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ABSTRACT

Investigation of Multiple Imputation Methods for Categorical Variables

by

Samantha Miranda

We compare different multiple imputation methods for categorical variables using

the MICE package in R. We take a complete data set and remove different levels

of missingness and evaluate the imputation methods for each level of missingness.

Logistic regression imputation and linear discriminant analysis (LDA) are used for

binary variables. Multinomial logit imputation and LDA are used for nominal vari-

ables while ordered logit imputation and LDA are used for ordinal variables. After

imputation, the regression coefficients, percent deviation index (PDI) values, and

relative frequency tables were found for each imputed data set for each level of miss-

ingness and compared to the complete corresponding data set. It was found that

logistic regression outperformed LDA for binary variables, and LDA outperformed

both multinomial logit imputation and ordered logit imputation for nominal and or-

dered variables. Simulations were ran to confirm the validity of the results.

2



c©Samantha Miranda, 2020

All rights reserved

3



ACKNOWLEDGMENTS

I would like to express my sincere appreciation to my advisor, Dr. Nicole Lewis.

Her advice and support helped guide me not only through research but also through

my time at ETSU. I would also like to thank my family and friends for there love and

encouragement through my educational journey.

4



TABLE OF CONTENTS

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

ACKNOWLEDGMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.1 Proposed Work . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.2 Overview of Thesis . . . . . . . . . . . . . . . . . . . . . . . . 14

2 TYPES OF MISSING DATA . . . . . . . . . . . . . . . . . . . . . . 15

3 METHODS OF IMPUTATION . . . . . . . . . . . . . . . . . . . . . 18

3.1 Traditional Methods . . . . . . . . . . . . . . . . . . . . . . . 18

3.2 Modern Methods . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.2.1 Joint Modeling . . . . . . . . . . . . . . . . . . . . . 20

3.2.2 Fully Conditional Specification . . . . . . . . . . . . 21

4 MULTIPLE IMPUTATION FOR CATEGORICAL VARIABLES . . 24

4.1 Logistic Regression Imputation . . . . . . . . . . . . . . . . . 25

4.2 Linear Discriminant Analysis . . . . . . . . . . . . . . . . . . 26

4.3 Multinomial Logit Model . . . . . . . . . . . . . . . . . . . . . 28

4.4 Ordered Logit Model . . . . . . . . . . . . . . . . . . . . . . . 30

5 DATA SOURCE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

6 METHODOLOGY . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

7 RESULTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

7.1 Binary Variables . . . . . . . . . . . . . . . . . . . . . . . . . 43

5



7.2 Nominal Variables . . . . . . . . . . . . . . . . . . . . . . . . 49

7.3 Ordinal Variables . . . . . . . . . . . . . . . . . . . . . . . . . 59

8 CONCLUSION AND FUTURE RESEARCH . . . . . . . . . . . . . 71

BIBLIOGRAPHY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

VITA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

6



LIST OF TABLES

1 Relative efficiency of the imputed models for various numbers of im-

putations at several amounts of missing data . . . . . . . . . . . . . . 42

2 Estimated means of the binary variable’s regression coefficients from

the LDA imputation model at each level of missingness . . . . . . . . 43

3 PDI values of LDA imputation model estimated regression coefficients

at each level of data missingness for binary variables . . . . . . . . . . 44

4 P-values for t-tests for each estimated regression coefficient for binary

variables in the LDA imputation model at each level of data miss-

ingness. The p-values that are in bold are for t-tests that are not

significant at α = 0.05 significance level . . . . . . . . . . . . . . . . . 44

5 Relative frequency for the binary variables with LDA imputation at

each level of missingness . . . . . . . . . . . . . . . . . . . . . . . . . 45

6 Success rate of classifications for the binary variables with LDA impu-

tation at each level of missingness . . . . . . . . . . . . . . . . . . . . 46

7 Estimated means of the binary variable’s regression coefficients from

the logistic regression imputation model at each level of missingness . 46

8 PDI values of logistic regression imputation model estimated regression

coefficients at each level of data missingness for binary variables . . . 47

9 P-values for t-tests for each estimated regression coefficient for binary

variables in the logistic regression imputation model at each level of

data missingness. The p-values that are in bold are for t-tests that are

not significant at α = 0.05 significance level . . . . . . . . . . . . . . 48

7



10 Relative frequency for the binary variables with logistic regression im-

putation at each level of missingness . . . . . . . . . . . . . . . . . . 48

11 Success rate of classifications for the binary variables with logistic re-

gression imputation at each level of missingness . . . . . . . . . . . . 49

12 Estimated means of the nominal variable’s regression coefficients from

the LDA imputation model at each level of missingness . . . . . . . . 50

13 PDI values of the LDA imputation model estimated regression coeffi-

cients at each level of data missingness for nominal variables . . . . . 51

14 P-values for t-tests for each estimated regression coefficient for nomi-

nal variables in the LDA imputation model at each level of data miss-

ingness. The p-values that are in bold are for t-tests that are not

significant at α = 0.05 significance level . . . . . . . . . . . . . . . . . 52

15 Relative frequency for the nominal variables with LDA imputation at

each level of missingness . . . . . . . . . . . . . . . . . . . . . . . . . 53

16 Success rate of classifications for the nominal variables with LDA im-

putation at each level of missingness . . . . . . . . . . . . . . . . . . 54

17 Estimated means of the nominal variable’s regression coefficients from

the multinomial logit imputation model at each level of missingness . 55

18 PDI values of the multinomial logit imputation model estimated regres-

sion coefficients at each level of data missingness for nominal variables 56

8



19 P-values for t-tests for each estimated regression coefficient for nominal

variables in the multinomial logit imputation model at each level of

data missingness. The p-values that are in bold are for t-tests that are

not significant at α = 0.05 significance level . . . . . . . . . . . . . . 57

20 Relative frequency for the nominal variables with multinomial logit

imputation at each level of missingness . . . . . . . . . . . . . . . . . 58

21 Success rate classifications for the nominal variables with multinomial

logit imputation at each level of missingness . . . . . . . . . . . . . . 59

22 Estimated means of the ordinal variable’s regression coefficients from

the LDA imputation model at each level of missingness . . . . . . . . 60

23 PDI values of the LDA imputation model estimated regression coeffi-

cients at each level of data missingness for ordinal variables . . . . . . 61

24 P-values for t-tests for each estimated regression coefficient for ordinal

variables in the LDA imputation model at each level of data miss-

ingness. The p-values that are in bold are for t-tests that are not

significant at α = 0.05 significance level . . . . . . . . . . . . . . . . . 62

25 Relative frequency for the ordinal variables with LDA imputation at

each level of missingness . . . . . . . . . . . . . . . . . . . . . . . . . 64

26 Success rate classifications for the ordinal variables with LDA imputa-

tion at each level of missingness . . . . . . . . . . . . . . . . . . . . . 64

27 Estimated means of the ordinal variable’s regression coefficients from

the ordered logit imputation model at each level of missingness . . . . 66

9



28 PDI values of the ordered logit imputation model estimated regression

coefficients at each level of data missingness for ordinal variables . . . 67

29 P-values for t-tests for each estimated regression coefficient for ordinal

variables in the ordered logit imputation model at each level of data

missingness. The p-values that are in bold are for t-tests that are not

significant at α = 0.05 significance level . . . . . . . . . . . . . . . . . 68

30 Relative frequency for the ordinal variables with ordinal imputation at

each level of missingness . . . . . . . . . . . . . . . . . . . . . . . . . 69

31 Success rate classifications for the ordinal variables with ordered logit

imputation at each level of missingness . . . . . . . . . . . . . . . . . 70

10



LIST OF FIGURES

1 Residual plot between the binary residual versus the fitted values to

check if the regression model is appropriate . . . . . . . . . . . . . . . 36

2 Residual plot between the nominal residual versus the fitted values to

check if the regression model is appropriate . . . . . . . . . . . . . . . 36

3 Residual plot between the ordinal residual versus the fitted values to

check if the regression model is appropriate . . . . . . . . . . . . . . . 37

4 Time plot between residuals of the binary variables and the number of

observation to check the for independent errors . . . . . . . . . . . . 38

5 Time plot between residuals of the nominal variables and the number

of observation to check the for independent errors . . . . . . . . . . . 38

6 Time plot between residuals of the ordinal variables and the number

of observation to check the for independent errors . . . . . . . . . . . 39

11



1 INTRODUCTION

Statistical methods used in research are utilized throughout businesses, medical

fields and biological fields who use the results of the analysis to make big decisions. It

is important to have a complete data set to ensure that results are accurate. Complete

data sets lead to the most accurate results. However, a complete data set is not always

available. Although missing data is very common, it can be hard to avoid and lead

to inaccurate and biased results. The sample size can be drastically reduced with

even just a small amount of missing data points. A smaller sample size can cause

confidence intervals to be less precise and decreased power in tests for significance.

Dealing with missing data can be difficult as it requires in depth analysis to identify

the type of missingness and decide what type of imputation method would be best,

but it is a vital part of the data preprocessing to ensure one yields the most efficient

results.

A case study from a consumer good’s company describes how they have been af-

fected by missing data. The consumer good’s company uses a few survey questions

on the warranty card returned by customers as their main source of information from

customers. The company’s marketing team wants to gain a better understanding of

the demographics of their customer base to more efficiently target promotions. The

customer demographics characteristics are combined into groups: gender, occupation,

marital status and income. Ignoring the missing data it is shown that the largest cus-

tomer group is married women at 38.4%, which is an equal split between professional

and non-professional women. When exploring the missing data, it was found that

the majority of the missing data was on income, about 34% of the cards returned
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had skipped this question. With further investigation it is found that more women

than men did not answer the income question. Using maximum likelihood estimation

and imputation, a complete data set is created. After rerunning the analysis with

the new complete data set, women still account for the largest amount of customers.

Women now make up 46% of total customers with 26% being non-professional mar-

ried women and 18% being professional married women. Though there was other

smaller percentages of missing data among the groups, the largest group appeared to

be non-professional married women. Although we are unaware of the exact reason

why the non-professional married women had a lower response rate for income, it

altered the results for the company’s survey. Moving forward the company can take

these results and adjust their promotions to better reach the different demographic

characteristic groups [23].

From the case study, we can see that even though the missing data was largely

effecting one demographic, it had a big impact on the analysis of the data. Here the

missing data could have a large effect on the budget for promotions. The misleading

results caused by missing data can not only effect the analysis but also alter the

application of the analysis.

1.1 Proposed Work

In this study, we examine modern methods for dealing with missing data to deter-

mine the best method when working with categorical variables. Each modern method

for categorical variables will be applied to the data set that have different percentages

of missingness and then compared to a complete data set. Simulations will then be
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run to confirm the validity of the results.

1.2 Overview of Thesis

The thesis is arranged as follows. Chapter 2 identifies and describes the three types

of missing data. Chapter 3 describes methods of imputation. Section 3.1 explains

traditional methods and Section 3.2 explains modern methods. Chapter 4 further

explains multiple imputation for categorical variables, specifically the methods this

thesis implements. Chapter 5 describes the data source. Chapter 6 describes our

proposed method. Chapter 7 explains the results of our methods and illustrates the

precision of our method via simulations. Chapter 8 concludes the thesis.
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2 TYPES OF MISSING DATA

When working with missing data it is important to examine the data carefully to

identify the pattern of missingness. Correctly identifying the pattern of missingness

is the first step to choosing the appropriate method to deal with missing data. It

is difficult to give a reason for the missing data. Surveys might ask for private

information that some respondents may be unwilling to give, respondents may feel

that questions are inapplicable and choose not to answer them, or respondents may

simply forget to answer questions.

