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ABSTRACT

An Analysis of the First Passage to the Origin (FPO) Distribution

by

Aradhana Soni

What is the probability that in a fair coin toss game (a simple random walk) we

go bankrupt in n steps when there is an initial lead of some known or unknown

quantity $m? What is the distribution of the number of steps N that it takes for the

lead to vanish? This thesis explores some of the features of this first passage to the

origin (FPO) distribution. First, we explore the distribution of N when m is known.

Next, we compute the maximum likelihood estimators of m for a fixed n and also

the posterior distribution of m when we are given that m follows some known prior

distribution.
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1 INTRODUCTION

1.1 Background and Motivation

The starting point for this thesis is Polya’s theorem ([7]) which states that a

symmetric random walk in d dimensions that starts at the origin (0, 0, ...., 0) returns

to the origin, with probability 1 if d = 1 or 2 but has a positive probability of never

returning to (0,0,....,0) if d ≥ 3. For all d ≥ 1, however (particularly for d = 1, 2) the

expected return time to the origin is ∞. Let us be more specific for d = 1: we have

with W being the time of first return to the origin,

P (W = 2n) =

(
2n
n

)
(2n− 1)22n

The distribution N that we study is related to this distribution, and the fact that

E(W =∞) follows in much the same way as the proof of the fact that E(N) =∞.

The key idea, however, is that the probability mass function P (W = 2n) is very

intractable for large n even though it is straightforward to show (as we do for N) that

P (W = 2n) ∼ C

n
3
2

. The distribution of N is further complicated by the presence of

the parameter m→∞.

In general for d = 1 or 2, it is challenging to find summary statistics like the

quantiles of the distribution of W and it is even more difficult in our case.

1.2 Catalan Numbers

The FPO distribution is related to Catalan convolutions [9] which in turn are

generalizations of Catalan numbers [11]. For this reason, we start with a description

of Catalan numbers and some of the ways in which they arise. There are many

9



equivalent ways to see how the Catalan numbers, Cn, arise.

Cn =
1

n+ 1

(
2n

n

)
See Stanley’s book [11] for at least 100 other contexts. We choose as our basic defi-

nition their historically first combinatorial interpretation. Let Pn+2 denote a convex

polygon in the plane with n + 2 vertices (or convex (n + 2)-gon). A triangulation of

Pn+2 is a set of n−1 diagonals of Pn+2 which do not cross in their interiors. It follows

easily that these diagonals partition the interior of Pn+2 into n triangles. We define

the nth Catalan number Cn to be the number of such triangulations of Pn+2.

Set C0 = 1. We show in the next section that C1 = 1, C2 = 2 and C3 = 5. Some

further values are C4 = 14, C5 = 42, C6 = 132, C7 = 429, C8 = 1430, C9 = 4862 and

C10 = 16796. Six other combinatorial interpretations are also given below.

1.3 Combinatorial Interpretations of Catalan Numbers

We illustrate the combinatorial interpretations assuming n = 3 from Stanley’s

book [11].

1. Figure 1 depicts the triangulations of a convex (n+ 2)-gon into n triangles by

n− 1 diagonals that do not intersect in their interiors.

2. In Figure 2 we look at total number of triangles with vertices 1, i, i + 1, 2 6

i 6 n+1, among all triangulations of a convex (n+2)-gon with vertices 1, 2, ...., n+2

in clockwise order.

3. A graph is a finite nonempty set V of objects called vertices together with

a possible empty set of 2-element subsets of V called edges. A tree is a connected

acyclic graph. A vertex v is a child of vertex w if v immediately succeeds w on the

10



Figure 1: Triangulations of a pentagon by 2 non-intersecting diagonals

Figure 2: Triangulations of a pentagon into 3 triangles

path from the root to v. See the Graphs & Digraphs book [2] by Chatrand, Lesniak

and Zhang for more details. Refer to Figure 3 for the third example about plane trees

for which every vertex has 0, 1, or 3 children, with a total of n+ 1 vertices with 0 or

1 child.

4. Lattice path in all generality means a polygonal line of the discrete Cartesian

plane Z× Z [1]. In Figure 4, we look at lattice paths from (0, 0) to (n, n) with steps

(0, 1) or (1, 0), never rising above the line y = x.

5. See Figure 5: Nonnesting matchings on [2n], i.e., ways of connecting 2n points

in the plane lying on a horizontal line by n arcs, each arc connecting two of the points

and lying above the points, such that no arc is contained entirely below another.

6. Sequences a1, a2,.........,an−1 of integers such that ai ≤ 1 and all partial sums

11



Figure 3: Plane trees with 4 vertices

Figure 4: Lattice paths from (0, 0) to (3, 3)

are nonnegative are given below:

0,0 0,1 1,-1, 1,0 1,1

In each of the six examples above, we see that C3 = 5. Notice that C3 = 1
3+1

(
2×3
3

)
= 5

using the formula stated above. In the next section, we will see what this means.

We will also see how the probability mass function of the FPO distribution is

related to the so-called Catalan convolutions.

