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ABSTRACT

Vertex Weighted Spectral Clustering

by

Mohammad Masum

Spectral clustering is often used to partition a data set into a specified number of

clusters. Both the unweighted and the vertex-weighted approaches use eigenvectors

of the Laplacian matrix of a graph. Our focus is on using vertex-weighted methods to

refine clustering of observations. Coefficients of a Fiedler vector are used to partition

vertices of a given graph into two clusters. A vertex is classified as unassociated if

the Fiedler coefficient of the vertex is close to zero compared to the largest Fiedler

coefficient of the graph. We propose a vertex-weighted spectral clustering algorithm

which incorporates a vector of weights for each vertex of a given graph to form a

vertex-weighted graph. The proposed algorithm predicts association of data points

while the unweighted clustering does not provide association. Finally, we implemented

both the algorithms on several data sets to show that the proposed algorithm works

in general.
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1 INTRODUCTION

1.1 Clustering

Clustering analysis is a technique to group a set of data objects into clusters so

that objects similar to each other in the same cluster and dissimilar to the objects

in other clusters. Han and Kamber discussed clustering techniques and defined them

as objects “clustered or grouped based on the principles and maximizing the inter-

class similarity and minimizing the intra-class similarity” [11]. Clustering is one of

the most widely used techniques for exploratory data analysis. Clustering analysis

has a broad range of applications in statistics, machine learning, computer science,

bioinformatics, biology, social sciences, and psychology. In virtually every scientific

field that deals with empirical data, scientists attempt to get the first impression of

their data by trying to identify groups of similar behavior [27]. Clustering analysis is

not a specific algorithm itself, but there are various algorithms that are used efficiently

for clustering of different data sets. Spectral clustering is one of these algorithms

[9]. Spectral clustering refers to a class of techniques which use spectral properties

(eigenvalue and associated eigenvectors) of a similarity matrix to cluster points into

disjoint clusters.

1.2 Spectral Clustering Method

There are several spectral clustering algorithms based on normalized and unnor-

malized clustering. Shi and Malik discussed normalized spectral clustering in [25].

There is another popular paper by Ng, Jordan, and Weiss(2002); they also discussed
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a normalized spectral clustering algorithm [20]. These normalized algorithms are sim-

ilar, differing only in the definitions of Laplacian matrix of a graph. Shi and Malik use

the graph Laplacian Lrw, while Ng, Jordan and Weiss use a different graph Laplacian

Lsym. For our work, we use the unnormalized graph Laplacian in spectral clustering.

The algorithm is in [27]. Initially, a similarity graph is constructed as described in

[27]. Let, W be its weighted adjacency matrix. The unnormalized Laplacian matrix

L, is computed from the constructed similarity graph. We then compute the first k

eigenvectors u1, u2, · · ·, uk of L and U ∈ Rn×K be the matrix containing the vectors

u1, u2, · · ·, uk as columns. For i = 1, 2, · · ·, n let yi ∈ Rk be the vector corresponding

to the ith row of U . Now, cluster the points (yi)i=1,···,n ∈ Rk with the k-means algo-

rithm into clusters C1, C2, ··, Ck, which provides output of the algorithm as clusters

A1, · · ·, Ak with, Ai = {j|yj ∈ Ci}.

1.3 Application of Spectral Clustering Method

The spectral clustering method has comprehensive applications including machine

learning, computer vision, speech separation and many others.

• Speech Separation

The process of using spectral clustering for speech separation is discussed in

[1]. In this paper, Bach and Jordan integrate physical and psychophysical prop-

erties of speech with learning algorithms for the problem of one-microphone

blind source separation of speech. The physical properties provide parameter-

ized similarity matrices for spectral clustering, while psychophysical properties

make use of segmented training data. Using this approach, they are able to
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differentiate speech signals from two speakers.

• Distributed Systems

Parallel spectral clustering has been used in distributed systems. Spectral clus-

tering suffers a scalability problem in terms of memory and computational time

when the data size is large. Chen, Song and Jin did an empirical study on a

large document and photo data set. The document data set and the photo data

set are consist of 193,844 instances and 2,121,863 instances respectively. The

parallel spectral algorithm was used successfully on large data set problems [4].

• Monitoring of Evolving Blog Communities

Incremental spectral clustering has been applied to the monitoring of evolving

blog communities. An existing spectral clustering algorithm cannot incremen-

tally update the clustering result when the data set is given with a small change

and imported in the real time monitoring of evolving communities. A standard

clustering algorithm can be extended to an incremental algorithm by introduc-

ing an incidence matrix of the evolving data set. This incremental algorithm

continuously updates the eigenvalue system used in the spectral method effi-

ciently. This extended method also can label the evolving data set into differ-

ent clusters instantly, which brings the advantage of lowering the computational

cost. This extended spectral clustering algorithm as well as its applications in

evolution of individual multi-topic blogs is discussed [21].
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• Topological Mappings for Mobile Robots

An incremental spectral clustering method can be effectively used in appearance-

based, on-line topological mapping for mobile robots. To label new data in an

existing system, a spectral clustering algorithm extended with updating affinity

matrix can be applied. This process has been experimented with large outdoor

and indoor environments, which shows that we can close loops correctly by

computing a fraction of the entries in the affinity matrix [26].

• Protein Sequences

Many local methods based on analyzing the distribution of distances between

proteins sequences have been used to cluster homologous proteins. The per-

formance of these local methods is average, but using a spectral clustering

algorithm on the same proteins sequence data produces drastically improved

accuracy rates [22].