There are three different types of missing data, missing completely at random,

missing at random, and missing not at random. Data is missing completely at random

(MCAR) if suppose we have missing data on a particular variable Y . The data on

Y are said to be MCAR if the probability of missing data on Y is unrelated to the

value of Y itself or to the values of any other variables in the data set. Since in

MCAR the missingness is unrelated to the data, we can show this type of missingness

with the observed Y values (Yobs), the missing Y values (Ymis), and where R is the

missing data indicator either 0 (missing) or 1 (observed). We can simply state the

probability of a missing value on Y as P (R|φ) where φ is a parameter describing the

relationship between R and the data. Data that is missing completely at random can

be thought of as a simple random sample. For example, let’s say we were studying

the main determinants of income. Now consider age as one of the main determinants.

We would assume MCAR if the people that did not report their income was not

related to their age. The MCAR assumption would be violated if the people that

did not report their income were, on average, younger than those that reported it.
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A simple way to test if the MCAR assumption is fulfilled is to split the data into

two groups, people that did report their income and people that did not report their

income. We then test if there is a difference in the mean ages of the two groups. Our

null hypothesis would be H0 : µ1 = µ2 where µ1 is the mean age of people who did

the report their income and µ2 is the mean age of people who did not report their

income. Our alternative hypothesis would be H1 : µ1 6= µ2. If we conclude that there

is significant evidence against the null hypothesis, then we can assume MCAR.

A weaker assumption to MCAR is that data is missing at random (MAR). Data

on Y are said to be missing at random if the probability of missing data on Y is

unrelated to the value of Y , after controlling for other variables in the analysis. We

can formally state this as: P (Ymis|Y,X) = P (Ymis|X) where for the two variables

X and Y , X is always observed and Y is sometimes missing. For example, the

MAR assumption would be satisfied if the probability of missing data on income

depended on the persons age, but within each age group the probability of missing

data on income was unrelated to the persons income. Another example of the MAR

assumption being satisfied would be if the probability of missing data on income

depended on marital status, but within each marital status category the probability

of missing data on income is unrelated to income. As of now there is no way to

confirm the MAR mechanism.

If the MAR assumption is fulfilled, then the missing data is said to be ignorable.

If the missing data is ignorable, there is no need to model for the missing data in

the analysis of the data set. If the MAR assumption is not fulfilled the missing

data is said to be nonignorable. In this case we need to have a strong grasp on
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the appropriate methods of dealing with missing data because we must model for the

missing data. Modeling this missing data is necessary to allow for accurate estimations

of the parameters in interest.

The third and most commonly problematic type of missing data is missing not

at random (MNAR). This is where the missing values do depend on the other val-

ues. Data that is missing not at random is considered nonignorable because most

analysis models are not accurate with this type of missingness. The distribution

of data missing not at random can be written as P (R|Yobs, Ymis, φ), where P is the

standard probability distribution, R is the missing data indicator, Yobs, and Ymis are

the observed and missing parts of the data and φ is a parameter that describes the

relationship between R and the data. In other words, the probability of missing data

on Y can depend on the other variables such as Yobs, or even Ymis. There is no way

to test for data MNAR. For example, we would fulfill the MNAR assumption if the

people with lower income are less likely to report their income.

Identifying the proper cause of missingness is key to an accurate analysis. Proper

identification leads to the correct steps to account for the missing data during analysis.

The most common type of missing data is data that is missing at random. Missing

data is less often found to be MCAR and MNAR since it is difficult to reach these

conclusions when testing those two situation. MAR is not as random as commonly

thought. Here some may say that the word random could be interchanged with

conditioned or controlled for, because once one has conditioned or controlled for the

data the remaining of the missingness is random. Taking the time to properly identify

the type missing data will lead to more accurate analysis in the end.
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3 METHODS OF IMPUTATION

For years methodologists have been studying missing data. Techniques have been

proposed and altered with some methods being more successful then others. This

chapter identifies and describes certain traditional methods along with their possible

flaws. It also describes modern methods of dealing with missing data. Traditional

methods include different deletion methods and single imputation methods while

modern methods include joint modeling and multiple imputation.

3.1 Traditional Methods

Deletion methods such as pairwise and listwise deletion are the most common of

the traditional methods for handling missing data. This is because deletion is easy,

convenient and often included as a package on most statistical software. Listwise

deletion discards the data for any case that has one or more missing values. Pairwise

deletion tries to mitigate the loss of data by eliminating cases on an analysis-by-

analysis basis. The main reason for using a deletion method is convenience. The

list of disadvantages here far outweighs the advantages. The main problem with the

two deletion methods is that they both require that the data is missing completely

at random. Even if this assumption is met, the MCAR data can still produce dis-

torted parameter estimates. Deleting data can lead to underrepresented cases and

can dramatically decease the sample size. Even if the MCAR assumption is fulfilled,

eliminating the data is wasteful and can significantly reduce power.

The other traditional methods of dealing with missing data include single imputa-

tion methods. Some single imputation methods include arithmetic mean imputation,
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regression imputation, and stochastic regression imputation. Arithmetic mean im-

putation simply fills in the missing data with the arithmetic mean of the available

cases. Though appealing to have a complete data set, entering in values at the center

of the data set can dramatically alter the not only the spread of the data, but also

the standard deviation and variance of the data. Regression imputation replaces the

missing data with the predicted values from a regression equation. Since variables

tend to be correlated, it makes sense to generate imputations that shares information

with the observed data. This idea of sharing information with the observed data

is also seen in maximum likelihood and multiple imputation, but they go about it

in a more sophisticated manner. Replacing the missing values with the predicted

values leads to a high predictable bias. Other traditional single imputation methods

replace the missing data with the most common value for the data or look for similar

response patterns. In longitudinal studies, they might use the last observation that

was recorded before the missing value to replace the missing value.

Traditional methods can alter the summary statistics of the data set and introduce

high amount of bias to the model. Even with the convenience and simplistic idea, the

traditional ideas are not recommended

3.2 Modern Methods

Since the traditional methods are not recommended by most researchers, modern

methods have been created to obtain more accurate methods for dealing with missing

data. Most modern methods can be divided into two groups: joint modeling or fully

conditional specification.

19



3.2.1 Joint Modeling

Joint modeling is one of the main modern methods of dealing with missing data.

Joint modeling begins when the data can be described as a multivariate distribution.

This model can be based on any multivariate distribution but the multivariate normal

happens to be the most common. Joint modeling partitions the observations into

groups of identical missing data patterns and imputes the missing entries within each

according to a joint model for X, Y , and R that is common to all observations.

Assuming the data is missing at random, the imputations are created as draws from

the fitted distribution.

When dealing with categorical data the multivariate normal model is the most

appropriate model. Joint modeling with categorical variables can either use rounding

or not use rounding. Several models have been proposed that use rounding. Horton,

Lipsitz, and Parzen (2003) suggest that rounding off continuous imputed values in

categorical data to the nearest category to preserve the distributional properties as

fully as possible and to make them intelligible to the analysis. They also showed

that simple rounding may introduce bias in the estimates of interest, especially the

binary variables. Bernaards, Belin, and Schafer (2007) confirmed the results of Hor-

ton’s simple rounding approach and proposed two possible improvements to simple

rounding: coin flip and adaptive rounding. Their simulations showed that adaptive

rounding seemed to provide the best performance, although its advantage over sim-

ple rounding was sometimes slight. Many more proposals have been created by other

researchers. One researcher proposed a rounding method based on logistic regression

and an additional drawing step that makes rounding dependent on other variables in
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the imputation model. Another proposal is to model the indicator variables of the

categorical variables. Since a single best rounding method has not been identified,

most researchers say to try to avoid rounding if possible and focus on using methods

that are specific to categorical variables.

Several joint modeling methods for categorical variables have been proposed that

do not include rounding. Missing data in contingency tables can be imputed under the

log-linear model. The model preservers the high order interactions and works best if

the number of variables is small, no more then six. Olkin and Tate (1961) developed

the general location model for imputing mixed continuous-categorical data. This

model combines the log-linear and multivariate normal models by fitting a restricted

normal model to each cell of the contingency table. It had been found that this

model has limitations when the data set has a large number of variables, specifically

when there are more than ten continuous and categorical variables. Other imputation

methods based on joint modeling incorporate the k-means clustering algorithm and

other two-way imputation proposals.

3.2.2 Fully Conditional Specification

Fully Conditional Specification (FCS) imputes multivariate missing data on a

variable-by-variable basis. When using this method an imputation method must

be specified for each incomplete variable, and iteratively creates imputations. FCS

specifies a multivariate distribution through a set of conditional distributions. We use

FCS in an attempt to define P (Y,X,R|φ) by a conditional density P (Yi|X, Yi, R, φ)

for each Yi. After beginning with random draws from the marginal distributions,
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imputation is done by iterating over the conditionally specified imputation model.

Rubin [14] broke up the imputation procedure into three parts: modeling, estimation,

and imputation. Modeling determines a specific model for the data. Then estimation

creates the posterior distribution given the model. Finally, the imputation takes the

random draws for the missing data by drawing successively from parameter and data

distributions. FCS is an appealing method because it does not restrict the conditional

distribution to follow a normal distribution. This allows for flexibility when creating

the multivariate models. It can also use specialized imputation methods that are

difficult to formulate as a part of a multivariate density.

The main method in FCS is multiple imputation (MI). Rubin developed MI in

the 1970s and it is now accepted as the best general method to deal with missing

data. The idea of imputation was first thought of in the 1930s by Allen and Wishart

and involved two formulas used to estimate the value of a single missing value and

this value replaced the missing data point. As time went on, the advancements were

made to generalize the idea to impute value for more than one missing data point.

Researchers could not guarantee that the single imputed value was accurate so the idea

to have multiple imputations for a single missing data point was originated. With the

amount of technology available at the time, the idea of having multiple imputations

for the missing values was quite ambitious. For this reason, instead of including the

formulas for calculating the combined estimates, Rubins original proposal stressed

the study of variation due to the uncertainty of the estimates [10] .

The principle of multiple imputation is to generate m imputed data sets to reflect

the uncertainty of the imputed values. Multiple imputation can be described in three
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steps. The first step involves generating and identifying initial values for the missing

values for all variables Y
(0)
1 , ..., Y

(0)
k . For a categorical variable with missing values,

use the non-missing values to find the observed portion of each category, then fill in

the missing value with random draws from a multinomial distribution with category

probabilities equal to the observed category proportions. The second step consists

of analyzing each imputed data set by a statistical method that will estimate the

quantities of interest. The last step pools the m estimates into one estimate. Here we

are combining the variation within and across the m imputed data sets. The three-

step process can describe all multiple imputation procedures, but the imputation step

can be altered to the specific data analysis which is intended by the researcher [21].

The imputation step can be altered based on the type of categorical variable that is

being used in the analysis.
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4 MULTIPLE IMPUTATION FOR CATEGORICAL VARIABLES

Multiple imputation (MI) is one of the most common approaches that researchers

use to study a data set with missing values as a whole. When dealing with categorical

variables, there are three different types of variables: binary, nominal, and ordinal.

Each type of variable has an MI method that is specific to it. Binary variables have

two mutually exclusive levels. An example of a binary variable would a categorical

variable with the levels: yes or no, on or off, agree or disagree. For binary variables,

we use logistic regression imputation. A nominal variable is a categorical variable that

has more than two levels. For example, a nominal variable could be eye color that has

levels blue, green, brown, hazel, etc. For nominal variables, we use multinomial logit

model imputation. The last type of categorical variable is ordinal. Ordinal variables

consist of more than two levels that have a natural ordering. This variable could be in

the form of performance (first, second or, third place) or day of the week. For example,

a researcher is interested in what factors influence medaling in Olympic swimming.