1.4 Catalan Numbers and Catalan Convolutions

In this subsection we first give a formula for the Catalan numbers from the previous

subsection, and verify that C3 is indeed equal to five as calculated in the previous

12



Figure 5: Nonnesting matching on 6 points by 3 arcs

section. From Stanley’s book [11], for n ≥ 0, the Catalan numbers Cn are given by

Cn =
1

n+ 1

(
2n

n

)
Catalan convolutions are generalization of Catalan numbers.

Example: In Statistics the convolution of two independent random variables is

the distribution of their sum. For example, if X and Y are independent discrete

non-negative random variables with probability mass function f and g respectively,

then the convolution between X and Y can be defined as:

(f ∗ g)(n) =
∑
f(i)g(n− i)

or (f ∗ g)(n) = P (X + Y = n)

Generalizing this fact, Catalan proved the k-fold Catalan convolution formula, that

is when we have k numbers (instead of two as in the example above) we have:

Cn,k :=
∑

i1+...+ik=n

k∏
r=1

Cir−1 =
k

2n− k

(
2n− k
n

)
(1)

For example, let us look at how to calculate C4,2. We proceed as follows: We have

three possible values for (i1, i2), namely (1, 3), (2, 2) and (3, 1). We thus have C4,2 =

C0×C2+C1×C1+C2×C0 = 2+1+2 = 5, which is the same as C4,2 = 2
(2×4)−2

(
(2×4)−2

4

)
as given by the formula.
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1.5 Arcsine Distribution with a Lead

Imagine a fair coin toss game between 2 players, Peter and Paul, whose outcome

can be modeled by a simple symmetric random walk, graphed in two dimensions with

steps to the northeast or southeast. Suppose that the random walk starts at (m, 0)

or alternatively Peter starts with a lead of $m. In other words, we let Yi = +/ − 1

with probability 1
2
; Y0 = m and Sr =

∑r
0 Yi; Sr is the position of the random walk

after r steps.

Now we are going to flip a coin n times only. We let N = Nm = min[r;Sr =

0], N = m,m + 2, ....., N is called the first passage to origin (FPO) distribution.

Eventually we would like to study the time X spent by the walk above the t-axis in

n steps. This would be the ‘arcsine distribution with a lead of m’. When m = 0

and n→∞, this is modeled by the arcsine distribution f(x) = 1

π
√
x(1−x)

; 0 < x < 1.

But we are interested in m > 0 when the distribution is likely to be left-skewed.

This problem was mentioned by a fellow graduate student of the same department,

Rebecca Rasnick [8]. There are challenges associated with this problem as we explain

below.

First note that the range of N is infinite even though for arcsine distribution we

have a finite number of coin flips. How to reconcile this? We proceed as follows:

Note that X = X1+X2, where X1 is the minimum of n and the time Nm taken by the

walk to first hit (0, 0), and X2 is the time spent above the X-axis in the remaining

n−X1 units of time. Let us explain this. If for example n = 20 and m = 10, Nm = 50

then Peter has been in lead for all the 20 coin flips; X1 = 20 and X2 = 0. If on the

other hand Nm = 14, then X1 = 14 and if the remaining tosses are H, H, T, T, T,

14



H, then X2 = 4 and X = 18. We will leave the arcsine distribution with a lead to a

future investigation and focus only on the distribution of Nm in this thesis.

1.6 Infinite Expectation

Firstly, E(Nm) =∞ even for m = 1; this is not unlike the so-called St. Petersburg

paradox [6]; where a player wins 2m if she takes m flips to get her first head. The

distribution of the number of flips is geometric and thus finite with probability one,

but the player expects to win ∞. We see the following proof of E(N1)→∞.

E(N1) =
∑
n odd

nP (N = n)

=
∞∑
k=1

(2k − 1)P (N = 2k − 1)

=
∞∑
k=1

(2k − 1)
1

2k − 1

(
2k − 1

k

)
1

22k−1

≥ C ∗ 22k

√
k ∗ 22k−1

=
∑ C√

k

→∞

where the last inequality is proved using the Stirling’s approximation for factorials.

That is, k! ∼
√

2πk
(
k
e

)k
. In fact we have,

√
2πk

(
k
e

)k ≤ k! ≤
√

2πk
(
k
e

)k
e

1
12k . [10]

In fact as we see by Feller, W. in [5], the probability mass function of the FPO

distribution is given by:

P (Nm = n) =
m

n

(
n

n+m
2

)
1

2n
; n ≡ m (mod 2). (2)

15



With m = 4, for example, we get for k ≥ 2 (by (2))

P (N4 = 2k) =
2

k

(
2k

k + 2

)
1

22k
,

which simplifies on setting k = r − 2 for r ≥ 4 as

P (N4 = 2r − 4) =
4

2r − 4

(
2r − 4

r

)
1

22r−4 =
C(r, 4)

22r−4 ,

and we see the 4th Catalan convolution of r appears. Remember the formula for

Cn,k = k
2n−k

(
2n−k
n

)
from (1) above. It turns out that for general m we get the mth

Catalan convolution!