• High Dimensional Natural Language Data

The spectral clustering algorithm can be applied to a high-dimensional natural

language data set. Standard multivariate methods like k-means can be applied

on natural language data but when it comes to a high performance data set,

these multivariate methods fails to produce rewarding results. Since the search

space in high dimensional data is too large, multivariate techniques do not

satisfy global optimality. At this point, spectral clustering techniques works

as a rescue algorithm. The spectral clustering method has been successfully

applied to a high-dimensional German verbs data set [3].
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• Co-clustering Genes and Conditions

In genomic research, microarray experiments are becoming widely used to con-

currently measure RNA expression of genes. Microarray experiments have been

used in uncovering the function of genes in various cell populations, tumor

classification, drug target identification, understanding cellular pathways, and

prediction of outcome to therapy [16]. Microarray technology can be applied

to gene expression profiling to predict outcomes in multiple tumor types [10].

Spectral clustering techniques can be applied to identify class distinction of

genes and to classify tumors. Spectral biclustering of micro-array data is used

to co-cluster genes and conditions [14]. In this paper, the researchers propose

a spectral biclustering method that uses the information gained by clustering

the conditions to facilitate the clustering of genes, and vice versa. They assume

that each tumor type has a subset of marker genes that exhibit over expression

and that typically are not over expressed in other tumors. Then they use the

method to cluster observations of different tumors,

• Detecting Protein complexes in Protein-Protein Networks

Proteins and the study of protein-protein interactions (PPI) are becoming in-

creasingly important in our effort to understand human diseases [23]. Protein-

protein interactions play a very crucial role in biological processes. Different

areas like biochemistry, quantum chemistry, molecular dynamics and signal

transduction have been using the study of protein-protein interactions [12]. To

understand PPI, we have to understand protein complexes. Protein complexes

are a very important quality of biological processes. Protein complexes form
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different kinds of molecular nano-technology, which perform an immense num-

ber of biological functions. Qin and Gao used spectral clustering for detecting

protein complexes in PPI networks decomposition [24]. Before implementing

spectral clustering algorithm, they do data preprocessing, since there is noise in

PPI data. In the first step, they produce four different similar graphs for PPI

networks based on different characteristics: adjacency matrix, common neigh-

bor similarity, transmute similarity and commute similarity. Then they find a

graph Laplacian based on these four similarity graphs. Qin and Gao then used

a normalized spectral graph algorithm in [25] to detect the protein complexes

in PPI networks.

1.4 Vertex Weighted Graphs

A significant number of papers and articles can be found on edge-weighted graphs

and their applications. In a weighted graph, there is a value assigned to each edge

of a graph, and this weight can be any real number. Edge weights can be measured

based on distance from one node to another, or alternatively on costs or similarity.

Weighted networks based on edge weights have been extensively used in genomics

and systems biology [13]. Compared to edge weighted network analysis, a few works

can be found on vertex-weighted graphs, and almost nothing about vectors as vertex

weights can be found. Similar to an edge-weighted graph, in a vertex-weighted graph,

a weight can be assigned to each vertex of a graph. J. Knisley and D. Knisley, in their

recent paper [15], extensively discussed vertex-weighted graphs and graph-theoretic

measures that can be incorporated as vertex weights.
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The spectral clustering algorithm allows clustering a given data set into more

than two clusters. But for our thesis, we only consider a partition of a data set into

two clusters. In this thesis, we use a vertex-weighted spectral clustering method to

cluster sample data sets or graphs. Both the unweighted and the vertex-weighted

clustering can be used to partition data into different clusters. We seek to determine

whether there is a change in clustering due to implementing vertex-weighted graph.

Our primary focus is to observe the vertices which are classified unassociated after

using unweighted spectral clustering.

Our question is whether the vertex weights of these unassociated vertices can be

used to predict an association to one cluster or the other. We also want to see the

results by implementing the proposed algorithm on different of graphs having different

characteristics. The graphs have identical component sizes, various component sizes,

more equidistant points from both of the components as well as containing a different

number of edges from the nearly equidistant points to one or both components.
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2 BACKGROUND AND METHODS

2.1 Definitions

Adjacency matrix

The adjacency matrix of a graph G having n number of vertices is the n×n matrix

whose entries aij are given by

ai,j =


1, if i and j are adjacent

0, otherwise.

Figure 1: A graph G and its Adjacency, Degree and Laplacian matrix

For example, if G = (V,E) is the graph in Figure 1, then the adjacency matrix of G is

A =


0 1 1 0 0
1 0 1 1 1
1 1 0 0 0
0 1 0 0 1
0 1 0 1 0

 .
15



From the above definition of the adjacency matrix, A is a real symmetric square

matrix, and the trace of A is 0. To understand a graph, it is important to analyze

and understand its adjacency matrix, since the rows and columns of A represent an

arbitrary labeling of the vertices of the graph. The spectral properties (eigenvalues

and associated eigenvectors) of an adjacency matrix is one of the most important

features. The spectral properties of the adjacency matrix were much more investigated

in the past than the Laplacian matrix [8]. But in [8, 19], the researchers gave the

opinion that the eigenvalues of the Laplacian matrix are much more significant and

natural than the eigenvalues of the adjacency matrix.