Relevant predictors include training hours, diet, age, and popularity of swimming in

the athlete’s home country. The researcher believes that the distance between gold

and silver is larger than the distance between silver and bronze. Depending on the

study or research question at hand a nominal variable could be considered ordinal.

Ordinal variables can use the ordered logit model also known as, proportional odds

model for imputation. Linear discriminant analysis (LDA) is another imputation used

for all types of categorical variables and thus, will be used as well.
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4.1 Logistic Regression Imputation

Logistic regression is a statistical model that uses a logistic function to model data

with a binary categorical dependent variable. The binary response variable takes on

values 0 and 1 with probabilities π and 1−π, respectively. The response variable Y is

a Bernoulli random variable with parameter E(Y ) = π. A simple logistic regression

model is in the form: Yi = E(Yi) + εi. The distribution of the error term εi depends

on the Bernoulli distribution of the response variable Yi. Since Yi are independent

Bernoulli random variables with expected values E(Yi) = πi, the simple logistic model

can be shown as: E(Yi) = πi = e(β0+β1Xi)

1+e(β0+β1Xi)
, where the Xi are assumed to be a known

constant. As the number of variables and coefficients increase, we add more β’s on to

the model. We add a β for every predictor variable. A logistic model with multiple

predictor variables can be shown as: E(Yi) = πi = e(β0+β1X1+β2X2+β3X3+...+βkXk)

1+e(β0+β1X1+β2X2+β3X3+...+βkXk)
, where

X = (X1, ..., Xk) are k predictors. Logistic regression can also be fit via maximum

likelihood estimation. Maximum likelihood estimation is a method of estimating

the parameters of a probability function. The parameters are found by maximizing

a likelihood function that is described by the model produced by the data. The

likelihood function is chosen in order to make the observed data “most likely”. The

most common likelihood function is the log-likelihood function.

To impute the missing values using the logistic regression imputation, the variable

with missing data points will be treated as the response and the other variables will

be treated as the predictors. For a completed data set, a random draw is made from

the posterior distribution of the parameters. A data set is said to be complete if

for every observation their is a value for each predictor variable. Based on the fitted
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logistic regression equation, a probability is generated for each case with missing data

and a Bernoulli draw is made for the probability, producing imputed values of 0 or

1 [2]. In other words, a probability is generated for each level of the binary variable,

and the imputed value is assigned a 0 or 1 depending on which probability is larger.

Consider the example predicting credit default (yes or no) from balance, income, and

student (yes or no). We can make a prediction by plugging in the values of the

predictor variables into the model. We then predict the response Default-Yes (1) if

the probability is greater 0.5 and we predict Default-No (0) if the probability is less

than 0.5.

4.2 Linear Discriminant Analysis

Where logistic regression performs well when the data consists of categorical vari-

ables with two levels, when the variables have more than two levels linear discriminant

analysis (LDA) is the better option. LDA can be utilized in a variety of different en-

vironments. One would be determining good credit and bad credit based on income,

age, number of credit cards, and family size. Another example would be classifying

alcoholics and non-alcoholics based on the activity of monoamine oxidase enzyme,

activity of adenylate cyclase enzyme. It is preferred to use LDA instead of logistic

regression when the categorical variables have more then two levels because logistic

regression only works for categorical variables with two levels. LDA also outperforms

logistic regression when the number of observations, n, is small and the distribution of

the predictors X is approximately normal in each of the classes [18]. LDA attempts to

express one dependent variable as a linear combination of features or measurements.

26



Features, often represented as feature vectors, are individual measurable properties

or characteristics of a phenomenon being observed. In classification, feature vectors

can be found from nearest neighbor classification, neutral networks, and statistical

techniques such as Bayesian approaches. For LDA, the data must follow a multivari-

ate normal distribution which then assumes that each individual predictor follows

a univariate normal distribution. There also must be some correlation between the

predictors.

During imputation, the assumptions are that the variables are normally dis-

tributed with means that vary across the levels but the covariance matrix that

are constant over the levels. LDA estimates the probability that a new set of im-

putes belong to every class. The new imputes are assigned to the class that has the

largest probability. LDA uses Bayes’ theorem to estimate the probabilities. We let

πk represent the prior probability that a randomly chosen observation comes from

the kth class. In other words, πk is the probability that a given observation is as-

sociated with the kth category of the response variable Y . The notation to indicate

that a p-dimensional random variable X has a multivariate normal distribution is

X ∼ N(µ,Σ), where E(X) = µ is the mean of the vector X with p components,

and Cov(X) = Σ is the p x p covariance matrix. The multivariate Gaussian den-

sity is defined as f(x) = 1
(2π)p/2|Σ1/2|exp

(
− 1

2
(x− µ)TΣ−1(x− µ)

)
. When working

with multiple predictor variables, the LDA classifier assumes that the observations

in the kth class are drawn from a multivariate normal distribution N(µk,Σ), where

µk is a mean vector specific to each class, and Σ is the covariance matrix for all K

classes. Bayes’ theorem states that pk(x) = P (X = x|Y = k) = πkfk(x)∑K
l=1 πlfl(x)

. We refer
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to pk(x) as the posterior probability, that is, the probability that the observation

belongs to the kth class, given the predictor value for that observation. If we plug

Bayes’ theorem into the multivariate density function and we can find through some

algebra that the Bayes’ classifier assigns an observation X = x to the class which

δk(x) = xTΣ−1µk − 1
2
µk

TΣ−1µk + logπk is the largest.

4.3 Multinomial Logit Model

When the categorical variables have more then two levels that are unordered, we

can use the multinomial logit model for imputation. The multinomial logit model is

utilized in many field such as in business a market researcher may wish to relate a

customer’s choice of a product (product A, product B, product C) to the customer’s

age, gender, geographic location, and several other potential explanatory variables.

Medical fields also utilize the multinomial logit model. The multinomial logit model

performs in a similar manner as logistic regression in the way that it uses probabilities

to predict the responses for the missing data values. If the data is binary, then a single

threshold is applied to divide the continuous distribution. If the variable contains

multiple levels, thresholds are applied to divide the continuous distribution into the

same number of sections as there are levels.

Consider the example of a study that was undertaken to determine the strength

of the association between several risk factors and the duration of pregnancies. The

explanatory variables are mother’s age, nutritional status, history of tobacco use, and

history of alcohol use. The response variable is pregnancy duration which has three

levels: preterm, intermediate term, and full term. We will assume that there are J
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response categories and i observations. The response variable is represented as

Yij =


1 if case i response is category j

0 otherwise

.

We know that since only one category can be selected as the response that∑J
j=1 Yij = 1. Since we are dealing with multiple levels we need to have a prob-

ability for the probability that each category is selected for the ith observation. We

say πij = P (Yij = 1) is the probability that category J is selected for the ith response.

In our example, J = 3; however, we do not compare three probabilities. We chose one

category to be our baseline category and then make out predictions based off of that.

It does not matter which category we chose to be the baseline, most researchers either

chose the first category or the last category. For our purposes we will chose the Jth

level for our baseline, we now make J − 1 comparisons. The logit function for the jth

comparison is π′ij = loge

[
πij
πiJ

]
= X ′iβj where j = 1, 2, ..., J−1, βj is the J−1 param-

eter vectors, and X ′i is the J−1 variable vectors. With the logit function we can find

the direct expressions for the resulting probabilities, πij =
exp(X′iβj)

1+
∑
j=1J−1exp(X′iβj)

. When

making predictions for an observation, one would classify that observation into the

category with the highest probability. Recall the pregnancy data, the explanatory

variables are mother’s age, nutritional status, history of tobacco use, and history of

alcohol use, and the response variable is pregnancy duration which has three levels:

preterm, intermediate term, and full term. If we were to classify a women into one of

the three response categories, we would find the probability that she could place in

either category. We assume the regression equation has been fitted with pregnancy

29



duration as the response variable and nutritional status, age, alcohol use history, and

smoking history as the predictor variables. Let’s say the probabilities for category

1, 2, and 3 were .31, .58, and .82, respectively. We would classify the woman into

category 3 since the probability for that category was the highest.

There are two approaches for estimating βj, but both use maximum likelihood

estimation. The first approach carries out separate binary logistic regression for each

of the J − 1 comparisons to the baseline category. For example, to estimate β1,

we drop out all the cases except those of Yi1 = 1 and Y1J = 1 from the data set.

By only picking out the two types of cases we now have a logistic regression and

can apply that approach directly. This approach is beneficial to those who do not

have access to software that is capable of multicategory logistic regression. The more

efficient approach is the estimate the β′Js simultaneously. To do this we will use

a likelihood function for the entire data set. For n independent observations and J

categories the likelihood function is: P (Y1, ..., Yn) =
∏n

i=1 P (Yi) =
∏n

i=1[
∏J

j=1(πij)
Yij ].

Once the model is fitted, one can use interpretations and inference to gain more

information about the data [24]. This means that one can interpret the coefficients

in the regression equation and do hypothesis testing and use confidence intervals to

see more relationships with the variables.

4.4 Ordered Logit Model

The ordered logistic or proportional odds model is used when the response variable

consists of ordered levels with no assumed spacing. Some examples of ordinal variables

are the following: (1) a food product is rated by customers on a 1-10 hedonic scale,
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(2) the severity of cancer is rated by stages on a 1-4 basis, and (3) in an economic

study, persons are classified as either not employed, employed part time, or employed

full time. The ordered logit model is similar to multinomial logit model but it takes

into account the ordering of the categories. Here we can use the same pregnancy

duration data as we did in multinomial logit. We can adjust the response variable

to change it form nominal to ordered. Now the response variable is set up in the

following way:

Yi Category Yi
c Cutpoint T

1 Preterm 0 ≤ Yi
c < 36 weeks T1= 36 weeks

2 Intermediate term 36 weeks ≤ Yi
c < 38 weeks T2 = 38 weeks

3 Full term 38 weeks ≤ Yi
c <∞ T3 =∞

The response variable is now ordinal because we are now looking at certain pregnancy

delivery time intervals in each category, which puts a natural ordering to the three

categories.

Unlike the multinomial logit model, the ordered logit model models the cumulative

probabilities P (Yi ≤ j) rather than modeling for each category probabilities P (Yi =

j). For j = 1, the cumulative probabilities can be expressed as: P (Yi ≤ j) = P (εL ≤

α1+β1Xi), where εL follows a standard logit distribution with mean zero and standard

deviation π/
√

3, Xi is a predictor variable, α1 = (T1 − β∗0)/k, β1 = −β∗1/k, and k

is a constant that satisfies σ{Yic} = kσ{εL} = k π√
3
. We assume that X is linearly

related to some appropriate log odds. The log odds here for the J − 1 cumulative

logit we have, loge[
P (Yi≤j)

1−P (Yi≤j) ] = αj + X ′
iβ for j = 1, ..., J − 1. With a multiple

regression case with J ordered categories, we let Xi =


Xi1

Xi2

...
Xi,p−1

 and β=


β1
β2
...
βp−1

.

The cumulative probability can be expressed by using the cumulative distribution
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function as P (Yi ≤ j) = πi1 =
exp(αj+Xi

′β)
1+exp(αj+Xi

′β)
. The discrete variable is assigned a

certain category value if the underlying normal variable X is above a given threshold

and below the next threshold.