For odd m, m = 2s + 1, we see that we must have n = 2k + 1, k ≥ s [3]. This is

true since if initial lead $m is odd, then the number of steps to go bankrupt, n, shall

be odd too. Thus by (2)

P (N2s+1 = 2k + 1) =
2s+ 1

2k + 1

(
2k + 1

k + s+ 1

)
1

22k+1
,

which simplifies on setting k = r − s with r ≥ 2s, as

P (N2s+1 = 2(r + 1)− (2s+ 1)) =
2s+ 1

2(r + 1)− (2s+ 1)

(
2(r + 1)− (2s+ 1)

r + 1

)
1

22(r+1)−(2s+1)

=
C(r + 1, 2s+ 1)

22(r+1)−(2s+1)

Similarly, for even m, m = 2s+ 2, we must have n = 2k + 2, k ≥ s. Thus

P (N2s+2 = 2k + 2) =
2s+ 2

2k + 2

(
2k + 2

k + s+ 1

)
1

22k+2
,

which simplifies on setting k = r − s with r ≥ 2s, as

P (N2s+2) = 2(r + 2)− (2s+ 2))

=
2s+ 2

2(r + 2)− (2s+ 2)

(
2(r + 2)− (2s+ 2)

r + 1

)
1

22(r+2)−(2s+2)

=
C(r + 2, 2s+ 2)

22(r+2)−(2s+2)

16



To conclude, we see that the FPO distribution does involve the Catalan Convo-

lutions. Next, we shall see the relation between the FPO distribution and the Ballot

Theorem.

1.7 FPO Distribution and Ballot Theorem

The Ballot Theorem: Let n and x be positive numbers. There are x
n
Nn,x

number of paths that are strictly above the t-axis for t > 0 that join (0, 0) to (n, x)

where Nn,x =
(

n
n+x
2

)
.

FPO distribution can be seen as the Ballot theorem being looked backwards. In

FPO distribution, we are looking at time to reach origin when we already have a lead

of $m, i.e. we start at (m, 0). See figure 6.

Figure 6: FPO distribution and Ballot theorem .

For this distribution, we flip things around and consider (n + x) as a random

variable now. (n+x) is essentially the time to return to origin. In other words, P (the

paths are strictly above the t-axis and join (0, 0) to (n, x)) = x
n

(
n
n+x
2

)
1
2n

.

17



We thus have, P(the paths are strictly above the t-axis and join (0,m) to (n, 0))

= m
n

(
n

n+m
2

)
1
2n

.

Next, we look at the proof of the Catalan Convolution formula as in (1) above.

1.8 Proof of Catalan Convolution Formula

In this section, we prove the Catalan Convolution formula explaining the method

used by Regev, A. in [9]. The author proceeds by a sequence of lemmas. We provide

complete details here.

Lemma 1 A k-dissection of an n-gon is a partition of the n-gon into k + 1 parts by

k noncrossing diagonals. The number of k − in− n dissections is:

fk(n) =

(
2n− k − 1

n− 1

)
(3)

where a k − in− n dissections is

Lemma 2 Let 3 ≤ k ≤ n, Then

(n− k)fk(n) = n
n−k+1∑
i=2

Ci−1fk(n− i+ 1). (4)

Lemma 3 For any n ≥ 1,

∑
i≥0

iCiCn−i =

(
2n+ 1

n− 1

)
. (5)

Lemma 4 Let 1 ≤ q ≤ p ≤ 2q − 1. Then

∑
i≥0

Ci

(
p− 1− 2i

q − 1− i

)
=

(
p

q

)
. (6)

18



Lemma 5 Let 3 ≤ k ≤ n. Then

kfk(n) = n
∑

i1+....+ik=n

Ci1−1....Cik−1. (7)

The lemmas yield the following theorem:

Theorem 1.1 Let 1 ≤ k ≤ n. Then

∑
i1+....+ik=n

Ci−1....Cik−1 =
k

2n− k

(
2n− k
n

)
.

Proof: Fix k ≥ 3 and proceed by induction on n. If n = k then both sides are equal

to 1. Now let n ≥ k + 1. From Lemma 1 and Lemma 2 and using the induction

hypothesis, we have

fk(n) =
n

n− k

n−k−1∑
i=2

Ci−1fk(n− i+ 1)

=
n

n− k

n−k−1∑
i=2

Ci−1

(
2(n− i+ 1)− k − 1

n− i

)

=
n

n− k

(
n−k−1∑
i=1

Ci−1

(
2(n− i+ 1)− k − 1

n− i

)
− Ci−1

(
2(n− 1 + 1)− k − 1

n− 1

))

=
n

n− k

(∑
i≥1

Ci−1

(
2(n− i+ 1)− k − 1

n− i

)
− fk(n)

)

Solving for fk(n), we get

fk(n)

(
2n− k
n− k

)
=

n

n− k

(∑
i≥1

Ci−1

(
2(n− i+ 1)− k − 1

n− i

))

fk(n) =
n

2n− k
∑
i≥0

Ci

(
2n− k − 2i− 1

n− i− 1

)
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Using Lemma 4 with q = n and p = 2n− k, we see

fk(n) =
n

2n− k

(
2n− k
n

)
fk(n) =

(
2n− k − 1

n− 1

)
Now using Lemma 5, we get

∑
i1+....+ik=n

Ci1−1....Cik−1 =
k

n

(
2n− k − 1

n− 1

)

=
k

2n− k

(
2n− k
n

)
.

This proves the Theorem 1.1.