Degree Matrix

A degree matrix of a graph G(V,E) with |V | = n, is an n × n diagonal matrix

where di,j of D are defined

di,j =


deg(vi), if i = j

0, otherwise.

where deg(vi) is number of the incident at vi ∈ V (G) [5]. Both the degree matrix D

and adjacency matrix A are used to construct the Laplacian matrix of a graph [2].

For example, the degree matrix of the graph in Figure 1 is

D =


2 0 0 0 0
0 4 0 0 0
0 0 2 0 0
0 0 0 2 0
0 0 0 0 2

 .
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Laplacian Matrix

The Laplacian matrix of a graph G with order n is a n× n square matrix defined

as

L(G) = D(G)− A(G)

where A(G) is the familiar (0, 1) adjacency matrix and D(G) is the diagonal matrix

of vertex degrees.[18]. For example, the Laplacian matrix of the graph G in Figure 1

is

L =


2 −1 −1 0 0
−1 4 −1 −1 −1
−1 −1 2 0 0
0 −1 0 2 −1
0 −1 0 −1 2

 .
Before the Laplacian matrix and its spectral properties became widely used, ma-

trix theory and linear algebra were used to analyze adjacency matrices, and sometimes

some eigenvalues of the adjacency matrix were regarded as the algebraic connectivity

of graph [6]. A new powerful technique of spectral graph theory using a Laplacian

matrix was proposed for analyzing graphs. Along with other researchers like Mar-

gulis, the study of spectral graph theory entered in a new generation of analyzing

graphs [17]. The eigenvalues and corresponding eigenvectors are the most important

features of the Laplacian matrix in spectral graph theory. The Laplacian matrix L

has n non-negative, real-valued eigenvalues 0 = λ1 ≤ λ2 ≤ · · λn [27]. The Laplacian

matrix L is the basis for the spectral clustering of a graph. There are some important

properties of L. To begin with, the rows and the columns of a Laplacian matrix L

sum to 0. Second, the diagonal entries of L represent the number of adjacent vertices

(i.e., the degree of a vertex) of a vertex in a graph. Finally, the singular value decom-

position of L is the same as its diagonalization since L is positive-semidefinite. The

17



SVD of L provides eigenvalues of L in descending order. The eigenvalues of L are also

singular values for L. We use the singular value decomposition to find eigenvalues

and associated eigenvectors for L because the order of the eigenvalues is important

for us. The smallest eigenvalue of L is zero with the corresponding eigenvector as the

constant one vector. Thus, for the above graph:

L1 =


1 −1 0 0 0
−1 3 −1 −1 0
0 −1 1 0 0
0 −1 0 2 −1
0 0 0 −1 1




1
1
1
1
1

 =


0
0
0
0
0

 .
For every vector f ∈ Rn we have,

fTLf =
1

2

n∑
i,j=1

wij(fi − fj)2

Since, L is symmetric and positive semidefinite. L = UΣV T implies, U = V . There-

fore, L = UΣUT , where Σ is the singular values which is eigenvalues of the Laplacian

matrix. Also for any eigenvector v, vTLv ≥ 0 [27].

Fiedler Vector

The Laplacian matrix L of a graph of order n can be expanded using singular

value decomposition method. If L = [v1|v2| · ·|vn], then the SVD of L, which is also

its diagonalization, is L = UΣUT , where U = [u1, u2, · · ·, un−1, un]. The u1, u2, · · ·un

are eigenvectors of L and

Σ =


s1

s2
.

.
sn−1

0

 .

Here, un−1 is the associated eigenvector of second smallest eigenvalue sn−1. This

un−1 is called the Fiedler vector. The eigenvalue sn−1 is also known as the algebraic

18



connectivity of a graph. We use the SVD because Σ contains the singular values of L

in non-ascending order and the singular values of a positive semi-definite matrix are

the same as its eigenvalues.

Suppose a graph has more than one component. Then the Fiedler vector can be

expressed as a linear combination of the eigenvectors un−1, un corresponding to the

two smallest eigenvalues, since the last two columns of U are orthogonal to 1:

FiedlerV ector = (un−11)un − (un1)un−1

Thus FiedlerV ector ∈ span(un−1, un). The Fiedler vector is orthogonal to the one

vector. That is,

FiedlerV ector · 1 = (un−1 · 1)(un · 1)− (un · 1)(un−1 · 1) = 0

The second smallest eigenvalue and associated Fiedler vector play a major role

in different applications of graph theory, such as expander graphs, the isoperimetric

problem and the maximum cut problem. The Fiedler vector answers many questions

regarding a graph, most particularly about the connectedness of a graph.

2.2 Graph-Theoretic Measures

In a vertex-weighted graph, a vector of vertex-weights is assigned to each vertex.

There are many graph theoretic measures that can be incorporated into a vector of

weights and that can be applied to vertex weighted spectral clustering. Three graph-

theoretic measures: weighted domination number, weighted periphery, and weighted
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diameter are discussed in [15]. D. Knisley defines the weighted domination number

as follows:

• Weighted Domination Number

Let D be a set of vertices of a graph G. If every vertex of G not in vertex set

D is adjacent to at least one vertex of D, then D is a dominating set of G. For

a vertex-weighted graph, the minimum dominating set is the set whose vertex

sum is a minimum.

In general, all graphical invariants can be used as vertex weights. Here are some

graphical invariants that are generalized into weighted graph-theoretic measures:

• Degree

The degree of a vertex v in a graph G is the number of direct neighbors of the

vertex v. That degree is the number of edges incident to the vertex.