Similar to the previous methods the coefficients are estimated with maximum

likelihood estimation. The coefficients can be interpreted as the change in the cumu-

lative odds ratio for a unit change in the predictor. The interpretation for the ordinal

logistic regression model is much easier than that for the nominal logistic regression

model since only a single slope vector β is estimated [24].
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5 DATA SOURCE

With the sport of cycling gaining popularity across the country, the number of

cyclists on the road increases, and thus the chance of bicycle crashes increases. North

Carolina Department of Transportation has been compiling data from all bicycle

crashes from 2007 to 2014, which can be accessed freely at https://catalog.data.gov

/dataset/north-carolina-bicycle-crash-data#sec-dates. The information that was col-

lected for each crash includes: county, city, crash date, crash day, crash group, crash

location, crash time, crash severity, bike age group, bike alcohol detected, bike di-

rection, bike injury, bike position, bike race, bike sex, ambulance response, driver

age group, driver estimated speed, speed limit, driver alcohol detected, driver injury,

driver race, driver sex, driver vehicle type, hit and run, development, light condition,

locality, number of lanes, road characteristics/class/condition/

configuration, road defects/features, traffic control, crash type, and/or weather.

For our purposes, we will use driver’s age as the continuous response variable for

each of the three models. The binary variables that we will consider in the regression

model are the following: bike sex, work zone, bike alcohol, hit run, driver sex, driver

alcohol, location of accident. The nominal variables are the following: bike race, bike

position, driver vehicle type, driver race, road defects, road condition, development,

crash server, driver injury, road character, region, bike direction, traffic control, road

configuration, number of lanes, road surface, road feature, crash group, weather,

light condition. The ordinal variables are the following: locality, bike age group,

crash month, crash day, driver estimated speed, driver age group.

The first step of the regression analysis is to build our model from the data.
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We are investigating the different imputation methods based on the different levels

of categorical variables. Thus, we will fit three models, one for binary variables,

nominal variables and ordinal variables. Each model is built in the same fashion.

When building the model, we start with looking at a model including all variables.

Using the variable driver’s age as the response variable, we set up a linear model for

each type of variable. Looking at the summary of each full model, we take out the

variables one-by-one that are not significant. We say that a variable is not significant

if the variable’s individual p-value is greater than an alpha value of 0.05. We do

this until we have a set of variables that all have significant p-values. Once we

see that the set of variables are all significant, we check the global F-test for each

model to test if, for each model, the set of predictors are useful in predicting driver’s

age. The p-values for the global F-test for the binary, nominal and ordinal variables

are 0.01483, 0.008813, and < 2.2e−16, respectively. Since each of the p-values are less

than α = 0.05, we can conclude that the set of predictors are useful in their respective

models. Our final models, in terms of the variables kept are:

1) Binary: driver age = bike sex + location of accident

2) Nominal: driver age = driver race + crash severe + region + road surface

3) Ordinal: driver age= locality + driver estimated speed + driver age group.

The final fitted models are:

1) Binary:

Ŷ = 47.421− 4.347X1 − 3.449X2

2) Nominal
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Ŷ = 17.009 + 14.555X1 + 13.214X2 + 37.890X3 + 21.465X4 + 18.747X5 + 4.298X6

+ 0.383X7 + 8.681X8 + 7.328X9 − 6.048X10 − 1.344X11 − 3.640X12

+ 3.941X13 + 0.879X14 + 11.245X15 + 4.427X16

3) Ordinal

Ŷ = 17.514 + 1.015X1 + 0.297X2 + 0.620X3 + 0.584X4 − 0.411X5 + 0.152X6

+ 0.562X7 + 0.251X8 − 0.023X9 − 0.098X10 − 1.109X11 − 4.059X12

+ 0.295X13 + 3.856X14 + 8.840X15 + 16.306X16 + 26.768X17

+ 36.411X18 + 46.124X19 + 51.944X20

After finding the models, we need to check the model assumptions. The first as-

sumption we will check is that the regression between the response and the predictors

specified in the model is appropriate. To do this, we will look at the residual plot

between the residuals versus fitted values. From Figures 1, 2, and 3, we can see that

there is random scatter, and so we can assume that the chosen regression between

the response and the predictor specified in the model is appropriate.

35



Figure 1: Residual plot between the binary residual versus the fitted values to check

if the regression model is appropriate

Figure 2: Residual plot between the nominal residual versus the fitted values to check

if the regression model is appropriate
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Figure 3: Residual plot between the ordinal residual versus the fitted values to check

if the regression model is appropriate

By definition, the second assumption that the error terms have a mean of zero is

satisfied. The assumption of constant variance is checked using the residuals versus

fitted value plots. Figures 1, 2, and 3 show that there is random scatter indicating

the assumption of constant variance is met. Since our sample size is large, we can

assume the data is normally distributed by the central limit theorem, and thus this

assumption is satisfied. The last assumption is the assumption that the errors are

independent. This assumption is typically only a concern when dealing when the data

is gathered over time. Since our data is gathered over time, from 2007 to 2014. We

plot the residuals against the number of observations and look for random scatter. In

Figures 4, 5, and 6 random scatter is present, thus this assumption is met.
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Figure 4: Time plot between residuals of the binary variables and the number of

observation to check the for independent errors

Figure 5: Time plot between residuals of the nominal variables and the number of

observation to check the for independent errors
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Figure 6: Time plot between residuals of the ordinal variables and the number of

observation to check the for independent errors
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6 METHODOLOGY

Our goal is to assess the best multiple imputation method for categorical variables.

In this thesis we assume our missing data is missing at random. Since we are looking

at three types of categorical variables (binary, nominal, and ordinal), we have three

complete data sets. Each complete data sets consist of the categorical variables in

each model. That is, the complete data set for the binary variables include bike sex,

and location of accident. The complete data set for nominal variables include driver’s

race, crash severe, region, and road surface and the complete data set for ordinal

variables include locality, driver’s estimated speed, and driver’s age group. For each

complete data set, we created missing data sets with different levels of missingness.

Using the R package, missForest, we remove 10%, 20%, 30%, 40%, and 50% of data

randomly from each complete data set. That is done with the use of the R package,

by first removing 10% out of the complete data set, then removing another 10%, and

so forth until 50% of the data has been randomly removed. Thus, for each of the

three complete data sets, there are a total of 5 data sets with missing values.

Each imputation method, is then applied to each of the missing data sets. For

the binary data sets, logistic regression and LDA imputation methods were used to

impute the missing values for each level of missingness. For the nominal data sets,

the multinomial logit model and LDA imputation methods were used to impute the

missing values for each level of missingness. Finally, or the ordinal data sets, the

ordered logit model and LDA imputation methods were used to impute the missing

values for each level of missingness. Each imputation method produced m = 30

iterations of the imputed data, i.e, for each imputation, 30 complete data sets were
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found using that specific imputation method. For each of the 30 completed data

(by imputation), the corresponding linear model (binary, nominal, or ordinal) was fit

with the response variable as driver’s age. In each case, the coefficients for the 30

models were recorded and then the means of the 30 coefficients for each variable were

computed. To better estimate the true coefficient values, simulation performed. Each

imputation method (m = 30) were ran for 1000 iterations. For each iteration, the

mean of the 30 coefficients was stored. We then found the mean, for each variable, of

the 1000 means of the coefficients. Lastly, we compared the means of the coefficients

to each of the coefficients from the model of the complete data sets.

Along with comparing the coefficients, we look at the relative efficiency. The

relative efficiency is used to find what the best procedure should be. That is, the

procedure that produces the most accurate results. This uses the percent of miss-

ingness (10% - 50%) and the number of imputation (m = 5 up to m = 50) to find

what combination will produce the most accurate imputed coefficients. The percent

deviation index (PDI) is used to analyze the difference in the original coefficients

and estimated imputed coefficients. We also analyze the difference of the original

and imputed coefficients by implementing a simple t-test. We will be testing H0:

original coefficient = estimated mean coefficient, versus H1: original coefficient 6=

estimated mean coefficient. We look at the relative frequency of each method with

their respective variables. Relative frequencies show the proportion of each category

that the imputation method is predicting. Lastly, we look at the success rate of each

imputation method. This involves finding where the imputation method imputed the

same level of the variable for each type of variable with each imputation method.
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7 RESULTS

Relative efficiency is used to find the best procedure. That is, the procedure that

will produce the most accurate results. It measures the difference in accuracy using

various levels of missingness and number of imputations. The equation for the relative

frequency is the following: RE = 1
1+ λ

m

, where λ is the percent of missingness, and m

is the number of imputations.

Table 1: Relative efficiency of the imputed models for various numbers of imputations

at several amounts of missing data

Number of Imputations (m) Percent of Missingness (λ)
m 10% 20% 30% 40% 50%
5 0.980 0.962 0.943 0.926 0.909
10 0.990 0.980 0.971 0.962 0.952
15 0.993 0.987 0.980 0.974 0.968
20 0.995 0.990 0.985 0.980 0.976
25 0.996 0.992 0.988 0.984 0.980
30 0.997 0.993 0.990 0.987 0.984
50 0.998 0.996 0.994 0.992 0.990

The different levels of efficiency are shown in Table 1. Table 1 shows that at each

number of imputations, the relative efficiency decreases as the percent of missingness

increases. We see that the larger the amount of missing data, the less accurate

the model will be for imputations. We can see that as the number of imputations

increase, the relative efficiency increases, while holding the amount of the missing

data constant. Overall, we see that when m = 30 the relative efficiency is 99% for

levels of missingness.

42



7.1 Binary Variables

From the regression analysis discussed in chapter 5, the model was found to be

Ŷ = 47.421− 4.347X1 − 3.449X2

where x1 and X2 represents the predictor variables. We will refer to these coefficients

as the true coefficients since they are estimated from the complete data set. Table

2 displays the estimated coefficients for b0, b1, and b2 based on the LDA imputation

method. We see that for each percent missingness, the estimated coefficients for b0

and b2 are close to the coefficients from the complete data set but it is not the case for

b1. Note that as the percent of missingness increases, the estimated for b0 gets further

form the true coefficients. However, when the percent of missingness increases, the

estimated coefficients b2 gets closer to the true coefficient. This can also be seen

from Table 3, which displays the PDI’s for each coefficient at each different level of

missingness. We see that the PDI’s are roughly the same for b0 and b2 overall while

they are extremely large for b1.

Table 2: Estimated means of the binary variable’s regression coefficients from the

LDA imputation model at each level of missingness

Coefficients Percent of Missingness
10% 20% 30% 40% 50% Complete

b0 35.317 35.056 34.780 34.780 33.797 47.421
b1 -0.856 -0.860 -0.320 -0.320 -0.703 -4.347
b2 -4.612 -4.244 -4.360 -4.360 -3.788 -3.499

The estimations for b2 are interesting. From 10% - 40% of missing data have a

43



Table 3: PDI values of LDA imputation model estimated regression coefficients at

each level of data missingness for binary variables

Coefficients Percent of Missingness
10% 20% 30% 40% 50%

b0 25.5 26.1 26.6 26.6 28.7
b1 80.3 80.2 92.6 92.6 83.2
b2 31.8 21.3 24.6 24.6 8.3

consistent PDI ranging from 31.8% to 21.3%. This follows similarly to the estimation

for b0. However, at 50% of missing data where we see a PDI of 8.3%. A low PDI

indicates that the estimated coefficient is relatively close to the original coefficient.

The range, looking at Table 3, for the estimates for b0 is the lowest of the three

coefficients which indicates that the b0 was the most consistent over the different

amounts of missingness. Table 4 displays the p-values from the t-test which tests

the following: H0: estimated coefficient = original coefficient vs. Ha: estimated

coefficient 6= original coefficient. Since all of the p-values are less than α = 0.05, we

conclude that the estimated coefficients are not equal to the original coefficients.