Let us move on to some more properties of the FPO distribution.
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2 Exploratory Analysis of the FPO Distribution

In Chapter 1 we saw,

P (Nm = n) =
m

n

(
n

n+m
2

)
1

2n
;n ≡ m (mod 2)

There are some cognate results to look at:

∑
n

P (N = n) = 1 (8)

We argue that the above relation is true as eventually the random walk should

hit the origin with a probability of 1. This can be proved using Polya’s theorem [7]

on recurrence of random walks. We skip the proof in this thesis but can be accessed

from [7].

To get some numerical evidence for equation (8), we used R to plot histogram for

the above pmf with m = 1 and odd values of n. We get the histogram as in Figure 7

on the next page.

It can be shown that the cumulative probability when n varies from n = 1 to

n = 515, sums to 0.975. This also gives us evidence that
∑
P (N = n) = 1.

The quantiles for the FPO distribution will be as follows: median value is at

n = 1; 75th percentile will be at n = 5; and 90th percentile will be at n = 32.

In the next section, we look at the distribution of N .
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Figure 7: Histogram of the FPO distribution .

3 Distribution of N = Nm

We seek to approximate P (N = n) under various conditions for large values of m

and n. First assume, n+m
2

is close to n. This occurs if,

m

n
∼ 1, or if

m

n
= 1− ε(n) for some ε(n) > 0 , or if

n

2
+
m

2
= n− φ(n) where

φ(n)

n
→ 0

Under this condition, we now look at the exact and approximate distribution of N .
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3.1 Exact and Approximate Distributions of N

The exact distribution now becomes,

P (N = n) =
n− nε(n)

n

(
n

n− φ(n)

)
1

2n

=
n(1− ε(n))

n

(
n

φ(n)

)
1

2n

Using Stirling’s approximation and assuming φ(n)� n, the approximate distribution

will be:

P (N = n) ' nφ(n)

φ(n)!

1

2n
, or

P (N = n) ' nφ(n)√
2πφ(n)

(
e

φ(n)
)φ(n)

(9)

If φ(n) is really big, that is φ(n) = n
2

- m
2

= Bn for some large B, then we cannot use

the approximation
(

n
φ(n)

)
∼ nφ(n)

φ(n)!
. This approximation is valid only if φ(n) is big but

not as large as Bn.

Let us consider certain other cases when φ(n) 6= Bn and look at the exact and

approximate distributions for each case, so as to understand how good the approxi-

mation is.

CASE 1: In the first case and easiest case, we let n = m.

In this case, ε(n) = φ(n) = 0

and, the exact distribution = approximate distribution ∼ 1
2m

.

CASE 2: n = m+ 2. Here ε(n) = 2
n
, φ(n) = 1.
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The exact distribution will be:

P (N = n) =
m

m+ 2

(
m+ 2

m+ 1

)
1

2m+2

=
m

m+ 2

m+ 2

2m+2

=
m

2m+2
.

and the approximate distribution is

P (N = n) =
m+ 2

1!

1

2m+2

∼ m

2m+2
.

CASE 3: n = m+ 50

The exact distribution is

P (N = n) =
m

m+ 50

(
m+ 50
2m+50

2

)
1

2m+50

=
m

m+ 50

(
m+ 50

25

)
1

2m+50
.

and the approximate distribution is ∼ (m+50)25

25!
1

2m+50 .

Next, we proceed to the probability mass function of N .

3.2 Probability Mass Function of N

We first calculate the probability of N lying between am2 and bm2 where a and b

are positive constants, and show that this tends to 1 as a→ 0 and b→∞. We shall

assume that m
n

is small for reasons that we clarify later.
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We first simplify the pmf for N . That is,

P (N = n) =
m

n

(
n

n+m
2

)
1

2n

=
m

n

1

2n
n!

(n+m
2

)!(n−m
2

)!

' m

n

1

2n

√
2πn

(n
e

)n( 2e

n+m

)n+m
2
(

2e

n−m

)n−m
2 1√

2π(n+m)
2

1√
2π(n−m)

2

=
m

n

√
2n

π

1(
1 + m

n

)n+m
2
(
1− m

n

)n−m
2

1√
(n+m)(n−m)

∼ m

n
3
2

√
2

π

1(
1 + m

n

)n+m
2
(
1− m

n

)n−m
2

We use the approximations exy ' (1 + x)y and
√

(n+m)(n−m) '
√
n2. These

approximations are valid because x = m
n

is small. Using these approximations, we

get:

P (N = n) ∼ m

n
3
2

√
2

π

1

e
m
n
(n+m

2
)e

−m
n

(n−m
2

)

= e
−m2

n
m

n
3
2

√
2

π

So that P (am2 ≤ n ≤ bm2) =
bm2∑
am2

√
2

π

m

n
3
2

e
−m2

n

(10)

We assume that n is even, so replacing n with 2n and considering only even values

for n, we see that,

P (am2 ≤ N ≤ bm2) =

bm2/2∑
am2/2

√
2

π

m

2
3
2n

3
2

e
−m2

2n

'
√

2

π

∫ bm2/2

am2/2

m

2
3
2n

3
2

e
−m2

2n dn

We solve this by substitution: Let u2 = m2

n
, u = m√

n
, du = m(−1

2
)n

−3
2 dn
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The integral now becomes:

P (am2 ≤ N ≤ bm2) = −
√

2

π

1

2
3
2

∫ √ 2
b

√
2
a

2e
−u2
2 du

=

√
2

π

2

2
3
2

∫ √ 2
a

√
2
b

e
−u2
2 du

Assuming a→ 0 and b→∞, the above integral tends to

=
√

2

∫ ∞
0

1√
2π
e

−u2
2 du

=
√

2 ∗ 1

2

' 0.707

which we will show is a result of error in approximating the series by integral. That

is, we claim and show later that P (am2 ≤ N ≤ bm2)→ 1 as a→∞ and b→∞.