• Closeness Centrality

The closeness of a vertex v of a graph G is the inverse of the shortest path

distance of the vertex to all other vertices in the graph. Closeness of a vertex

measures centrality of the vertex in the graph. Let A be the adjacency matrix

of G and let n = |V (G)|. If u ∈ V (G), then closeness centrality of u is

Ccl(u) =
(n− 1)∑

v∈V (G) dist(u, v)

20



• Average Nearest Neighbor Degree

The average nearest neighbor degree of a vertex u in graph G is the average of

the degree of its immediate neighbors. Let N(u) is the neighbors of u, then the

average nearest neighbor degree of u is

Can =

∑
Cd(u)

N(u)

where Cd(u) is the number of degree of u.

• Clustering Coefficient

The clustering Coefficient of a vertex u of a graph G is the ratio of the number

of connected neighbours of the vertex u to the number of all possible connected

neighbors of u.

• Strength

The strength of a vertex u of a edge weighted network is the sum of weights of

edges connected to vertex u. Then the strength of u is

Cs(u) =
∑

v∈N(u)

wuv

where wuv is the weights of uv edges of the network.

There are other graphical invariants which can be generalized to weighted graph-

ical invariants and also we can apply them to vertex-weighted graph.
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2.3 Vertex-Weighted Laplacian Matrix

Let G(V,E) be a graph with vertex set V = {v1, · · ·, vn} and edge set E. If dv is

the degree of a vertex v ∈ V , then the unweighted Laplacian L is defined

L(u, v) =



dv, if u = v

−1, if u ∼ v.

0, otherwise

Let αv be the weight of vertex v; then the unweighted Laplacian matrix can be

extended to the weighted Laplacian by Chung and Langland [7],

L(u, v) =



∑
z∼u αz, if u = v

−αv, if u ∼ v.

0, otherwise

Now for any function f : V → R, the Laplacian matrix satisfies:

Lf(v) =
∑
u∼v

αu(f(v)− f(u)).

Here L is not symmetric, but L can be expressed as a symmetric matrix L of G as

follows:

L(u, v) =



∑
z∼v αv, if u = v

−√αuαv, if u ∼ v.

0, otherwise
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The vertex-weighted Laplacian is also defined by Lovasz:

L(u, v) =



∑
z∼v αv, if u = v

−αuαv, if u ∼ v.

0, otherwise

2.4 Vector-Weighted Vertices

We can assign a vector of weights to each vertex of a graph to form vector valued

graph. For any two vertices u, v ∈ V (G), we denote the Laplacian of vector valued

graph of G as [Lu,v]u,v where Lu,v is an m ×m matrix [15]. Then the coefficients of

[Lu,v]u,v can be expressed by the following theorem.

Theorem 2.1 [15] The coefficients [Lu,v]u,v∈V are of the form

L(u, v) =



duIm, if u = v

−Im, if u ∼ v

0, otherwise

where Im is the m×m identity matrix.

Fiedler vector is the key component to cluster the data set and it is used in different

clustering algorithm including spectral clustering algorithm. The following theorem

shows that the Fiedler vectors of the vector-valued Laplacian matrix are related to

the Fiedler vectors of unweighted Laplacian matrix.

Theorem 2.2 [15] The Fiedler eigenvector e1 satisfies∑
v∈V

e1(v) = 0.
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3 A VERTEX-WEIGHTED SPECTRAL CLUSTERING ALGORITHM

3.1 Description of Vertex-Weighted Spectral Clustering

The purpose of this thesis is to predict the association of equidistant or nearly

equidistant data points from both clusters using vertex-weighted spectral clustering.

These are the vertices that unweighted clustering does not associate to either cluster.

In unweighted clustering the unassociated vertices correspond to zero coefficients

in the Fiedler vector. Vertex weights can be used to predict association of those

unassociated vertices.

For any given graph G, we compute the unweighted Laplacian matrix L using

the degree and adjacency matrices of G. After adding a vector of weights {αv}v∈V (G)

where αv ∈ Rm to each vertex of G, we form the vector-valued graph of G. We

consider αv ∈ R3 in the result section. Then we find vertex-weighted Laplacian

matrix of G using

Lw(u, v) =



Im
∑

z∼v αv, if u = v

−Im(αuαv), if u ∼ v.

0, otherwise

The spectral properties of the Laplacian matrix can be computed by using the

singular value decomposition method, L = UΣUT . The reason for using the SVD of

L is discussed in Chapter 2. To compute weighted Fiedler vectors, vectors of weights

{αv} are multiplied with the unweighted Fiedler vector. The unweighted Fiedler

vector is calculated using the unweighted Laplacian matrix.

A vertex weighted graph must be constructed from the weights for the vertices and

24



the unweighted graph. To construct the graph, a cosine similarity matrix is formed

using the weighted Fiedler vector. It computes the correlation between every pair of

vertices in the graph G. A cosine similarity matrix is calculated using

Correlation =
v1 · v2
||v1||||v2||

where v1, v2 are any two vertices in the graph G.

• Unweighted Clustering

We use the unweighted Laplacian matrix and the unweighted Fiedler vector in

the unweighted clustering technique. To partition the data set into clusters, we

set a threshold so that the algorithm maximally provides two clusters and unas-

sociated vertices. The Fiedler coefficient of an unassociated vertex corresponds

to zero or closer to zero compared with the largest Fiedler coefficient of a graph.