Table 4: P-values for t-tests for each estimated regression coefficient for binary vari-

ables in the LDA imputation model at each level of data missingness. The p-values

that are in bold are for t-tests that are not significant at α = 0.05 significance level

Coefficients Percent of Missingness
10% 20% 30% 40% 50%

b0 0 0 0 0 0
b1 0 0 0 0 0
b2 0 0 0 0 3.1180e-233
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Table 5 shows the relative frequency for each category of the binary variables at

each percent of missingness. The first two rows in the variable column represent the

levels of gender of the biker: female and male while the last two rows represent the

levels of location of accident: rural and urban. With 10% missingness, we can see that

the proportions for each category is similar to the complete data proportions. We see

that as the percent of missingness increases, the LDA imputation method predicted

more males then females. At both 10% and 20% missingness, the imputed proportions

are very similar to the completed data proportions. The imputed proportions for

30%, 40%, and 50% perform in a similar manner by overestimating for rural and

underestimating urban. Overall, the differences for the imputed proportions are not

very large.

Table 5: Relative frequency for the binary variables with LDA imputation at each

level of missingness

Variable Percent of Missingness
10% 20% 30% 40% 50% Complete

Female 0.4305 0.4197 0.4245 0.4245 0.4169 0.426
Male 0.5695 0.5803 0.5755 0.5755 0.5831 0.574
Rural 0.2997 0.3032 0.3129 0.3129 0.3117 0.3
Urban 0.7003 0.6968 0.6871 0.6871 0.6883 0.7

Table 7 displays the estimated coefficients for b0, b1, and b2 based on the logistic

regression imputation method. One can see that the estimated coefficients are similar

to those of LDA. For each percent of missingness, the estimated coefficients for b0

and b2 are close to the coefficients from the complete data set but it is not the

case for b1. Once again, we see that as the percent of missingness increases, the
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estimated coefficients for b0 gets further from the true coefficient. However, when the

percent of missingness increases, the estimated coefficients for b2 gets closer to the

true coefficient. This can also be seen from Table 8, which displays the PDI’s for

each coefficient at each different level of missingness. We see the PDI’s are roughly

the same for b0 and b2 overall while they are extremely large for b1.

Table 6: Success rate of classifications for the binary variables with LDA imputation

at each level of missingness

Variable Percent of Missingness
10% 20% 30% 40% 50%

Driver’s Sex 95.72 90.74 87.60 87.60 81.08
Location of Accident 95.30 91.92 87.82 87.82 81.73

To further explore the imputations we can look at the success rates in Table 6.

Since the estimated coefficients for b1 are so different from the true coefficients we

would expect to see it’s success rates to be low. For both divers sex and location of

accident we see that as the level of missingness increases, the success rate decreases.

Overall, the success rate for the LDA imputations for binary variables are high.

Table 7: Estimated means of the binary variable’s regression coefficients from the

logistic regression imputation model at each level of missingness

Coefficients Percent of Missingness
10% 20% 30% 40% 50% Complete

b0 35.310 35.044 34.773 34.104 33.795 47.421
b1 -0.858 -0.850 -0.308 -0.065 -0.699 -4.347
b2 -4.603 -4.238 -4.362 -3.715 -3.786 -3.499
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The range of PDI’s is the lowest at 3.2 for b0 which indicates that the logistic

regression is consistent when estimating b0. The range of PDI’s for b2 is the largest at

25.4 indicating that logistic regression imputation was not consistent when estimating

b2. Overall the larger the amount of missing data, the larger the PDI. We see similar

behaviour with b2 with not only 50% missingness but also 40% missingness. The

estimates for b2 are the most accurate estimated coefficients. When looking at the

p-values from the t-test in Table 9, we see that all of the estimated coefficients are

significantly different than the original coefficients. This was the same conclusion we

saw when using the LDA imputation method.

Table 8: PDI values of logistic regression imputation model estimated regression

coefficients at each level of data missingness for binary variables

Coefficients Percent of Missingness
10% 20% 30% 40% 50%

b0 25.5 26.1 26.7 28.1 28.7
b1 80.3 80.4 92.9 98.5 83.9
b2 31.6 21.2 24.7 6.2 8.2

Table 10 contains the relative frequency for each binary variable for each level of

missingness using the logistic regression imputation method. For the variable biker’s

sex, we can see that the most accurate imputed proportion occurs with 30% missing-

ness. With 10% missingness, logistic regression imputation method over estimated

females. At all other levels of missingness (20%, 40%, 50%), the logistic regression

imputation method overestimated males and underestimated females. Looking at

the second variable, location of accident, we see that at 10% and 20% missingness

the imputed proportions are very similar to the original proportions. As the level
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Table 9: P-values for t-tests for each estimated regression coefficient for binary vari-

ables in the logistic regression imputation model at each level of data missingness.

The p-values that are in bold are for t-tests that are not significant at α = 0.05

significance level

Coefficients Percent of Missingness
10% 20% 30% 40% 50%

b0 0 0 0 0 0
b1 0 0 0 0 0
b2 0 0 0 1.4302e-191 1.5141e-234

of missing data increases, the logistic imputation method overestimates rural and

underestimates urban.

Table 10: Relative frequency for the binary variables with logistic regression imputa-

tion at each level of missingness

Variable Percent of Missingness
10% 20% 30% 40% 50% Complete

Female 0.4306 0.4198 0.4247 0.4237 0.4172 0.426
Male 0.5694 0.5802 0.5753 0.5763 0.5828 0.574
Rural 0.2999 0.3035 0.3134 0.3162 0.3129 0.3
Urban 0.7001 0.6965 0.6866 0.6838 0.6871 0.7

Table 11 shows the success rate of the logistic imputations for the binary variables

at each level of missingness. We see success rates that are similar to LDA imputation.

For both variables we can see that as the level of missingness increases the success

rate decreases. Overall, both binary variables have a high success rate.
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Table 11: Success rate of classifications for the binary variables with logistic regression

imputation at each level of missingness
Variable Percent of Missingness

10% 20% 30% 40% 50%
Driver’s Sex 95.73 90.74 87.59 84.33 81.07

Location of Accident 95.28 91.91 87.80 84.47 81.71

7.2 Nominal Variables

From the regression analysis discussed in chapter 5, the model was found to be

Ŷ = 17.009 + 14.555X1 + 13.214X2 + 37.890X3 + 21.465X4 + 18.747X5 + 4.298X6

+ 0.383X7 + 8.681X8 + 7.328X9 − 6.048X10 − 1.344X11 − 3.640X12

+ 3.941X13 + 0.879X14 + 11.245X15 + 4.427X16

where the Xi’s represent the indicator variables for the predictor variables. We will

refer to these coefficients since they are estimated from the complete data set. Table

12 displays the estimated coefficients the nominal variables using the LDA imputa-

tion method. We can see that overall the estimated coefficients vary from the true

coefficients.

Looking at Table 12 and 13, we can see that the estimated coefficients are the most

accurate for b0, b1, and b6. Table 13 shows us the PDI’s for the nominal variables

using the LDA imputation method. The coefficients for b0 are the most similar,

with a PDI of 8.1% at 10% missingness and reaches a maximum of 17.1% at 40%

missingness. Interestingly, at 50% missingness, the PDI for b0 is lowest at 0.3%. We

also see the phenomena with b9. Notice that the smallest PDI occurs when the levels
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Table 12: Estimated means of the nominal variable’s regression coefficients from the

LDA imputation model at each level of missingness

Coefficients Percent of Missingness
10% 20% 30% 40% 50% Complete

b0 18.318 18.724 18.728 19.926 17.058 17.009
b1 11.298 10.123 9.749 8.855 7.866 14.555
b2 4.784 6.252 7.675 7.214 6.248 13.214
b3 12.985 13.839 17.278 15.701 19.483 37.890
b4 15.133 11.184 11.846 9.809 8.783 21.465
b5 13.282 13.175 12.942 12.224 11.149 18.747
b6 4.086 4.225 4.212 2.813 7.038 4.298
b7 12.748 10.783 7.975 7.572 9.927 0.383
b8 -3.402 -2.245 -2.726 -4.696 -0.517 8.681
b9 2.223 2.229 2.274 1.635 5.999 7.328
b10 -4.436 -5.083 -4.042 -2.445 -3.216 -6.048
b11 -3.692 -3.276 -3.313 -2.738 -2.737 -1.344
b12 2.189 3.036 4.204 5.250 6.102 -3.640
b13 0.473 -1.348 -0.096 -4.562 -4.208 3.941
b14 -1.700 -3.681 6.878 13.817 12.804 0.879
b15 0.507 0.063 0.654 0.291 -0.082 4.427

of missingness is at 50%. Overall, the estimated regression coefficients were far from

the true coefficient values.

Table 14 shows the p-values for the t-test for each variable. We see that the

estimated coefficient for b0 at 50% missingness is the only estimated coefficient that is

not significantly different than the original coefficient. This is not surprising since the

PDI value was 0.3% for that coefficient. All other variables at all levels of missingness

are less than α = 0.05.

Based on the estimated coefficients, PDI’s and t-test, one would think that the

LDA imputation method did not perform well. However, Table 15 may suggest oth-
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Table 13: PDI values of the LDA imputation model estimated regression coefficients

at each level of data missingness for nominal variables

Coefficients Percent of Missingness
10% 20% 30% 40% 50%

b0 8.1 10.1 10.1 17.1 0.3
b1 22.4 30.5 33.0 39.2 46.0
b2 63.8 52.7 41.9 45.4 52.7
b3 65.7 63.5 54.4 58.6 48.6
b4 29.5 47.9 44.8 54.3 59.1
b5 29.2 29.7 31.0 34.8 40.5
b6 4.9 1.7 2.0 34.6 63.8
b7 3228.5 2715.4 1982.2 1877.0 2491.9
b8 139.2 125.9 131.4 154.1 106.0
b9 69.7 69.6 69.0 77.7 18.1
b10 26.7 16.0 33.2 59.6 46.8
b11 174.7 143.8 146.5 103.7 103.6
b12 160.1 183.4 215.5 244.2 267.6
b13 88.0 134.2 102.4 215.8 206.8
b14 190.5 518.8 682.5 1471.9 1356.7
b15 88.5 98.6 85.2 93.4 101.9

erwise. Table 15 shows the relative frequency table for each variable at each level

of missingness. In Table 15, we see that the imputed proportions for Asian and Na-

tive Americans are the most inaccurate compared to the true proportions. Asians

differ from the true by about 0.07 for each level of missingness. The LDA imputa-

tion method, underrepresented the Asian category when compared to the complete

data set. Native Americans differ from the true proportions by about 0.002 across

the levels of missingness. The LDA imputation method, overrepresented the Native

American category when compared to the complete data set. Black, Hispanic, and

White’s imputed proportions are relatively consistent with the true proportions. In
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Table 14: P-values for t-tests for each estimated regression coefficient for nominal

variables in the LDA imputation model at each level of data missingness. The p-

values that are in bold are for t-tests that are not significant at α = 0.05 significance

level

Coefficients Percent of Missingness
10% 20% 30% 40% 50%

b0 0 0 0 0 0.1528
b1 0 0 0 0 0
b2 0 0 0 0 0
b3 0 0 0 0 0
b4 0 0 0 0 0
b5 0 0 0 0 0
b6 0 6.9166e-55 1.2986e-14 0 0
b7 0 0 0 0 0
b8 0 0 0 0 0
b9 0 0 0 0 2.5963e-320
b10 0 0 0 0 0
b11 0 0 0 0 0
b12 0 0 0 0 0
b13 0 0 0 0 0
b14 0 0 0 0 0
b15 0 0 0 0 0

Table 15, we see that the imputed estimated proportions for the categories killed, no

injury, and possible injury are relative consistent with the true proportions. The LDA

imputation method underestimated the disabling injury category, but overestimated

the evident injury category. The LDA imputation method produced estimated pro-

portions similar to the true proportions for the three levels of Region. The imputed

proportions for course asphalt and smooth asphalt are relatively consistent with the

true proportions. The LDA imputation method overestimated the proportions for

52



the concrete, gravel, and grooved concrete categories. Since the Other category had

such a low true proportion to start, the LDA imputation method did not classify any

missing value as Other.