Next, let us find the probability of n lying between am and ∞. We have,

P (am ≤ N <∞) '
√

2

π

∫ ∞
am

m

2
3
2n

3
2

e
−m2

2n dn

Substituting u2 = m2

n
, the above integral becomes

−
√

2

π

∫ 0

√
m
a

e
−u2
2

1√
2
du , or

√
2

∫ √m
a

0

e
−u2
2

1√
2π
du , or

When a → 0, we see P (am ≤ N ≤ ∞) tends to

√
2 ∗ 1

2
' 0.707

which is same as in the previous calculation and we see that no gain is made by

extending the range of N to am.
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Now, let us assume n is a function of m, say n = φ(m)m, where φ(m) → ∞ as

m→∞. Hence,

P (φ(m)m ≤ N <∞) =
∞∑

φ(m)m

√
2

π

m

n
3
2

e
−m2

n

Replace n with 2n as we are only looking at even values for n.

P (φ(m)m ≤ N <∞) =
∞∑

φ(m)m/2

√
2

π

m

2
3
2n

3
2

e
−m2

2n

'
√

2

π

∫ ∞
mφ(m)

2

m

2
3
2n

3
2

e
−m2

2n dn

Solving this by substitution, as before, the integral now becomes:

= −
√

2

π

1√
2

∫ 0

√
2m
φ(m)

e
−u2
2 du

=

√
2

π

√
2

∫ √
2m
φ(m)

0

e
−u2
2 du

=
√

2 ∗ 1

2

' 0.707

as φ(m)→∞ which is again the same as before.

We observed that the probability that we got in each of the three cases above is

∼ 0.707. We claimed that this value is different from 1 due to error by approximating

a series with an integral. We prove this claim by looking at the probability of any

interval outside the three intervals considered above and showing that the probability

of each of those interval → 0.

We now present our claims:

Claim 1: P(φ(m)m ≤ N ≤ am2) → 0 as a → 0 and m→∞

This is true because P (am2 ≤ N ≤ bm2), when approximated by an integral, tends
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to 0.707 as a→ 0 and b→∞. And P (mφ(m) ≤ N <∞) can also be approximated

by 0.707. Thus,

P (mφ(m) ≤ N ≤ am2) = P (mφ(m) ≤ N <∞)− P (am2 ≤ N <∞)→ 0

Claim 2: P (N ≥ bm2)→ 0 as b → ∞

Proof:

P (N ≥ bm2) '
√

2

π

∫ ∞
bm2

2

m

2
3
2n

3
2

e
−m2

2n dn

= −
√

2

π

√
1

2

∫ 0

√
2
B

e
−u2
2 du

→ 0 as b→∞

Next, let us consider the case n = Bm using the exact distribution,

P (N = n) =
1

2n
m

n

(
n

m+n
2

)
In this case, we cannot use the approximation (1+x) ∼ ex for small x, or

√
(n+m) ∗ (n−m) ∼

n. Letting m = n
B

, we have

P (N = n) =
1

2n
m

mB

(
n

n+ n
B

2

)
=

1

2n
1

B

n!(
nB+1

2B

)
!
(
nB−1

2B

)
!

=
1

2n
1

B

√
2nπ n

n

en
e
n(B+1)

2B e
n(B−1)

2B√
2nπB+1

2B

√
2nπB−1

2B

(
n(B+1)

2B

)n(B+1)
2B

(
n(B−1)

2B

)n(B−1)
2B

=
2B

B

1√
2nπ

Bn

√
B2 − 1

1

(B + 1)
n(B+1)

2B (B − 1)
n(B−1)

2B

=
1

B

2√
2mBπ

((
B

B + 1

)B+1
2
(

B

B − 1

)B−1
2

)m

=

√
2

π

1√
m

1

B
3
2

((
1

1 + 1
B

)B+1
2
(

1

1− 1
B

)B−1
2

)m
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Since, 1 + 1
B
≤ e

1
B , we have 1

(1+ 1
B
)
≥ 1

e1/B
and 1

(1− 1
B
)
≥ 1

e−1/B , so that

P (N = n) ≥
√

2

π

1√
m

1

B3/2

((
e1/B

)B+1
2
(
e−1/B

)B−1
2

)−m
=

√
2

π

1√
m

1

B3/2

(
e
B+1−B+1

2B

)−m
=

√
2

π

1√
m

1

B
3
2

e
−m
B

Thus, approximating P (m ≤ N ≤ am) using integration:

P (m ≤ N ≤ am) ≥
√

2

π

∫ a

1

1√
m

1

B3/2
e

−m
B dB

Let m
B

= u2

2
, u =

√
2m
B

and du =
√

2m−1
2
B

−3
2 dB, so

P (m ≤ N ≤ am) = −2

√
2

π

∫ √2m/a

√
2m

1√
m

B3/2

B3/2
e

−u2
2 du

=
2√
2

√
2

π

∫ √2m
√

2m/a

e
−u2
2 du

≥ 2√
2

√
2

π

√
2m

(
1− 1

a

)
e−m

which is small as m → ∞. A similar small upper bound for P (m ≤ N ≤ am) is

obtained by using the inequality (1 + u) ≥ e
u

(1+u) .