If a vertex Fiedler coefficient is greater than the threshold, then that vertex be

in cluster 1 and if the coefficient is less than the negative of the threshold, then

that vertex be in cluster 2. A vertex is classified as unassociated if the absolute

value of its Fiedler coefficient is less than the threshold.

• Vertex-Weighted Clustering

In vertex-weighted clustering, to partition the given data set into clusters the

weighted Laplacian matrix and the cosine similarity matrix of the weighted

Fiedler vector are used. Two vertices will be in the same cluster if their corre-

lation is greater than a given threshold.
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3.2 Implementation of the Algorithm using Python

We used Python 3 to implement our proposed algorithm. There are several pack-

ages of Python 3 are used in our code. We used Numpy for fast operation in arrays,

Scipy to do the mathematical operation of linear algebra, Networkx for graph theory,

Pandas for data visualization. We used cosine similarity function which is imported

from Scikit Learn, a Python library.

At first, we define a function called “SetPosAlpha” which takes a graph as input

and in return sets vertex attributes: vertex position and vertex weights. We create a

graph using Networkx and set a position of the graph components using the function

“SetPosAlpha”. The unweighted Laplacian matrix and the SVD of Laplacian are

calculated using the built-in function of Numpy. The Fiedler vector is acquired using

DataFrame. A threshold = 0.01 is set up to identify the clusters. If FiedlerV ector ≥

0.01 the vertices are in cluster 1 and if FiedlerV ector ≤ 0.01 implies the vertices are

in cluster 2, and if |FiedlerV ector| < 0.01 the vertex is labeled as unassociated.

Thus, in this way, we get the unweighted clustering of the vertices.

For vertex-weighted clustering, at first, we create a class called coefficient matrix

and initialize a method under this class which allows us to put attributes coeff, value

and names for our class. The default value is a 2× 2 identity matrix. The attribute

for the class we created returns the product of coefficient and value. A special python

method ‘mul’ is set up which takes a vector as input and returns the dot product of

the coefficient and the vector.

Now we want to replace the coefficients by matrices, and for that, we define a

function VertexWeighting which contains three arguments. This function takes as
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input the unweighted Laplacian matrix as a data type numpy array and produces an

output of weighted vector-valued Laplacian matrix. We also use this function to create

the weighted Fiedler vector. To create the weighted Fiedler vector, an unweighted

Fiedler coefficient of each vertex is multiplied with the vertex’s vector of weights.

We import cosine similarity function from Scikit Learn package to calculate the

similarity between two non-zero vectors. We use this similarity in the PredictPartition

function. We define a function PredictPartition for vertex-weighted clustering. The

function works as a signal to label the vertices of a given graph. The function takes

a list of vectors as input. We pass the cosine similarity matrix which we obtain using

weighted Fiedler vector through the PredictPartition function. A parameter threshold

= 0.02 is set up as a default argument for this function. Initially, it assumes all the

vertices are unassociated. Then the function finds two vertices that achieve maximum

correlation, and it assigns the vertices those correlation is greater than threshold to

cluster 1. Then the function removes the vertices which already belong to cluster 1

and then follow the similar procedure with the rest of the vertices. In the process,

it creates cluster 2. If there is still some vertices remain then they are labeled as

unassociated. In this way, we achieve the clustering of vertices of a graph using

vertex-weighted clustering.

3.3 Implementation of both Unweighted and Vertex-Weighted Clustering on a

Graph

For instance, we consider the following simple graph G in Figure 2. We formed the

unweighted Laplacian matrix from the graph G. The second smallest eigenvalue of L
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and a corresponding eigenvector of Laplacian matrix is computed. This eigenvector

is the required Fiedler vector which produces clustering of the data set. The Fiedler

vector of the graph G in Figure 2 is in Table 1.

Figure 2: Implementing of unweighted and vertex-weighted clustering

Table 1: Unweighted Fiedler vector of graph G.

Vertex Fiedler Coefficient
0 -0.27060
1 -0.32664
2 -0.32664
3 -0.32664
4 -0.32664
5 0.27060
6 0.32664
7 0.32664
8 0.32664
9 0.32664
10 0.00000
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Entries of the Fiedler vector are called Fiedler coefficients. The coefficients imply

that the graph naturally divides into two different clusters as identified by the different

signs of the coefficients. We set the parameter threshold = 0.01 to label the vertices.

The Fiedler coefficients of vertex set {0,1,2,3,4} are greater than 0.01. Thus, these

vertices form cluster 1. The Fiedler coefficients of vertex set {5, 6, 7, 8, 9} are less

then −0.01. Thus the vertex set {5, 6, 7, 8, 9} form cluster 2. The vertex (10) has

Fiedler coefficient 0.00 which is less than 0.01. Thus, the vertex (10) is labeled as

unassociated with any of the clusters. Figure 3 shows the coefficients of the Fiedler

vector, illustrating that there are two clusters with one unassociated vertex.

Figure 3: Fiedler vector of G
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In an actual application, the vertex weight vectors represent additional informa-

tion not used in the construction of the original network. Vertex weights and graph

invariants are discussed in Chapter 2. For example, we incorporated the [1, 0, 0] vec-

tor on vertices in cluster 1 and [0, 0, 1] vector on vertices in cluster 2. Recall that the

question of this thesis addresses if and how vertex weights can be used to associate

vertices to a cluster that were unassociated in the unweighted case. To illustrate

that it can, a vector of weights [0.5, 0, 0.5] is assigned to vertex (10). We extended

unweighted Laplacian matrix to vertex-weighted Laplacian of the vertex-weighted

graph. Consequently, we computed a weighted Fiedler vector which is noted in Table

2.