Table 15: Relative frequency for the nominal variables with LDA imputation at each

level of missingness

Variable Percent of Missingness
10% 20% 30% 40% 50% Complete

Driver’s
Race

Asian 0.0093 0.0103 0.0115 0.0135 0.0148 0.08
Black 0.2667 0.2609 0.2627 0.2581 0.2663 0.284

Hispanic 0.0244 0.0228 0.0241 0.0236 0.0259 0.024
Native American 0.0166 0.0191 0.0178 0.0189 0.0232 0.008

Other 0.0154 0.0156 0.0181 0.0195 0.0220 0.014
White 0.6676 0.6712 0.6657 0.6664 0.6480 0.662

Crash
Severity

Disabling Injury 0.0388 0.0374 0.0406 0.0383 0.0388 0.044
Evident Injury 0.4607 0.4580 0.4570 0.4626 0.4771 0.444

Killed 0.0346 0.0328 0.0334 0.0351 0.0313 0.036
No Injury 0.0653 0.0649 0.0687 0.0635 0.0517 0.066

Possible Injury 0.4005 0.4069 0.4002 0.4005 0.4012 0.410

Region

Coastal 0.3347 0.3465 0.3290 0.3281 0.3371 0.330
Mountains 0.1064 0.1013 0.1006 0.1102 0.1134 0.104
Piedmont 0.5589 0.5522 0.5704 0.5616 0.5495 0.566

Road
Surface

Course Asphalt 0.3253 0.3233 0.3180 0.3143 0.3149 0.324
Concrete 0.0266 0.0275 0.0338 0.0348 0.0408 0.024
Gravel 0.0050 0.0056 0.0067 0.0061 0.0068 0.004

Grooved Concrete 0.0122 0.0113 0.0095 0.0096 0.0069 0.006
Other 0 0 0 0 0 0.006

Smooth Asphalt 0.6309 0.6323 0.6321 0.6351 0.6306 0.640

In Table 16, we see the first evidence in where LDA imputation differed from the

complete data set. Overall, the variables driver’s race, crash severity, and region have

high success rates at each level of missingness. Road surface has low success rates.
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Table 16: Success rate of classifications for the nominal variables with LDA imputa-

tion at each level of missingness
Variable Percent of Missingness

10% 20% 30% 40% 50%
Driver’s Race 94.78 89.52 86.26 83.17 79.73
Crash Severity 93.65 87.93 82.14 77.80 72.53

Region 95.04 90.36 85.93 82.48 78.71
Road Surface 34.14 32.42 30.52 28.21 27.10

After some brief investigation we can see that LDA struggled with the levels course

asphalt and smooth asphalt. LDA imputed course asphalt for smooth asphalt and

vise versa. We would need further investigation of the imputed data sets to see if

there are other levels that are misclassified.

The estimated coefficients for the the nominal variables imputed with the multi-

nomial logit model are shown in Table 17. By looking at Table 17, it is easy to see

that the estimated coefficients differ form the original coefficients. The estimated

coefficients for b0 are the most accurate. The estimated coefficients for b7 are the

most inaccurate. The estimated coefficients for b8 and b13 are the negative but the

original coefficients are positive while the opposite occurs with b12. Multinomial logit

imputation underestimates the coefficients for b1, b2, b3, b4, b5, b6, b9, and b16. For b0,

b7, and b14 multinomial logit imputation overestimated the coefficients.

To see a more specific view of how the estimated coefficients differ from the original

coefficients, we can look at the percent deviation index in Table 18. Overall, we

see that as the level of missingness increases, the PDI values also increase. This

implies that the multinomial logit imputation method performs worse as the level of
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Table 17: Estimated means of the nominal variable’s regression coefficients from the

multinomial logit imputation model at each level of missingness

Coefficients Percent of Missingness
10% 20% 30% 40% 50% Complete

b0 19.101 21.122 22.341 25.215 25.364 17.009
b1 11.206 9.100 8.458 7.336 6.605 14.555
b2 5.027 5.681 5.629 5.797 5.725 13.214
b3 15.063 13.746 13.334 11.632 11.323 37.890
b4 14.954 10.503 10.129 8.216 7.513 21.465
b5 13.229 12.219 11.674 10.600 9.817 18.747
b6 3.263 2.645 1.586 -0.823 0.048 4.298
b7 10.124 6.779 4.735 2.743 2.143 0.383
b8 -4.148 -3.773 -4.893 -7.282 -5.287 8.681
b9 1.566 0.747 0.053 -2.085 -1.058 7.328
b10 -4.153 -4.697 -4.012 -2.941 -3.144 -6.048
b11 -3.695 -3.216 -3.364 -2.729 -2.769 -1.344
b12 2.095 2.901 2.996 3.355 2.753 -3.640
b13 -2.873 -3.225 -2.309 -3.263 -2.950 3.941
b14 4.494 4.877 6.857 12.311 10.204 0.879
b15 0.455 0.042 0.547 0.246 -0.082 4.427

missingness increases.

As expected, we see the p-values for the t-test in Table 19, for testing the difference

in the estimated coefficients to the true coefficients, are all significant at the 5% level

of significance.

Table 20 shows the relative frequencies for the nominal variables imputed with

multinomial logit imputation. For the diver’s race, the Asian category’s estimated

proportions are lower than the true proportion. The estimated proportions for Na-

tive Americans are larger than the true proportions. The estimated proportions for

Black, Hispanic, Other, and White categories are similar to the true proportions.
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Table 18: PDI values of the multinomial logit imputation model estimated regression

coefficients at each level of data missingness for nominal variables

Coefficients Percent of Missingness
10% 20% 30% 40% 50%

b0 12.3 24.2 31.3 48.2 49.2
b1 23.0 37.5 41.9 49.6 54.6
b2 62.0 57.0 57.4 56.1 56.7
b3 60.2 63.7 64.8 69.3 70.1
b4 30.3 51.1 52.8 61.7 65.0
b5 29.4 34.8 37.7 43.5 47.6
b6 24.1 38.5 63.1 119.1 98.9
b7 2543.3 1670.0 1136.3 616.2 459.5
b8 144.8 143.5 156.4 183.9 160.9
b9 78.6 89.8 99.3 128.5 114.4
b10 31.3 22.3 33.7 51.4 48.0
b11 174.9 139.3 150.3 103.1 106.0
b12 157.6 179.7 182.3 193.2 175.6
b13 172.9 181.8 158.5 182.8 174.9
b14 411.3 454.8 680.1 1300.6 1060.9
b15 89.7 99.1 87.6 93.4 101.9

The variable crash severity’s estimated proportions are overall similar to the true

proportions for each level. However, we do see for the categories, disabling injury, no

injury, and possible injury are underestimated and as the level of missingness while

the categories evident injury and killed are overestimated. For the region variable,

coastal stays consist in terms of the estimated proportions compared to the true pro-

portions for all levels of missingness. The mountain regions have similar proportions

for the lower levels of missingness but are slightly overestimated for higher levels of

missingness. For the Piedmont region, the estimated proportions are similar to the

true proportions for all levels of missingness except for the 50% level. Here we see
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Table 19: P-values for t-tests for each estimated regression coefficient for nominal

variables in the multinomial logit imputation model at each level of data missingness.

The p-values that are in bold are for t-tests that are not significant at α = 0.05

significance level

Coefficients Percent of Missingness
10% 20% 30% 40% 50%

b0 0 0 0 0 0
b1 0 0 0 0 0
b2 0 0 0 0 0
b3 0 0 0 0 0
b4 0 0 0 0 0
b5 0 0 0 0 0
b6 0 0 0 0 0
b7 0 0 0 0 0
b8 0 0 0 0 0
b9 0 0 0 0 0
b10 0 0 0 0 0
b11 0 0 0 0 0
b12 0 0 0 0 0
b13 0 0 0 0 0
b14 0 0 0 0 0
b15 0 0 0 0 0

a drop in proportion compared to the truth. For both course asphalt and smooth

asphalt, we see similar estimated proportions compared to the truth for each level

of missingness with smooth asphalt being slightly underestimated. As we saw with

the LDA imputation method, the other category in road surface was estimated for a

category for a missing value. This is probably due to the already small proportion

(0.6%) of that category in road surface. For the other three categories of road surface

(concrete, gravel, and grooved concrete), we see that they are overestimated using
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the imputation methods.

Table 20: Relative frequency for the nominal variables with multinomial logit impu-

tation at each level of missingness

Variable Percent of Missingness
10% 20% 30% 40% 50% Complete

Driver’s
Race

Asian 0.0093 0.0111 0.0128 0.0146 0.0161 0.08
Black 0.2689 0.2653 0.2683 0.2637 0.2727 0.284

Hispanic 0.0248 0.0240 0.0239 0.0233 0.0267 0.024
Native American 0.0100 0.0108 0.0118 0.0129 0.0147 0.008

Other 0.0157 0.0161 0.0187 0.0220 0.0243 0.014
White 0.6713 0.6727 0.6645 0.6635 0.6456 0.662

Crash
Severity

Disabling Injury 0.0405 0.0416 0.0435 0.0409 0.0423 0.044
Evident Injury 0.4577 0.4520 0.4541 0.4618 0.4677 0.444

Killed 0.0382 0.0386 0.0370 0.0390 0.0372 0.036
No Injury 0.0653 0.0650 0.0694 0.0593 0.0572 0.066

Possible Injury 0.3982 0.4028 0.3960 0.3990 0.3956 0.410

Region

Coastal 0.3346 0.3456 0.3289 0.3280 0.3398 0.330
Mountains 0.1077 0.1043 0.1052 0.1140 0.1169 0.104
Piedmont 0.5576 0.5501 0.5659 0.5579 0.5433 0.566

Road
Surface

Course Asphalt 0.3273 0.3249 0.3209 0.3175 0.3181 0.324
Concrete 0.0270 0.0272 0.0311 0.0332 0.0364 0.024
Gravel 0.0047 0.0056 0.0066 0.0079 0.0088 0.004

Grooved Concrete 0.0075 0.0082 0.0095 0.0084 0.0061 0.006
Other 0 0 0 0 0 0.006

Smooth Asphalt 0.6334 0.6341 0.6320 0.6331 0.6307 0.640

In Table 21, we can see the success rates for the nominal variables with multinomial

logit imputation at each level of missingness. We can see the same pattern here as

we did in the success rates of nominal variables with LDA imputation. The success

rate for road surface is the lowest of all nominal variables. Again, with some brief

investigation we can see that multinomial logit imputation also struggled to impute
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Table 21: Success rate classifications for the nominal variables with multinomial logit

imputation at each level of missingness
Variable Percent of Missingness

10% 20% 30% 40% 50%
Driver’s Race 95.14 89.79 89.43 83.30 79.90
Crash Severity 93.56 87.59 81.95 77.73 71.99

Region 94.78 90.00 85.55 81.99 78.25
Road Surface 34.20 32.41 30.64 28.31 27.23

course asphalt and smooth asphalt correctly.