Claim 3: P (N ≤ am)→ 0 as a→∞

Using same substitution as before:

P (N ≤ am) '
√

2

π

∫ am

0

m

2
3
2n

3
2

e
−m2

2n dn

= −
√

2

π

√
1

2

∫ √am
∞

e
−u2
2 du

=

√
2

π

√
1

2

∫ ∞
√
am

e
−u2
2 du

→ 0 as a→∞

Claims 1, 2 and 3 lead to our main result:
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Theorem 3.1 P (am2 ≤ N ≤ bm2) → 1 as a → 0, b → ∞ and m → ∞. In other

words, the distribution of N is concentrated in an interval of length Θ(m2).

Next, let us look at the mode of N , assuming that m is known.

Theorem 3.2 The mode of N (given m) is m2−4
3

.

Proof: We set

φ(n) =
m

n

(
n

n+m
2

)
1

2n
,

and use the fact that φ(n) = P (N = n) will be increasing when the ratio φ(n+2)
φ(n)

≥ 1.

So, simplifying the ratio as follows

φ(n+ 2)

φ(n)
=

n

n+ 2

(
n+2

n+m+2
2

)(
n

n+m
2

) 1

4

=
n

4n+ 8

(n+ 2)(n+ 1)
n+m+2

2

(n−m)!
2!

(n−m+2)!
2!

we set,

n

4n+ 8

(n+ 2)(n+ 1)
n+m+2

2

(n−m)!
2!

(n−m+2)!
2!

≥ 1

to find the maximum of the pmf.

That is,
n(n+ 1)

4

1

(n+m+2
2

)(n−m+2
2

)
≥ 1 iff

n2 + n ≥ (n+ 2)2 −m2 iff

3n−m2 + 4 ≤ 0 iff

n ≤ m2 − 4

3

Hence, the mode of N (given m) is m2−4
3

.

We now study the challenges faced while computing the quantiles of N .
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3.3 Why are Quantiles of N Difficult to Calculate?

With large m, we computed an approximate distribution in an effort to understand

N better. However, in order to find different probabilities, we approximated the

sum with an equivalent integral. Thus, the actual probabilities, that is the sum of

the rectangles in the picture below, will always be more than the area under the

curve. Hence, by approximating the distribution with an integral, we will see that

the approximated probability will always be less than actual probability. Remember,

from section 3.2 above, we got the total probability of about 0.707. However it should

have been 1 as seen by Theorem 3.1. Additionally, it is very difficult to handle this

Figure 8: Approximating series with an integral
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distribution computationally as it involves large factorials and combinations. We had

used software (R) to do this for us. We could only get results for n from 1 to 515 and

even that only for m = 1. In Chapter 1 we found certain percentiles using results

from the software.

In conclusion,

1. Whenever we do an integral approximation to discrete case, the approximate

probability will always be lower than the actual probability.

2. It will be really difficult computationally to handle factorials for large m. Thus,

we had used software to handle this for us but only for small m.

In the last section we calculate the maximum likelihood estimate for m.
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4 Maximum Likelihood Estimation of m

In this section we assume that m is unknown and attempt to find the MLE of m

given k sample values n1, n2,....,nk, that is, k first passage to the origin samples.

k=1: First, let us find the Maximum Likelihood Estimate for m when k = 1. The

likelihood function in this case is:

L =
m

n

(
n

n+m
2

)
2n

= φ(m)

We maximize L with respect to the parameter m and find the corresponding MLE

for m. So we see when φ is increasing by asking when φ(m+2)
φ(m)

is greater than one.

φ(m+ 2)

φ(m)
=
m+ 2

m

(
n

n+m+2
2

)(
n

n+m+2
2

) ≥ 1 iff

m+ 2

m

n−m
2

n+m+2
2

≥ 1 iff

nm−m2 + 2n− 2m ≥ nm+m2 + 2m iff

m2 + 2m− n ≤ 0

The roots of the corresponding quadratic equation are−
√
n+ 1−1 ≤ m ≤

√
n+ 1−1.