Table 2: Weighted Fiedler vector of graph G.

Vertex Fiedler Vector
0 [-0.27060, 0, 0]
1 [-0.32664, 0, 0]
2 [-0.32664, 0, 0]
3 [-0.32664, 0, 0]
4 [-0.32664, 0, 0]
5 [0, 0, 0.27060]
6 [0, 0, 0.32664]
7 [0, 0, 0.32664]
8 [0, 0, 0.32664]
9 [0, 0, 0.32664]
10 [0, 0, 0]

From the weighted Fiedler vector, we created a cosine similarity matrix in Table

3 to cluster the vertices. A parameter, threshold = 0.02 was set up to classify the

vertices.

The cosine similarity matrix is symmetric. Since we want to avoid double count,
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Table 3: Cosine similarity matrix of Fiedler weighted vector.

0 1 2 3 4 5 6 7 8 9 10
0 1.00 1.00 1.00 1.00 1.00 0 0 0 0 0 .707
1 1.00 1.00 1.00 1.00 1.00 0 0 0 0 0 .707
2 1.00 1.00 1.00 1.00 1.00 0 0 0 0 0 .707
3 1.00 1.00 1.00 1.00 1.00 0 0 0 0 0 .707
4 1.00 1.00 1.00 1.00 1.00 0 0 0 0 0 .707
5 0 0 0 0 0 1.00 1.00 1.00 1.00 1.00 -.707
6 0 0 0 0 0 1.00 1.00 1.00 1.00 1.00 -.707
7 0 0 0 0 0 1.00 1.00 1.00 1.00 1.00 -.707
8 0 0 0 0 0 1.00 1.00 1.00 1.00 1.00 -.707
9 0 0 0 0 0 1.00 1.00 1.00 1.00 1.00 -.707
10 .707 .707 .707 .707 .707 -.707 -.707 -.707 -.707 -.707 1.00

we set the diagonal and above equal to 0. We cluster the data set from the cosine

similarity matrix using the idea: positives have a positive correlation with each other,

negatives have a positive correlation with each other, but a positive and a negative are

negatively correlated. Initially, we assume all the vertices are unassociated (label=0).

We find two vertices v1 and v2 that achieve maximum correlation. Then we create

a cluster of all vertices whose correlation with them is greater than a given thresh-

old. We set the threshold = 0.02. We find that any two vertices in the vertex set

{0, 1, 2, 3, 4} have correlation 1 which is maximum. Thus these vertices form cluster 1.

The vertex (10) has a correlation of 0.707 (which is greater than the threshold = 0.02)

with any vertex in the cluster 1. For this, the vertex (10) moves to cluster 1. Since

the vertices in {0, 1, 2, 3, 4, 10} form cluster 1, we remove these vertices from the data

set. Again we look for a maximum correlation between two vertices in the remaining

vertices in {5, 6, 7, 8, 9}. We find that any two vertices in the set has correlation 1

between them. Thus, these vertices form cluster 2.
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Figure 4 and Figure 5 illustrate the distribution of vertices due to using unweighted

and vertex-weighted clustering respectively. Figure 6 and Figure 7 are graphical repre-

sentation of clustering of vertices for using unweighted and vertex-weighted clustering

respectively. In the Figures, the red, green and yellow color represent cluster 1, cluster

2 and unassociated vertices respectively. The Vertex (10) changes from yellow to red

in Figure 7, which suggests that the Vertex (10) has become associated with cluster

1.

Figure 4: Vertex distribution of

unweighted clustering.

Figure 5: Vertex distribution of

vertex-weighted Clustering.

Figure 6: Unweighted spectral

clustering.

Figure 7: Vertex-weighted spec-

tral clustering.
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3.4 Generalization of results of using Vertex-Weighted Spectral Clustering

We applied our proposed vertex-weighted spectral clustering on eight different

graphs in Figure 8 to show that the proposed algorithm can work in general. The

graphs have the following variations: identical components sizes, a different compo-

nent sizes, more equidistant points from both of the components as well as containing

a different number of edges from the nearly equidistant points to one or both compo-

nents. Characteristics of the graphs are recorded in Table 4.

8(a) 8(b)

8(c) 8(d)

8(e) 8(f)

33



8(g) 8(h)

Figure 8: Eight different graphs with different characteristics

Table 4: Characteristics of the graphs.

Graph 1st Component 2nd Component (Nearly) Equidistant Vertices

8(a) K6 K6 1
8(b) K12 K10 2
8(c) K8 K8 3
8(d) K10 K10 4
8(e) K7 K9 4
8(f) K20 K20 3
8(g) K30 K32 5
8(h) K50 K60 8

34



We applied both unweighted and vertex-weighted clustering algorithms on all the

graphs. The results of applying algorithms are documented in Table 5. The number of

vertices classified as cluster 1, cluster 2 and unassociated for using both the algorithms

are recorded in the Table 5.

Table 5: Unweighted and vertex-weighted spectral clustering results.