7.3 Ordinal Variables

From the regression analysis discussed in chapter 5, the model was found to be

Ŷ = 17.514 + 1.015X1 + 0.297X2 + 0.620X3 + 0.584X4 − 0.411X5 + 0.152X6

+ 0.562X7 + 0.251X8 − 0.023X9 − 0.098X10 − 1.109X11 − 4.059X12

+ 0.295X13 + 3.856X14 + 8.840X15 + 16.306X16 + 26.768X17

+ 36.411X18 + 46.124X19 + 51.944X20

where the Xi’s represent the indicator variables for the predictor variables. We will

refer to these coefficients as the true coefficients since they are estimated from the

complete data set. The estimated coefficients for the ordinal variables using LDA

imputation are displayed in Table 22. Here we are estimating 20 coefficients with

different levels of missingness. Overall the estimated coefficients differ greatly from

the true coefficients. The estimated coefficients for b2, b3, b4, b6, b13, b14, b15, b17, and

b19 are negative while their respective true coefficients are positive. The estimated
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coefficients for b10, b11, and b12 are positive while their respective original coefficients

are negative. LDA imputation estimated coefficients greater then the original coeffi-

cients for b0, b8, b10, b11, and b12. The rest of the estimated coefficients are less then

their respective original coefficients.

Table 22: Estimated means of the ordinal variable’s regression coefficients from the

LDA imputation model at each level of missingness

Coefficients Percent of Missingness
10% 20% 30% 40% 50% Complete

b0 33.611 34.457 33.921 34.715 38.025 17.514
b1 1.354 -0.218 -0.998 -3.552 -5.465 1.015
b2 -1.073 -1.198 -0.052 -0.811 -0.647 0.297
b3 -0.572 -0.301 -1.206 0.267 -0.716 0.620
b4 -2.583 -2.575 -2.845 -3.477 -1.570 0.584
b5 -6.433 -5.898 -5.535 -4.706 -3.985 -0.411
b6 -6.448 -4.775 -6.543 -6.550 -7.515 0.152
b7 -4.548 -3.351 -2.708 -2.559 -4.507 0.562
b8 1.672 2.862 4.261 4.980 5.600 0.251
b9 -4.902 -3.503 -3.142 -2.644 -2.222 -0.023
b10 6.137 6.451 4.758 4.328 4.127 -0.098
b11 9.185 9.835 10.073 11.368 11.702 -1.109
b12 12.884 13.929 15.938 16.246 16.232 -4.059
b13 -1.472 -1.138 -2.820 -2.823 -3.008 0.295
b14 -1.397 -2.356 -1.965 -1.626 -4.799 3.856
b15 -3.254 -2.371 -2.489 -2.068 -5.351 8.840
b16 1.654 0.057 -0.441 0.034 -3.684 16.306
b17 -1.069 -2.551 -1.836 -2.359 -6.078 26.768
b18 1.535 0.159 -0.548 -2.241 -5.714 36.411
b19 -0.845 -2.353 -2.296 -2.588 -5.850 46.124
b20 3.183 0.238 -0.947 -1.529 -2.982 51.944

To get a more detailed view of the estimated coefficients, we can look at the PDI for

each coefficient at each level of missingness displayed in Table 23. The most accurate
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estimated coefficient occurs with b1 at 10% missingness with a PDI of 33.4%. The

second most accurate estimated coefficient occurs with b3 at 50% missingness with a

PDI of 56.9%. Overall, the estimated coefficients are not accurate as we can see from

the large PDI’s displayed in Table 23.

Table 23: PDI values of the LDA imputation model estimated regression coefficients

at each level of data missingness for ordinal variables

Coefficients Percent of Missingness
10% 20% 30% 40% 50%

b0 91.6 96.7 93.7 98.2 117.1
b1 33.4 121.5 198.3 450.0 638.4
b2 461.3 503.4 117.5 373.1 317.8
b3 191.9 148.5 294.5 56.9 215.5
b4 545.3 575.3 590.5 699.5 370.7
b5 1465.2 589.8 1246.7 1245.0 869.6
b6 4342.1 3241.4 4404.6 4409.2 5044.1
b7 909.3 696.3 581.9 555.3 902.0
b8 566.1 1040.2 1597.6 1884.1 2131.1
b9 21213.0 15130.4 13560.9 11395.7 9560.9
b10 6362.2 6682.7 4955.1 4516.3 4311.2
b11 928.2 986.8 1008.3 1125.1 1155.2
b12 417.4 443.2 492.7 500.2 499.9
b13 599.0 485.8 1055.9 1056.9 1119.7
b14 136.2 161.1 151.0 142.2 224.5
b15 136.8 126.8 12 8.2 123.4 160.5
b16 89.9 99.7 102.7 99.8 122.6
b17 104.0 109.5 106.9 108.8 122.7
b18 95.8 99.6 102.5 106.2 115.7
b19 101.8 105.1 105.0 105.6 112.7
b20 93.9 99.5 101.8 102.9 105.7

In Table 24, we can see the p-values from the t-test for the estimated coefficients

for with LDA imputation. We are testing the if the there is a significant difference
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Table 24: P-values for t-tests for each estimated regression coefficient for ordinal

variables in the LDA imputation model at each level of data missingness. The p-

values that are in bold are for t-tests that are not significant at α = 0.05 significance

level

Coefficients Percent of Missingness
10% 20% 30% 40% 50%

b0 0 0 0 0 0
b1 0 0 0 0 0
b2 0 0 1.2881e-277 0 0
b3 0 0 0 7.3864e-150 0
b4 0 0 0 0 0
b5 0 0 0 0 0
b6 0 0 0 0 0
b7 0 0 0 0 0
b8 0 0 0 0 0
b9 0 0 0 0 0
b10 0 0 0 0 0
b11 0 0 0 0 0
b12 0 0 0 0 0
b13 0 0 0 0 0
b14 0 0 0 0 0
b15 0 0 0 0 0
b16 0 0 0 0 0
b17 0 0 0 0 0
b18 0 0 0 0 0
b19 0 0 0 0 0
b20 0 0 0 0 0

in the estimated coefficients and the true coefficients. We are comparing the p-values

to an α value of 0.05. Since each of the p-values are less than α = 0.05, we can

conclude that each of the estimated coefficients are significantly different from the

original coefficients.
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To examine the LDA imputation, we can compare the proportion of each category

estimated for each percent of missingness. The three ordinal variables we have are lo-

cality, driver estimated speed, and driver age group. The relative frequencies for each

ordinal variable using LDA imputation are shown in Table 25. The variable locality

has three categories: mixed, rural, urban. The estimated proportions for mixed and

urban are similar to the true proportions with 10% and 20% missingness but with the

larger amounts of missingness their estimated proportions become greater then the

true proportions. The estimated proportions for rural is less then the true proportion

and becomes increasingly lower as the level of missingness increases.

Looking at the drivers estimated speed, we can see that the majority of the ac-

cidents occur between 0-5 mph since the proportion for 0-5 mph is the largest. The

estimated proportions for the drivers speed ranges of 6-10 mph, 11-15 mph, 21-25

mph, and 26-30 mph are relatively consistent with the true proportions. The esti-

mated proportions for driver speeds 31-35 mph and 36-40 mph are close to the true

proportions but as the percent of missingness increases their estimated proportions

become lower than the true proportions. The estimated proportions for the driver

speeds of 46-50 mph, 51-55 mph, and 56-60 mph are similar to the true proportions,

but as the level of missingness increases the estimated proportions become greater

than the true coefficients. For the final ordinal variable, driver age group, we can see

that LDA imputation consistently underestimates the age groups 20-24 and 25-29.

The age groups 30-39 is underestimated at 10% and 20% and then at 30% missingness

and above they are overestimated.

In Table 26, we can see that, overall, the success rates for each ordinal variable is
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Table 25: Relative frequency for the ordinal variables with LDA imputation at each

level of missingness

Variable Percent of Missingness
10% 20% 30% 40% 50% Complete

Locality

Mixed 0.1641 0.1663 0.1792 0.1811 0.1777 0.166
Rural 0.1563 0.1453 0.1288 0.1325 0.1345 0.160
Urban 0.6796 0.6884 0.6920 0.6864 0.6879 0.674

Driver’s
Estimated

Speed

0-5mph 0.2707 0.2703 0.2718 0.2562 0.2471 0.278
6-10 mph 0.1162 0.1080 0.1131 0.1024 0.1061 0.112
11-15 mph 0.0745 0.0777 0.0690 0.0684 0.0711 0.076
16-20 mph 0.0615 0.0589 0.0676 0.0728 0.0700 0.062
21-25 mph 0.0845 0.0865 0.0812 0.0889 0.0888 0.084
26-30 mph 0.0637 0.0631 0.0612 0.0665 0.0661 0.060
31-35 mph 0.1160 0.1161 0.1209 0.1205 0.1272 0.116
36-40 mph 0.0407 0.0445 0.0340 0.0338 0.0326 0.042
41-45 mph 0.0811 0.0764 0.0701 0.0707 0.0707 0.088
46-50 mph 0.0195 0.0212 0.0201 0.0238 0.0270 0.018
51-55 mph 0.0673 0.0729 0.0855 0.0903 0.0848 0.060
56-60 mph 0.0043 0.0045 0.0055 0.0056 0.0085 0.004

Driver’s
Age

Group

0-19 0.0858 0.0843 0.0862 0.0879 0.0902 0.080
20-24 0.1455 0.1378 0.1426 0.1394 0.1366 0.152
25-29 0.1126 0.1173 0.1160 0.1177 0.1235 0.118
30-39 0.1385 0.1382 0.1435 0.1465 0.1508 0.142
40-49 0.1615 0.1679 0.1629 0.1550 0.1390 0.154
50-59 0.1502 0.1527 0.1482 0.1474 0.1435 0.150
60-69 0.1181 0.1168 0.1141 0.1177 0.1155 0.122
70+ 0.0877 0.0850 0.0865 0.0883 0.1009 0.082

Table 26: Success rate classifications for the ordinal variables with LDA imputation

at each level of missingness
Variable Percent of Missingness

10% 20% 30% 40% 50%
Locality 97.03 93.06 89.53 87.04 83.44

Driver’s Estimated Speed 92.85 86.77 78.85 73.49 68.00
Driver’s Age Group 89.89 81.11 74.24 67.12 61.50
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high. As the level of missingness increases, the success rates decrease. Driver’s age

group has the lowest success rates of the ordinal variables, while locality and diver’s

estimated speed have relatively high success rates.

Ordered logit model imputation was also used to impute the missing data. The

estimated coefficients for the ordinal variables with ordered logit model imputation

can be found in Table 27. Similar to LDA imputation, the estimated coefficients

differ from the true coefficients. The estimated coefficients for b2, b3, b4, b6, b13, b14,

b15, b17, and b19 are negative while their respective original coefficients are positive.

The estimated coefficients for b10, b11, and b12 are positive while their respective

true coefficients are negative. The estimated coefficients are greater than the true

coefficients for b0, b8, b11, and b12. The estimated coefficients are significantly less

then the true coefficients for b15, b16, b17, b18, b19, and b20.

The PDI values for the ordered variables imputed with the ordered logit model

imputation are shown in Table 28. The most accurate estimated coefficient occurs

with b1 at 30% missingness with the smallest PDI value of 19.8%. With such large

PDI values it is simple to see that ordered logit imputation did not impute the missing

data points well. The range of the PDI’s for b0 is the smallest at 6.5 showing that

ordinal logit imputation produced the most consistent imputations over the different

levels of missingness. It is not consistent across the variables that as the percent of

missingness increases, the estimated coefficients are less accurate. With some of the

variables the lowest PDI’s occur with either 40% or 50% of missingness.

