ( de l ta , x . va lue s ) for x in

T tra in ] )

d e l t aTx t e s t = squeeze ( [ dot ( de l ta , x . va lue s ) for x in T tes t

] )

50



# Dependent Var iab l e ( conver t 1/−1 b inary v a r i a b l e to 1/0

b inary v a r i a b l e )

t r a i n y = y t r a i n . copy ( )

for i , x in enumerate ( t r a i n y ) :

i f x == −1: t r a i n y . s e t i t e m ( i , 0)

t e s t y = y t e s t . copy ( )

for i , x in enumerate ( t e s t y ) :

i f x == −1: t e s t y . s e t i t e m ( i , 0)

# Note : lag1 , l a g 2 and l a g 3 i s r a l a t i v e to the index o f each

row . For example , the bottom r i g h t corner o f the f i r s t

# t r a i n i n g data (−2.624. . ) i s l a g 3 o f 2010−01−10 and

t h e r e f o r e l a g 5 o f 2001−01−12. And t h i s input would be used

to

# p r e d i c t the trend ( upward/downward ) o f s t o c k on 2010−01−12

# Model F i t

c o s t o l d = 100000

print ( ’ {:<15 s} {:>15 s} {:>25 s} {:>12 s} {:>12 s} ’ . format ( ’# o f

f i t t i n g ’ , ’ Beta ’ , ’ c o s t va lue ’ , ’ t r a i n acc ’ , ’ t e s t acc ’ ) )

for i in range (150+1) :

pred , err , c o e f = t r a i n ( de l taTx tra in , t r a i n y [ NofLag
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−1 : ] )

beta = c o e f

co s t = mean( e r r )

# i f ( c o s t o l d − c o s t < 0.000001) : break

t r a i n a c c = mean( p r e d i c t ( de l t aTx t ra in ) == t r a i n y [ NofLag

−1 : ] )

t e s t a c c = mean( p r e d i c t ( d e l t aT x t e s t ) == t e s t y [ NofLag

−1 : ] )

# Model P r e d i c t i o n

s e t p r i n t o p t i o n s ( p r e c i s i o n =4, suppres s = True )

i f ( not ( i % 10) ) :

c o s t o l d = cos t

print ( ’ {:<15d} {:<25 s} { : ˆ20 s} { :>0.4 f } { :>12.3 f } ’ .

format ( i , str ( beta ) , str ( co s t . round (5 ) ) , t r a i n a c c

, t e s t a c c ) )

∗∗∗ROC curve ∗∗∗

t h r e s h o l d s = np . l i n s p a c e (1 , 0 , 101 )

# This i s the model ’ s p r e d i c t i o n on the t e s t data .

T = pred i c t p rob ( de l t aTx t e s t )

ROC = np . z e r o s ( ( 101 , 2 ) )
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Y = t e s t y [ NofLag−1: ]

for i in range (101) :

t = t h r e s h o l d s [ i ]

# C l a s s i f i e r / l a b e l agree and disagreements f o r curren t

t h r e s h o l d .

TP t = np . l o g i c a l a n d ( T > t , Y==1 ) .sum( )

TN t = np . l o g i c a l a n d ( T <=t , Y==0 ) .sum( )

FP t = np . l o g i c a l a n d ( T > t , Y==0 ) .sum( )

FN t = np . l o g i c a l a n d ( T <=t , Y==1 ) .sum( )

# Compute f a l s e p o s i t i v e r a t e f o r curren t t h r e s h o l d .

FPR t = FP t / f loat ( FP t + TN t )

ROC[ i , 0 ] = FPR t

# Compute t r u e p o s i t i v e r a t e f o r curren t t h r e s h o l d .

TPR t = TP t / f loat ( TP t + FN t )

ROC[ i , 1 ] = TPR t

AUC = 0 .

for i in range (100) :

AUC += (ROC[ i +1,0]−ROC[ i , 0 ] ) ∗ (ROC[ i +1,1]+ROC[ i , 1 ] )