Unweighted Clustering Vertex-Weighted Clustering
Graph Order Cl 1 Cl 2 Unassociated Cl 1 Cl 2 Unassociated

8(a) 13 6 6 1 6 7 0
8(b) 24 11 12 1 12 12 0
8(c) 19 9 9 1 10 9 0
8(d) 24 12 11 1 12 12 0
8(e) 20 9 10 1 10 10 0
8(f) 43 21 20 2 22 21 0
8(g) 67 31 32 4 35 32 0
8(h) 118 62 51 5 62 56 0

Clustering of the vertices is changed due to applying vertex-weighted clustering.

Our primary focus is to observe the changes of clustering of the vertices that are

unassociated to both clusters after using unweighted clustering techniques. We doc-

umented cluster changes of those vertices in Table 6. In all the graphs from 8(a)

to 8(h), the unassociated vertices become associated. In some graphs, the unassoci-

ated vertices become related to cluster 1 while for other graphs, the vertices become

associated to cluster 2.
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Table 6: Clustering changes of unassociated vertices.

Graph Vertex Unweighted Clustering Vertex-Weighted Clustering

8(a) 12 Unassociated Cl-2
8(b) 22 Unassociated Cl-1
8(c) 16 Unassociated Cl-1
8(d) 20 Unassociated Cl-2
8(e) 16 Unassociated Cl-2
8(f) 40,42 Unassociated Cl-2
8(g) 62-66 Unassociated Cl-1
8(h) 110, 112-115 Unassociated Cl-2
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4 CONCLUSION

Applying the vertex-weighted spectral clustering technique can change the clus-

tering of a graph. The unweighted technique does not provide an association of the

vertices which are less connected compared with the other vertices of a graph. Im-

plementing a vertex-weighted clustering technique can influence those vertices to be

associated to any one of the clusters. We used the cosine similarity matrix to con-

struct the graph. In the future, the nearest neighbor approach can be added to the

vertex-weighted spectral clustering and compare the results.

In contrast with the past, there are many high dimensional data sets like microar-

rays, DNA data, time series data, EEG and MEG is available due to the advancement

of technology. To embed these high dimensional data into a low dimensional space,

we use the dimensionality reduction methods to avoid the curse of dimensionality. In

the reduction process, we discard less important features. But using those features

as vertex-weights we can keep those and for a clustering situation, we can use the

vertex-weighted spectral clustering algorithm to cluster the data set.
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APPENDIX: Python Code

%matp lo t l i b i n l i n e

import matp lo t l i b . pyplot as p l t

import numpy as np

import warnings

warnings . f i l t e r w a r n i n g s (” i gnor e ”)

import networkx as nx

from sc ipy import l i n a l g

from pandas import DataFrame , s e t o p t i o n

from numpy import array , matrix

de f fmt ( x ) :

i f ( abs ( x ) < 1e−8):

r e turn ’0 ’

e l s e :

r e turn ’%.5 f ’ % x

np . s e t p r i n t o p t i o n s ( p r e c i s i o n = 5 , suppres s = True )

s e t o p t i o n ( ’ d i sp l ay . f l o a t f o rm at ’ , fmt )

de f SetPosAndAlpha ( G, c l r , o f f s e t = np . array ( [ 0 , 0 ] ) ) :

pos = nx . random layout (G)

f o r ky in pos . keys ( ) :
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pos [ ky ] += o f f s e t

nx . s e t n o d e a t t r i b u t e s ( G, ’ pos ’ , pos )

Vweights = {}

f o r nd in G. nodes ( ) :

Vweights [ nd ] = c l r

nx . s e t n o d e a t t r i b u t e s ( G, ’ alpha ’ , Vweights )

re turn pos

c l a s s Coef fMatr ix ( ob j e c t ) :

de f i n i t ( s e l f , c o e f f ,

va lue = np . eye ( 2 ) , name = ” I ” ) :

s e l f . c o e f f = c o e f f

s e l f . va lue = c o e f f ∗ value

s e l f . name = name

de f r e p r ( s e l f ) :

i f ( s e l f . c o e f f == 1 ) :

r e turn ”%s ” %s e l f . name
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e l i f ( s e l f . c o e f f == −1 ) :

r e turn ”−%s ” % s e l f . name

e l i f ( s e l f . c o e f f == 0 ) :

r e turn ”0”

e l s e :

r e turn ’%s∗%s ’ % ( s e l f . c o e f f , s e l f . name)

de f mu l ( s e l f , v ec to r ) :

r e turn s e l f . c o e f f . dot ( vec to r )

# Replaces c o e f f i c i e n t s by matr i ce s

de f VertexWeighting ( NdArray , va lue s = np . eye ( 2 ) , names = ’ I ’ ) :

M = NdArray

Lw = np . empty ( M. shape , dtype = ob j e c t )

i f ( ha sa t t r ( values , ’ shape ’ )

and l en ( va lues . shape ) > l en (M. shape ) ) :

a s s e r t M. shape == va lues . shape [ : l en (M. shape ) ]

a s s e r t M. shape == names . shape

f o r index in np . ndindex (∗M. shape ) :
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Lw[ index ] = Coef fMatr ix (

M[ index ] , va lue s [ index ] , names [ index ] )

r e turn Lw

e l s e :

f o r index in np . ndindex (∗M. shape ) :

Lw[ index ] = Coef fMatr ix ( M[ index ] , va lues , names )

re turn Lw

import math

import i t e r t o o l s

from sk l e a rn . met r i c s . pa i rw i s e import c o s i n e s i m i l a r i t y

de f P r e d i c t P a r t i t i o n ( ListVec , th r e sho ld = 0 . 2 , verbose = True ) :

a s s e r t th r e sho ld > 0 , ” Threshold cannot be exac t l y 0”