Thus the quadratic is negative between the two roots. Since m can only take positive

values, the value of m at which L is maximized is between 0 and -1 +
√

1 + n, leading

to the conclusion that MLE m̂ is around
√
n.

k=2: Now, let us find the Maximum Likelihood Estimate for m when k = 2. The

likelihood function L = φ(m) is

φ(m) =
m2

n1n2

( n1
n1+m

2

)( n2
n2+m

2

)
2n1n2
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Thus,

φ(m+ 2)

φ(m)
=

(m+ 2)2

n1n2

( n1
n1+m+2

2

)( n2
n2+m+2

2

)
2n1n2

/
m2

n1n2

( n1
n1+m

2

)( n2
n2+m

2

)
2n1n2

=

(
m+2
m

)2 n1−m
2

n2−m
2

n1+m+2
2

n2+m+2
2

=
(m2 + 4m+ 4)(n1n2 − n1m− n2m+m2)

m2(n1n2 + n1m+ 2n1 +mn2 +m2 + 2m+ 2n2 + 2m+ 4)

Thus, φ(m+2)
φ(m)

≥ 1 iff

(m2 + 4m+ 4)(n1n2 − n1m− n2m+m2)

m2(n1n2 + n1m+ 2n1 +mn2 +m2 + 2m+ 2n2 + 2m+ 4)
≥ 1 iff

m2n1n2 − n1m
3 −m3n2 +m4 + 4mn1n2 − 4n1m

2 − 4m2n2 + 4m3 + 4n1n2 − 4n1m

−4mn2 + 4m2 ≥ m2n1n2 +m3n1 + 2n1m
2 +m3n2 +m4 + 2m3 + 2n2m

2 + 2m3 + 4m2 iff

m3(n1 + n2) + 3m2(n1 + n2)− 2n1n2 − 2mn1n2 + 2(n1 + n2)m ≤ 0

Solving the above cubic equation equation will give us the maximum likelihood esti-

mate for m when k = 2. We restrict to the case where n1 = n2 since the general case

is quite complex.

Suppose, n1 = n2 = n. The above condition will now be:

2m3n+ 6m2n− 2n2 − 2mn2 + 4nm ≤ 0 iff

m3n+ 3m2n− n2 −mn2 + 2nm ≤ 0 iff

m3 + 3m2 − n−mn+ 2m ≤ 0

(11)

We couldn’t solve this analytically. Using software, the Maximum Likelihood Esti-

mate for m or in other words the largest m for which (11) holds so we look for the

largest m such that:

−1 ≤ m ≤
√
n+ 1− 1 ,
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or, again

m̂ ∼
√
n

In an effort to understand the general case, let us estimate the MLE for m for

some random values of n1 and n2: (See Table 1)

Table 1: MLE for m when k = 2 for some random values of n1 and n2

n1 n2 m
10 20 3
20 20 3
200 10 2
50 300 4
100 500 11
40 1000 4
1000 10000 41

Let us also look at some of the sample values for n1 = n2 = n and the correspond-

ing maximum likelihood estimates for m: (See Table 2)

Table 2: MLE for m when k = 2 assuming n1 = n2 = n
n Sqrt(n) m
10 3.16 2
20 4.47 3
100 10 9
250 15.81 14
500 22.36 21
1000 31.63 30
10000 100 99
340 18.44 17
269 16.40 15
1056 32.50 31
1200 34.64 33
10000000 3162.28 3161

We can see from the above table, when n1 = n2 = n, then the maximum likelihood
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value of m is almost equal to the square root of n but that the general case is far

more advanced.

k=3: Now, let us find the Maximum Likelihood Estimate for m when k = 3 and

n1 = n2 = n3 = n.

φ(m) =
m3

n3

(
n

n+m
2

)3
1

8n

So,
φ(m+ 2)

φ(m)
=

(m+2)3

n3

(
n

n+m+2
2

)3 1
8n

m3

n3

(
n

n+m
2

)3 1
8n

=
(m+ 2)3

m3

(
(n+m

2
)!(n−m

2
)!

(n+m+2
2

)!(n−m−2
2

)!

)3

Thus, φ(m+2)
φ(m)

≥ 1 if and only if

(m+ 2)3

m3

(
(n+m

2
)!(n−m

2
)!

(n+m+2
2

)!(n−m−2
2

)!

)3

≥ 1 , or

(m+ 2)3

m3
≥
(

(n+m+2
2

)!(n−m−2
2

)!

(n+m
2

)!(n−m
2

)!

)3

Solving the above inequality, we again see that the maximum likelihood estimate for

m is about square root of n for k = 3.

In Table 3, we estimate the MLE for m for some values when n1 = n2 = n3 = n.

k=4: Now, let us find the Maximum Likelihood Estimate for m when k = 4 and

n1 = n2 = n3 = n4 = n.

φ(m) =
m4

n4

(
n

n+m
2

)4
1

8n
; So that

φ(m+ 2)

φ(m)
=

(m+2)4

n4

(
n

n+m+2
2

)4 1
8n

m4

n4

(
n

n+m
2

)4 1
8n

=
(m+ 2)4

m4

(
(n+m

2
)!(n−m

2
)!

(n+m+2
2

)!(n−m−2
2

)!

)4
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Table 3: MLE for m when k = 3 assuming n1 = n2 = n3 = n
n Sqrt(n) m
10 3.16 2
20 4.47 3
100 10 9
250 15.81 14
500 22.36 21
1000 31.63 30
10000 100 99
340 18.44 17
269 16.40 15
1056 32.50 31
1200 34.64 33
10000000 3162.28 3161

Thus, φ(m+2)
φ(m)

≥ 1 if and only if

(m+ 2)4

m4

(
(n+m

2
)!(n−m

2
)!