AUC ∗= 0.5

i f p lo t :
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# Plot the ROC curve .

f i g = p l t . f i g u r e ( f i g s i z e =(6 ,6) )

p l t . p l o t (ROC[ : , 0 ] , ROC[ : , 1 ] , lw=2)

p l t . xl im ( −0 .1 ,1 .1 )

p l t . yl im ( −0 .1 ,1 .1 )

p l t . x l a b e l ( ’$FPR( t ) $ ’ )

p l t . y l a b e l ( ’$TPR( t ) $ ’ )

p l t . g r i d ( )

p l t . t i t l e ( ’ROC curve , AUC = %.4 f ’%AUC)

p l t . show ( )

∗∗∗Multi−index l o g i s t i c model∗∗∗

∗∗∗ f unc t i on de f ined ∗∗∗

def ge t be ta ( de l ta , t r a i n i n , t e s t i n , t r a in out , t e s t ou t ,

model = L o g i s t i c R e g r e s s i o n ( ) ) :

de l taTtra in , de l t aTte s t = deltaTx ( de l ta , t r a i n i n ,

t e s t i n )

model . f i t ( de l taTtra in , t r a i n o u t ) ; i n t e r c e p t = model .

i n t e r c e p t

beta = model . c o e f ; c o s t = compute cost ( squeeze ( beta ) ,

i n t e r c ep t , de l taTtra in , t r a i n o u t )

54



a c c t r a i n = model . s c o r e ( de l taTtra in , t r a i n o u t )

a c c t e s t = model . s c o r e ( de l taTtes t , t e s t o u t )

return [ beta , de l ta , a c c t r a i n , a c c t e s t , cost , i n t e r c ep t

, ’ beta ’ ]

def g e t d e l t a ( beta , t r a i n i n , t e s t i n , t r a in out , t e s t ou t ,

model = L o g i s t i c R e g r e s s i o n ( ) ) :

trainTbeta , testTbeta = xTbeta ( beta , t r a i n i n , t e s t i n )

model . f i t ( trainTbeta , t r a i n o u t ) ; i n t e r c e p t = model .

i n t e r c e p t

de l t a = model . c o e f ; c o s t = compute cost ( squeeze ( de l t a ) ,

i n t e r c ep t , trainTbeta , t r a i n o u t )

a c c t r a i n = model . s c o r e ( trainTbeta , t r a i n o u t )

a c c t e s t = model . s c o r e ( testTbeta , t e s t o u t )

return [ beta , de l ta , a c c t r a i n , a c c t e s t , cost , i n t e r c ep t

, ’ d e l t a ’ ]

def deltaTx ( de l ta , t r a i n i n , t e s t i n ) :

X tra in = squeeze ( [ dot ( de l ta , x . va lue s ) for x in t r a i n i n

] )

X tes t = squeeze ( [ dot ( de l ta , x . va lue s ) for x in t e s t i n ] )

return ( X train , X tes t )
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def xTbeta ( beta , t r a i n i n , t e s t i n ) :

X tra in = squeeze ( [ x . va lue s . dot ( beta .T) for x in t r a i n i n

] )

X tes t = squeeze ( [ t ranspose ( dot ( x . values , beta .T) ) for x

in t e s t i n ] )

return ( X train , X tes t )

def update be ta and de l ta ( b e t a i n i t , c o s t i n i t ) :

beta , de l ta , a c c t r a i n , a c c t e s t , cost , i n t e r c ep t , c o e f =

[ [ 0 ] for i in range (7 ) ]

beta [ 0 ] = b e t a i n i t ; c o s t [ 0 ] = c o s t i n i t ; d e l t a [ 0 ] =

array ( [ 1 ] + [ 0 ] ∗ ( NofLag−1) )

L i s t = [ beta , de l ta , a c c t r a i n , a c c t e s t , cost , i n t e r c ep t