Corrs = c o s i n e s i m i l a r i t y ( ListVec )

Labels = [ 0 ] ∗ l en ( ListVec )

f o r i in range ( l en ( ListVec ) ) :

Corrs [ i , i : ] = 0
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mx = np . max( Corrs )

a s s e r t mx >= thre sho ld

i f ( verbose ) :

p r i n t (”Max f o r f i r s t c l u s t e r i s {0}”. format (mx) )

v1 , v2 = np . unrave l index (

np . argmax ( Corrs ) , Corrs . shape )

IndexL i s t = l i s t ( range ( l en ( ListVec ) ) )

IndexL i s t . remove ( v1 )

IndexL i s t . remove ( v2 )

P a r t i t i o n L i s t = [ v1 , v2 ]

Corrs [ v1 , v2 ] = 0

Corrs [ v2 , v1 ] = 0

Labels [ v1 ] = Labels [ v2 ] = 1

AddingToCluster = True

whi l e AddingToCluster :

f o r i , j in i t e r t o o l s . product ( IndexList , P a r t i t i o n L i s t ) :

AddingToCluster = False

i f ( Corrs [ i , j ] >= thre sho ld ) :
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Labels [ i ] = 1

Corrs [ i , j ] = 0

IndexL i s t . remove ( i )

P a r t i t i o n L i s t . append ( i )

AddingToCluster = True

break

f o r i , j in i t e r t o o l s . product ( P a r t i t i o n L i s t , P a r t i t i o n L i s t ) :

Corrs [ i , j ] = 0

mx = np . max( Corrs )

a s s e r t mx >= thre sho ld

i f ( verbose ) :

p r i n t (”Max f o r second c l u s t e r i s {0}”. format (mx) )

v1 , v2 = np . unrave l index ( np . argmax ( Corrs ) , Corrs . shape )

IndexL i s t . remove ( v1 )

IndexL i s t . remove ( v2 )

P a r t i t i o n L i s t = [ v1 , v2 ]

Corrs [ v1 , v2 ] = 0

Labels [ v1 ] = Labels [ v2 ] = −1
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AddingToCluster = True

whi l e AddingToCluster :

f o r i , j in i t e r t o o l s . product ( IndexList , P a r t i t i o n L i s t ) :

AddingToCluster = False

i f ( Corrs [ i , j ] >= thre sho ld ) :

Labels [ i ] = −1

Corrs [ i , j ] = 0

IndexL i s t . remove ( i )

P a r t i t i o n L i s t . append ( i )

AddingToCluster = True

break

e l s e :

break

re turn Labels

numA = 5

numB = 5

Cluste r1 = nx . complete graph (numA)

Cluste r2 = nx . complete graph (numB)
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pos1 = SetPosAndAlpha ( Cluster1 , np . array ( [ 1 , 0 , 0 ] ) ,

o f f s e t = np . array ( [ 1 . 5 , −0.5]) )

pos2 = SetPosAndAlpha ( Cluster2 , np . array ( [ 0 , 0 , 1 ] ) ,

o f f s e t = np . array ( [−2 .5 , −0.5]) )

nx . draw ( Cluster1 , pos1 , node co l o r = np . array ( [ 1 , 0 , 0 ] ) )

nx . draw ( Cluster2 , pos2 , node co l o r = np . array ( [ 0 , 0 , 1 ] ) )

G = nx . d i s j o i n t u n i o n ( Cluster1 , C lus te r2 )

G. add node ( numA+numB, { ’ pos ’ : np . array ( [ 0 , 0 ] ) ,

’ alpha ’ : np . array ( [ 0 . 5 , 0 , 0 . 5 ] ) } )

G. add edge ( 0 , numA+numB )

G. add edge ( numA, numA+numB )

nx . draw (G, nx . g e t n o d e a t t r i b u t e s (G, ’ pos ’ ) ,

node co l o r = [ G. node [ v ] [ ’ alpha ’ ] f o r v in G ] )

p l t . a x i s ( ’ equal ’ ) ;

L = DataFrame ( nx . l a p l a c i a n m a t r i x (G) . todense ( ) ,

columns = G. nodes ( ) , index = G. nodes ( ) )

V, Sigma , Vt = l i n a l g . svd (L)
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Fied l e rVec to r = Vt[−2]

th r e sho ld = 0.01

Component1 = L . columns [ F i ed l e rVec to r >= thre sho ld ]

Component2 = L . columns [ F i ed l e rVec to r <= −th r e sho ld ]

Unassoc iated = L . columns [ np . abs ( F i ed l e rVec to r ) < th r e sho ld ]

Lw = DataFrame ( VertexWeighting (L . as matr ix ( ) ) ,

columns = L . columns , index = L . index )

Weights = np . array ( [ G. node [ i ] [ ’ alpha ’ ]

f o r i in G. nodes ( ) ] )

Names = np . array ( [ ’ alpha%s ’ % i f o r i in G. nodes ( ) ] )

Fw = VertexWeighting ( Fied le rVector , Weights , Names)

cos sim Fw = c o s i n e s i m i l a r i t y ( [ m. va lue f o r m in Fw ] )

cos s im Fw 1 = [ cos sim Fw [ : , i ]

f o r i in range ( cos sim Fw . shape [ 1 ] ) ]

P r e d i c t P a r t i t i o n ( cos s im Fw 1 )
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