Table 29 displays the p-values from the t-test testing if the estimated coefficients

and the originals coefficients differ. Similar to LDA imputation the p-values are
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Table 27: Estimated means of the ordinal variable’s regression coefficients from the

ordered logit imputation model at each level of missingness

Coefficients Percent of Missingness
10% 20% 30% 40% 50% Complete

b0 33.396 34.531 33.651 34.075 33.638 17.514
b1 1.723 0.531 1.216 0.089 -0.731 1.015
b2 -0.596 -1.162 -0.280 -1.071 -0.588 0.297
b3 -0.596 -0.571 -1.317 0.076 -1.095 0.620
b4 -2.554 -2.544 -2.823 -3.465 -1.985 0.584
b5 -6.432 -5.827 -5.624 -4.897 -4.203 -0.411
b6 -6.593 -4.737 -6.367 -6.352 -5.998 0.152
b7 -4.534 -3.333 -2.757 -2.324 -2.012 0.562
b8 1.414 3.072 3.944 3.865 6.390 0.251
b9 -4.873 -3.423 -2.976 -2.387 -2.097 -0.023
b10 5.776 5.937 2.944 2.608 2.500 -0.098
b11 9.094 10.393 9.029 8.495 8.215 -1.109
b12 12.375 12.454 12.373 11.714 10.894 -4.059
b13 -1.466 -1.114 -2.796 -2.760 -2.887 0.295
b14 -1.156 -1.815 -1.175 -0.476 -0.591 3.856
b15 -3.107 -2.173 -1.955 -0.998 -0.382 8.840
b16 1.781 0.459 -0.061 0.778 0.614 16.306
b17 -0.917 -2.302 -1.400 -1.326 -1.036 26.768
b18 1.726 0.488 -0.106 -1.197 -1.373 36.411
b19 -0.678 -1.951 -1.724 -1.757 -1.550 46.124
b20 3.433 0.904 -0.466 -1.585 -1.321 51.944

compared to α = 0.05. Since each p-value is less then α = 0.05, we conclude that the

estimated coefficients are significantly different than the original coefficients.

The ordered logit relative frequency values are shown in Table 30. For the variable

locality, we see that for the categories of rural and urban the estimated proportions

are similar to the true proportions. The mixed category was underestimated with the

ordinal logit imputation at the 10% and 20% levels of missingness. For 30%, 40%,

66



Table 28: PDI values of the ordered logit imputation model estimated regression

coefficients at each level of data missingness for ordinal variables

Coefficients Percent of Missingness
10% 20% 30% 40% 50%

b0 90.7 97.2 92.1 94.6 92.1
b1 69.8 47.7 19.8 91.2 157.9
b2 230.7 490.6 194.3 460.6 298.0
b3 196.1 192.1 312.4 87.4 276.6
b4 537.3 535.6 583.4 693.3 429.9
b5 1465.0 1317.8 1268.4 1091.5 922.6
b6 4437.5 3216.4 4288.8 4278.9 4046.1
b7 906.8 693.1 590.6 513.5 458.0
b8 463.3 1123.9 1471.3 1439.8 2445.8
b9 21087.0 14782.6 12839.1 10278.3 9017.4
b10 5993.9 6158.2 3104.1 2761.2 2651.0
b11 920.0 1037.2 919.8 866.0 840.8
b12 404.9 406.8 404.8 388.6 368.4
b13 596.9 477.6 1047.8 1035.6 1078.6
b14 130.0 147.1 130.5 112.3 115.3
b15 135.1 124.6 122.1 111.3 143.2
b16 89.1 97.2 100.4 95.2 96.2
b17 103.4 108.6 105.2 105.0 103.9
b18 95.3 98.7 100.3 103.3 103.8
b19 101.5 104.2 103.7 103.8 103.4
b20 93.4 98.6 100.9 103.1 102.5

and 50% the levels of missingness, the mixed category is overestimated compared to

the true proportion. The driver’s estimated speed variable consists of various speed

ranges from 0 mph to 70+ mph. Some of the speed ranges have estimated proportions

that are similar to the true proportions. These categories include 0-5 mph, 6-10 mph,

and 16-20 mph. The estimated proportions for speed ranges 11-15 mph, 31-35 mph,

36-40 mph, and 41-45 mph are lower than the true proportions. For the speed ranges
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Table 29: P-values for t-tests for each estimated regression coefficient for ordinal

variables in the ordered logit imputation model at each level of data missingness.

The p-values that are in bold are for t-tests that are not significant at α = 0.05

significance level

Coefficients Percent of Missingness
10% 20% 30% 40% 50%

b0 0 0 0 0 0
b1 0 7.3271e-298 6.5080e-64 0 0
b2 0 0 0 0 0
b3 0 0 0 5.0194e-268 0
b4 0 0 0 0 0
b5 0 0 0 0 0
b6 0 0 0 0 0
b7 0 0 0 0 0
b8 0 0 0 0 0
b9 0 0 0 0 0
b10 0 0 0 0 0
b11 0 0 0 0 0
b12 0 0 0 0 0
b13 0 0 0 0 0
b14 0 0 0 0 0
b15 0 0 0 0 0
b16 0 0 0 0 0
b17 0 0 0 0 0
b18 0 0 0 0 0
b19 0 0 0 0 0
b20 0 0 0 0 0

of 21-25 mph, 26-30 mph, 46-50 mph, 51-55 mph, and 56-60 mph their estimated

proportions are greater than the true proportions. As the percent of missingness

increases, the difference in the estimated and true proportions increases.

Looking at the final variable of driver age group, we can see that the groups 0-19,
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Table 30: Relative frequency for the ordinal variables with ordinal imputation at each

level of missingness

Variable Percent of Missingness
10% 20% 30% 40% 50% Complete

Locality

Mixed 0.1627 0.1636 0.1718 0.1757 0.1793 0.166
Rural 0.1623 0.1544 0.1517 0.1544 0.1534 0.160
Urban 0.6750 0.6819 0.6765 0.6699 0.6673 0.674

Driver’s
Estimated

Speed

0-5mph 0.2710 0.2717 0.2758 0.2617 0.2622 0.278
6-10 mph 0.1158 0.1088 0.1156 0.1028 0.1054 0.112
11-15 mph 0.0744 0.0764 0.0695 0.0679 0.0678 0.076
16-20 mph 0.0614 0.0593 0.0670 0.0683 0.0615 0.062
21-25 mph 0.0857 0.0870 0.0835 0.0908 0.0908 0.084
26-30 mph 0.0639 0.0642 0.0652 0.0680 0.0722 0.060
31-35 mph 0.1167 0.1190 0.1247 0.1240 0.1330 0.116
36-40 mph 0.0419 0.0432 0.0356 0.0382 0.0296 0.042
41-45 mph 0.0814 0.0798 0.0733 0.0779 0.0803 0.088
46-50 mph 0.0199 0.0222 0.0194 0.0216 0.0232 0.018
51-55 mph 0.0634 0.0633 0.0645 0.0722 0.0669 0.060
56-60 mph 0.0045 0.0052 0.0058 0.0066 0.0071 0.004

Driver’s
Age

Group

0-19 0.0863 0.0839 0.0862 0.0845 0.0785 0.080
20-24 0.1451 0.1374 0.1424 0.1427 0.1387 0.152
25-29 0.1134 0.1174 0.1168 0.1190 0.1307 0.118
30-39 0.1382 0.1386 0.1420 0.1503 0.1544 0.142
40-49 0.1608 0.1670 0.1646 0.1568 0.1469 0.154
50-59 0.1496 0.1514 0.1451 0.1420 0.1410 0.150
60-69 0.1181 0.1161 0.1143 0.1182 0.1174 0.122
70+ 0.0885 0.0882 0.0886 0.0864 0.0924 0.082

25-29, and 60-69 have a similar relative frequency values compared to the complete

data. The age groups of 20-24, 50-59, and 60-69 have a lower relative frequency with

ordered logit imputation compared to the complete data. The age group 30-39 has

an estimated proportion is lower than the true proportion for the 10% and 20% levels

of missingness and at 40% and 50% levels of missingness the estimated proportion
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is greater then the true proportion. One of the most accurate estimated proportions

occurs in the age group 30-39 with 30% missingness. The estimated proportions for

the age group 70+ is the greater than the true proportions.

Table 31: Success rate classifications for the ordinal variables with ordered logit

imputation at each level of missingness
Variable Percent of Missingness

10% 20% 30% 40% 50%
Locality 96.03 91.40 88.81 86.03 80.52

Driver’s Estimated Speed 92.64 86.47 78.51 73.36 67.50
Driver’s Age Group 89.79 81.06 74.13 67.04 60.96

In Table 31, we can see the same pattern as in the success rates for the ordinal

variables with LDA imputation. Locality has the highest success rate of the ordinal

variables with ordered logit imputation. Overall, as the level of missingness increases,

the success rate of ordered logit imputation decreases.
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8 CONCLUSION AND FUTURE RESEARCH

After examining the performance of each imputation method with their respective

type of variables, we must conclude which imputation method performs the best for

each type of categorical variable. Starting with binary variables, we compared LDA

and logistic regression imputation. LDA and logistic imputation had a fairly similar

performance. The relative frequencies for LDA and logistic regression imputation

are also similar. The success rates for both LDA and logistic imputation were very

similar. The software run time for each imputation is about the same for each. Since

logistic regression imputation produced more estimated coefficients that are closer to

the true coefficients, we would prefer to use logistic regression imputation for binary

variables.

When dealing with the nominal variables, we compared LDA imputation and

multinomial logit imputation. LDA imputation with the nominal variables produced

the only significantly accurate estimated coefficient of the study. Multinomial logit

imputation did not produce any accurate estimated coefficients. The relative fre-

quencies for LDA is marginally better then those for multinomial logit. The success

rates for both LDA and multinomial logit imputation were about the same. The

software run time for LDA was significantly less than the run time for multinomial

logit imputation. Due to the higher accuracy and lower run time we conclude that

LDA imputation is best for nominal variables.

The last type of variable explored was ordinal variables. With the ordinal vari-

ables, we compared LDA imputation and ordered logit imputation. Neither LDA

imputation nor ordered logit imputation performed particularly well. They did not
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produce accurate estimated coefficients. The relative frequencies for LDA and ordered

logit imputation were similar. The success rates for LDA and ordered logit imputa-

tion had no noticeable deviations from one another. The main difference between the

two was the software run time. LDA took about a couple hours to run while ordered

logit imputation took about 12 hours to run the loop of 1000 iterations. Due to the

similar performance accuracy and the difference in run time, we would prefer to use

LDA imputation with ordinal variables.

Overall, we see that in general logistic regression imputation performs best with

categorical variables with two levels. For categorical variables with two or more

levels both nominal and ordered LDA imputation outperforms the other imputation

methods. Researchers, when dealing with machine learning and other branches of

statistics, often choose to use LDA over the multinomial logit model in terms of

regression analysis. This builds our confidence for choosing the LDA imputation

method for nominal and ordinal variables.

Since completing this research, there are some areas and ideas that could use

further research. It would be interesting to see how much of an effect there is when

using categorical variables with various different amount of levels. For example, if we

had a group of categorical variables with the same amount of levels or if we have a

group of categorical variables with a different amount of levels. These variables would

ideally contain more then two levels. I think this would be an interesting research

idea because some of the variables in the data set used in this thesis had quite a few

levels, some with up to 12. One could look into how many observations occurred at

each level. Maybe if there is only a couple of observations in some of the levels the
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estimated coefficients for those variables are not as accurate then if there was more

observations in each level.

Looking at the relative frequency tables brought light to another area of future

interest. After seeing that the estimated proportions for each variable were relatively

similar, with mild deviation, to the true proportions, it would be interesting to inves-

tigate why the estimated coefficients were so far off from the true coefficients. The

success rates gave us some insight with the nominal variable road surface. With fur-

ther investigation of the imputed data sets we may find more misclassifications with

the imputation methods.
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