, c o e f ]

for i in range (200) : #200 t imes updat ing

r e s = g e t d e l t a ( beta [−1] , T tra in , T test , y t r a i n [

NofLag−1 : ] , y t e s t [ NofLag−1 : ] )

for x , y in enumerate ( L i s t ) : y . append ( r e s [ x ] )

r e s = ge t be ta ( de l t a [−1] , T tra in , T test , y t r a i n [

NofLag−1 : ] , y t e s t [ NofLag−1 : ] )

for x , y in enumerate ( L i s t ) : y . append ( r e s [ x ] )
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i = co s t . index (min( co s t ) )

return beta , de l ta , a c c t r a i n , a c c t e s t , cost , i n t e r c ep t ,

coe f , i

# return be ta [ i ] , d e l t a [ i ] , a c c t r a i n [ i ] , a c c t e s t [ i ] , c o s t

[ i ] , c o e f [ i ]

””” Find the b e s t model by i t e r a t i n g the above a l g o r i t h m s ”””

beta , de l ta , a c c t r a i n , a c c t e s t , cost , i n t e r c ep t , coe f ,

index = update be ta and de l ta ( b e t a i n i t , c o s t o l d )

∗∗∗ROC curve ∗∗∗

t h r e s h o l d s = np . l i n s p a c e (1 , 0 , 101 )

# This i s the model ’ s p r e d i c t i o n on the t e s t data .

T = sigmoid ( i n t e r c e p t [ index ] + squeeze ( [ d e l t a [ index ] . dot ( x ) .

dot ( beta [ index ] . T) for x in T tes t ] ) )

Y = y t e s t [ NofLag−1: ]

ROC = np . z e r o s ( ( 101 , 2 ) )

for i in range (101) :

t = t h r e s h o l d s [ i ]

# C l a s s i f i e r / l a b e l agree and disagreements f o r curren t

t h r e s h o l d .

TP t = np . l o g i c a l a n d ( T > t , Y==1 ) .sum( )
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TN t = np . l o g i c a l a n d ( T <=t , Y==0 ) .sum( )

FP t = np . l o g i c a l a n d ( T > t , Y==0 ) .sum( )

FN t = np . l o g i c a l a n d ( T <=t , Y==1 ) .sum( )

# Compute f a l s e p o s i t i v e r a t e f o r curren t t h r e s h o l d .

FPR t = FP t / f loat ( FP t + TN t )

ROC[ i , 0 ] = FPR t

# Compute t r u e p o s i t i v e r a t e f o r curren t t h r e s h o l d .

TPR t = TP t / f loat ( TP t + FN t )

ROC[ i , 1 ] = TPR t

AUC = 0 .

for i in range (100) :

AUC += (ROC[ i +1,0]−ROC[ i , 0 ] ) ∗ (ROC[ i +1,1]+ROC[ i , 1 ] )

AUC ∗= 0.5

i f p lo t :

# Plot the ROC curve .

f i g = p l t . f i g u r e ( f i g s i z e =(6 ,6) )

p l t . p l o t (ROC[ : , 0 ] , ROC[ : , 1 ] , lw=2)

p l t . xl im ( −0 .1 ,1 .1 )

p l t . yl im ( −0 .1 ,1 .1 )

p l t . x l a b e l ( ’$FPR( t ) $ ’ )

58



p l t . y l a b e l ( ’$TPR( t ) $ ’ )

p l t . g r i d ( )

p l t . t i t l e ( ’ROC curve , AUC = %.4 f ’%AUC)

p l t . show ( )

59



VITA

XIANG LIU

Education: B.S. Psychology, Beijing Normal University,

Beijing, China 2013

M.S. Mathematical Sciences, concentration in Statistics,

East Tennessee State University

Johnson City, Tennessee 2016

Professional Experience: Graduate Assistant, East Tennessee State University

Johnson City, Tennessee, 2015–2016

60


	East Tennessee State University
	Digital Commons @ East Tennessee State University
	12-2016

	A Multi-Indexed Logistic Model for Time Series
	Xiang Liu
	Recommended Citation


	tmp.1471633845.pdf.v2YT0