(n+m+2
2

)!(n−m−2
2

)!

)4

≥ 1

or
(m+ 2)4

m4
≥
(

(n+m+2
2

)!(n−m−2
2

)!

(n+m
2

)!(n−m
2

)!

)4

Solving the above condition, we again see that the maximum likelihood estimate

for m is about square root of n.

In Table 4,we estimate the MLE for m for some values of n1 = n2 = n3 = n4 = n.

For future work, we recommend to analytically prove a theorem that supports this

conclusion for all values of k.

We now calculate the maximum likelihood value for m using Bayesian analysis.

4.1 Bayesian Analysis for m

Next, we move on to a case when Peter (who plays a fair coin toss game) has some

money, m dollar, in his wallet. He does not remember how much money was there
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Table 4: MLE for m when k = 4 assuming n1 = n2 = n3 = n4 = n
n Sqrt(n) m
10 3.16 2
20 4.47 3
100 10 9
250 15.81 14
500 22.36 21
1000 31.63 30
10000 100 99
340 18.44 17
269 16.40 15
1056 32.50 31
1200 34.64 33
10000000 3162.28 3161

is the wallet before he started playing the game. However, all he remembered was

that the amount was less than $M . Keeping this in mind, we look at the Bayesian

analysis for computing m.

Let us assume that m follows a uniform distribution, that is the prior distribution

for m, f(m) = 1
M

where 1 ≤ m ≤M . In this case,

f(n|m) =
m

n

(
n

n+m
2

)
1

2n
; and

f(n,m) = f(m)× f(n|m)

=
m

n

(
n

n+m
2

)
1

2n
× 1

M

=
m

Mn

(
n

n+m
2

)
1

2n
.

Case 1: Let us assume M = 20 to show how the analysis proceeds. The highest m

can be is 20. Also, if n turns out to be even, m can only take even values less than n.

Thus, f(n) =
1

10n2n

∑
m≤min[n,20] & m is even

m

(
n

n+m
2

)
.
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So,

f(m = 2|n = 10) =
f(m = 2, n = 10)

f(n = 10)

So that, f(m = 2|n = 10) =
2
(
10
6

)
2
(
10
6

)
+ 4
(
10
7

)
+ 6
(
10
8

)
+ 8
(
10
9

)
+ 10

(
10
10

)
=

420

420 + 480 + 270 + 80 + 10

=
420

1260
,

f(m = 4|n = 10) =
f(m = 4, n = 10)

f(n = 10)

=
4
(
10
7

)
2
(
10
6

)
+ 4
(
10
7

)
+ 6
(
10
8

)
+ 8
(
10
9

)
+ 10

(
10
10

)
=

480

420 + 480 + 270 + 80 + 10

=
480

1260
,

f(m = 6|n = 10) =
f(m = 6, n = 10)

f(n = 10)

=
6
(
10
8

)
2
(
10
6

)
+ 4
(
10
7

)
+ 6
(
10
8

)
+ 8
(
10
9

)
+ 10

(
10
10

)
=

270

420 + 480 + 270 + 80 + 10

=
270

1260
,

f(m = 8|n = 10) =
f(m = 8, n = 10)

f(n = 10)

=
8
(
10
9

)
2
(
10
6

)
+ 4
(
10
7

)
+ 6
(
10
8

)
+ 8
(
10
9

)
+ 10

(
10
10

)
=

80

420 + 480 + 270 + 80 + 10

=
80

1260
, and
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f(m = 10|n = 10) =
f(m = 10, n = 10)

f(n = 10)

=
10
(
10
10

)
2
(
10
6

)
+ 4
(
10
7

)
+ 6
(
10
8

)
+ 8
(
10
9

)
+ 10

(
10
10

)
=

10

420 + 480 + 270 + 80 + 10

=
10

1260
.

As we would expect,
∑

m≤min[n,M ] f(m|n) = f(m = 2|n = 10) + f(m = 4|n =

10) + f(m = 6|n = 10) + f(m = 6|n = 10) + f(m = 8|n = 10) + f(m = 10|n = 10) =

420
1260

+ 480
1260

+ 270
1260

+ 80
1260

+ 10
1260

= 1.

A similar analysis can be considered for other priors on m and for other values of

M . If n turns out to be odd, the posterior distribution of m will take odd values no

larger than min[n,M ].

40



5 Conclusions and Future Work

This thesis is an extension of the Arcsine distribution with an assumption of a

lead of a strictly positive quantity $m while playing a fair coin toss game. It focuses

on the distribution of the number of steps required to go bankrupt when the player

started with some lead. For the first part, it was assumed that the initial lead m was

known. For the later part of the thesis, m was assumed to be unknown and maximum

likelihood value for m was computed. Further it was assumed that m follows a known

prior distribution and posterior distribution for m was calculated.

Some of the future work may include getting better estimates of the quantiles of the

FPO distribution. Secondly, this thesis looked at uniform distribution as the known

prior distribution for m. As a part of the further work, Bayesian analysis can be

performed with other priors too. Finally, the probability mass function for the FPO

distribution may be simplified further.
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